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Growth rate for endomorphisms
of finitely generated nilpotent groups
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Abstract. We prove that the growth rate of an endomorphism of a finitely generated nil-
potent group is equal to the growth rate of the induced endomorphism on its abelianiza-
tion, generalizing the corresponding result for an automorphism in [T. Koberda, Entropy
of automorphisms, homology and the intrinsic polynomial structure of nilpotent groups,
in: In the Tradition of Ahlfors–Bers. VI, Contemp. Math. 590, American Mathematical
Society, Providence (2013), 87–99].

1 Introduction

In the present paper, we study purely algebraic notions of growth rate and entropy
for an endomorphism of a finitely generated group.

Let � be a finitely generated group with a system S D ¹s1; : : : ; snº of genera-
tors. Let �W� ! � be an endomorphism. For any 
 2 � , let L.
; S/ be the length
of the shortest word in the letters S [ S�1 which represents 
 . Then the growth
rate of � is defined [2] to be

GR.�/´ sup
®
lim sup
k!1

L.�k.
/; S/1=k j 
 2 �
¯
:

For each k > 0, we put

Lk.�; S/´ max¹L.�k.si /; S/ j i D 1; : : : ; nº:

It is known for example from [2, Proposition 1] that

GR.�/ D lim
k!1

Lk.�; S/
1=k
D inf

k
¹Lk.�; S/

1=k
º;
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and the algebraic entropy of � is by definition halg.�/´ log GR.�/. The growth
rate and hence the algebraic entropy of � are well-defined, i.e., independent of
the choice of a set of generators [7, p. 114]. It is immediate from the definition
that the growth rate and the algebraic entropy for an endomorphism of a group
are invariants of conjugacy of group endomorphisms. Furthermore, for any inner
automorphism �
0 by 
0, we have GR.�
0�/ D GR.�/ and halg.�
0�/ D halg.�/

([7, Proposition 3.1.10]).
Consider a continuous map f on a compact connected manifold M , and con-

sider a homomorphism � induced by f of the group of covering transformations
on the universal cover of M . Then the topological entropy htop.f / is defined. We
refer to [7] for background. Several authors, among them R. Bowen in [2] and
A. Katok in [8], have proved that the topological entropy htop.f / of f is at least
as large as the algebraic entropy halg.�/ D halg.f / of � or f .

The problem of determining the growth rate of a group endomorphism, initiated
by R. Bowen in [2], is now an area of active research (see detailed description in [5,
10] and references therein). For known properties of the growth of automorphisms
of free groups, we refer to [1, 12, 13].

The purpose of this paper is first to study the growth rate of an endomorphism
on a finitely generated nilpotent group. In [10, Theorem 1.2], it was proven that the
growth rate of an automorphism of a finitely generated nilpotent group is equal to
the growth rate of the induced automorphism on its abelianization. Our main result
is a generalization of this result of [10] from automorphisms to endomorphisms,
using completely different arguments. In Section 2, we recall some known results
about the growth rate of a group endomorphism, sometimes correcting them. In
Section 3, we refine the calculation in [2] of the growth rate for an endomorphism
of a finitely generated torsion-free nilpotent group and prove that the growth rate
is an algebraic integer.

Let � be a finitely generated torsion-free nilpotent group, and let G be its Mal-
cev completion. Let � be an endomorphism of � . Then � extends uniquely to
a Lie group homomorphism D of G, called the Malcev completion of �. We call
its differential D� the linearization of �. The main results are the following.

Theorem 3.3. Let �W� ! � be an endomorphism on a finitely generated torsion-
free nilpotent group � . Let G be the Malcev completion of � . Then the lineariza-
tion D�WG ! G of � can be expressed as a lower triangular block matrix with
diagonal blocks ¹Dj º so that

GR.�/ D max
j�1
¹sp.Dj /1=j º:

In particular, GR.�/ is an algebraic integer.
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Theorem 3.7. Let �W� ! � be an endomorphism on a finitely generated torsion-
free nilpotent group � with Malcev completion D. Then

GR.�/ D GR.�ab/;

where �abW�=Œ�; ��! �=Œ�; �� be the endomorphism induced by �. Hence we
have GR.�/ D sp.D1/ � sp.D�/.

2 Preliminaries

We shall assume in this article that all groups are finitely generated unless other-
wise specified. For a given endomorphism �W� ! � , if � 0 is a �-invariant sub-
group of � , we denote by �0 D �j� 0 the restriction of � to � 0. If, in addition, � 0

is a normal subgroup, we denote by O� the endomorphism on �=� 0 induced by �.
Then the following are known; see for example [2, 5].

� GR.�k/ D GR.�/k for k > 0.

� GR. O�/ � GR.�/.

� GR.�/ � max¹GR.�0/;GR. O�/º.

� Let �WZn ! Zn be an endomorphism yielding an integer matrix D. Then we
have GR.�/ D sp.D/, the maximum of the absolute values of the eigenvalues
of D.

Let S 0 be a finite set of generators for � 0, and let OS be a finite set of generators
for the quotient group �=� 0. Then it is possible to extend S 0 to a finite set S of
generators for � so that S is projected onto OS under the projection � ! �=� 0. For
any 
 2 � 0, it is true that L.
; S 0/ � L.
; S/.

Consider the concentric balls B.n/ D ¹
 2 � j L.
; S/ � nº for all n > 0, and
the distortion function of � 0 in � which is defined as

��� 0.n/´ max¹L.
; S 0/ j 
 2 � 0 \ B.n/º:

The notion of distortion of a subgroup was first introduced by M. Gromov in [6].
We refer to [3] for our discussion. For two functions f; gWN ! N, we say that
f 4 g if there exists c > 0 such that such that f .n/ � cg.cn/ for all n > 0. We
say that two functions are equivalent, written f � g, if f 4 g and g 4 f . The
subgroup � 0 of � is undistorted if ��� 0.n/ � n. The following facts about distor-
tion can be found in [3].

� If � 0 is infinite, then it is true that n 4 ��� 0.n/.
� If Œ� W � 0� <1, then � 0 is undistorted in � .



948 A. Fel’shtyn, J. H. Jo and J. B. Lee

Assume ��� 0.n/ 4 n. By definition, there exists c > 0 such that ��� 0.n/ � c
2n

for all n > 0. For any 
 2 � 0, let n D L.
; S/. Then

L.
; S 0/ � ��� 0.n/ � c
2n D c2L.
; S/:

Thus L.
; S/ � c2L.
; S/ for all 
 2 � 0. This inequality implies that, for all
k > 0,

Lk.�
0; S 0/ D max¹L.�0k.
i /; S 0/ j 
i 2 S 0º

� c2 max¹L.�0k.
i /; S/ j 
i 2 S 0º � c2Lk.�; S/;

and so GR.�0/ � GR.�/. Consequently, we have the following lemma.

Lemma 2.1 ([5, Corollary 3.1]). Let � be an endomorphism of � . If � 0 is a �-in-
variant undistorted subgroup in � , then GR.�0/ � GR.�/; hence if, in addition,
� 0 is a normal subgroup of � , then GR.�/ D max¹GR.�0/;GR. O�/º.

Proof. Since � 0 is undistorted in � , we have from the definition that ��� 0.n/ 4 n.
Now the proof follows from the above observation.

Remark 2.2. Note also the following.

� If � 0 is of finite index in � , then � 0 is undistorted, and hence GR.�0/ � GR.�/.
Example 2.4 shows that the inequality can be strict. Thus [2, Proposition 1 (3)]
(see also [5, Theorem 3.1]) is not correct.

� If GR.�/ < GR.�0/, then � 0 is distorted, and � 0 is not of finite index in � .

Lemma 2.3. Let � be an endomorphism of � . If GR.�/ < 1, then GR.�/ D 0 and
� is an eventually trivial endomorphism, and vice versa.

Proof. Let � D GR.�/, and let � D 1� � > 0. Since limm!1Lm.�; S/1=m D �,
there exists N > 0 such that, for all m � N , we have Lm.�; S/1=m � � < �;

Lm.�; S/
1=m < 1 H) Lm.�; S/ < 1 H) Lm.�; S/ D 0

because Lm.�; S/ is a nonnegative integer. This implies that � D 0 and the endo-
morphism �N is trivial or � is eventually trivial. The converse is obvious.

Example 2.4. Let � D Z � Z2 with generators ˛ and ˇ such that ˇ2 D 1. Con-
sider an endomorphism � of � defined by �.˛/ D 1 and �.ˇ/ D ˇ. Observing
that

Ln.�; S/ D max¹L.�n.˛/; S/; L.�n.ˇ/; S/º

D max¹L.1; S/; L.ˇ; S/º D max¹0; 1º D 1;
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we have GR.�/ D 1. Similarly, we have GR.�jZ/ D 0 and GR.�jZ2/ D 1. Notice
further that Z2 is a distorted subgroup of � because ��Z2.n/ D 1 for all n.

Lemma 2.5. Let � be an endomorphism of � .

(1) If � 0 is a �-invariant finite subgroup of � , then GR.�0/ � GR.�/.

(2) If, in addition, � 0 is a normal subgroup of � , then

GR.�/ D max¹GR.�0/;GR. O�/º;

and GR.�/ D GR. O�/ if and only if �0 is eventually trivial or O� is not eventu-
ally trivial.

Proof. If the �-invariant subgroup � 0 of � is finite, then we can show easily
that GR.�0/ is either 0 or 1 by taking a system of generators S 0 D � 0 for � 0.
We will show that GR.�0/ � GR.�/. We may assume that GR.�0/ D 1. This im-
plies that there is an element x 2 � 0 such that �0n.x/ ¤ 1 for all n > 0. Consider-
ing any system of generators for � which contains x, we can see right away that
GR.�/ � 1 D GR.�0/.

Assume that � 0 is normal in � . If GR.�0/ D 0, then clearly GR.�/ D GR. O�/.
On the other hand, if GR.�0/ D 1, then GR.�/ D GR. O�/ if and only if GR. O�/ � 1
if and only if O� is not eventually trivial by Lemma 2.3.

Remark 2.6. However, the above lemma is not true when � 0 is infinite; see Exam-
ple 2.7. Note further that if GR.�/ < GR.�0/, then � 0 is infinite.

The following is a well-known example about subgroup distortion.

Example 2.7. Let � be the Baumslag–Solitar group

B.1; n/´ ha; b j a�1ba D bni; n > 1:

Then S D ¹a; bº is a generating set for � . Let � 0 D hbi, and let S 0 D ¹bº. We
observe that the subgroup � 0 of � is distorted. In fact, since bn

k

D a�kbak for
all k > 0, we have that L.bn

k

; S 0/ D nk and L.bn
k

; S/ D 2k C 1. If � is an
endomorphism of � given by �.b/ D bn and �.a/ D a, then we can see that
GR.�0/ D n and GR.�/ D 1.

Example 2.4 shows that [2, Proposition 1 (3)] is not correct in general, but it is
almost true in the sense of Theorem 2.8. By modifying the argument of the proof
of [5, Theorem 3.1], we have the following theorem.
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Theorem 2.8. Let � be an endomorphism of � , and let � 0 be a �-invariant, finite-
index subgroup of � .

(1) If �0 is not an eventually trivial endomorphism, then GR.�/ D GR.�0/.

(2) If �0 is an eventually trivial endomorphism of � 0, then

GR.�0/ D 0 and GR.�/ D 0 or 1:

Moreover, GR.�/ D 0 if and only if � is an eventually trivial endomorphism
of � .

Consequently, the equality GR.�/ D GR.�0/ holds except only for the case when
�0 is eventually trivial and � is not eventually trivial. If this is the case, then
GR.�0/ D 0 and GR.�/ D 1.

Proof. Let S 0 D ¹
1; : : : ; 
tº be a set of generators of � 0. Let u D Œ� W � 0�. Then
we have � D ı1� 0 [ � � � [ ıu� 0 so that S D ¹
1; : : : ; 
t ; ı1; : : : ; ıuº generates � .
For any j D 1; : : : ; u, there exists a unique kj such that �.ıj / 2 ıkj�

0. We denote

p D max
1�j�u

¹L.wj ; S
0/ j �.ıj / D ıkjwj 2 ıkj�

0
º:

Assume p D 0. Then �.ıj / D ıkj for all j D 1; : : : ; u. For each j D 1; : : : ; u,
we write �m.ıj / D ıjm . Hence it follows that L.�m.ıj /; S/ D 0 or 1 according
to whether ıjm D 1 or ıjm ¤ 1.

Suppose that there is N > 0 such that �N .ıj / D 1 for all j D 1; : : : ; u and
hence L.�m.ıj /; S/ D 0 for all m � N . Since � 0 is undistorted in � , there exists
some c > 0 such that

L.
; S 0/ � c2 � L.
; S/ for all 
 2 � 0:

It is clear that
L.
; S/ � L.
; S 0/ for all 
 2 � 0:

Thus
Lm.�

0; S 0/ � c2 � Lm.�; S/;

Lm.�; S/ D max¹L.�m.
i /; S/º � Lm.�0; S 0/:

This implies that GR.�0/ D GR.�/.
Suppose on the contrary, for any m > 0, there is some j such that �m.ıj / ¤ 1.

Then max¹L.�m.ıj /; S/º D 1. Hence

Lm.�; S/ D max¹L.�m.
i /; S/; L.�m.ıj /; S/º

D max¹L.�m.
i /; S/; 1º � max¹Lm.�0; S 0/; 1º:
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This implies that GR.�0/ � GR.�/ � max¹GR.�0/; 1º. Since �0 is not eventually
trivial, Lemma 2.3 implies that GR.�0/ � 1, and hence GR.�/ D GR.�0/.

Next we assume that p � 1. For each j D 1; : : : ; u, we write �.ıj / D ıj1w1
for some j1 and w1 2 � 0. Then

�m.ıj / D ıjmwm�.wm�1/ � � ��
m�1.w1/;

and thus

L.�m.ıj /; S/ � 1C p C pL1.�
0; S 0/C pL2.�

0; S 0/C � � � C pLm�1.�
0; S 0/:

Let L D GR.�0/. By the assumption of our proposition, L � 1. Let � > 0 be
given. Since

lim
m!1

Lm.�
0; S 0/1=m D L;

there is some N > 0 such that if m > N , then Lm.�0; S 0/ < .LC �/m. Choose
q1; : : : ; qN > 0 such that Li .�0; S 0/ < qi .LC �/i for i D 1; : : : ; N . Put

q D max¹q1; : : : ; qN ; 1º � 1:

Then Lm.�0; S 0/ < q.LC �/m for all m � 1. Hence we have

L.�m.ıj /; S/ � 1C p C pq.LC �/C pq.LC �/
2
C � � � C pq.LC �/m�1

� 1C pq
.LC �/m � 1

.LC �/ � 1
:

Since pq ¤ 0, this implies that

lim
m!1

m

q
max
j
¹L.�m.ıj /; S/º � LC �:

Since � 0 is undistorted in � , there exists some c > 0 such that

Lm.�
0; S 0/ D max

i
¹L.�0

m
.
i /; S

0/º

� c2 �max
i;j
¹L.�0

m
.
i /; S/; L.�

m.ıj /; S/º D c
2Lm.�; S/;

and hence we obtain

L D GR.�0/ � GR.�/ D lim
m!1

m
p
Lm.�; S/ � LC �

for all � > 0. Consequently, GR.�/ D GR.�0/.
Suppose that �0 is an eventually trivial endomorphism of � 0. Then it is clear

that GR.�0/ D 0. Consider a set S D ¹
1; : : : ; 
t ; ı1; : : : ; ıuº of generators for �
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as above. For any m > 0, we observe that �m.
i / D 1 and �m.ıj / D ıjmwm for
some jm 2 ¹1; : : : ; uº and wm in a finite subset of � 0. This implies that the se-
quence ¹Lm.�; S/º is bounded. Because Lm.�; S/ D 0 or � 1, it follows that
GR.�/ D 0 or 1 respectively.

When GR.�/ D 0, Lemma 2.3 says that � is an eventually trivial endomor-
phism. Next we consider the case when GR.�/ D 1. From the definition, we can
chooseN > 0 so that, form � N , we have 1=2m < Lm.�; S/, which implies that
Lm.�; S/ � 1 because Lm.�; S/ is an integer. Therefore, for each m � N , we
can choose 
 2 S such that �m.
/ ¤ 1. This shows that � is not eventually trivial
even though �0 is eventually trivial.

Before leaving this section, we observe the following elementary fact.

Proposition 2.9. Let � be an endomorphism of � with a finite set S of generators.
Let

GRi .�/ D lim
k!1

L.�k.si /; S/
1=k

for each si 2 S . Then GR.�/ D max¹GRi .�/ j si 2 Sº.

Proof. Since L.�k.si /; S/ � Lk.�;S/, it follows that GRi .�/ � GR.�/. Assume
GRi .�/ < GR.�/ for all si 2 S . Thus there exists K > 0 such that if k � K
and si 2 S , then L.�k.si /; S/1=k < GR.�/. Because S is finite, it follows that
Lk.�; S/

1=k < GR.�/ for all k � K. However, since

lim
k!1

Lk.�; S/
1=k
D lim
k�K

Lk.�; S/
1=k
D inf
k�K

Lk.�; S/
1=k;

we obtain a contradiction: GR.�/ D infk�K Lk.�; S/1=k < GR.�/.

3 Finitely generated nilpotent groups

Consider the lower central series of a finitely generated group � ,

� D �1 � �2 � � � � ;

where �j D Œ�; �j�1� is the j -fold commutator subgroup 
j .�/ of � . The endo-
morphism �W� ! � induces endomorphisms

�j W�j ! �j ; O�j W�=�j ! �=�j ; N�j W�j =�jC1 ! �j =�jC1:

Then it is known from [2] that GR.�/ � GR. N�j /1=j for all j � 1. The group � is
called nilpotent if �j D 1 for some j . When �c ¤ 1 but �cC1 D 1, we say that it
is c-step.
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Lemma 3.1 ([2, Proposition 2]). If � is c-step nilpotent, then

GR.�/ D max¹GR. O�c/;GR.�c/1=cº:

If � is nilpotent, then
GR.�/ D max

j�1
¹GR. N�j /1=j º:

Recall, for example from [10, Proposition 3.1], that a finitely generated nil-
potent group � is virtually torsion-free. Thus there exists a finite-index, torsion-
free, normal subgroup � of � . Following the proof of [11, Lemma 3.1], we can
see that there exists a fully invariant subgroupƒ � � of � which is of finite index.
Therefore, any endomorphism �W�! � restricts to an endomorphism �0Wƒ!ƒ.
By Theorem 2.8, we may consider only the case when �0 is not eventually trivial,
and hence we may assume that GR.�/ D GR.�0/. Consequently, for the computa-
tion of GR.�/, we may assume that � is a finitely generated torsion-free nilpotent
group.

Consider the lower central series of a finitely generated torsion-free c-step nil-
potent group � ,

� D �1; �jC1 D Œ�; �j �; �c ¤ 1 and �cC1 D 1:

For each j D 1; : : : ; c, we consider the isolator of �j in � ,
p
�j D �

p
�j ´ ¹x 2 � j x

k
2 �j for some k � 1º:

Then it is known that
p
�j is a characteristic subgroup of � with Œ

p
�j W �j � finite.

Furthermore,
p
�j =�j is precisely the set of all torsion elements in the nilpotent

group �=�j , and
p
�j =
p
�jC1 Š Zkj for some integer kj > 0. Hence we obtain

the adapted central series [4, p. 3]

� D
p
�1 �

p
�2 � � � � �

p
�c �

p
�cC1 D 1:

The following lemma plays a crucial role in our study of growth rates for endo-
morphisms of finitely generated nilpotent groups.

Lemma 3.2 ([15, Lemma 3.7]). Let � be a finitely generated c-step nilpotent group
with lower central series � D �1 � �2 � � � � � �c � �cC1 D 1. Then there are
finite sets Tj D ¹�j1; : : : ; �jkj º � �j such that

(1) if pj W�j ! �j =�jC1 denotes the projection, then pj .Tj / is an independent
set of generators for the finitely generated abelian group �j =�jC1,

(2) if j > 1, then every �jr is of the form Œ�1i ; �j�1;`�,

(3) T1 generates � .
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Let G be the Malcev completion of a finitely generated torsion-free nilpotent
group � , and let � be an endomorphism of � . Then � extends uniquely to a Lie
group homomorphism D of G, called the Malcev completion of �. We call its
differential D� the linearization of �.

Theorem 3.3. Let �W� ! � be an endomorphism on a finitely generated torsion-
free nilpotent group � . Let G be the Malcev completion of � . Then the lineariza-
tion D�WG ! G of � can be expressed as a lower triangular block matrix with
diagonal blocks ¹Dj º so that

GR.�/ D max
j�1
¹sp.Dj /1=j º:

In particular, GR.�/ is an algebraic integer.

Proof. Let � be a finitely generated torsion-free c-step nilpotent group with the
adapted central series

� D
p
�1 �

p
�2 � � � � �

p
�c �

p
�cC1 D 1:

Let qj W
p
�j !

p
�j =
p
�jC1 denote the projection. We choose ¹T1; : : : ; Tcº as in

Lemma 3.2. Since �2 is a fully invariant, finite-index subgroup of
p
�2, it induces

a short exact sequence

1!
p
�2=�2 ! �1=�2 ! �1=

p
�2 D

p
�1=
p
�2 ! 1:

Since
p
�2=�2 is finite, it follows that

p
�1=
p
�2 Š Zk1 can be regarded as the

free part of the finitely generated abelian group �1=�2. Hence we can choose
S1 � T1 such that p1.S1/ is an independent set of free generators of

p
�1=
p
�2

and p1.T1 � S1/ is an independent set of torsion generators of �1=�2.
Next we consider the short exact sequence

1!
p
�3=�3 !

p
�2=�3 !

p
�2=
p
�3 ! 1:

Since �2=�3 �
p
�2=�3, we obtain the following commutative diagram between

exact sequences:

1 ���!
p
�3=�3 ���!

p
�2=�3 ���!

p
�2=
p
�3 Š Zk2 ���! 1x?? x?? x??

1 ���! .�2 \
p
�3/=�3 ���! �2=�3 ���! �2=.�2 \

p
�3/

D �2 �
p
�3=
p
�3

���! 1:
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where all vertical maps are inclusions of finite index. So we can choose S2 � T2
such that p2.S2/ is an independent set of free generators of the free abelian group
.�2 �

p
�3/=
p
�3 and p2.T2 � S2/ is an independent set of torsion generators of

�2=�3. Note that S2 � �2 �
p
�2. Because the right-most vertical inclusion is

of finite index, we can choose S2 �
p
�2 such that q2.S2/ is an independent set

of free generators of
p
�2=
p
�3, and for each �2 2 S2, there are unique `2 � 1

and unique �2� 2 S2 such that �2`2 D �2� modulo
p
�3. We remark also that

#S2 D #S2.
Continuing in this way, we obtain ¹S1; : : : ; Scº � ¹T1; : : : ; Tcº such that

� Sj � Tj , #Sj D #Sj ,

� pj .Sj / is an independent set of free generators of �j =�jC1,

� pj .Tj � Sj / is an independent set of torsion generators of �j =�jC1,

� qj .Sj / is an independent set of free generators of
p
�j =
p
�jC1,

� for each �j 2 Sj �
p
�j , there exist unique j̀ � 1 and �j� 2 Sj such that

�j j̀ D �j� mod
p
�jC1:

The adapted central series of � allows us to choose a preferred basis a of � ;
we can choose a to be ¹S1; : : : ;Scº so that it generates � and � can be embedded
as a lattice of a connected, simply connected nilpotent Lie group G, the Malcev
completion of � . Its Lie algebra G has a linear basis log a D ¹log S1; : : : ; log Scº.
From �j j̀ D �j� mod

p
�jC1, we have

j̀ log.�j / D log.�j j̀ / D log.�j�/ mod 
jC1.G/: (B)

This implies that ¹logS1; : : : ; logScº is also a linear basis of G .
Let �W� ! � be an endomorphism. Then � induces endomorphisms

�j W�j ! �j ; O�j W�=�j ! �=�j ; N�j W�j =�jC1 ! �j =�jC1

and
'j W
p
�j !

p
�j ; O'j W�=

p
�j ! �=

p
�j ;

N'j W
p
�j =
p
�jC1 !

p
�j =
p
�jC1:

Moreover, any endomorphism � on � extends uniquely to a Lie group endomor-
phism D on G, the Malcev completion of �. With respect to the preferred ba-
sis log a of the Lie algebra G of G, we can express the linearization D� of � as
a lower triangular block matrix; each diagonal blockDj is an integer matrix repre-
senting the endomorphism N'j W

p
�j =
p
�jC1 Š Zkj !

p
�j =
p
�jC1 Š Zkj . For
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details, we refer to [9] for example. When the new basis ¹logS1; : : : ; logScº is
used instead of log a, the integer entries of block matrices Dj will be changed
to rational entries because of identities (B), but the eigenvalues of Dj will be
unchanged. This means that, whenever the eigenvalues of D� are concerned, we
may assume that �j =�jC1 is torsion-free, or �j D

p
�j . Consequently, we may

assume that GR. N�j / D GR. N'j /. Since
p
�j =
p
�jC1 Š Zkj , by taking the tensor

product with R, it is known that GR. N'j / D sp.Dj /. Thus GR. N�j / D sp.Dj /. Now
the theorem follows from Lemma 3.1.

Remark 3.4. From Theorem 3.3, it follows that the growth rate of any endomor-
phism on a finitely generated torsion-free nilpotent group is an algebraic integer.
The question of determining groups for which the growth rate of a group endo-
morphism is an algebraic number was raised by R. Bowen in [2, p. 27].

Example 3.5. Let Nil be the 3-dimensional Heisenberg group. That is,

Nil D

8̂<̂
:
2641 x z

0 1 y

0 0 1

375 ˇ̌̌̌ˇ x; y; z 2 R

9>=>; :
Consider the subgroups �k , k 2 N, of Nil,

�k D

8̂<̂
:
2641 n `

k

0 1 m

0 0 1

375 ˇ̌̌̌ˇ m; n; ` 2 Z

9>=>; :
These are lattices of Nil, and every lattice of Nil is isomorphic to some �k . Let

a1 D

2641 0 0

0 1 1

0 0 1

375 ; a2 D

2641 1 0

0 1 0

0 0 1

375 ; a3 D

2641 0 1
k

0 1 0

0 0 1

375 :
Then S D ¹a1; a2; a3º is a generating set of �k satisfying

Œa1; a2� D a
�k
3 ; Œa1; a3� D Œa2; a3� D 1;

and in fact, 2641 n `
k

0 1 m

0 0 1

375 D am1 an2a`3:
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Let

� D �k D ha1; a2; a3 j Œa1; a2� D a
�k
3 ; Œa1; a3� D Œa2; a3� D 1i:

Let � 0 D ha3i and S 0 D ¹a3º. Since .a�k3 /n
2

D Œan1 ; a
n
2 �, we have

L..a�k3 /n
2

; S 0/ D kn2 and L..a�k3 /n
2

; S/ D 4n:

Hence
L..a�k3 /n

2

; S 0/ > L..a�k3 /n
2

; S/

for all n with n > 4=k. It follows that � 0 is distorted.
Consider any endomorphism �W� ! � . Then � must be of the form

�.a1/ D a
m11
1 a

m21
2 a

p
3 ; �.a2/ D a

m12
1 a

m22
2 a

q
3 ; �.a3/ D a

m11m22�m12m21
3 :

We will compute GR.�/. The lower central series of � is � D �1 � �2 D hak3 i,
and its adapted central series is � D �1 �

p
�2 D ha3i. We observe that

T1 D ¹a1; a2; a3º and T2 D ¹a
k
3º

are sets satisfying the conditions of Lemma 3.2. Then we can see that

S1 D ¹a1; a2º � T1; S2 D ¹a
k
3º � T2 and S1 D ¹a1; a2º; S2 D ¹a3º:

Furthermore, ¹S1;S2º D ¹a1; a2; a3º is a preferred basis for � . The linearization
of � with respect to this preferred basis has two integer blocks D1 and D2, where

D1 D

"
m11 m12

m21 m22

#
; D2 D Œm11m22 �m12m21� D Œdet.D1/�:

By Theorem 3.3, we have GR.�/ D max¹sp.D1/; sp.D2/1=2º. Let �; � be the
eigenvalues of D1. Then

GR.�/ D max¹j�j; j�j;
p
j��jº D max¹j�j; j�jº D sp.D1/:

In fact, we show in Theorem 3.7 that it is always the case that GR.�/ D sp.D1/.

We consider another example in which we obtain much information about lin-
earizations of endomorphisms, and then we obtain an idea of proving the next
result, Theorem 3.7.
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Example 3.6. Consider a 2-step torsion-free nilpotent group � generated by

�1; �2; �3; �12; �13

satisfying the relations

Œ�1; �2� D �12; Œ�1; �3� D �13; Œ�2; �3� D �
m
12�

n
13;

Œ�i ; �jk� D Œ�12; �13� D 1:

Since �2 D h�12; �13i Š Z2 and �=�2 D hN�1; N�2; N�3i Š Z3, it follows that the set
¹T1; T2º D ¹�1; �2; �3; �12; �13º satisfies the conditions of Lemma 3.2 and forms
a preferred basis of our group � . Let � be an endomorphism of � . A direct com-
putation shows that if

�.�i / D �
d1i
1 �d2i2 �d3i3 mod �2;

i.e., if the first block of the linearization of � is

D1 D

264d11 d12 d13

d21 d22 d23

d31 d32 d33

375 ;
then, with �23 D Œ�2; �3�, we have

�.�12/ D �
M33
12 �

M23
13 �

M13
23 ;

�.�13/ D �
M32
12 �

M22
13 �

M12
23 ;

�.�23/ D �
M31
12 �

M21
13 �

M11
23 ;

where Mij denote the .i; j /-minor of D. These yield a matrix

K D

264M33 M32 M31

M23 M22 M21

M13 M12 M11

375 D^2
.D1/;

the second exterior power ofD1. On the other hand, since �23 D �m12�
n
13, we have

�.�12/ D �
M33
12 �

M23
13 �

M13
23 D �

M33CmM13
12 �

M23CnM13
13 ; (3.1)

�.�13/ D �
M32
12 �

M22
13 �

M12
23 D �

M32CmM12
12 �

M22CnM12
13 ; (3.2)

�.�23/ D �.�12/
m�.�13/

n

D �
M31
12 �

M21
13 �

M11
23 D �

M31CmM11
12 �

M21CnM11
13 : (3.3)
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From (3.1) and (3.2), the second block of the linearization of � is

D2 D

"
M33 CmM13 M32 CmM12

M23 C nM13 M22 C nM12

#
:

Plugging (3.1) and (3.2) into (3.3), we have8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

264M31

M21

M11

375 D m
264M33

M23

M13

375C n
264M32

M22

M12

375 when .m; n/ ¤ .0; 0/;

"
M31

M21

#
D

"
0

0

#
when m D n D 0:

(3.4)

When .m; n/ ¤ .0; 0/, because of (3.4), K is column equivalent to the matrix K 0

with the zero third column, and then, by doing some row operations onK 0, we can
see that K 0 is row equivalent to the matrix K 00, where

K  K 0 D

264M33 M32 0

M23 M22 0

M13 M12 0

375 K 00 D

264M33 CmM13 M32 CmM12 0

M23 C nM13 M22 C nM12 0

M13 M12 0

375 :
Thus the second blockD2 of the linearizationD� is a block submatrix ofK 00. This
is obtained by removing the row and column of K 00 that are determined by (3.3)
or by the relation Œ�2; �3� D �m12�

n
13. Note also that K, K 0 and K 00 have the same

eigenvalues which are 0 and the eigenvalues ofD2. When .m; n/ D .0; 0/, because
of (3.4), we have

K D

264M33 M32 0

M23 M22 0

M13 M12 M11

375 :
Thus D2 of D� is a block submatrix of K, and K has M11 and the eigenvalues
of D2 as its eigenvalues.

On the other hand, if �1; �2; �3 are the eigenvalues of D1, as K D
V2

.D1/,
the eigenvalues of K are �i�j (i < j ). Consequently, we have

sp.D1/ D max
iD1;2;3

¹j�i jº � max
i¤j
¹
p
j�i�j jº D sp.K/ � sp.D2/1=2:

This proves that GR.�/ D sp.D1/.
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The following result was proved in [10] when � is an automorphism using the
intrinsic polynomial structure of nilpotent groups. We will now improve [10, The-
orem 1.2] from automorphisms to endomorphisms by using completely different
arguments.

Theorem 3.7. Let �W� ! � be an endomorphism on a finitely generated torsion-
free nilpotent group � with Malcev completion D. Then

GR.�/ D GR.�ab/;

where �abW�=Œ�; ��! �=Œ�; �� be the endomorphism induced by �. Hence we
have GR.�/ D sp.D1/ � sp.D�/.

Proof. Let � be c-step and choose a family of finite sets ¹T1; : : : ; Tcº satisfying
the conditions of Lemma 3.2. As was observed in the proof of Theorem 3.3, we can
choose ¹S1; : : : ; Scº such that each Sj � Tj � �j projects onto free generators of
�j =�jC1 and a preferred basis ¹S1; : : : ;Scº of � so that each block matrix Dj
of the linearization D� of � which is determined by log Sj may be assumed to be
determined by logSj .

Indeed, for each j with 1 � j � c, we write Sj D ¹�j1; : : : ; �jkj º � Tj ; then,
if j > 1, every �jr is of the form Œ�1i ; �j�1;`�. For 1 � j � c, if

�.�j`/ D �
d
j

1`

j1 � � � �
d
j

kj `

jkj
modulo �jC1;

then the j th block of the linearization D� of � is

Dj D

2664
d
j
11 � � � d

j

1kj
:::

:::

d
j

k11
� � � d

j

kjkj

3775 :
In order to compare first the eigenvalues ofD1 with those ofD2, we use the fol-

lowing new notation:D1 D Œd1ij � D Œdij �, �ij D Œ�1i ; �1j � for all 1 � i < j � k1.
Then �ij D �˙12;` 2 S2 for some `, or �ij is a word of elements in S˙12 modulo �3
(see the presentation of � in Example 3.6). Let S D ¹�ij j 1 � i < j � k1º; then
we may assume that S2 � S . Further, S2 differs from S except possibly by �ij ’s,
words of elements in S˙12 modulo �3 (note in Example 3.6 that S2 D ¹�12; �13º
and S D ¹�12; �13; �m12�

n
13º).

Now we can express �.�ij / as follows:

�.�ij / D �
M
i;j
1;2

12 �
M
i;j
1;3

13 � � � �
M
i;j

1;k1
1k1

� � � �
M
i;j

k1�1;k1
k1�1;k1

modulo �3 (P)
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for some integers M i;j
p;q . We denote by K the

�
k1
2

�
�
�
k1
2

�
matrix ŒM i;j

p;q�,

K D

266664
M
1;2
1;2 M

1;3
1;2 � � � M

k1�1;k1
1;2

M
1;2
1;3 M

1;3
1;3 � � � M

k1�1;k1
1;3

:::
:::

:::

M
1;2
k1�1;k1

M
1;3
k1�1;k1

� � � M
k1�1;k1
k1�1;k1

377775 :
We will refer to the column vector .M i;j

1;2 ;M
i;j
1;3 ; : : : ;M

i;j

1;k1
; : : : ;M

i;j

k1�1;k1
/t ofK

as the .i; j /-column of K. Note the following.

(i) For any �ij 2 S , M i;j
p;q is unique for which �pq 2 S2.

(ii) If �ij 2 S � S2, then �ij is a word w of elements in S˙12 modulo �3. If
w ¤ 1 modulo �3, the .i; j /-column of K is an integer combination of
.p; q/-columns of K corresponding to the elements �pq appearing in the
word w. If w � 1, then M i;j

p;q D 0 for which �pq 2 S2.

(iii) The right-hand side of the expression (P) can be rewritten in terms of only
the elements of S2 using the words �ij � w.�pq/. This yields the second
block D2.

Since �ij D Œ�1i ; �1j �, taking � on both sides, we have (see [5, Lemma 4.1] or
[14, p. 93, Lemma 4.1])

�
M
i;j
1;2

12 �
M
i;j
1;3

13 � � � �
M
i;j

1;k1
1k1

� � � �
M
i;j

k1�1;k1
k1�1;k1

D Œ�
d1;i
11 � � � �

dk1;i
1k1

; �
d1;j
11 � � � �

dk1;j
1k1

�

D

Y
p

Y
q

Œ�
dp;i
1p ; �

dq;j
1q � D

Y
p

Y
q

Œ�1p; �1q�
dp;idq;j

D

Y
1�p<q�k1

�
dp;idq;j�dp;jdq;i
pq modulo �3:

This shows that K is the second exterior power of D1, i.e., K D
V2

.D1/. Hence,
if �i (1 � i � k1) are the eigenvalues of the matrix D1, then �i�j .i < j / are
the eigenvalues of K.

From part (ii) of the above remarks, we see that K is column equivalent to the
matrix K 0 with zero .i; j /-column for which �ij D w.�pq/ ¤ 1 modulo �3. We
rearrange the elements of S so that S D S2 [ .S � S2/ D S2 [ S12 [ S

2
2 , where

S12 D ¹�ij 2 S � S2 j �ij D 1º and S22 D ¹�ij 2 S � S2 j �ij ¤ 1º. Rearranging
S to S2 [ .S � S2/, we have

K �C K
0
D

"
K 0 0

� �

#
:
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The effect of part (iii) on K and hence on K 0 is doing some row operations using
the .i; j /-rows in the last block of K 0 for which �ij D w.�pq/ ¤ 1 modulo �3.
By rearranging S further to S2 [ S12 [ S

2
2 , we have

K 0 �R K
00
D

264D2 0 0

� � 0

� � 0

375 :
The middle block column is determined by the fact that if �ij � w � 1, then
M i;j
p;q D 0 for which �pq 2 S2.
Consequently, the second block D2 of D� is a block submatrix of K 00 which is

obtained by removing the rows and columns associated to S � S2. Note also that
K;K 0 and K 00 have the same eigenvalues which contain the eigenvalues of D2.
This observation shows that

sp.D1/ D max¹j�i jº � max¹
p
�i�j º D sp.K/1=2 � sp.D2/1=2:

For the next inductive step, we recall that every element of S3.� T3/ is of the
form Œ�1`; �ij �, where i < j . Taking �, we have

�.Œ�1`; �ij �/ D
hY
r

�
dr;`
1r ;

Y
1�p<q�k1

�
dp;idq;j�dp;jdq;i
pq

i
D

Y
r

Y
1�p<q�k1

Œ�1r ; �pq�
dr;`.dp;idq;j�dp;jdq;i / modulo �4:

This expression is unique except possibly for the exponents of the elements

Œ�1r ; �pq� D 1 modulo �4:

This produces the matrixK DD1˝
V2

D1. First if Œ�1r ; �pq�Dw.S3/¤ 1mod-
ulo �4, by doing some column operations and then by doing some row operations,
we obtain a matrix K 00, which can be regarded as a lower triangular block ma-
trix. Finally, we remove the columns and rows fromK 00 which are associated with
the elements Œ�1r ; �pq� D w.S3/ modulo �4. This gives rise to the third block D3
ofD�. Hence sp.D3/ � sp.D1/3. Continuing in this way, we may assume that the
j th block Dj of D� is obtained from

�N
j�2D1

�
˝
V2

D1 so that

sp.D1/ � sp.Dj /1=j :

Consequently, GR.�/ D max¹sp.Dj /1=j º D sp.D1/ D GR.�ab/ � sp.D�/.
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