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0νββ Mechanismen und wie sie zu finden sind:

In dieser Arbeit untersuchen wir verschiedene Möglichkeiten unterschiedliche Mech-
anismen, welche zu neutrinolosem doppeltem β-Zerfall führen, experimentell zu un-
terscheiden und zu identifizieren. Dabei verfolgen wir einen Ansatz der effektiven
Feldtheorie bei niedrigen Energien. Wir finden heraus, dass der vielversprechendste
Ansatz zur Identifizierung des dominierenden Mechanismus darin besteht, die Ver-
hältnisse der Halbwertszeiten in verschiedenen Isotopen zueinander zu messen und zu
vergleichen. Eine ausreichende experimentelle Messgenauigkeit vorausgesetzt, können
auf diesem Weg 11 verschiedene Gruppen von effektiven Operatoren voneinander un-
terschieden werden. Allerdings hängen die genauen Verhältnisse quantitativ von zur
Zeit unbekannten niedrig-Energie Konstanten ab, welche besonders bei kurzreichweit-
igen Mechanismen eine Rolle spielen. Diese Konstanten können in zukünftigen Stu-
dien anhand von Gitter-QCD Berechnungen bestimmt werden. Zusätzliche Informa-
tionen über den zugrundeliegenden Mechanismus können anhand von Observablen des
leptonischen Phasenraums oder über Hochenergie-Beschleunigerexperimente gewonnen
werden. Zum Schluss untersuchen wir den Einfluss von drei vollständigen Modellen
jenseits des Standardmodells, die wir aus der Literatur entnehmen. Diese vergleichen
wir mit dem Standard-Mechanismus des Austauschs leichter Majorana Neutrinos.

On distinguishing different 0νββ mechanisms:

In this thesis we study possibilities to distinguish different mechanisms of neutrinoless
double-β decay within a low-energy effective field theory framework. We find that the
most promising approach towards identifying the dominant contribution experimentally
is given by a measurement of half-life ratios in different isotopes. Given the experi-
mental accuracy, we identify 11 different groups of low-energy effective operators that
can be distinguished in this way. However, the ratios depend on currently unknown
low-energy constants that are especially important when considering short-range mech-
anisms. These constants can be calculated within lattice QCD and should be obtained
in the future. Additional information about the underlying mechanism can be gained
from phase space observables as well as high-energy collider data. Finally, we stud-
ied the impact of three different models beyond the Standard Model taken from the
literature and compared them to the standard mechanism of light neutrino exchange.
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1. Introduction

The Standard Model of particle physics [1] is a story of great success as it has proven to
precisely describe nature down to the microscopic scales studied at high energy colliders
like the LHC or LEP [2]. However, with the observation of neutrino oscillations [3, 4]
we have the first clear experimental evidence of physics beyond the Standard Model.
While the Standard Model predicts massless neutrinos, neutrino oscillation necessitates
non-vanishing neutrino masses. This fact raises questions about the nature of neutrinos.
Being the only electrically neutral fundamental fermions, neutrinos are the only candi-
dates in the Standard Models particle content that could be their own anti-particles, i.e.,
that could be Majorana fermions. Identifying the true nature of neutrinos is one of the
most urging questions in particle physics as it could give us insight into the mechanism of
neutrino mass generation as well as it could teach us more about a fundamental question
related to the observed baryon asymmetry of the universe, famously quoted as: “Why
is there something instead of nothing?” [5]. This question cannot be answered by oscil-
lation experiments. Instead, the most promising experimental project to study the true
nature of neutrinos is the search for neutrinoless double-β-decay (0νββ). This lepton
number violating process is forbidden within the Standard Model. If observed, it would
clearly identify neutrinos as Majorana particles [6]. However, things are not quite that
easy as also other lepton number violating new physics processes could contribute to or
even dominate the 0νββ-decay amplitude [7, 8]. To really understand the underlying
new-physics and to be able to infer the right conclusions one needs to understand the
true mechanism of 0νββ. Therefore this work is dedicated towards studying possibilities
to distinguish and identify different mechanisms of 0νββ-decay.
This thesis is structured as follows: In chapter 2 we will give a rather formal motivation
on why one should consider and study the possibility of 0νββ-decay by explaining the
most commonly studied mechanisms of neutrino mass generation. Following up on this,
in chapter 3 we will review the most important aspects of the theory of 0νββ-decay and
introduce the effective field theory framework that we applied. In chapter 4 we will then
discuss possibilities to distinguish and identify different mechanisms of 0νββ-decay for
both single operators as well as some more complex models taken from the literature.
Finally, in the last chapter 5 we will summarize our findings. Throughout this work we
use natural units ~ = c = 1.
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2. Motivation from Neutrino Physics

Before turning towards our main focus, the 0νββ-decay, we want to start by giving some
motivational context on why this process should be studied. In order to do so, we will
start by explaining the problem of vanishing neutrino masses within the Standard Model
of Particle Physics and why it is contradicting observations. Building up on this we
will show that the most famous approaches towards solving this problem lead to lepton
number violation via a Majorana neutrino mass term. Afterwards, we will summarize a
few more theoretical motivations for studying lepton number violation within the neutrino
sector.

2.1. Neutrinos within the Standard Model

The Standard Model of particle physics is defined by its gauge group
(
SU(3)C×SU(2)L×

U(1)Y
)
, its particle content represented in Tables 2.1 and 2.2, Lorentz invariance and

the requirement for renormalizability [9]. The fact that its gauge group distinguishes
between left- and right-handed chiral particles (hence the notion SU(2)L) makes the
Standard Model a chiral theory. A chiral fermion is defined by the chiral projectors

ΨL,R = PL,RΨ with PL,R =
1

2
(1∓ γ5) , (2.1)

with the chirality operator γ5, which is given by the Dirac gamma matrices

γ5 = iγ0γ1γ2γ3 (2.2)

which obey

{γµ, γν} = 2ηµν and {γµ, γ5} = 0. (2.3)

With these properties it is easily shown that PL,R are indeed projectors and obey

PL,RPR,L = 0 and P 2
L,R = PL,R. (2.4)

Within the Standard Model, fermions are grouped into right-handed SU(2)L singlets ΨR

and left-handed SU(2)L doublets Li and Qi.1 Ignoring the SU(3)C part of the gauge
symmetry, under the remaining Standard Model gauge group fermions transform as

L −→ U
(
~θ(x), α(x)

)
L = exp

{
i~θ(x)

~τ

2
+ iŶ α(x)

}
L, (2.5)

R −→ U (α(x))R = exp
{
iŶ α(x)

}
R, (2.6)

1In principle there could also be, e.g., SU(2) triplet fermions as we will see later but they are not part
of the Standard Models particle content.
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2. Motivation from Neutrino Physics

Fermions
LH RH

I3 Y Q I3 Y Q

Leptons Li =
νi,L
li,L

+1/2
−1/2

−1
0
−1

/
li,R

/
0

/
−2

/
−1

Quarks Qi =
ui,L
di,L

+1/2
−1/2

1/3
+2/3
−1/3

ui,R
di,R

0
0

+4/3
−2/3

+2/3
−1/3

Scalars
I3 Y Q

Φ =
Φ+

Φ0
+1/2
−1/2

+1 +1
0

Table 2.1.: Standard Model fermions and scalars and their corresponding weak isospin
projection I3, weak hypercharge Y and electric charge Q [9]

where L defines a SU(2)L doublet, R a right-handed singlet and Ŷ is the hypercharge of
the corresponding fermion fields. Neutrinos are part of the left-handed lepton doublets

Li =

(
νi,L
li,L

)
(2.7)

with i ∈ {e, µ, τ}. While the charged leptons li and quarks appear as both right-handed
singlet and as part of a left-handed doublet, a right-handed neutrino is not part of the
Standard Model. This has mainly historic reasons:
After electroweak symmetry breaking (EWSB) which breaks SU(2)L × U(1)Y → U(1)Q
the electric charge is given by the Gell-Nishijima relation [9]

Q = I3 +
Y

2
, (2.8)

where I3 is the third component of the SU(2)L generating isospin

~I =
~τ

2
(2.9)

with τa being the 2× 2 Pauli-matrices

τ1 =

(
0 1
1 0

)
τ2 =

(
0 −i
i 0

)
τ3 =

(
1 0
0 −1

)
(2.10)

acting as

~ILi =
~τ

2
Li ~IΨR = 0. (2.11)
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2.1. Neutrinos within the Standard Model

Fermion Generations Bosons
1 2 3 Vector Scalar

Quarks

ui

di

u
2.16MeV

d
4.67MeV

c
1.27GeV

s
93MeV

t
172.9GeV

b
4.18GeV

γ
−

W
80.379GeV

H
125.10GeV

Leptons

νi

li

νe
< 2 eV

e
0.5110MeV

νµ
< 0.19MeV

µ
105.66MeV

ντ
< 18.2MeV

τ
1.7769GeV

Z
91.1876GeV

Table 2.2.: The experimental masses and mass limits after electroweak symmetry break-
ing are taken from [10] where the neutrino flavor masses are effective masses

given by mνα =
√∑

i |Uαi|2m2
i and mνe = mνe is assumed.

Consequently, a right-handed neutrino is colourless C = 0, electrically neutral Q = 0
and due to its right-handedness with I3 = 0 also has Y = 0. Hence, it would be a total
singlet under the Standard Model gauge group. Such a particle would not interact via
any gauge interaction and therefore is also called a “sterile” neutrino. At the times when
the Standard Model was constructed, the existence of such a particle was not considered
to be necessary.

2.1.1. Dirac Neutrinos

By this construction the left-handed Dirac neutrinos are massless particles due to the lack
of a right-handed counterpart. This can easily be seen by taking a look at the definition
of a particles mass.
Within a quantum field theory the mass of a particle can be defined as the pole of its
propagator. Considering a fermion Ψ, within the path integral formulation of QFT the
propagator can be written as [11]

S(x− y) = i
〈
Ψ(x)Ψ(y)

〉
= i

1

Z

δ

iδη(x)
i

δ

δη(y)
Z [η, η]

∣∣∣∣
η=η=0

. (2.12)

Here, Z [η, η] denotes the partition function

Z [η, η] =

∫
DΨDΨ exp

{
iS
[
Ψ,Ψ

]
+ i

∫
x

(
η(x)Ψ(x) + Ψ(x)η(x)

)}
(2.13)

given by the action S
[
Ψ,Ψ

]
and source terms η and η which are introduced to make cal-

culations of correlation functions easier and are set to zero when calculating observables.
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2. Motivation from Neutrino Physics

For a free theory of fermions the action is given by

S =

∫
x

Ψ(i�∂ −m)Ψ (2.14)

such that the partition function becomes a Gaussian integral2 of the type∫
DΨDΨ exp

{
ΨMΨ + ηΨ + Ψη

}
= det{M} exp

{
−ηM−1η

}
(2.15)

which results in

Z [η, η] = exp

{
i

∫
x
η(x) [−(i�∂ −m)]

−1
η(x)

}
. (2.16)

Here, we have dropped a constant prefactor which does not affect correlation functions.
This can be seen by looking at Eq. (2.12). Now it is easy to find that the propagator is
given by the solution to the Greens function

(−i�∂ +m)S(x− y) = δ(x− y) (2.17)

which results in

S(x− y) =

∫
d4p

(2π)4
exp{−i(x− y)p} �p+m

p2 −m2
. (2.18)

We see that the propagator has a pole at p2 = m2 such that we can identify m with the
physical mass of the particle as expected. Hence, the Lagrangian mass term of a Dirac
fermion Ψ is given by

Lm = −mΨΨ. (2.19)

We can rewrite this in terms of chiral fields
Lm = −mΨΨ

= −m
(
ΨL + ΨR

)
(ΨL + ΨR)

= −m
(
ΨLΨL + ΨLΨR + ΨRΨL + ΨRΨR

)
.

(2.20)

Noting that

ΨL,RΨL,R = (PL,RΨ)† γ0PL,RΨ

= Ψ†PL,Rγ
0PL,RΨ

= Ψ†γ0PR,LPL,RΨ

= 0

(2.21)

one finds
Lm = −mΨΨ

= −m
(
ΨLΨR + ΨRΨL

)
.

(2.22)

Thus, we see that a non-zero fermion mass term requires the existence of both left and
right chiral states. In that sense a mass term represents a chirality flip R,L→ L,R.

2Note that fermions are described by anti-commuting Grassman numbers.
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2.1. Neutrinos within the Standard Model

2.1.2. Majorana Neutrinos

The aforementioned is the case for typical Dirac fermions Ψ = ΨL + ΨR. However, one
can construct a right-handed fermion field from a left-handed one by taking

ΨR → (ΨL)c (2.23)

with

Ψc = CΨ
T (2.24)

where C is the charge conjugation operator

C = iγ0γ2. (2.25)

A particle corresponding to such a field is equal to its own anti-particle as can be seen
easily if we take3

Ψ = ΨL + (ΨL)c = (ΨL)c + ΨL = Ψc . (2.26)

Therefore, only neutral particles can be Majorana. For a Majorana field the partition
function of the free theory is given by

Z[η] =

∫
DΨ exp

{
iSM + i

∫
x
ηTΨ

}
(2.27)

with

SM =

∫
x

1

2
ΨTC (i�∂ −m) Ψ =

1

2

∫
x

ΨTSM (x− y)Ψ. (2.28)

The factor of 1/2 results from the fact that for Majorana fermions Ψ and Ψ can no longer
be considered as independent.4 Obviously in this case the propagator is given by

SM (x− y) = S(x− y)C−1 = −S(x− y)C (2.29)

and we have

i
〈
ΨLΨT

L

〉
= SM (x− y). (2.30)

That is, the Majorana mass term is given by

Lm = −m
2

ΨTCΨ (2.31)

or in terms of left-handed chiral fields

Lm = −m
2

ΨT
LCΨL + h.c.. (2.32)

3Note that we ignored an arbitrary phase η that can be assigned to either Ψ or Ψc resulting in Ψ = ηΨc.
4Note that for Majorana fields Ψ = Ψc we have iΨTC�∂Ψ = iΨT

LC�∂ΨL+ i(ΨT
L)cC�∂(ΨL)c = 2iΨT

LC�∂ΨL

and similarly for ΨTCmΨ when considering chiral particles.
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2. Motivation from Neutrino Physics

We see that in principle one can form such a mass term within a theory which only
contains left-handed neutrinos. However, assigning a lepton number of L = 1 to the
neutrinos it would violate lepton number conservation by ∆L = 2. The question remains
whether this is possible within the whole framework of the Standard Model. Before
we answer this question, let us first discuss if the assumption of neutrinos being Majo-
rana particles can agree with current experimental results. Afterwards, we will check if
neutrinos being Majorana particles is allowed within the Standard Model theory.

2.1.3. Are the Standard Model Neutrinos Majorana Particles?

Neutrinos are electrically neutral particles. Hence, after electroweak symmetry breaking
they could be Majorana particles.5 However, experiments show us that the interactions

νe + n←→ e− + p

νce + p←→ e+ + n
(2.33)

are possible, while interactions in which we switch νe ↔ νce

νce + n←→ e− + p

νe + p←→ e+ + n
(2.34)

are not observed. This result is in accordance with lepton number conservation. On first
look, it seems to indicate that ν 6= νc and thus that neutrinos cannot be Majorana parti-
cles. However, one has to take into account that neutrinos interact solely weakly. Weak
interactions violate parity maximally, i.e., they treat particles of contrasting chirality
differently. Thus, the latter two interactions are forbidden due to the different chiralities
of νe = PLνe and νce = PRν

c
e . This is also called chiral prohibition [12]. Thus, current

experimental findings cannot rule out neutrinos being Majorana particles.
On the theory side however, a fundamental neutrino Majorana mass term is forbidden
within the Standard Model framework. We can see this by taking a look at how such
a term transforms under the Standard Models symmetries. Neutrinos are color singlets
and as such do nott transform under the SU(3)C part of the Standard Model gauge
group. Hence, we only need to consider SU(2)L × U(1)Y .
Being part of a SU(2)L doublet, neutrinos have a weak isospin I3 = +1/2. Knowing
that neutrinos are electrically neutral we can use Eq. (2.8) to infer that they have a
hypercharge of Y = −1. Under a general gauge transformation U with

Ψ −→ UΨ (2.35)

a Majorana mass term transforms as

m

2
ΨTCΨ −→ m

2
ΨTUTCUΨ =

m

2
ΨTUTUCΨ , (2.36)

5Before EWSB they have a non-zero hypercharge and thus cannot be considered neutral.
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2.1. Neutrinos within the Standard Model

where except for O(N) symmetries and especially for U(1) symmetries we have

UTU 6= 1. (2.37)

While one can regain SU(2) invariance by inserting iτ2 and rewriting the mass term as

m

2
ΨTCiτ2Ψ

U∈SU(2)L
−−−−−−−−→ m

2
ΨTCUT iτ2UΨ =

m

2
ΨTCiτ2Ψ, (2.38)

which follows from

τ2τiτ2 = −τi, (2.39)

something similar cannot be achieved for a U(1) symmetry. It follows that a funda-
mental Majorana mass term can only be formed out of fermion fields which
are not charged under any U(1) symmetry. However, as we can see by looking at
the expected Dirac mass terms of the other Standard Model fermions

mΨRΨL + h.c.
U∈SU(2)L
−−−−−−−−→ mΨRUΨL + h.c., (2.40)

the above argument alone is not sufficient to prove that neutrinos are massless within
the Standard Model. The reason for this is that also fundamental Dirac mass terms
for the remaining massive fermions are forbidden within the Standard Model framework
as they are not invariant under the relevant gauge transformations due to the parity
violating property of the SU(2)L symmetry.6 Hence, we need to discuss the mechanism
that generates masses for the remaining Standard Model fermions.

2.1.4. Higgs Mechanism - Generating Fermion Masses via spontaneous
Symmetry Breaking

The “problem” of explaining non-zero fermion masses (see Table 2.2) without having ex-
plicit fundamental fermion mass terms is solved by the mechanism of spontaneous sym-
metry breaking (Higgs Mechanism) [9] via the introduction of a complex scalar SU(2)L
doublet

Φ =

(
Φ+

Φ0

)
(2.41)

with a hypercharge Y = +1. This scalar doublet couples to the Standard Model fermions
via Yukawa interaction terms

LY =
∑
αβ

{
Y L
αβLαΦlR,β + Y Q,d

αβ QαΦdR,β + Y Q,u
αβ QαΦ̃uR,β

}
+ h.c. (2.42)

6Actually the fundamental Dirac mass terms formed out of Standard Model fermion fields are also not
invariant under the U(1)Y part of the gauge group, but one non-invariance alone is already sufficient
to prove the point.
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2. Motivation from Neutrino Physics

with

Φ̃ = iτ2Φ∗ (2.43)

and the quark doublets

Qi =

(
ui
di

)
. (2.44)

The sums are taken over all three fermion generations and Y X
αβ are the Yukawa coupling

matrices.7 The Higgs potential can be written as

V (Φ) = µ2Φ†Φ + λ
(

Φ†Φ
)2
, (2.45)

which has a minimum at

Φ†Φ =
v2

2
, (2.46)

with

v =

√
−µ2

λ
∼ 246 GeV. (2.47)

We can rewrite Φ as

Φ(x) = exp

{
i

2v
~ζ(x)~τ

}(
0

v+H(x)√
2

)
(2.48)

where H(x) represents the physical Higgs field as excitation from the vacuum state.
The ζ(x) fields are redundant and do not represent any physical particle as they can be
rotated away by a gauge transformation given in Eq. (2.5) with

~θ(x) =
~ζ

v
, (2.49)

such that we end up with Dirac fermion mass terms given by the Yukawa interaction
Lagrangian

LY =
v√
2

∑
αβ

{
Y L
αβLαlR,β + Y Q,d

αβ QαdR,β + Y Q,u
αβ QαuR,β

}
+ h.c.. (2.50)

After diagonalizing the above terms the fermion masses are determined by the corre-
sponding Yukawa coupling Yf and the VEV v

mf =
v√
2
Yf . (2.51)

7Note that again there is only one Yukawa term for the leptonic part of the Standard Model due to the
lack of right-handed neutrino singlets.
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2.1. Neutrinos within the Standard Model

Obviously, we cannot generate a Dirac mass term for neutrinos via this mechanism be-
cause we still lack a right-handed neutrino. We will discuss the possibility of adding
right-handed neutrinos to the Standard Model in Sec. 2.3.
Can we use the newly introduced Higgs field to generate a Majorana mass term? The
answer to this question is no as well. The reason still being the necessity for gauge in-
variance. To generate a gauge invariant Majorana mass term via a similar mechanism
we need a scalar field ∆ which must satisfy 2 conditions:

1. It must posses a hypercharge Y = 2 to cancel the hypercharge of the two neutrino
fields and make the mass term invariant under U(1)Y transformations.

2. It must have a neutral component which can gain a VEV, i.e., it must be at least
part of an SU(2) triplet to fulfill condition 1.

The only scalar particle within the Standard Model is the Higgs particle which itself does
not fulfill the above requirements. However, we can combine two Higgs fields to get a
SU(2)L triplet scalar operator [12]

∆Higgs := ΦT iτ2~τΦ (2.52)

which we can use to write down a gauge invariant neutrino Majorana mass term

−Lmν =
Y ν
αβ

Λ

(
LTαCiτ2~τLβ

) (
ΦT iτ2~τΦ

)
=
Y ν
αβ

Λ

(
LTαCiτ2Φ

) (
Φ̃†Lβ

)
,

(2.53)

where Λ is some mass scale, which we have to include to keep the dimension of the
Lagrangian at 4. The above operator is known as the Weinberg operator [13]. It generates
neutrino Majorana masses, is completely invariant under the Standard Models gauge
group and additionally only contains Standard Model fields. However, as its field content
is 5 dimensional, it is non-renormalizable. As such, it cannot be a fundamental term, but
has to arise from a more fundamental UV complete model treating the Standard Model
as a non-renormalizable effective field theory (EFT) with a strict UV-cutoff. Within
such an EFT approach Λ resembles the new physics mass scale at which the Weinberg
operator is generated after integrating out the heavy new physics components. We will
focus more on EFTs in Section 3.4.1. After electroweak symmetry breaking, i.e., after
the neutral component of the Higgs field acquires its non-zero vacuum expectation value
(VEV) v, the neutrino mass term generated by the Weinberg operator is given by

−Lmν = Y ν
αβ

v2

2Λ
νTLαCνLβ. (2.54)

That is, the neutrino mass is given by

mν = Y ν
αβ

v2

Λ
. (2.55)
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2. Motivation from Neutrino Physics

We see that it is suppressed by a factor of v2/Λ which for large Λ could explain the
smallness of the observed neutrino masses. Interestingly, when treating the Standard
Model as effective field theory, the Weinberg operator is the only dimension-5 operator
that can be formed out of Standard Model fields.

2.2. Neutrino Oscillation

2.2.1. Standard Derivation of Neutrino Oscillation

While we see that within the Standard Model neutrinos are massless, the observation of
neutrino oscillations [3, 4] is generally accepted to prove the opposite as it necessitates
non-zero mass differences between the different neutrino generations. To show this, we
will now go trough the standard derivation of the neutrino vacuum oscillation probability
Pνα→νβ following [9] using the plane-wave assumption. It should be noted that assuming
plane waves is actually inconsistent. While plane waves have the nice feature of having a
well defined momentum, they are completely delocalized in space making it impossible to
define a baseline L between the points of neutrino production and detection. Hence, for
a consistent derivation one should treat the propagating neutrinos as wave-packets [14].
Nevertheless, using this approach one finds the correct leading order oscillation prob-
ability and additionally the basic idea behind the phenomenon of neutrino oscillation
remains the same in both treatments. Therefore, the simpler plane wave derivation is
sufficient for us.
Generally speaking, the interaction and the Hamiltonian eigenstates of a particle are not
necessarily identical, but can be related via a base transformation given by a unitary
matrix U . A famous example is the quark sector in which the weak eigenstates and the
Hamiltonian eigenstates are related by the so-called CKM matrix (Cabbibo-Kobayashi-
Maskawa) [15, 16]. In such a case we can write

|να〉 =
∑
i

U∗αi |νi〉 (2.56)

and vice versa

|νi〉 =
∑
α

Uαi |να〉 (2.57)

where |να〉 are the flavor eigenstates and |νi〉 are the eigenstates of the Hamiltonian.
Both form a orthonormal basis, i.e.,

〈να|νβ〉 = δαβ 〈νi|νj〉 = δij . (2.58)

The time evolution of a free field is governed by Schrödinger’s equation

i
d

dt
|νi(t)〉 = H |νi(t)〉 (2.59)

12



2.2. Neutrino Oscillation

and similarly spatial translation is given by

−i∇ |νi(~x)〉 = p̂ |νi(~x)〉 , (2.60)

which results in a plane-wave description

|νi(x, t)〉 = exp{−iEit+ i~pi · ~x} |νi〉 . (2.61)

Hence, we can infer the evolution of a flavor state

|να〉 (t, ~x) =
∑
i

U∗αi exp{−iEit+ i~pi · ~x} |νi〉

=
∑
i

U∗αi exp{−iEit+ i~pi · ~x}

∑
β

Uβi |νβ〉

 , (2.62)

with

|να(t = 0, ~x = 0)〉 = |να〉 . (2.63)

We can see that for t 6= 0 and ~x 6= 0 the initial pure flavor state να has transitioned into
a state να(t, ~x) which is given by a superposition of pure flavor eigenstates.
To get the transition probability Pνα→νβ we have to compute the transition amplitude

Aνα→νβ (t, ~x) = 〈νβ|να(t, ~x)〉 =
∑
i

U∗αiUβi exp{−iEit+ i~pi · ~x}. (2.64)

Assuming that all ~pi are parallel to each other, we can take

~pi · ~x = |~pi| · L (2.65)

and for |~pi| � mi, we can approximate

t = L, (2.66)

and

Ei =
√
~p2
i +m2 = |~pi|+

m2
i

2|~pi|
+O

[(
m2
i

|~pi|

)2
]
. (2.67)

Using this, the transition amplitude simplifies into

Aνα→νβ (t, ~x) = 〈νβ|να(t, ~x)〉 =
∑
i

U∗αiUβi exp{−i(Ei − pi)L}

=
∑
i

U∗αiUβi exp

{
−i m

2
i

2|pi|
L

}
.

(2.68)
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2. Motivation from Neutrino Physics

Normal Hierarchy Inverted Hierarchy
∆m2

21 (7.53± 0.18)× 10−5 eV2 (7.53± 0.18)× 10−5 eV2

∆m2
32 (2.453± 0.034)× 10−3 eV2

(
−2.546+0.034

−0.040

)
× 10−3 eV2

sin θ12 0.307± 0.013 0.307± 0.013
sin θ23 0.545± 0.021 0.547± 0.021
sin θ13 (2.18± 0.08)× 10−2 (2.18± 0.08)× 10−2

Table 2.3.: Neutrino mixing parameters [10] for the normal (∆m2
32 > 0) and inverted

(∆m2
32 < 0) mass hierarchy.

Thus, assuming |pi| = |pj | ∼ E we find

Pνα→νβ (t) = |Aνα→νβ (t)|2 =
∑
ij

U∗αiUβiUαjU
∗
βj exp

{
−i

∆m2
ij

2E
L

}
. (2.69)

with

∆m2
ij = m2

i −m2
j . (2.70)

Eq. (2.71) is often written as

Pνα→νβ (t) = |Aνα→νβ (t)|2 =
∑
ij

U∗αiUβiUαjU
∗
βj exp

{
−2πi

L

Losc
ij

}
. (2.71)

with the oscillation length

Losc
ij =

4πE

∆m2
ij

. (2.72)

Besides the already mentioned caveats about the plane-wave treatment one should note
that we ignored any effects coming from the production and detection processes. Within
a complete treatment these should be included [14, 9]. Due to the unitarity condition we
have ∑

i

U∗αiUβi = δαβ. (2.73)

Hence, the vacuum oscillation probability Pνα→νβ for α 6= β is non-zero only if at least
one ∆m2

ij is non-zero. Thus, the observation of neutrino oscillations provides
evidence for the existence of non-zero neutrino masses and therefore new
physics beyond the Standard Model. The mixing matrix U is usually referred
to as the Pontecorvo-Maki-Nakagawa-Sakata matrix UPMNS . It can be parameterized
as [17, 9]

UPMNS =

 c12c13 s12c13 s13e
−iδcp

−s12c23 − c12s23s13e
iδcp c12c23 − s12s23s13e

iδcp s23c13

s12s23 − c13c23s13e
iδcp −c12s23 − s12c23s13e

iδcp

 · UM
(2.74)
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with

UM = diag
(
1, eiα1 , eiα2

)
(2.75)

where δCP is a CP violating phase, α1,2 are the two Majorana phases which vanish
for Dirac neutrinos and we used the abbreviation sin θij = sij and cos θij = cij . The
current experimental values measured in oscillation experiments are shown in Table 2.3.
Albeit tiny, the measured mass differences are non-zero. Note that the sign of ∆m2

32 is
currently unknown such that two different mass hierarchies the normal hierarchy (NH)
m1 < m2 < m3 and inverted hierarchy (IH) m3 < m1 < m2 can be realized in nature.
The experimental fact of non-vanishing neutrino masses reintroduces the question about
the nature of the neutrinos, i.e., Dirac vs. Majorana.

2.3. Generating Neutrino Masses Beyond the Standard
Model - The Seesaw Mechanisms

Now that we know that neutrinos are massive, we want to discuss possible extensions
to the Standard Model which generate small neutrino masses by following the lectures
of [12]. There are countless models which can generate small neutrino masses either at
tree-level or radiatively, see e.g. [18] and references therein. The most commonly studied
Standard Model extensions which generate the dimension-5 Weinberg operator at tree-
level are the so-called seesaw mechanisms depicted in Figure 2.1.
Ignoring gauge invariance or any other constraints, let us first take a look at the most
general neutrino mass term for 3 generations of left-handed neutrinos νL,i and three
generations of right-handed neutrinos NR,i. In this case the mass term consists of both
Dirac and Majorana mass terms

−Lm =νL,i
(
MD
ij

)∗
NR,j

+
1

2
νTL,iCM

L
ijνL,j

+
1

2
NT
R,iC

(
MR
ij

)∗
NR,j + h.c.,

(2.76)

where MD,R,L in general each are complex 3 × 3 matrices. Additionally, ML and MR

are symmetric. We can summarize the whole mass term within one Majorana like term

−Lm =
1

2
nTLCMnL + h.c. (2.77)

with

nL =

(
νL

(NR)c

)
, (2.78)

where νL = (νL 1, νL 2, νL 3)T , NR = (NR 1, NR 2, NR 3)T and

M =

(
ML MD

MDT MR

)
(2.79)
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νL

Type I

v

νL

v

Singlet

νL

Type III

v

νL

v

Triplet

v v

Type II

νLνL

Triplet

Figure 2.1.: Feynman diagrams of the three standard seesaw models which generate the
dimension-5 Weinberg operator.

by noticing that

1

2
nTLCMnL + h.c.

=
1

2
νTLCM

L +
1

2
NRM

R(NR)c

+
1

2

(
νTLCM

D (NR)c +NR

(
MD

)T
νL

)
+ h.c.

=
1

2
νTLCM

L +
1

2
NRM

R(NR)c +NR

(
MD

)T
νL + h.c.

=
1

2
νTLCM

L +
1

2
NT
RC

(
MR

)∗
NR + νL

(
MD

)∗
NR + h.c.

=− Lm

(2.80)

where we used

νTLCM
D (NR)c =

[
νTLCM

DCNR
T
]T

= −NRC
TCT

(
MD

)T
νL

= NR

(
MD

)T
νL

(2.81)

with CT = C−1 = −C, and

NRM
R (NR)c =

[
(NR)cMRNR

]† (2.82)

NR

(
MD

)T
νL =

[
νL
(
MD

)∗
NR

]†
. (2.83)

One can block diagonalize the mass matrixM using a base transformation

−Lm −→
1

2
χTLCMdiagχL (2.84)
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with

nL = UχL (2.85)

M−→Mdiag = UTMU =

(
M̃L 0

0 M̃R

)
, (2.86)

where M̃L and M̃R are complex 3 × 3 matrices. That is, up to corrections of order(
MD · (MR)−1

)2 and ML · (MR)−1 we have

M̃L 'ML −MD
(
MR

)−1 (
MD

)T
, M̃R 'MR (2.87)

The mixing matrix can be approximated as

U '
(

1 ρ
−ρ† 1

)
(2.88)

with

ρ 'MD
(
MR

)−1
. (2.89)

Thus, we see that forMR �MD the base transformation U is almost unity such that νL
and NR hardly mix. Thus, in this case M̃L describes 3 light neutrino fields which mostly
consist out of the Standard Model neutrino fields νL, while M̃R describes 3 heavy neutrino
states which mostly consist out of the right-handed neutrino fields NR not present in the
Standard Model.
The aim of the different seesaw mechanisms is to each generate at least one of the three
possible mass matricesMD,ML andMR. Before we go on looking at the specific models,
we want to stress that although we started out with the most general mass term which
consists of both Dirac and Majorana, we end up with having solely Majorana mass
terms after block diagonalization. This general result implies that the appearance of
a Majorana mass term implies that the massive fields are Majorana too. Or
in other words: The only possibility to have Dirac particles is to forbid any Majorana
mass term that could appear.

2.3.1. Seesaw Type I

The seesaw type I mechanism represents probably the most obvious Standard Model
extension one can think of to generate neutrino masses. We simply add three right-
handed neutrino singlets NR (1,0) to the Standard Models particle content.8 This enables
us to write down a Dirac neutrino mass term

−LMD = Y ν
αβLαΦ̃NR, (2.90)

8In principle we can also add any other number. However, one needs at least two in order to generate
the observed mass splitting.
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Y ν

νL

Type I ∼ Y ν v2

MR
Y ν

v

Y ν

νL

v

NR ∼ 1/MR

Figure 2.2.: Seesaw type I mechanism. From the Feynman diagram of the dim 5Weinberg
operator one can intuitively infer the resulting light neutrino masses.

where after EWSB

Φ̃ −→ 1√
2

(
v
0

)
+O(H), (2.91)

we have (
MD

)∗
= Y ν v√

2
. (2.92)

Additionally, due to NR being a total Standard Model singlet we can write down a
fundamental right-handed Majorana mass term

−LMR = NT
R,iCM

R
ijNR,j . (2.93)

Here, MR is a new fundamental mass scale. Thus, we can see that the small change of
introducing right-handed neutrinos to the Standard Model is no simple addition but it
changes the general structure of the model which previously only depended on one single
mass scale v. Considering our previously introduced general neutrino mass matrix given
in Eq. (2.79) we haveML = 0 since in this model we do not have a possibility to generate
a Majorana mass term for the left-handed neutrinos in a gauge invariant way. Therefore,
we have

M =

(
0 MD(

MD
)T

MR

)
(2.94)

and

Mdiag =

(
M̃L 0

0 M̃R

)
(2.95)

with

M̃L ' −MD
(
MR

)−1 (
MD

)T (2.96)

M̃R 'MR. (2.97)
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It should be noted that the minus sign in M̃L has no physical consequences as it can be
rotated away. As we noted earlier MR is a fundamental mass scale which can have any
arbitrary values. Thus, for large MR, M̃L is suppressed by a factor of v2/MR and we
end up with the observed light neutrinos.
A very important point we see is that the simple introduction of a right-handed neutrino
singlet NR, which is necessary to generate a Dirac mass term, also implies the existence
of a right-handed Majorana mass term. That is, when trying the simplest approach
to generate light Dirac neutrino masses, we actually end up with massive
Majorana neutrinos. This is a strong motivation towards searching for lepton number
violation in the neutrino sector.

2.4. Further Motivations

We have seen in the previous sections, that the most simple Standard Model extensions
which generate light neutrino masses result in neutrinos being Majorana particles. In
fact, the simple introduction of a right-handed neutrino singlet, which is necessary to gen-
erate Dirac masses, will inevitably generate a Majorana mass term for the right-handed
neutrino fields. Afterwards, this will generate massive Majorana neutrinos via mixing.
One can try to avoid this by extending the model and, e.g., promoting the Standard Mod-
els global U(1)L lepton number symmetry to a local gauge symmetry. Usually instead
of U(1)L one would promote U(1)B−L to a gauge symmetry because lepton number is
actually broken already in the Standard Model via non-perturbative so-called sphaleron
processes [19] while B − L is a Standard Model symmetry even at the non-perturbative
level. However, in both cases the introduction of another local U(1)L or U(1)B−L sym-
metry will result in the existence of an additional massless gauge boson associated to it
and corresponding long-range interactions between leptons. Such interactions are so far
not observed in nature. Therefore, to avoid experimental constraints one has to either
make the gauge coupling to almost vanish or one could spontaneously break the symme-
try through a Higgs like mechanism. The first approach would just swap the problem of
explaining small neutrino masses with the problem of explaining a small gauge coupling
and hence introduce another fine-tuning like problem. The second approach of break-
ing the symmetry without reintroducing the right-handed Majorana mass term is only
possible within more complex models [20, 21, 22]. Following this line, it is reasonable
to assume that neutrinos might actually be Majorana particles. This is one of the main
reasons to consider 0νββ-decay.
Another reason to study 0νββ is that while a tree-level neutrino Majorana mass term is
the most obvious way to generate 0νββ-decay, there are actually many different effective
lepton number violating operators that can trigger 0νββ as we will see in sections 3.3
and 3.4.2. Additional motivation comes from the observed baryon asymmetry of the uni-
verse (BAU) [23] which cannot be explained within the Standard Model itself. Instead,
one of the most studied mechanism for explaining the observed BAU builds upon lepton
number violation beyond the Standard Model in the first place. Such types of mecha-
nisms are called Leptogenesis scenarios [5, 24] and they are another strong motivation to
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2. Motivation from Neutrino Physics

search for lepton number violation in the neutrino sector. Finally, while the global B−L
symmetry forbids 0νββ-decay within the Standard Model, it is widely expected that a
full model of quantum gravity will not contain any global symmetries [25].9

Considering all points above, it is reasonable to assume that lepton number is not neces-
sarily conserved. Accordingly, there is a strong motivation towards investigating whether
lepton number is indeed a broken symmetry and if neutrinos are actually Majorana par-
ticles. In the next chapter we will introduce the basics of 0νββ-decay and elaborate on
how it tests different mechanisms of lepton number violation.

9Hence, we should consider that it may be broken at lower scales already.
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3. 0νββ Theory

3.1. Introduction to double-β Decay

3.1.1. Origin of double-β-Decay

In this chapter we want to discuss and review the important features of 0νββ-decay. Let
us start by discussing the basics.
Within the standard β-decay a neutron (n) inside a nucleus (A,Z) with mass number A
and nuclear charge Z transforms into a proton (p) releasing a single electron (e−) and
electron-anti-neutrino (νe)

(A,Z) −→ (A,Z + 1) + e− + νe. (3.1)

Ignoring electron binding energies, such a decay can happen if the final state atom has
a smaller mass than the initial state atom. The atomic mass is given by the mass of its
constituents, i.e., the nucleons (neutrons and protons) the electron shell and the binding
energy

M(A,Z) = Z(mp +me) + (A− Z)mn −B(A,Z). (3.2)

If we ignore the electron shell for a moment, i.e., we only consider the nucleus, the above
formula can be expressed in a parabolic form known as the semi-empirical nuclidic mass
equation [26]

M(A,Z) = MA +
1

2
BA (Z − ZA)2 + PA − S(N,Z) (3.3)

with a shell correction term S and the pairing coefficient

PA ∝ δ =


+1 odd-odd

0 even-odd
−1 even-even

(3.4)

which is the important part of the formula for our discussion. In Eq. (3.4) “even” and
“odd” refer to the number of protons Z and neutrons N = A − Z. We see that while
for odd mass numbers A the pairing coefficient vanishes and we end up with a single
parabola, for even A one can find nuclei with both “even-even” and “odd-odd” structures,
such that we have two separate mass parabolas. These are (ignoring the shell correction
term) offset by ∆P = 2PA. This structure is shown in Figure 3.1. In such a case it
can happen that for even-even nuclei next to the minimum of the mass parabola the
normal first order β-decay is prohibited due to the neighbouring odd-odd nucleus having
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3. 0νββ Theory

Figure 3.1.: Mass parabolas for even-even and odd-odd nuclei with A = 130 and even-odd
nuclei with A = 129. The arrows represent the leading order decays. While
for even-odd nuclei there is only one mass parabola, for even-even and odd-
odd nuclei there is a mass split resulting in two parabolas. One can see that
due to this mass gap for even-even nuclei close to the minimum of the mass
parabola the single β-decay can be blocked due to the neighboring odd-odd
nucleus having a higher mass. In such a case the leading order decay is a
double-β-decay (ββ) or double electron capture (ECEC).

a larger mass. If the standard single-β-decay is blocked in this way, the leading order
decay will be a double-β-decay. There are 4 different double-β-decay modes that can be
observed. All of them have a 2 neutrinos as well as a possible neutrinoless mode. While
the Feynman diagrams for all of these modes are the same (if we ignore the rotation of
lines by 180◦) they do differ in the necessary mass difference between the mother and
daughter atom ∆m = mM−mD. This sets the threshold for the process and can suppress
certain modes. We summarize all 4 modes below1:

1. β−β−:

(A,Z)→ (A,Z + 2) + 2e−(+2νe) (3.5)

∆m
!
> 0 (3.6)

1Note that we ignore the binding energy of captured electrons in ECβ+ and ECEC, which are sub keV
as well as the masses of the outgoing neutrinos which are expected to be sub eV.
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2. β+β+:

(A,Z)→ (A,Z − 2) + 2e+(+2νe) (3.7)

∆m
!
> 4me (3.8)

3. ECβ+:

(A,Z) + e− → (A,Z − 2) + e+(+2νe) (3.9)

∆m
!
> 2me (3.10)

4. ECEC:

(A,Z) + 2e− → (A,Z − 2)(+2νe) (3.11)

∆m
!
> 0 2ν mode (3.12)

∆m
!

= 0 0ν mode2 (3.13)

Here, EC denotes electron capture. Note that in principle also the corresponding pro-
cesses involving positron capture are possible. However, since positrons do not occur
naturally inside atoms we will ignore this possibility. Also, every isotope that can decay
via 2νβ+β+ or 2νECβ+ will also decay via 2νECEC and the former modes will be sup-
pressed due to the smaller Q-value3 which represents the released energy given by the
summed kinetic energies of the outgoing leptons (electrons/positrons and neutrinos).
Considering the above requirements we find 69 natural elements that decay via at least
one double-β mode (35 via β−β− and 34 via ECEC). They are listed in Table 3.1. To
find these we used the NIST list of isotopes [28]. While most elements on the list have
more than one isotope listed there are two notable elements which both have 4 different
naturally occurring isotopes that decay via some double-β mode namely Xe (124, 126,
134 and 136) and Cd (106, 108, 114, 116).

3.1.2. 0νββ as a Probe for Lepton Number Violation

The reason we want to study double-β-decay is that this process can be utilized to
investigate the nature (Dirac vs. Majorana) of neutrinos as it probes lepton number
violation in the neutrino sector. We can immediately see the reason behind this by
looking at the Feynman diagram of the standard double-β-decay shown in Figure 3.2.
The standard double-β-decay (2νββ) basically is just two separate β-decays happening at
the same time with two outgoing anti-neutrinos. If, however, neutrinos have a Majorana
mass term, neutrinos and anti-neutrinos are equal. Hence, we can connect the two
neutrino lines in the left part of Figure 3.2 such that there are no outgoing neutrinos and
we end up with the neutrinoless double-β-decay (0νββ) represented in the right part of

3This suppression does not necessarily hold for the neutrinoless modes.

23



3. 0νββ Theory

2νβ−β− 2νβ+β+ 2νECβ+ 2νECEC
AZ Q [MeV] AZ Q [MeV] AZ Q [MeV] AZ Q [MeV]

46Ca 0.988576 78Kr 0.802333 50Cr 0.146971 36Ar 0.432581
48Ca 4.266970 96Ru 0.670499 58Ni 0.904313 40Ca 0.193508
70Zn 0.997118 106Cd 0.731391 64Zn 0.072685 50Cr 1.168969
76Ge 2.039061 124Xe 0.820255 74Se 0.187243 54Fe 0.679832
80Se 0.133874 130Ba 0.574761 78Kr 1.824331 58Ni 1.926311
82Se 2.996402 136Ce 0.334556 84Sr 0.767749 64Zn 1.094683
86Kr 1.257542 92Mo 0.629783 74Se 1.209240
94Zr 1.141919 96Ru 1.692497 78Kr 2.846329
96Zr 3.348982 102Pd 0.149915 84Sr 1.789746
98Mo 0.109935 106Cd 1.753389 92Mo 1.651781
100Mo 3.034342 112Sn 0.897811 96Ru 2.714495
104Ru 1.301297 120Te 0.708411 102Pd 1.171913
110Pd 2.017234 124Xe 1.842253 106Cd 2.775387
114Cd 0.542493 130Ba 1.596759 108Cd 0.271810
116Cd 2.813438 136Ce 1.356554 112Sn 1.919809
122Sn 0.372877 144Sm 0.760416 120Te 1.730409
124Sn 2.291010 156Dy 0.983975 124Xe 2.864251
128Te 0.866550 162Er 0.824969 126Xe 0.919757
130Te 2.527515 168Yb 0.387260 130Ba 2.618757
134Xe 0.825751 174Hf 0.076886 132Ba 0.843947
136Xe 2.457984 184Os 0.428879 136Ce 2.378552
142Ce 1.417175 190Pt 0.362202 138Ce 0.693032
146Nd 0.070421 144Sm 1.782414
148Nd 1.928286 152Gd 0.055703
150Nd 3.371357 156Dy 2.005973
154Sm 1.250810 158Dy 0.282802
160Gd 1.730530 162Er 1.846966
170Er 0.655586 164Er 0.025057
176Yb 1.088730 168Yb 1.409257
186W 0.491643 174Hf 1.098884
192Os 0.408274 180W 0.143264
198Pt 1.049142 184Os 1.450877
204Hg 0.419154 190Pt 1.384200
232Th 0.837879 196Hg 0.820190
238U 1.144154

Table 3.1.: Complete list of natural double-β elements and the corresponding Q-values
calculated from the NIST list of elements [28] using the conditions 3.6, 3.8,
3.10 and 3.12. Overall there are 69 different natural elements that can decay
via at least one double-β mode.
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Figure 3.2.: Feynman diagrams of the standard two neutrino (left) and neutrinoless
(right) double-β-decays.

Figure 3.2. One should note that this process includes a chirality flip, such that it cannot
happen for massless neutrinos which can be described as either Dirac or Majorana. We
will discuss this mechanism more detailed in Sec. 3.2 and see that the amplitude of this
decay is proportional to the effective electron-neutrino Majorana mass. As we will see in
Sec. 3.3 also other mechanisms of lepton number violation can be studied within 0νββ
experiments.

3.1.3. Experimental Overview

Detecting 0νββ

Figure 3.3.: Summed electron energy spec-
tra of the 2νββ (blue) and
0νββ-decays (red) in 136Xe.
The 2νββ spectrum was calcu-
lated in [29]. The width of
the 0νββ Gauss peak is deter-
mined by the experimental ac-
curacy. For the sake of readabil-
ity the expected height of the
0νββ peak is highly exaggerated
here.

The 0νββ-decay can be distinguished from
its main background the 2νββ-decay via a
characteristic signature in the energy spec-
trum of the emitted electrons. While for
2νββ

(A,Z) −→ (A,Z + 2) + 2e− + 2νe
(3.14)

the released energy is distributed among 4
outgoing particles4 out of which only the
two electrons can be detected within an
experiment, for 0νββ

(A,Z) −→ (A,Z + 2) + 2e− (3.15)

the two outgoing electrons carry all of the
released energy and hence have a fixed
summed energy Tsum. Thus, by measur-
ing the summed energy spectrum of the

4The kinetic recoil of the nucleus can be ignored due to the high mass compared to me.
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3. 0νββ Theory

released electrons one can experimentally distinguish 0νββ from 2νββ. The expected
spectra of the 2νββ and 0νββ modes are shown in Figure 3.3. It is important to note
that while one would expect the 0νββ mode to have a fixed delta-like spectrum, in real-
ity the experimental uncertainties will smear this into a Gaussian distribution where the
width is determined by the accuracy of the experiment. This fact shows the importance
of a good energy resolution at the end point of the spectrum to minimize the number of
background events coming from the 2νββ mode.
Next, we want to give a brief overview covering the experimental efforts towards 0νββ.
These are nicely summarized and explained in [30, 31] which we will refer to. One can
distinguish between different types of experiments:

Semiconductors

Semiconductor experiments like GERDA [32] or the MAJORANADEMONSTRATOR [33]
utilize highly enriched high-purity 76Ge (HPGe) diodes. They are able to detect 0νββ
events by measuring the summed electron spectrum of the decaying 76Ge. HPGe experi-
ments have some notable advantageous properties for being used as a 0νββ probe. They
can reach a very high energy resolution of ∼ 0.1% [34] at the end point of the 2νββ
spectrum such that it is possible to reduces the background events which originate from
the 0νββ-decay accompanying 2νββ-decay. Additionally, they come with a very low in-
trinsic background. However, they cannot measure the two emitted electrons separately
such that neither angular information nor information on the single electron spectra can
be recovered from the experimental data.
While GERDA and MAJORANA operate with ∼ 40 kg and ∼ 30 kg of highly enriched
76Ge a next-generation ton scale experiment the Large Enriched Germanium Experi-
ment for Neutrinoless Double beta decay (LEGEND) [35] will combine the efforts of both
previous experiments. LEGEND will reach a sensitivity on the 0νββ half-life of 1028 y.

Time Projection Chambers

Time Projection Chamber (TPC) experiments are another favourable technology for the
search of 0νββ. TPC 0νββ experiments typically employ (enriched) 136Xe in a gaseous,
liquid or dual phase chamber. While the latter are usually used as dark matter searching
tools, the first two are used in dedicated 0νββ experiments. Within the TPC, decay
events generate two different detector signals via ionization and szintillation. These
can be used for improved particle discrimination, to locate the event and of course to
determine the energy of the emitted electrons. Although one would think that a gaseous
TPCs could provide information on the individual electron tracks this is not possible
due to the high density of 136Xe within the high-pressure TPCs usually used. Therefore,
again only the summed electron energy is measured to identify 0νββ events. Examples
of experiments that will employ single-phase gaseous-xenon TPCs are the Particle and
Astrophysical Xenon Experiment III (PandaX-III) [36] which will employ 140 kg of 90%-
enriched 136Xe in a high-pressure TPC as well as the Neutrino Experiment with a Xenon
TPC (NEXT) [37]. These single-phase high-pressure gas TPCs can also reach very high
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3.1. Introduction to double-β Decay

energy resolutions of ∼ 0.5% [38]. An experimental project that employs liquid-phase
TPCs is the Enriched Xenon Observatory (EXO) [39] and its planned ton-scale upgrade
nEXO [40].
With the first detection of double electron capture in 124Xe [41] which at this point
represented the process with the longest half-life ever detected, the XENON collaboration
proofed that dual-phase dark matter experiments that are not dedicated directly towards
0νββ can indeed provide competitive results for nuclear decay measurements. The future
DARWIN experiment [42] will in fact reach sensitivities similar to LEGEND and nEXO
even without isotopic enrichement.

Scintillators

There are two types of scintillators used in 0νββ experiments. Organic scintillators that
are loaded with a 0νββ-decaying isotope and inorganic scintillator crystals which are
build from some chemical compound that contains a 0νββ isotope. Examples for the
prior are the SNO+ [43] and the KamLAND-Zen [44] experiments searching for 0νββ
in 130Te and 136Xe, respectively. The main advantage of organic scintillators is the
scalability of experiments beyond the ton-scale. However, solar neutrino interactions
with electrons in the scintillator atoms induce an additional background. On the other
side the CAlcium fluoride for the study of Neutrinos and Dark matters by Low Energy
Spectrometer III (CANDLES III) [45] experiment utlizes CaF2 crystal scintillators to
search for 0νββ-decay in 48Ca which out of all naturally occuring double-β isotopes has
the highes Q-value.

Bolometers

Bolometers [46] are croygenic calorimeter experiments which typically work at temper-
atures of ∼ 10mK. They detect individual decay events via the induced temperature
increase which are of O(0.1mK/MeV). To be able to detect such minimal changes in
temperature, extremely precise thermometers are necessary. Again, the 0νββ isotopes
usually come within a crystalline compound. Bolometer experiments have the high ad-
vantage of a very precise energy resolution. However, scalability is challenging although
not impossible as it is hard to work at such low temperatures. Examples of bolometric
experiments are the Cryogenic Underground Observatory for Rare Events (CUORE) [47]
and its future ton-scale upgrade CUPID [48].

Tracking Calorimeters

Tracking calorimeters are an exciting addition to the other experimental efforts as they
are currently the only type of experiment that can gain information on the individual
electron tracks in double-β-decays. As such they can give insight into additonal phase-
space observables such as angular correlations and the single electron spectra and thereby
can help to distinguish different 0νββ mechanisms. To achieve this, they us foils of 0νββ
isotopes that are surrounded by the detector which consists of a tracker module and
surrounding calorimeter walls. The only experiments currently using this technology are
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3. 0νββ Theory

NEMO-3 [49] and its next generation successor SuperNEMO [49, 50]. Further advantages
of this detector design are the possiblity to employ different 0νββ isotopes by switching
the foils and a good background discrimination. However, scalability is again not very
easy to achieve and the energy resolution is only in the range of ∼ 4% [31].

3.2. Theory of the Standard 0νββ Mechanism

The most studied mechanism of 0νββ is the mechanism of light Majorana neutrino
exchange. We now want to derive the expected 0νββ-decay rate in this case. In principle
the decay rate Γ of a particle which decays from an initial state i into a final state f
can be interpreted as the decay probability P per time T . Hence, we can define the
differential decay rate as [51]

dΓ =
1

T
dP. (3.16)

The decay probability is given by

dP =
|〈f |S|i〉|2

〈f |f〉 〈i|i〉
dΠ, (3.17)

where S represents the evolution operator or scattering-matrix which connects the initial
and final states and dΠ is the differential phase space volume of the final state particles

dΠ =
∏
f

V

(2π)3d
3pf . (3.18)

For f 6= i the transition amplitude is given by

〈f |S|i〉 = i(2π)4δ4

∑
f,i

pf − pi

M (3.19)

whereM is the usual quantum field theoretical “matrix element”. It can be calculated by
applying the usual Feynman rules [52, 51]. The delta distribution δ (

∑
pf − pi) accounts

for the momentum conservation when going from the initial to the final state. Assuming
a finite volume V and time T we can take the square of the transition amplitude and
find

|〈f |S|i〉|2 = TV δ4

∑
f,i

pf − pi

 (2π)4 |M|2 . (3.20)

Here, one has to use

δ4 (p) δ4 (p) = δ4 (0) δ4 (p) , (3.21)
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Figure 3.4.: Feynman diagram of neutrinoless double-β-decay in the standard framework
of light Majorana neutrino exchange.

and

(2π)4 δ4 (p) =

∫
d4x exp{ixp}, (3.22)

which when integrating over finite V and T results in

δ4 (0) = (2π)−4
∫

d4x =
TV

(2π)4 . (3.23)

With |s〉 =
∏
s |ps〉 the normalization factors 〈f |f〉 and 〈i|i〉 are given by

〈i|i〉 = (2EiV ) , 〈f |f〉 =
∏
f

(2EfV ) (3.24)

and ensure invariance under Lorentz transformations. Plugging all this into Eq. (3.17)
we find

dP =
δ4
(∑

f,i pf − pi
)
TV (2π)4 |M|2(∏

f (2EfV )
)

(2EiV )

∏
f

V

(2π)3d
3pf (3.25)

and hence the differential decay rate is given by

dΓ =
1

2Ei
|M|2 (2π)4 δ4

∑
f,i

pf − pi

∏
f

d3pf

(2π)3 2Ef
. (3.26)

We see T and V drop out of the equation as they should.
Now that we know how to calculate the decay rate in general we can go on deriving the
standard 0νββ-decay rate. The Feynman diagram corresponding to the standard 0νββ
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3. 0νββ Theory

mechanism induced by light Majorana neutrinos is shown in Figure 3.4. In the case of
free particles one would calculate the transition matrix element as

M =
(g

2

)4
V 2
ud up(p3)γµPLun(p′3)

igµν
q2 −m2

W

ue(p1)

× γνPL
∑
i

U2
ei

i (�p+mνi)

p2 −m2
νi

PLCγ
αT

× uTe (p2)
igαβ

r2 −m2
W

up(p4)γβPLun(p′4)

(3.27)

where g is the weak coupling constant corresponding to SU(2)L and with

PL =
1− γ5

2
. (3.28)

However, since with 0νββ we are considering a nuclear decay Ni → Nf , where Ni repre-
sents the initial and Nf the final state nucleus, we do not deal with free particles. Rather,
the nucleons (p,n) are bound in a nucleus. This means we are actually dealing with a
many particle system consisting of bound quark states. We can summarize these nuclear
effects in a nuclear matrix element (NME) by rewriting the transition element as

M =− 4

2!

(
GFVud√

2

)2

ue(p1)γαPL
∑
i

U2
ei

i (�p+mνi)

p2 −m2
νi

PLCγ
βTuTe (p2)

× 〈Nf | Jα(p1)Jβ(p2) |Ni〉 − (p1 ⇔ p2)

(3.29)

where we added the (p1 ⇔ p2) term to include the corresponding Feynman diagram which
switches the two outgoing electrons. Also, we will absorb the normalization factors for
the non-relativistic nuclear states into the nuclear matrix element. The additional factor
of 1/2! arises due to the nucleons being bosonic states. Furthermore, we took the limit

1
p2−m2

W
∼ −1

m2
W
. The neutrino propagator can be simplified by noticing that

PL�pPL = PLγ
µpµPL = γµpµPRPL = 0 (3.30)

which follows directly from the definition of γ5 and the anti-commutator rules of the
gamma matrices in Eq. (2.3). It is also easy to notice that the second term denoted by
(p1 ⇔ p2) will just add another factor of 2. Thus, we can Fourier transform to position
space and write

M = −4

(
GFVud√

2

)2 ∫
ue(x1) exp{ip1x1}γα

∑
i

U2
ei

× i
∫

d4p

(2π)4

mνi exp{−ip (x1 − x2)}
p2 −m2

νi

PLCγ
βTuTe (x2) exp{ip2x2}

× 〈Nf |T [Jα(x1)Jβ(x2)] |Ni〉 d4x1d4x2.

(3.31)
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3.2. Theory of the Standard 0νββ Mechanism

Here, T denotes the time ordering operator

T [Jα(x1)Jβ(x2)] = T [Jα(x2)Jβ(x1)] =

{
Jα(x1)Jβ(x2) , x0

1 > x0
2

Jα(x2)Jβ(x1) , x0
1 < x0

2
. (3.32)

From here on we follow the derivation of [53, 54]. However, we use a different definition
of the matrix element which one should pay attention to when comparing to [53, 54].
First we can solve the integral over x0

i by dividing the integral over x0
2 into two parts∫ +∞

−∞
dx0

2 =

∫ x01

−∞
dx0

2 +

∫ +∞

x01

dx0
2. (3.33)

Thus, we have two separate integrals one with x0
1 > x0

2 and one with x0
1 < x0

2. In both
cases one can solve the integration over p0 in the neutrino propagator by analytic con-
tinuation of p0 and applying the Residue theorem [55].

Residue theorem: Let U ⊂ C be open. Let f be a function such that
f : U \ S → C is holomorphic where S ⊂ U is a discrete set of singularities. If A ⊂ U is
a finitely separable set such that ∂A ∩ S = ∅, then∫

∂A
f(z)dz = 2πi

∑
z0∈S∩A

Resz0f. (3.34)

In the simple case that f(z) can be written in the form

f(z) =
g(z)

(z − z0)n
, (3.35)

where g : U \ S → C is again holomorphic for a pole of order n at z0 the residue is given
by the simple formula

Resz0f =
1

(n− 1)!

dn−1g

dzn−1
(z0). (3.36)

Following the above line, we can close the contour integral either in the upper (x0
1 > x0

2)
or lower (x0

1 < x0
2) complex plane such that the exponential function is non-vanishing

only on the real axis. Also we can avoid the poles on the real axis by calculating the
actual Feynman propagator. That is, we can shift the poles away from the real axis by
a small iε and afterwards take the limit ε→ 0. Doing so results in

lim
ε→0

1

(2π)4

∫
exp{−ip (x1 − x2)}
p2 −m2

νi + iε
d4p

=− i

(2π)3

∫
exp
{
∓ip0

(
x0

1 − x0
2

)
± i~p (~x1 − ~x2)

}
2p0
k

d3p

(3.37)

with

p0
k =

√
p2 +m2

k. (3.38)
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Next we need to take a closer look at the nuclear matrix element. The time evolution of
the currents Jα is given by the Hamiltonian H of the system as

Jα(x) = exp
{
iHx0

}
Jα (~x) exp

{
−iHx0

}
(3.39)

where we have defined

Jα (~x) = Jα (x0 = 0, ~x) . (3.40)

Using the normalization condition ∑
n

|Nn〉 〈Nn| = 1 (3.41)

where |Nn〉 represents the intermediate states we can rewrite the matrix element for
x0

1 > x0
2 as

〈Nf | Jα(x1)Jβ(x2) |Ni〉 =
∑
n

〈Nf | Jα(x1) |Nn〉 〈Nn| Jβ(x2) |Ni〉 . (3.42)

Inserting Eq. (3.39) for x0
1 > x0

2 we can write

〈Nf | Jα(x1) |Nn〉 〈Nn| Jβ(x2) |Ni〉

=
∑
n

exp
{
i (Ef − En)x0

1

}
exp
{
i (En − Ei)x0

2

}
〈Nf | Jα(~x1) |Nn〉 〈Nn| Jβ(~x2) |Ni〉

(3.43)

For x0
1 < x0

2 one can of course do the same just by switching x1 ⇔ x2 and α⇔ β. Thus,
we are left with the following integrals

∑
n

∫ +∞

−∞
dx0

1

{[∫ +x01

−∞
dx0

2 exp
{
i
(
p0

1 − p0 + Ef − En
)
x0

1 +
(
p0

2 + p0
k + En − Ei

)
x0

2

}]
×〈Nf | Jα(~x1) |Nn〉 〈Nn| Jβ(~x2) |Ni〉

+

[∫ +∞

x01

dx0
2 exp

{
i
(
p0

1 + p0 + En − Ei
)
x0

1 +
(
p0

2 − p0
k + Ef − Ei

)
x0

2

}]

×〈Nf | Jβ(~x2) |Nn〉 〈Nn| Jα(~x1) |Ni〉

}
.

(3.44)

Assuming that interactions are turned off at xi = ±∞ we can take∫ a

−∞
exp{ikx} → lim

ε→0

∫ a

−∞
exp{i (k − iε)x} = lim

ε→0

−i
k − iε

exp{i (k − iε) a} (3.45)
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for the first integral in Eq. (3.44). Using the above relation and Eq. (3.22) as well as
partial integration which results in∫ ∞

−∞
dx0

1

∫ ∞
x01

dx0
2... =

∫ ∞
−∞

dx0
2

∫ x02

−∞
dx0

1... (3.46)

one can perform the integration in Eq. (3.44) which leads to

∑
n

∫ +∞

−∞
dx0

1

{[∫ +x1

−∞
dx0

2 exp
{
i
(
p0

1 − p0 + Ef − En
)
x0

1 +
(
p0

2 + p0
k + En − Ei

)
x0

2

}]
×〈Nf | Jα(~x1) |Nn〉 〈Nn| Jβ(~x2) |Ni〉

+

[∫ +∞

x1

dx0
2 exp

{
i
(
p0

1 + p0 + En − Ei
)
x0

1 +
(
p0

2 − p0
k + Ef − Ei

)
x0

2

}]
×〈Nf | Jβ(~x2) |Nn〉 〈Nn| Jα(~x1) |Ni〉

}
.

= −i2π
∑
n

[
〈Nf | Jα(~x1) |Nn〉 〈Nn| Jβ(~x2) |Ni〉

En + p0
2 + p0

k − Ei

+
〈Nf | Jβ(~x2) |Nn〉 〈Nn| Jα(~x1) |Ni〉

En + p0
1 + p0

k − Ei

]
δ
(
Ef + p0

1 + p0
2 − Ei

)
(3.47)

Thus, we can finally write the matrix elementM as

M =2i

(
GFVud√

2

)2

u (p1) γαPLγ
βCuT (p2)

∫
d3x1d3x2 exp{−i (~p1 · ~x1 + ~p2 · ~x2)}

×
∑
k

U2
ekmk

1

(2π)3

∫
exp{i~p · (~x1 − ~x2)}

p0
k

d3p

×
∑
n

[
〈Nf | Jα(~x1) |Nn〉 〈Nn| Jβ(~x2) |Ni〉

En + p0
2 + p0

k − Ei

+
〈Nf | Jβ(~x2) |Nn〉 〈Nn| Jα(~x1) |Ni〉

En + p0
1 + p0

k − Ei

]
δ
(
Ef + p0

1 + p0
2 − Ei

)
.

(3.48)

We see that this formula, while representing the exact solution at tree-level, is still quite
impractical if one actually wants to calculate the expected decay rate. To arrive at a
more handy description one typically takes a few approximations [53]:

1. Small neutrino masses: From laboratory experiments we know that the neutrino
mass scale is [56]

mν . 1 eV (3.49)
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while cosmological bounds on the sum of the different neutrino masses are even
more stringent giving [57] ∑

k

mk . 0.2 eV. (3.50)

Considering these experimental results we can compare the expected neutrino mass
scale mk to the expected momentum transfer p via the neutrino propagator which
from the uncertainty principle can be estimated as

p ∼ 1

rn
∼ 100 MeV (3.51)

where rn ∼ 10−15 m is the average distance between two nucleons inside the nucleus.
We can see that

mk � p (3.52)

and hence we can take

p0
k =

√
p2 +m2

k → p (3.53)

2. Long-wave approximation: Since the decay takes place inside a nucleus with a
finite radius R which can be approximated as

R = 1.2A1/3 × 10−15 m (3.54)

we have

|~p1,2 · ~x1,2| < |~p12|R ∼ A1/3 p1,2

100 MeV
. (3.55)

Typical Q-values are of the order Q = O (1 MeV) such that we can take

|~p1,2 · ~x1,2| → 0 (3.56)

and consequently

exp{i~pi · ~xi} → 1. (3.57)

This also means that one can assume the two outgoing electrons to be in the S-state.

3. Closure approximation: We want to get rid of the sum over the intermediate
states. However, we cannot just take

∑
n |Nn〉 〈Nn| → 1 since each term is weighted

by the intermediate states energy En. In order to be able to calculate the sum we
need to notice that the momentum transfer p via the neutrino propagator is much
larger than the typical excitation energies of the intermediate nuclei

p� En − Ei. (3.58)
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Therefore, we can replace the sum over En by the average energy of the intermediate
states

En → E (3.59)

and afterwards calculate the sum in the laboratory frame Ef,i →Mf,i

∑
n

[
〈Nf | Jα(~x1) |Nn〉 〈Nn| Jβ(~x2) |Ni〉

En + p0
2 + p− Ei

+
〈Nf | Jβ(~x2) |Nn〉 〈Nn| Jα(~x1) |Ni〉

En + p0
1 + p− Ei

]
=

1

p+ E − Mi+Mf

2

〈Nf | Jα(~x1)Jβ(~x2) + Jβ(~x2)Jα(~x1) |Ni〉

(3.60)

where we used

E + p+ p0
1,2 −Mi ≈ E + p+

p0
1 + p0

2

2
−Mi = E + p−

Mi +Mf

2
(3.61)

with

p0
1,2 =

p0
1 + p0

2

2
± p0

1 − p0
2

2
≈ p0

1 + p0
2

2
(3.62)

and ignoring nuclear recoil

p0
1 + p0

2 = Mi −Mf . (3.63)

4. Non-relativistic impulse approximation: In the non-relativistic approxima-
tion the hadronic charged current Jα (~x) can be written as

Jα (~x) =
∑
n

δ (~x− ~rn) τ+
n gαβJ

β
n

(
p2
)

(3.64)

with

Jµn
(
p2
)

= gV
(
p2
)
gµ0 +

[
gA
(
p2
)

+ igM
(
p2
) ~σn × p

2MN
− gp

(
p2
) ~σn · ~p

2MN
~p

]
gµk (3.65)

Here, ~σn is the spin operator represented by the 3 Pauli matrices and acting on the
n−th nucleon while τ+

n is the isospin raising operator which is also given in terms
of Pauli matrices

τ+ =
1

2
(τ1 + iτ2) (3.66)

which connects u− and d−type quarks. Since σ and τ act on different spaces we de-
note them by different signs although they both represent Pauli-matrices. Again, we
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have ignored the impact of nuclear recoils. The formfactors gV
(
p2
)
, gA

(
p2
)
, gP

(
p2
)

and gM
(
p2
)
represent the charged current vector, axial-vector, pseudoscalar and

magnetic formfactors

gV (0) ≈ 1

gA(0) ≈ 1.27

gP (p2) = 2MN
gA(p2)

p2 +m2
π

gM (0) = µp − µn

(3.67)

where µp,n is the anomalous magnetic moment of the proton or neutron respectively.
Once more, p denotes the momentum transfer.

By applying the above approximations (1-3) and by defining the effective neutrino Ma-
jorana mass

mββ =
∑
k

U2
ekmk (3.68)

we can write the matrix element as

M =4iπmββ

(
GFVud√

2

)2

u (p1) γαPLγ
βCuT (p2)

×
∫

d3x1d3x2
1

(2π)3

∫
d3p

exp{i~p · (~x1 − ~x2)}

p
(
p+ E − Mi+Mf

2

)
× 〈Nf | Jα(~x1)Jβ(~x2) + Jβ(~x2)Jα(~x1) |Ni〉 δ

(
Mf + p0

1 + p0
2 −Mi

)
.

(3.69)

Further, in the non-relativistic impulse approximation we have

Jα (~x1) Jβ (~x2) =
∑
n,m

δ (~x1rn) δ (~x2rm) τ+
n τ

+
m

(
J0
nJ

0
m − ~Jn · ~Jm

)
(3.70)

and

Jα (~x1) Jβ (~x2) = Jβ (~x2) Jα (~x1) . (3.71)

Using Eq. (2.3) we can then write

γαγβ = gαβ +
1

2

(
γαγβ − γβγα

)
. (3.72)

We can see that the second term when including the hadronic currents will vanish. Thus,
combining the above relations in the matrix element we find

M =4iπmββ

(
GFVud√

2

)2

u (p1)PRCu
T (p2)

× 〈Nf |

∑
n,m

∫
d3p

(2π)3

exp{i~p · (~rn − ~rm)}

p
(
p+ E − Mi+Mf

2

)τ+
n τ

+
m

(
J0
nJ

0
m − ~Jn · ~Jm

) |Ni〉

× δ
(
Mf + p0

1 + p0
2 −Mi

)
.

(3.73)
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After switching to spherical coordinates we can solve angular parts of the integral over
d3p via

∫ π

0
exp{ik cos (θ)} sin (θ) dθ = 2

sin (k)

k
, (3.74)

such that we can write

∫
d3p

(2π)3

exp{i~p · (~rn − ~rm)}

p
(
p+ E − Mi+Mf

2

)
=

∫ 2π

0
dφ
∫ π

0
dθ
∫ ∞

0

dp
(2π)3 p sin (θ)

exp{i|p||rnm| cos (θ)}

p
(
p+ E − Mi+Mf

2

)
=

1

2π2rnm

∫ ∞
0

sin (prnm)

p+ E − Mi+Mf

2

dp

=
1

4πR
H
(
rnm, E

)
,

(3.75)

where

H
(
rnm, E

)
=

2R

rnm

∫ ∞
0

sin (prnm)

p+ E − Mi+Mf

2

dp (3.76)

is the so-called neutrino potential and we defined

rnm = rn − rm. (3.77)

Plugging this back into the matrix element one finds

M = −i
mββ

R

(
GFVud√

2

)2

u (p1)PRCu
T (p2) M0νδ

(
p0

1 + p0
2 +Mf −Mi

)
(3.78)

with the nuclear matrix element defined as

M0ν = 〈Nf |
∑
n,m

H
(
rnm, E

)
τ+
n τ

+
m

(
~Jn · ~Jm − J0

nJ
0
m

)
(3.79)

and with R being the radius of the nucleus. To calculate the differential decay rate we
need to take the absolute square of the matrix element |M|2 which contains the leptonic
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currents ∑
spins

|u (p1)PRu
c (p2)|2

=
∑
spins

{u (p1)PRu
c (p2)uc (p2)PLu (p1)}

=
∑
spins

1

4
Tr{(1 + γ5)uc (p2)uc (p2) (1− γ5)u (p1)u (p1)}

=
1

4
Tr{(1 + γ5) (�p2 −me) (1− γ5) (�p1 +me)}

=
pµ1p

ν
2

4
Tr{(1 + γ5) (γν −me) (1− γ5) (γµ +me)}

=2pµ1p2µ = 2 (E1E2 − p1p2 cos θ)

(3.80)

To solve the leptonic currents we used the fact that one can always take the trace of a
scalar without changing the result. Additionally, we applied the following relations

Tr{ABC} = Tr{CAB} = Tr{BCA} (Cyclic Permutation)
Tr{A+B} = Tr{A}+ Tr{B}∑

spins u(p)u(p) = �p+me∑
spins u

c(p)uc(p) = �p−me

}
(Completeness relation)

Tr{γµ} = 0
Tr{γµγ5} = 0

}
(Trace of odd number of γµ vanishes)

Tr{γ5} = Tr{γµγνγ5} = 0

Tr{γµγν} = 4gµν

(γ5)2 = 1

{γ5, γ
µ} = 0.

(3.81)

While the above result holds for free electrons, we have to take electromagnetic interac-
tions between the outgoing electrons and the charged nucleus into account by multiplying
the electron currents by the Fermi function

F (Z,E) =
2πη

1− exp{−2πη}
(3.82)

with

η = Zα
me

p
. (3.83)

Combining all of these findings into the differential decay rate one finally finds

dΓ0ν = |mββ |2
∣∣M0ν

∣∣2 G4
FV

4
ud

(2π)5R2
(E1E2 − p1p2 cos θ)

× F (Z + 2, E1)F (Z + 2, E2) p1p2 sin θ dθ dE1

(3.84)
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and thus with (
T 0ν

1/2

)−1
=

Γ0ν

log 2
(3.85)

the half-life can be written in the well known form

(
T 0ν

1/2

)−1
= |mββ |2

∣∣M0ν
∣∣2G0ν (Q,Z) (3.86)

where G0ν is the so-called phase space factor (PSF) which is given by the integration
over the leptonic phase space

G0ν (Q,Z) =
G4
FV

4
ud

2 log 2 (2π)5R2

∫ Q

0
dT1

∫ π

0
dθ sin θp1p2 (E1E2 − p1p2 cos θ)

× F (Z + 2, E1)F (Z + 2, E2) .

(3.87)

From Eq. (3.86) we can see that the expected half-life within the mechanism of light
neutrino exchange depends on

1. The effective Majorana mass mββ which is a parameter that has to be generated
somehow beyond the Standard Model and is a priori completely unknown

2. The nuclear matrix element M0ν which cannot be calculated exactly but rather has
to be calculated approximately within multi body nuclear simulations.

3. The phase space factor G0ν which within the above approximations can be calcu-
lated exactly.

While we used the S-wave approximation to calculate the PSFs to show the principles of
the calculation, significantly better and more exact methods [29, 58] do exist which differ
by up to 30% from the above approximation. We want to point out that from Eq. (3.87)
we can see that the half-life will be proportional to Q5. This is an important feature as
it determines the relevance of different isotopes for experimental usage.

3.3. Non-Standard Mechanisms

3.3.1. Long- and Short-Range Mechanisms

In the last section we have discussed the formal description of the standard picture
of 0νββ generated by the exchange of light Majorana neutrinos. While this is the
most commonly studied mechanism to generate 0νββ, it does not necessarily have to
be the dominating mechanism. We know that to generate a non-zero neutrino Majorana
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Figure 3.5.: Effective Majorana mass mββ

plotted in dependency on the
mass of the lightest neutrino
mass eigenstate for both mass
hierarchies. As one can see,
in the case of normal hierarchy
(NH) cancellation can appear.
To arrive at this plot, we varied
the currently unknown Majo-
rana CP-phases from 0− π [59].
The parameter region shaded
grey is excluded from measure-
ments on the sum of neutrino
masses

∑
imi < 0.17 eV [60].

mass term, we need new-physics beyond
the Standard Model. However, we do not
know if the resulting neutrino Majorana
mass term will be the dominating ∆L = 2
operator within this theory as we do not
know if an explicit Majorana mass term
actually exists. Additionally, even in the
case that the light neutrino masses are de-
scribed by a Majorana mass term, cancel-
lation effects resulting from the additional
Majorana CP-phases can in the case of
normal mass hierarchy lead to a vanish-
ing effective mass mββ . The effective mass
mββ in dependence on the lightest neu-
trino mass mmin is shown in Figure 3.5.
The usual way to try to describe the pos-
sibility of additional different mechanisms
is to use effective lepton number violat-
ing operators which could arise from some
more complete model by integrating out
heavy degrees of freedom. We will dis-
cuss the formal definition of this process
in the following section 3.4.1. These effec-
tive operators are then classified into three
types of mechanisms represented in Fig-
ure 3.6. These are the usual mass mech-
anism, long-range mechanisms and short-
range mechanisms [61, 7].

Long-range mechanisms:

The diagrams (b) and (c) in Figure 3.6 are what is usually referred to as long-range
mechanisms. That is, they are mechanisms which include a light neutrino propagator.
In this work we assume that all new-physics will come from additional heavy particles
and therefore that no additional light degrees of freedom exist. Within this assumption,
contributions from diagrams of the (c) type can be safely ignored since they will be highly
suppressed by two small effective couplings C(6,7) and the necessity of another neutrino
mass insertion. Even if one considers the existence of additional light mediators con-
necting the two effective couplings instead of the usual neutrino propagator, diagrams of
type (c) would be suppressed by presumably small

(
C(6,7)

)2 and could only be relevant
in case there is no contribution from other diagrams.
We therefore only consider diagrams of type (b) when talking about long-range mecha-
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(a)

d u

e−

e−

d u

W

mν

W

C(6,7)d

(b)

u

e−

e−

d u

ν

W

C(6,7)

(c)

d u

e−

C(6,7)

e−

d u

mν

(d)

d u

C(9)

e−

e−

d u

Figure 3.6.: Feynman diagrams of neutrinoless double-β-decay including low-energy ef-
fective couplings. (a) is the standard mechanism of light neutrino exchange.
The diagrams (b) and (c) with vertices denoted by C(6,7) represent so-called
long-range mechanisms while the diagram (d) labeled with C(9) represents
so-called short-range mechanisms.

nisms. The couplings C(6,7) represent effective operators of the type

C(6,7) [ud] [eνc] , (3.88)

which can have different Lorentz structures. Such operators are of mass dimension-6 or
7 if they include a derivative term.

Short-range mechanisms:

Short-range mechanisms refer to diagrams of the type (d) in Figure 3.6 which do not
include any light mediator. A short-range mechanism hence at low energy corresponds
to an effective 6 fermion dimension-9 operator of the type

C(9) [ud] [ud] [eec] , (3.89)
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;νL νL
e−e−

W W

dd

u u

Figure 3.7.: Feynman diagram of the black box theorem by Schechter and Valle [6].

again with different possible Lorentz structures. Thus, short-range mechanisms corre-
spond to an effective 0νββ vertex which connects the external fermions without any
internal structure. If we include derivative terms also higher dimensional operators can
contribute to short-range mechanisms. However, we will ignore this possibility here.

Schechter-Valle Black Box Theorem

The famous black box theorem first discussed by Schechter and Valle [6] gives a connection
between non-standard mechanisms and neutrino masses. Its statement is that a possible
observation of neutrinoless double-β-decay would be equivalent to neutrinos
being Majorana fermions independently of the actual mechanism responsible
for 0νββ. The argument is relatively easy to follow. We know that 0νββ corresponds
to an effective 6-fermion interaction. If we do not care about the exact mechanism
we can treat the internal connections of the 0νββ diagram as an effective black box
vertex with two outgoing electrons, two outgoing up-quarks and two incoming down
quarks similar to the short-range mechanisms discussed above. By closing the lines of
the external quarks and adding two W -propagators one can generate an effective 4-loop
diagram which contributes to the Majorana propagator of the left-handed neutrino fields.
The procedure is depicted in Figure 3.7. Therefore, if one does not assume some spurious
cancellation this 4-loop diagram will generate some non-zero contribution to the neutrino
Majorana mass term. Only shortly after Schechter and Valle had proposed the black box
theorem, [62] and [63] showed that there cannot be a symmetry argument continuous or
discrete to generate such a cancellation to all orders in perturbation theory. Following the
seesaw formula in Eq. (2.87) we know that formally the existence of a Majorana mass term
independently of any additional Dirac mass term will result in the mass eigenstates being
Majorana particles. Thus, the observation of 0νββ would indeed mean that neutrinos are
Majorana particles. However, it should be noted that the contribution to the neutrino
mass assuming a half-life of O

(
1025 y

)
would result in an extremely small contribution

to the neutrino mass δm by the above mechanism of [64]

δm = O
(
10−28 eV

)
. (3.90)

Considering the mass differences measured in oscillation experiments (see Table 2.3)
the above contribution is many orders of magnitude smaller and hence cannot be the
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d u

χ0

e−

e−

d u

W

W

d u

χ0

χ0

e−

e−

d u

W

W

Figure 3.8.: Feynman diagrams of Majoron models with the emission of 1 (left) and
2(right) Majorons. Note that there are a lot of different 0νββ Majoron
models and the above two diagrams only show two examples.

only neutrino mass generating mechanism. With this knowledge in mind, the black box
theorem although important remains of rather academic interest.

3.3.2. Majoron Models

While the above discussion about long- and short-range mechanisms covers all aspects
of the usually considered 0νββ-decay with

(A,Z) −→ (A,Z + 2) + 2e−1 (3.91)

which have only 3 final state particles, there is another class of possible models which
incorporate additional light final state particles χ0 that cannot be detected directly within
the decay experiment

(A,Z) −→ (A,Z + 2) + 2e−1 + χ0. (3.92)

Models of this kind are usually referred to as Majoron models. Historically the term
Majoron referred to the Goldstone boson of a spontaneously broken global lepton number
symmetry [65].
Experimentally, Majoron models would lead to a different signature than the usual 0νββ
long- and short-range mechanisms. While the latter result in a sharp peak at the end
of the measured summed electron energy spectrum, Majoron models will not result in
such a signature. This is because the additionally emitted scalar(s) will carry away some
portion of the released energy similar to the two neutrinos in the usual 2νββ-decay.
However, Majoron models can still result in a different spectral shape [66] and hence can
be distinguished from the 2νββ-decay background. We will not consider Majoron models
any further within this work.

3.4. Effective Field Theory Approach

To be able to study the effect of the aforementioned possible non-standard 0νββ mecha-
nisms in a model-independent way, we will now give a brief introduction into the concept
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of effective field theories which we will utilize for this purpose.

3.4.1. Introduction to Effective Field Theories

Let us start by introducing the general aspects of effective field theories (EFTs). There
exist several comprehensive reviews and introductory lectures on EFTs in the literature,
e.g., [67, 68, 69, 70]. Here, we mostly follow [71] and [51].
Oftentimes, when dealing with physics at (macroscopic) low energy scales, it is convenient
or even necessary to work within a so-called effective field theory rather than within the
full (microscopic) theory. Within such an EFT we include the dynamical degrees of
freedom (d.o.f.) which are relevant at the considered energy or length scales and for
the physical processes of interest and we ignore any additional d.o.f..5 To visualize the
principles of EFTs let us disregard the field aspect for a moment and consider a more
handy picture. Imagine for example the process of two billiard balls scattering off each
other. This macroscopic process is very well described by Newtonian mechanics and, as
long as we keep the scattering process at an energy that is small enough for the balls
not to break, we do not need to worry about the microscopic structure of the balls. The
principle stays the same when talking about particle physics and quantum field theory.
In this sense, EFTs can be used in two ways:

1. Top-Down: If the microscopic physics, i.e., the “full theory” is known, EFTs can
be used to simplify calculations of, e.g., scattering amplitudes and study the impact
of the microscopic d.o.f. onto the low-energy physics.

2. Bottom-Up: If the microscopic theory is unknown but a low-energy theory exists,
one can promote the low-energy theory to an EFT by systematically including all
possible operators which respect the symmetries of the low-energy theory. If we
know that the microscopic theory has to break down into a low-energy theory
with the considered symmetries, we automatically include all possible new-physics
interactions in this EFT framework. In this way one can study physics beyond the
Standard Model in a completely model-independent way.

For now, let us concentrate on the first direction and see how we can generate an EFT
from a microscopic UV complete theory. We will concentrate on the second aspect in the
following sections. Usually,6 one can arrive at a simplified particle physics EFT model by
“integrating out” heavy degrees of freedom Φh of the full model which cannot be generated
on-shell at the relevant energy scales and hence can be considered non-dynamical at low
energy. In such a case, we can define the effective action Seff in terms of the action of
the full theory S as∫

DΦl exp{iSeff [Φl]} =

∫
DΦlDΦh exp{iS [Φl,Φh]}. (3.93)

5It should be noted that there might be more or fewer degrees of freedom compared to the full theory
due to possible redefinitions, e.g., there are more bound quark states than there are quarks.

6but not always. E.g., to arrive at chiral perturbation theory which is a low-energy approximation to
QCD and describes interactions in terms of neutrons, protons, pions etc. one does not integrate out
“heavy” up- and down quarks.
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−→

Figure 3.9.: Visualization of integrating out and matching Feynman diagrams of the mi-
croscopic full theory (left) and the corresponding macroscopic EFT (right).

In D dimensions the corresponding effective Lagrangian Leff can be expressed as a series
of local operators Oi(x)

Leff [Φl] =
∑
i,d>0

C
(d)
i

Λd−D
O(d)
i (x) (3.94)

where Λ is the microscopic scale at which new dynamical degrees of freedom become
relevant. The coefficients C(d)

i are known as Wilson coefficients. We see that at energies
ω � Λ the Wilson coefficients of operators of dimension d > 4 get suppressed by powers
of O (ω/Λ) and thus decouple with increasing operator dimension. For this reason one
may truncate the infinite operator expansion of the Lagrangian at a finite dimension N
while still capturing the essential low-energy physics.
As an example, let us now consider a Yukawa theory with a real massive scalar φ and a
massless fermion Ψ. The microscopic Lagrangian is given by

LY = iΨ�∂Ψ− 1

2
φ
(
∂µ∂µ +m2

φ

)
φ+ λφΨΨ. (3.95)

Instead of solving the functional integral in Eq. (3.93) excplicitly, we can “integrate out”
φ by demanding that at low energies it satisfies its classical equations of motion given
by the Euler-Lagrange equation

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0. (3.96)

Solving Eq. (3.96) one finds

φ = λ
(
∂µ∂µ +m2

φ

)−1
ΨΨ (3.97)

and plugging this back into Eq. (3.95) gives us

Leff = iΨ�∂Ψ +
λ2

2

(
∂µ∂µ +m2

φ

)−1
ΨΨΨΨ. (3.98)

This now non-local effective Lagrangian will result in the same correlation functions as
the original Lagrangian without containing the heavy field φ. To get an expression in
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terms of local operators we can Taylor expand Leff . Doing so and switching to momentum
space one finds

Leff = iΨ�∂Ψ +
λ2

2m2
φ

ΨΨΨΨ− λ2p2

2m4
φ

ΨΨΨΨ +O

(
p4

m6
φ

)
(3.99)

with p2 � m2
φ. This procedure can also be understood in terms of Feynman diagrams,

as represented in Figure 3.9, where we Taylor expand the scalar propagator which results
in a new 4-fermion vertex.

3.4.2. Low-Energy Effective Field Theory

Let us now focus on the bottom-up aspect of EFTs turning towards our main topic,
i.e., neutrinoless double-β-decay. In the previous section we addressed the possibility of
non-standard long- and short-range mechanisms that can contribute to or possibly even
dominate the 0νββ-decay rate. Here, we will introduce an EFT framework which allows
us to study the impact of different 0νββ mechanisms.
At energies below the masses of the W and Z bosons we can treat particle interac-
tions within a low-energy EFT (LEFT) by integrating out particles with masses above
mW ∼ 80 GeV. Since we are now at energies below the scale of EWSB the remaining
gauge symmetry of the model is SU(3)C × U(1)Q. We can now study possible new-
physics contributions to 0νββ by considering all possible effective operators which can
contribute to 0νββ at tree-level within this LEFT framework. Studying limits from 0νββ
experiments on the relevant LEFT operators can then give us insight into possible new
high energy physics.
Looking at the Feynman diagrams of Figure 3.6 we can see that at LEFT-scale long-range
mechanisms correspond to lepton number violating 4-fermion ∆L = 2 interactions which
contain a single quark bilinear. Hence, they should be represented by effective operators
of dimension-6. If we include derivative terms, also dimension-7 and higher operators
will contribute to the long-range part. Following the same line, short-range mechanisms
correspond to lepton number violating ∆L = 2 point-like 6-fermion interactions includ-
ing 2 quark biliniears.
A 0νββ LEFT framework was first developed in [7] and [8] for the long- and short-range
mechanisms respectively. They found the most general set of dimension-6 and 9 lepton
number violating operators contributing to 0νββ to be given by

L6 =
GF√

2

∑
i,k

εikjiJk (3.100)

for the long-range part with i, k ∈ {V ±A,S ± P, TL, TR, } and

L9 =
G2
F

2mN

∑
l,m,n

[
εlmn1 JlJmjn + εlmn2 Jµνl Jµνmjn + εlmn3 Jµl Jµmjn

+ εlmn4 Jµl Jµνmj
ν + εlmn5 Jµl Jmjµn

] (3.101)
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for the short-range part with l,m, n ∈ {L,R}. εik and εlmn are the Wilson coefficients of
the different long- and short-range operators. The quark currents J are given by7

JS±P = JR,L = u (1± γ5) d

JV±A = JµR,L = uγµ (1± γ5) d

JTR,L = JµνR,L = uσµν (1± γ5) d

(3.102)

and the lepton currents j are given by

jS±P = e (1± γ5) νc

jV±A = eγµ (1± γ5) νc

jTR,L = eσµν (1± γ5) νc

jR,L = e (1± γ5) ec

jµR,L = eγµ (1± γ5) ec.

(3.103)

While this framework captures the most relevant operators, one should note that it
contains several redundancies so that it can be further simplified. In order to do so, one
needs to notice a few things:

1. In the long-range part of the Lagrangian, only operators with a right-handed lep-
ton current will contribute to 0νββ at first order. This is because the propagating
neutrino has to couple to the standard left-handed weak interaction. Other inter-
actions will be suppressed either by a neutrino mass insertion which can flip the
chirality of the propagating neutrino or by an additional effective operator with
corresponding small Wilson coefficient. That is, we can take

εV−Aα = εS−Pα = εTLα = 0. (3.104)

2. Combinations of tensor currents with different chiralities vanish. Thus, we can set

εTRTL = εTLTR = 0 (3.105)

for the long-range part and similarly

εLRn2 = εRLn2 = 0 (3.106)

for the short-range part. One can verify this by considering the Fierz transformation

7We keep the two different types of indices for the short-range currents to stick with the literature
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of a combination of two tensor currents[
Ψ1σ

µνΨ2

][
Ψ3σµνΨ4

]
=− 3

[
Ψ1Ψ4

][
Ψ3Ψ2

]
− 3
[
Ψ1γ5Ψ4

][
Ψ3γ5Ψ2

]
+

1

2

[
Ψ1σ

µνΨ4

][
Ψ3σµνΨ2

]
=− 3

([
Ψ1Ψ4

][
Ψ3Ψ2

]
+
[
Ψ1γ5Ψ4

][
Ψ3γ5Ψ2

])
+

1

2

(
− 3
[
Ψ1Ψ2

][
Ψ3Ψ4

]
− 3
[
Ψ1γ5Ψ2

][
Ψ3γ5Ψ4

])
+

1

4

[
Ψ1σ

µνΨ2

][
Ψ3σµνΨ4

]

(3.107)

which results in [
Ψ1σ

µνΨ2

][
Ψ3σµνΨ4

]
=− 4

[
Ψ1Ψ4

][
Ψ3Ψ2

]
− 4
[
Ψ1γ5Ψ4

][
Ψ3γ5Ψ2

]
− 2
[
Ψ1Ψ2

][
Ψ3Ψ4

]
− 2
[
Ψ1γ5Ψ2

][
Ψ3γ5Ψ4

]
.

(3.108)

Inserting Ψ2 = PL,RΨ2 and Ψ4 = PR,LΨ4 gives the desired result.

3. We can omit the last index in the Wilson coefficients ε4,5 and take

εlmn4,5 −→ εlm4,5 (3.109)

by noticing that8

ΨγµΨc = ΨγµCΨ
T

=
(

ΨγµCΨ
T
)T

=−ΨCTγµTΨ
T

=−ΨγµCΨ
T

⇒ΨγµΨc = 0

(3.110)

Additionally, we then have to redefine

jµR,L → jµ = eγµγ5e
c. (3.111)

4. In the short-range part εlmn1 and εlmn3 are symmetric in the first two indices. That
is, we have

εlmn1,3 = εmln1,3 (3.112)

8remember that fermions are represented by anti-commuting Grassmann numbers
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and can therefore choose to set

εLRn1,3 = 0 (3.113)

and only keep εRLn1,3 .

Considering the above discussion about redundancies, we are left with 30 independent
LEFT operators. One is given by the standard mass mechanism of light neutrino ex-
change, 5 operators represent different long-range mechanisms and the remaining 24
operators represent different short-range operators. After getting rid of the redundant
operators we will refer to this framework as the ε-basis.
More recently [72] has introduced a different basis of SU(3)C×U(1)Q invariant dimension-
9 operators. Together with two additional dimension-7 operators and a relabeled de-
scription of the dimension-6 operators above which were introduced by [73] the relevant
Lagrangians in this basis can be written as

L(6)
∆L=2 =

2GF√
2

[
C

(6)
VL
(
uLγ

µdL
) (
eRγµν

c
L

)
+C

(6)
VR
(
uRγ

µdR
) (
eRγµν

c
L

)
+C

(6)
SL
(
uRdL

) (
eLν

c
L

)
+C

(6)
SR
(
uLdR

) (
eLν

c
L

)
+C

(6)
T
(
uLσ

µνdR
) (
eLσµνν

c
L

)]
+ h.c.

(3.114)

and

L(7)
∆L=2 =

2GF√
2v

[
C

(7)
VL
(
uLγ

µdL
) (
eL
↔
∂ µν

c
L

)
+C

(7)
VR
(
uRγ

µdR
) (
eL
↔
∂ µν

c
L

)]
+ h.c.

(3.115)

for the long-range part, where

α
↔
∂β = (∂α)β − α(∂β). (3.116)

The dimension-9 short-range operators can be written as

L(9)
∆L=2 =

1

v5

∑
i

[(
C

(9)
i,R

(
eRe

c
R

)
+C

(9)
i,L

(
eLe

c
L

))
Oi

+C
(9)
i

(
eγµγ5e

c
)
Oµi

] (3.117)
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with the scalar Oi and vector Oµi four-quark operators [72, 74]

O1 =
(
uL

αγµd
α
L

) (
uL

βγµdβL
)
, O′1 =

(
uR

αγµd
α
R

) (
uR

βγµdβR
)
, (3.118)

O2 =
(
uR

αdαL
) (
uR

βdβL
)
, O′2 =

(
uL

αdαR
) (
uL

βdβR
)
, (3.119)

O3 =
(
uR

αdβL
) (
uR

βdαL
)
, O′3 =

(
uL

αdβR
) (
uL

βdαR
)
, (3.120)

O4 =
(
uL

αγµd
α
L

) (
uR

βγµdβR) , (3.121)

O5 =
(
uL

αγµd
β
L

) (
uR

βγµdαR
)
, (3.122)

Oµ6 =
(
uLγ

µdL
) (
uLdR

)
, Oµ6

′ =
(
uRγ

µdR
) (
uRdL

)
, (3.123)

Oµ7 =
(
uLλ

AγµdL
) (
uLλ

AdR
)
, Oµ7

′ =
(
uRλ

AγµdR
) (
uRλ

AdL
)
, (3.124)

Oµ8 =
(
uLγ

µdL
) (
uRdL

)
, Oµ8

′ =
(
uRγ

µdR
) (
uLdR

)
, (3.125)

Oµ9 =
(
uLλ

AγµdL
) (
uRλ

AdL
)
, Oµ9

′ =
(
uRλ

AγµdR
) (
uLλ

AdR
)
, (3.126)

where α, β are color-indices and λA, A = 1...8 are the generators of SU(3) in the fun-
damental representation given by the 8 Gell-Mann matrices. The operators O and O′
are related via parity transformation. We will refer to this framework as the C-basis.
Compared to the ε-basis the C-basis contains no tensor currents but instead contains
color-octet operators. Including the standard mass mechanism and the corresponding
coefficient mββ , it also consists of 32 instead of 30 operators due to the addition of the
two dimension-7 operators.
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The short-range parts of the ε-basis and the C-basis are related via Fierz transformations.

C
(9)
1L =

2v

mN
εLLL3 , C

(9)
1L
′ =

2v

mN
εRRL3 , C

(9)
1R =

2v

mN
εLLR3 , C

(9)
1R
′ =

2v

mN
εRRR3 (3.127)

C
(9)
2L =

2v

mN

(
εLLL1 − 4εLLL2

)
, C

(9)
2L
′ =

2v

mN

(
εRRL1 − 4εRRL2

)
C

(9)
2R =

2v

mN

(
εLLR1 − 4εLLR2

)
, C

(9)
2R
′ =

2v

mN

(
εRRR1 − 4εRRR2

) (3.128)

C
(9)
3L = − 16v

mN
εLLL2 , C

(9)
3L
′ = − 16v

mN
εRRL2 , C

(9)
3R = − 16v

mN
εLLR2 , C

(9)
3R
′ = − 16v

mN
εRRR2

(3.129)

C
(9)
4L =

2v

mN
εRLL3 , C

(9)
4R =

2v

mN
εRLR3 (3.130)

C
(9)
5L = − v

mN
εRLL1 , C

(9)
5R = − v

mN
εRLR1 (3.131)

!C
(9)
6 =

v

mN

(
εLRR5 + i

5

3
εLRR4

)
, C

(9)
6
′ =

v

mN

(
εRLR5 + i

5

3
εRLR4

)
(3.132)

!C
(9)
7 = i

v

mN
εLRR4 , C

(9)
7
′ = i

v

mN
εRLR4 (3.133)

C
(9)
8 =

v

mN

(
εLLR5 − i5

3
εLLR4

)
, C

(9)
8
′ =

v

mN

(
εRRR5 − i5

3
εRRR4

)
(3.134)

!C
(9)
9 = −i v

mN
εLLR4 , C

(9)
9
′ = −i v

mN
εRRR4 (3.135)

The complete derivation of the above relations is given in appendix A. We want to note
that the translations marked by an ‘ !’ differ from the translation derived in [74].
While this treatment is suitable to study new-physics at low energies, one can study
new-physics aspects at higher energies above EWSB by treating the Standard Model
within its full SU(3)C × SU(2)L × U(1)Y gauge symmetry as an EFT (SMEFT). Com-
paring to SMEFT, out of the 24 short-range operators 3 corresponding to C

(9)
1L , C

(9)
4L

and C
(9)
5L are induced at SMEFT dimension-7 while eleven operators corresponding to

C
(9)
2−5L, C

(9)
2L,3L

′, C
(9)
1R
′ and C

(9)
6−9
′ receive contributions from SMEFT dimension-9 opera-

tors [72, 74]. These can be considered to give the most relevant contributions from a
phenomenological point of view as higher dimensional operators are suppressed by ad-
ditional powers of v/ΛBSM. A full SMEFT basis up to dimension-9 was unavailable for
a long time and has only been found recently [75, 76]. Additionally, we do not know if
SMEFT will be the correct completion to a 0νββ inducing new-physics. Therefore, we
will consider the LEFT basis as our main focus to study as a low-energy theory is the
more natural way to go.

3.4.3. Chiral Perturbation Theory

While QCD is asymptotically free, its coupling constant grows with decreasing energy
scale and perturbation theory breaks down at a scale of Λχ ∼ 2 GeV. A possible way to
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3. 0νββ Theory

describe QCD interactions below this scale, e.g., nuclear processes, is given by the appli-
cation of the so-called chiral perturbation theory (χPT) [77]. χPT builds upon the fact
that in the limitmu,d,s → 0 at GEV scales QCD has a global chiral SU(3)L×SU(3)R sym-
metry which, however, is not present in the ground state of the theory. The spontaneous
breaking of this approximate symmetry induces 8 light pseudoscalar mesons via Gold-
stone’s theorem. Instead of quarks, the relevant fermionic degrees of freedom are given by
bound quark states such as protons and neutrons. One can obtain the χPT Lagrangian
by including all nucleon-pion operators which obey the chiral symmetry and expanding
in terms of a power counting scheme mπ/Λχ. The χPT Wilson coefficients are usually
referred to as low-energy constants (LECs) and have to be determined experimentally,
from lattice calculations or estimated from naive dimensional analysis (NDA) [73]. Given
sufficient knowledge about the LECs, χPT can be used to make predictions about low-
energy QCD processes which cannot be described within the usual perturbative methods.
Hence, χPT is a natural way to go when trying to describe nuclear processes.

3.5. A 0νββ Effective Field Theory “Master-Formula”

In this section we want to summarize the EFT framework introduced in [73, 74], the
0νββ “master-formula”, that we will apply in this work. The general idea behind it is
that, assuming no contributions from light new-physics, one can describe 0νββ-decay in
some arbitrary BSM model by a chain of matching onto effective field theories BSM→
SMEFT → LEFT →χPT.9 At the chiral EFT scale the expected 0νββ half-life can
be written in terms of the LECs as well as the 32 LEFT operators and of course the
corresponding NMEs and PSFs. The most general transition amplitude can be written
as [74]

A =
g2
AG

2
Fme

πR

[
Aνu (p1)PRu

c (p2) +ARu (p1)PLu
c (p2)

+AEu (p1) γ0u
c (p2)

E1 − E2

me
+Ameu (p1)uc (p2)

+AMu (p1) γ0γ5u
c (p2)

] (3.136)

where the subamplitudes Ai describe the contributions to the different lepton currents.
Their definitions are given in Eq. (3.138)-(3.142). To arrive at the half-life formula one
again has to take the absolute square of Eq. (3.136). In order to do so, one has to calculate
11 different lepton current traces. These correspond to the usual 11 PSFs given, e.g.,
in [78]. However, these 11 PSFs contain several redundancies such that only 6 different
PSFs are necessary to describe the full half-life formula. The solutions to the different
lepton current traces are given in Appendix B. Following this, after taking the absolute

9Of course χPT is extended by leptons. If desired one can also skip the first step and directly match
onto LEFT. This might even be necessary for some BSM models.
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3.5. A 0νββ Effective Field Theory “Master-Formula”

square of the transition amplitude, the half-life can be written as(
T 0ν

1/2

)−1
=g4

A

[
G01

(
|Aν |2 + |AR|2

)
− 2 (G01 −G04) Re [A∗νAR]

+ 4G02 |AE |2 + 2G04

(
|Ame |

2 + Re
[
A∗me (Aν +AR)

])
− 2G03 Re [(Aν +AR)A∗E + 2AmeA∗E ]

+G09 |AM |2 +G06 Re [(Aν −AR)A∗M ]

] (3.137)

which is the aforementioned “master-formula”. The sub amplitudes Ai each depend on
different LEFT operators and can be written as

Aν =
mββ

me
M(3)

ν

+
mN

me
M(6)

ν

(
C

(6)
SL , C

(6)
SR , C

(6)
T , C

(7)
VL, C

(7)
VR

)
+
m2
N

mev
M(9)

ν

(
C

(9)
1L , C

(9)
1L
′, C

(9)
2L , C

(9)
2L
′, C

(9)
3L , C

(9)
3L
′, C

(9)
4L , C

(9)
5L

)
,

(3.138)

AR =
m2
N

mev
M(9)

R

(
C

(9)
1R , C

(9)
1R
′, C

(9)
2R , C

(9)
2R
′, C

(9)
3R , C

(9)
3R
′, C

(9)
4R , C

(9)
5R

)
, (3.139)

AE =M(6)
E,L

(
C

(6)
VL

)
+ M(6)

E,R

(
C

(6)
VR

)
,

(3.140)

Ame =M(6)
me,L

(
C

(6)
VL

)
+ M(6)

me,R

(
C

(6)
VR

)
,

(3.141)

AM =
mN

me
M(6)

M

(
C

(6)
VL

)
+
m2
N

mev
M(9)

M

(
C

(9)
6 , C

(9)
6
′, C

(9)
7 , C

(9)
7
′, C

(9)
8 , C

(9)
8
′, C

(9)
9 , C

(9)
9
′
)
.

(3.142)

Here we explicitly emphasized the dependency of each matrix elementMi on the different
operators. The matrix elements Mi depend on the different LECs and operators. Aν
depends on the matrix elements

M(3)
ν = −V 2

ud

(
− 1

g2
A

MF +MGT +MT + 2
m2
πg

NN
ν

g2
A

MF,sd

)
,

M(6)
ν = Vud

(
B

mN

(
C

(6)
SL − C

(6)
SR

)
+

m2
π

mNv

(
C

(7)
V L − C

(7)
V R

))
MPS + VudC

(6)
T MT6,

M(9)
ν = − 1

2m2
N

C
(9)
ππL

(
MAP
GT,sd +MAP

T,sd

)
− 2m2

π

g2
Am

2
N

C
(9)
NNLMF,sd,

(3.143)
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AR is given by

M(9)
R =M(9)

ν |L→R, (3.144)

for AE the different contributions are

M(6)
E,L = −

VudC
(6)
V L

3

(
g2
V

g2
A

MF +
1

3

(
2MAA

GT +MAA
T

)
+

6gE
V L

g2
A

MF,sd

)
,

M(6)
E,R = −

VudC
(6)
V R

3

(
g2
V

g2
A

MF −
1

3

(
2MAA

GT +MAA
T

)
+

6gE
V L

g2
A

MF,sd

)
,

(3.145)

Ame is determined by

M(6)
me,L

=
VudC

(6)
V L

6

(
g2
V

g2
A

MF −
1

3

(
MAA
GT − 4MAA

T

)
− 3

(
MAP
GT +MPP

GT +MAP
T +MPP

T

)
−

12gme
V L

g2
A

MF,sd

)
,

M(6)
me,R

=
VudC

(6)
V R

6

(
g2
V

g2
A

MF +
1

3

(
MAA
GT − 4MAA

T

)
+ 3

(
MAP
GT +MPP

GT +MAP
T +MPP

T

)
−

12gme
V L

g2
A

MF,sd

)
,

(3.146)

and finally AM is given by

M(6)
M = VudC

(6)
V L

[
2
gA
gM

(
MMM
GT +MMM

T

)
+
m2
π

m2
N

(
− 2

g2
A

gNN
VLMF,sd +

1

2
gπNVL

(
MAP
GT,sd +MAP

T,sd

))]
,

M(9)
M =

m2
π

m2
N

[
− 2

g2
A

(
gNN
6 C

(9)
V + gNN

7 C̃
(9)
V

)
MF,sd

+
1

2

(
g
πN)
V C

(9)
V + g̃πNV C̃

(9)
V

)(
MAP
GT,sd +MAP

T,sd

)]
.

(3.147)

In the above formulas we defined the combined NMEs

MGT = MAA
GT +MAP

GT +MPP
GT +MMM

GT ,

MT = MAP
T +MPP

T +MMM
T ,

MPS =
1

2
MAP
GT +MPP

GT +
1

2
MAP
T +MPP

T ,

MT6 = 2
g′T − gNN

T

g2
A

m2
π

m2
N

MF,sd −
8gT
gM

(
MMM
GT +MMM

T

)
+ gπNT

m2
π

4m2
N

(
MAP
GT,sd +MAP

T,sd

)
+ gππT

m2
π

4m2
N

(
MPP
GT,sd +MPP

T,sd

)
.

(3.148)
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The short-range dimension-9 LEFT operators contribute to the C(9)
V,π,πNL,NNL couplings

that appear in the chiral Lagrangian. They are given by

C
(9)
V = C

(9)
6 + C

(9)
6
′ + C

(9)
8 + C

(9)
8
′

C̃
(9)
V = C

(9)
7 + C

(9)
7
′ + C

(9)
9 + C

(9)
9
′

C
(9)
ππL = gππ2

(
C

(9)
2L + C

(9)
2L
′
)

+ gππ3

(
C

(9)
3L + C

(9)
3L
′
)

− gππ4 C
(9)
4L − g

ππ
5 C

(9)
5L −

5

3
gππ1 m2

π

(
C

(9)
1L + C

(9)
1L
′
)

C
(9)
πNL =

(
gπN1 − 5

6
gππ1

)(
C

(9)
1L + C

(9)
1L
′
)

C
(9)
NNL = gNN

1

(
C

(9)
1L + C

(9)
1L
′
)

+ gNN
2

(
C

(9)
2L + C

(9)
2L
′
)

+ gNN
3

(
C

(9)
3L + C

(9)
3L
′
)

+ gNN
4 C

(9)
4L + gNN

5 C
(9)
5L

C{ππ,πN,NN}R = C{ππ,πN,NN}L|L→R .

(3.149)

The two LECs gπNV and g̃πNV are defined as

gπNV = gπN6 + gπN8

g̃πNV = gπN7 + gπN9
(3.150)

In the above formulas we marked the currently unknown LECs bold. This “master-
formula” framework depends on the PSFs which can be calculated almost exactly [29],
the NMEs which we will cover in the following Sec. 3.6, the different LECs which can
be obtained from, e.g., experiments or lattice calculations and finally the different LEFT
operators that represent the new-physics components. The necessary LECs were given
in the original publication [74] and are summarized for convencience in Table 3.3. This
framework has the very nice property that only NMEs appear which can be extracted
from simulations of the light neutrino-exchange mechanism as well as from simulations
of heavy neutrino-exchange. Since we want to study the impact of different mechanisms
in various isotopes, we use the largest set of NMEs that we could find coming from
a single approach. These NMEs are calculated within the quasi-particle random phase
approximation (QRPA) [79]. The numerical values are given in Table 3.2. In this study
we do our calculations both with assuming NDA values for the unknown LECs and with
assuming the unknown LECs to vanish. However, we want to stress that when taking
the unknown LECs to vanish, we do keep gNN1,6,7 = gπNV = g̃πNV = 1 since otherwise any
contributions from the short-range vector operators would vanish.

3.6. Approaches to Nuclear Matrix Elements

One of the main issues when studying 0νββ-decay is given by the calculation of the
nuclear matrix elements. These are the main source of uncertainty when calculating
0νββ half-lives as different calculation methods tend to disagree by factors of two or
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76Ge 82Se 96Zr 100Mo 110Pd 116Cd 124Sn 128Te 130Te 136Xe
NME
MF -1.74 -1.29 -1.44 -1.63 -2.32 -1.5 -2.33 -1.78 -1.52 -0.89
MAA
GT 5.48 3.87 3.17 3.96 6.60 4.24 5.41 5.23 4.28 3.17

MAP
GT -2.02 -1.46 -1.45 -1.68 -2.44 -1.45 -2.27 -2.05 -1.74 -1.19

MPP
GT 0.66 0.48 0.50 0.57 0.80 0.47 0.77 0.69 0.59 0.40

MMM
GT 0.51 0.37 0.40 0.44 0.62 0.35 0.62 0.53 0.47 0.30

MAA
T - - - - - - - - - -

MAP
T -0.35 -0.27 -0.30 -0.34 -0.37 -0.22 -0.57 -0.54 -0.50 -0.28

MPP
T 0.10 0.079 0.10 0.11 0.13 0.08 0.18 0.18 0.16 0.09

MMM
T -0.04 -0.03 -0.04 -0.04 -0.05 -0.03 -0.06 -0.07 -0.06 -0.03

MFsd -3.43 -2.51 -2.81 -3.12 -4.13 -2.51 -4.15 -3.41 -2.94 -1.52
MAA
GTsd 11.03 7.90 8.52 9.85 13.20 7.73 12.84 11.61 9.98 5.66

MAP
GTsd -5.30 -3.79 -4.22 -4.85 -6.30 -3.65 -6.25 -5.67 -4.90 -2.77

MPP
GTsd 1.97 1.41 1.60 1.83 2.33 1.34 2.34 2.13 1.85 1.05

MAP
Tsd -0.84 -0.64 -0.91 -1.10 -1.19 -0.77 -1.58 -1.63 -1.49 -0.91

MPP
Tsd 0.31 0.24 0.35 0.43 0.46 0.30 0.61 0.63 0.58 0.35

Table 3.2.: 0νββ QRPA NMEs in different isotopes [79]. Note that, due to different
definitions, the short-distance NMEs used in [74] are connected to the heavy
neutrino exchange NMEs in [79] via rescaling by 1

memp
.

Known Unknown
gA 1.271 |g′T | O(1)
gS 0.97 [80] |gTππ| O(1)
gM 4.7

∣∣gπN1,6,7,8,9

∣∣ O(1)

gT 0.99 [80]
∣∣gπNV L∣∣ O(1)

B 2.2 GeV
∣∣gπNT ∣∣ O(1)

gππ1 0.36 [81]
∣∣gNN1,6,5

∣∣ O(1)

gππ2 2.0 [81]
∣∣gNN2,3,4,5

∣∣ O((4π)2)

gππ3 −0.62 [81]
∣∣gNNV L ∣∣ O(1)

gππ4 −1.9 [81]
∣∣gNNT ∣∣ O(1)

gππ5 −8.0 [81]
∣∣gNNν ∣∣ O(1/F 2

π )∣∣∣gE,meV L,V R

∣∣∣ O(1)

Table 3.3.: Summary of the low-energy constants necessary to calculate the 0νββ half-life
for all 32 different operators. The table is taken from [74] and restructured.
The pion decay constant is Fπ = 92.2 MeV.

three. Hence, in the last part of this chapter we want to briefly summarize the most
important aspects about nuclear matrix element calculations following [31, 82].
Precisely calculating NMEs is a challenging task as the wave-functions of the initial and
final state nuclei cannot be solved exactly. Instead, one needs to calculate the initial
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and final state wave-functions approximately by solving the non-relativistic Schroedinger
equation in one of a few different nuclear model approaches10:

The Nuclear Shell Model

The nuclear shell model (NSM) [83] considers only those nucleons near the Fermi surface
to be relevant for the 0νββ transition amplitude. Thus, the Schrödinger equation is
only solved for a small subset of the full many body Hilbert space. Additionally, an
effective interaction Hamiltonian is used which is fitted to reproduce nuclear properties
and observables such as, e.g., scattering data. The NSM includes all correlations around
the Fermi surface. Limiting the configuration space, as it is done here, could lead to an
underestimation of the NMEs.

The Quasi-Particle Random Phase Approximation

Together with the nuclear shell model, the quasi-particle random phase approximation
(QRPA) [79] is probably the major method for NME calculations. While the NSM
only includes a few particles mostly within a single shell, QRPA can capture the effects
of multiple shells, however, containing fewer correlations. Calculation parameters are
usually fixed towards replicating the experimental 2νββ half-lives. Typically, QRPA
simulations result in larger NMEs compared to the NSM approach.

The Interacting Boson Model

In the interacting boson model (IBM) [84, 85] pairs of nucleons are summarized as bosons.
The calculation is connected to the shell model. However, more shells are taken into
account. Although IBM is build to approximate the shell model, it often gives NMEs
close to the ones calculated within QRPA.

Ab initio methods

Recently, ab initio methods have opened a promising new window towards more accurate
NME calculations [86]. They try to systematically remove approximations by including
the full set of nucleons as well as determining interactions from nucleon-nucleon scat-
tering data and other few-nuclei systems sometimes via relating to χPT. One of the
promising features is that such an approach can allow quantifying the uncertainties on
the calculations. This would be a huge advancement in the field of NMEs. However, ab
initio calculations are typically computationally heavy and therefore hard to apply onto
large nuclei which are relevant for 0νββ such as, e.g., 136Xe. First calculations for 48Ca
have been already obtained [86].

The NMEs we use are calculated within QRPA and given in Table 3.2.

10When throwing the closure approximation over board, the calculations become even more complicated
and computationally heavy as the intermediate states have to be taken into account.
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4. Finding The Underlying Mechanism

In the previous chapter we saw that there are many different effective operators and
hence many different models beyond the Standard Model that can induce 0νββ-decay.
Therefore, while a possible observation of 0νββ would indeed indicate that neutrinos are
Majorana particles, we do not know if the mass mechanism would be the dominating
contribution. The question remains how one can possibly distinguish or even identify the
leading order contribution and by this infer more information about the full BSM theory.
In this chapter we want to discuss and investigate possibilities to distinguish different
effective operators as well as some more complex models.

4.1. Distinguishing different Operators

Neutrinoless double-β-decay, if observed, would be characterized by several experimental
observables. Precise knowledge of these observables can give us some insight into the
underlying mechanism. In general there are three different observables which can be
studied in 0νββ-decay experiments:

1. The decay rate

2. The single electron energy spectrum

3. The angular correlation between the two emitted electrons.

Additional information can be gained by including different double-β modes and by cross-
checking with high-energy collider experiments like the LHC. We will start by shortly
discussing the last possibility. Afterwards, we will focus on the possibilities to gain insight
from 0νββ-decay experiments which is the focus of this work.

4.1.1. Cross-Checking with High-Energy Collider Experiments

In some sense, nuclear decay experiments can be understood as high luminosity low-
energy hadron-collider experiments as the nuclear 0νββ-decay process resembles a scat-
tering process

n+ n −→ p+ p+ 2e−. (4.1)

As with decay experiments, outgoing neutrinos cannot be detected directly within collider
experiments and only show up as missing transverse energy. There are three different
signatures that can be used to study both long- and short-range operators:
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4. Finding The Underlying Mechanism

1. Same-Sign Dilepton Signals

p+ p −→ 2e± + 2jets (4.2)

2. Missing Transverse Energy (MTE)

p+ p −→ 1e± + 2jets + MTE (4.3)

3. Dijet with Missing Transverse Energy

p+ p −→ 2jets + MTE. (4.4)

While the appearance of same sign dilepton signals is quite obviously just the same pro-
cess as 0νββ just at higher energies, the remaining two signatures have a high-energy
origin. At typical TeV collider energies the LEFT treatment is no longer sufficient and
a SMEFT treatment has to be applied. Therefore, low-energy operators coupling to
left-handed leptons originate from SMEFT operators containing a left-handed lepton
doublet. Hence, at collider energies we have processes with outgoing neutrinos induced
by the SMEFT completion of the short-range LEFT operators that contain e(c)

L as well
as outgoing electrons resulting from the completion of long-range mechanisms that con-
tain νcL. Following the above reasoning, one can utilize collider data to distinguish 0νββ
inducing lepton number violating SMEFT operators of three types via their lepton cur-
rents12

1. ...
[
LLc

]
operators induce all three signatures.

2. ...
[
LecR

]
operators induce same-sign dilepton signatures as well as single leptons

with missing transverse energy.

3. ... [eRecR] operators only result in the same-sign dilepton signature.

One should note that here we assume that no right-handed neutrinos exist at current
collider energies and we do not have to include right-handed lepton doublets. While the
full set of SMEFT operators which induce the 32 ∆L = 2 LEFT operators is currently
unknown, one can find a set of electroweak invariant operators by systematically adding
factors of Φ†Φ [72]. When doing this, one finds that out of the 24 short-range operators
11 can be written in a SU(2)L×U(1)Y invariant way without adding any factors of Φ†Φ,
12 LEFT operators have to be extended by one factor of Φ†Φ resulting in 19 additional
dimension-11 SMEFT operators and finally the single remaining LEFT operator has to be
extended by (Φ†Φ)2 to arrive at an electroweak invariant dimension-13 operator. When

1Here we do not write down all possible Lorentz structures explicitly. Instead these lepton currents
should be understood as a summary of all possible currents with the respective fields but different
Lorentz structures.

2The ... denote the SMEFT completion of the hadronic structures that appear in the LEFT basis.
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G01 G02 G03 G04 G06 G09

mββ C
(6)
V L, C

(6)
V R C

(6)
V L, C

(6)
V R C

(6)
V L, C

(6)
V R - C

(6)
V L

C
(6)
SL, C

(6)
SR - - - - C

(9)
6 , C

(9)
6
′

C
(6)
T - - - - C

(9)
7 , C

(9)
7
′

C
(7)
V L, C

(7)
V R - - - - C

(9)
8 , C

(9)
8
′

C
(9)
1L , C

(9)
1R - - - - C

(9)
9 , C

(9)
9
′

C
(9)
1L
′, C

(9)
1R
′ - - - - C

(9)
9 , C

(9)
9
′

C
(9)
2L , C

(9)
2R - - - - -

C
(9)
2L
′, C

(9)
2R
′ - - - - -

C
(9)
3L , C

(9)
3R - - - - -

C
(9)
3L
′, C

(9)
3R
′ - - - - -

C
(9)
4L , C

(9)
4R - - - - -

C
(9)
5L , C

(9)
5R - - - - -

Table 4.1.: Overview of the different PSFs and corresponding operators. The G06 PSF is
only induced in the presence of multiple operators.

applying this method, matching short-range operators onto the SMEFT, one finds the
following correspondences

eRe
c
R ←→ eRe

c
R

eγµγ5e
c ←→ Lγµe

c
R

eLe
c
L ←→ LL,

(4.5)

between the lepton currents of LEFT operators (left) and SMEFT operators (right).
Thus, LHC data could help to distinguish the different scalar short-range LEFT operators
coupling to different chiral lepton currents O(9)

iL ↔ O
(9)
iR , i ∈ [1, 5] from each other as well

as it can help to identify the presence of short-range vector operators C(9)
i , C

(9)
i
′, i ∈ [5, 9].

As we will see, especially the former possibility of distinguishing between the leptonic
currents eLecL and eRe

c
R is important as this is not possible within 0νββ experiments.

One can follow the same line of argumentation for the long-range operators that are
induced at SMEFT dimension-7 [73]3 by replacing ecL → νcL in Eq. (4.5)4.

4.1.2. Distinguishing via Phase-Space Observables

Let us now turn towards 0νββ experiments, our main focus in this work. As already
mentioned there are three different observables that one can investigate with regard to
their operator discrimination power. We will start with the observables connected to the
leptonic phase space, i.e., the angular correlation of the two outgoing electrons and the

3i.e., here one adds a single power of Φ to the dimension-6 long-range LEFT operators
4Note that we do not have a νcR
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4. Finding The Underlying Mechanism

Figure 4.1.: Comparison of the normalized single electron spectra and angular correla-
tion coefficients in 136Xe that result from the 6 PSFs which appear in the
0νββ half-life “master-formula”. The comparison between the different sin-
gle electron spectra is represented in the lower left part of the plot while the
comparison of the angular correlation coefficients is shown in the upper right
part. The color of each curve corresponds to the operator it represents. The
x-axis covers the range ε̃ ∈ [0− 1].

single electron spectra. These are defined by the different PSFs which again result from
traces of the squared lepton currents. Within the simplest approximation these can be
calculated analytically. More exact solutions require numeric calculations of the exact
electron wave functions [29]. The different PSFs G0k can be written in the form [78]

G0k =
(GFVud)

4m2
e

64π5 ln 2R2

∫
δ

(
ε1 + ε2 + Ef − Ei

)
×
(
h0k(ε1, ε2, R) cos θ + g0k(ε1, ε2, R)

)
× p1p2ε1ε2 dε1 dε2 d(cos θ).

(4.6)

Here, we split the differential phase space factor into a part h0k which depends on the
angle θ between the two outgoing electrons and a part g0k that is independent of it. Of
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4.1. Distinguishing different Operators

Figure 4.2.: Normalized single electron
spectra and angular correlation
coefficient for each of the
4 distinguishable groups of
operators. The shapes are
shown for 136Xe assuming the
NDA values for the currently
unknown LECs. However,
the particular choice does not
result in a significant difference
in the general shape of the
plots. Again, the normalized
single electron spectra are
shown in the lower left part
of the figure while the angular
correlation coefficient is shown
in the upper right part. The
color of each curve corresponds
to the operator it represents.

course, this can always be done. The rela-
tions between the electron wave-functions
and the functions h0k and g0k are given
in [78] to which we will refer here. We ap-
ply the simplest approximation scheme ‘A’.
With Eq. (4.6) one can write the angular
correlation coefficient a1/a0 which is de-
fined via

dΓ

d cos θdε̃1
= a0

(
1 +

a1

a0
cos θ

)
(4.7)

with

ε̃i =
εi −me

Qββ
∈ [0, 1] (4.8)

as

a1

a0
(ε̃) =

∑
i |Mi|2h0i (ε,∆MNuclei − ε, R)∑
j |Mj |2g0j (ε,∆MNuclei − ε, R)

.

(4.9)

Here, ∆MNuclei is the mass difference be-
tween the mother and daughter nuclei.
Similarly, the single electron spectra which
arise from the different PSFs are given by

dΓ

dε1
=

(GFVud)
4m2

e

64π5 ln 2R2

×
(∑

i

|Mi|2g0i (ε,∆MNuclei − ε, R)

)
× p1p2ε

(
∆MNuclei − ε

)
.

(4.10)

Thus, given appropriate knowledge about
the electron wave functions, we can easily
calculate the expected angular correlation
factor and single electron spectra that ap-
pear for each of the 32 LEFT operators. The normalized single electron spectra as well
as the angular correlation coefficients that arise for each of the 6 PSFs are shown in
Figure 4.1. As we can see, the 6 PSFs are in principle all distinguishable from each
other, given the experimental accuracy is good enough.5 However, as we can see from
Table 4.1 the different operators do not correspond to a single PSF each. In fact, while

5Note that the distinguishability between G01 and G04 via the anglar correlation is better in elements
with a low Q-value like, e.g., 128Te.
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4. Finding The Underlying Mechanism

Figure 4.3.: The single electron spectra and the angular correlation for all 35 naturally
occurring 0νβ−β− isotopes are shown. One can see that, while the exact
quantitative curves do depend on the choice of the isotope, the general shape
is mostly independent of this choice. Again, the x-axis shows the normalized
electron energy ε̃.

G06 is only induced in the presence of multiple operators the dimension-6 vector opera-
tors both trigger several of the remaining PSFs. Taking this into account, we can identify
4 different groups of operators that in principle can be distinguished via their leptonic
PSF observables namely C

(6)
V L, C

(6)
V R, the operators corresponding to G01 and the ones

corresponding to G09. The PSF observables that result from each of these 4 groups are
shown in Figure 4.2. Here, we can see that the left-handed vector current operator C(6)

V L

and the operators corresponding to G09, while in principle distinguishable, are practi-
cally indistinguishable as the C(6)

V L phase space is dominated by the contribution from
G09. The remaining groups are distinguishable from each other in at least one of the
considered observables.
Note that while the electron wave-functions do depend on the charge of the daughter
nucleus as well as the decay energy, the general shape of the induced observables is not
very dependent on the choice of the decaying isotope. In Figure 4.3 we show both the
angular correlation as well as the single electron spectra corresponding to the 6 different
PSFs in all of the 35 naturally occurring 0νβ−β− isotopes.

4.1.3. Distinguishing via Decay Rate Ratios

The remaining 0νββ observable is the decay rate Γ. While the former methods can be
used to distinguish operators with different leptonic currents, information about the decay
rates in various isotopes can be used to distinguish operators with different hadronic
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4.1. Distinguishing different Operators

structures. The reason for this is that different hadronic currents of course represent
different NMEs. Current calculations of NMEs in different isotopes do not show a linear
behavior as can be seen by looking at Table 3.2. Therefore, we can study the half-life
ratios

ROi(AX) =
TOi1/2(AX)

TOi1/2(76Ge)
(4.11)

where TOi1/2(AX) is the half-life induced by the operator Oi in the isotope AX. This
possibility was first discussed in [87]. Here, we take 76Ge as the reference isotope. Of
course, one can also work with different reference isotopes. We will later also discuss
the optimal isotope combinations for distinguishing different operators. To be able to
quantify how well one can distinguish two different operators Oi,j from each other we
can take the ratio

Rij(
AX) =

ROi(AX)

ROj (AX)
. (4.12)

Specifically the ratio Rimββ will be of interest to compare the effect of different operators
to the standard mass mechanism and possibly identify the existence of non-standard
mechanisms within a 0νββ experiment. Studying the decay rate ratios has several pos-
itive benefits: In case only one Wilson coefficient contributes, it drops out completely
when taking the ratio. Therefore the ratio corresponding to a certain operator and its
Wilson coefficient is a constant that only depends on the corresponding NMEs, LECs
and PSFs. If more Wilson coefficients contribute, the overall magnitude can be factored
out. The relations between the different coefficients can still change the resulting ratios.
However, assuming naturalness, one can still study the expected impact resulting from
more complex models. Additionally, when taking ratios of the half-lives, one can expect
that the impact of systematic relative errors on the NMEs decreases as they should cancel
at least partly. Taking, for example, the values of MF calculated within QRPA [79] and
the shell model [83] in 76Ge and 82Se of

M76Ge
F,QRPA = −1.74, M82Se

F,QRPA = −1.29

M76Ge
F,SM = −0.59, M82Se

F,SM = −0.55
(4.13)

they differ by a factor of ∼ 2.3− 2.9 while the ratios of the NMEs only differ by a factor
of ∼ 1.3. This is a significant reduction and a sign towards the ratios being less affected
by the choice of the calculation method for the NMEs.
Considering the master-formula framework one can identify 11 different groups of opera-
tors that can in principle be distinguished from each other. Assuming the unknown LECs
to be equal to their NDA values, these 11 groups are summarized in Table 4.2. However,
the distinguishability of the short-range operators does strongly depend on the LECs.
Taking the unknown LECs to vanish while keeping gNN1,6,7 = gπNV = g̃πNV = 1 to not omit
the contribution from the short-range vector operators makes it impossible to distinguish
the short-range scalar operators C(9)

S2−S5. On the other hand, improved knowledge about
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4. Finding The Underlying Mechanism

Figure 4.4.: The decay rate ratios ROi for the different operator groups are shown. In
the upper plot we assume the unknown LECs to vanish, whereas in the lower
plot we set them to their NDA values. This choice significantly influences
the result for the dimension-9 vector operators. However, it hardly changes
the ratios for the remaining operators. Isotopes marked with a star have a
PSF G01 > 10−14y−1. The reference isotope is 76Ge.
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Figure 4.5.: The ratio Rimββ relevant for identifying the standard mass mechanism is
shown. In the upper plot we again assume the unknown LECs to vanish
while keeping gNN1,6,7 = gπNV = g̃πNV = 1. In the lower plot we set them to
their NDA values. The long-range mechanisms are marked by a star, the
short-range scalar operators by a cross and the short-range vector operators
by a triangle. The reference isotope is still 76Ge.
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mββ C
(6)
V L C

(6)
V R C

(6)
T C6,7 C

(9)
S1 C

(9)
S2 C

(9)
S3 C

(9)
S4 C

(9)
S5 C

(9)
V

mββ C
(6)
V L C

(6)
V R C

(6)
T C

(6)
SL C

(9)
1L C

(9)
2L C

(9)
3L C

(9)
4L C

(9)
5L C

(9)
6

- - - - C
(6)
SR C

(9)
1R C

(9)
2R C

(9)
3R C

(9)
4R C

(9)
5R C

(9)
6
′

- - - - C
(7)
V L C

(9)
1L
′ C

(9)
2L
′ C

(9)
3L
′ - - C

(9)
7

- - - - C
(7)
V R C

(9)
1R
′ C

(9)
2R
′ C

(9)
3R
′ - - C

(9)
7
′

- - - - - - - - - - C
(9)
8

- - - - - - - - - - C
(9)
8
′

- - - - - - - - - - C
(9)
9

- - - - - - - - - - C
(9)
9
′

Table 4.2.: Operator groups that can be distinguished via taking decay rate ratios. Here,
we assume the unknown LECs to be equal to their order of magnitude es-
timate. The choice of the groups depends on the knowledge of the LECs.
If we set the unknown LECs to zero, the short-range scalar operator groups
C

(9)
S2−S5 become indistinguishable. On the other hand, improved knowledge of

the LECs ,assuming no fine tuning, would allow to distinguish the operators
contributing to C(9)

V from the ones contributing to C̃(9)
V in Eq. (3.149).

the currently unknown LECs, assuming no fine tuning, could allow us to distinguish the
operators contributing to C(9)

V from the ones contributing to C̃(9)
V in Eq. (3.149) resulting

in 12 different distinguishable operator groups.
The expected ratios ROi for both choices of LECs are shown in Figure 4.4 while the
values for Rimββ are shown in Figure 4.5.

4.1.4. Utilizing additional 0νββ Modes

Until now, we only discussed the usual 0νβ−β−-decay mode and ignored the additional
modes mentioned in Sec. 3.1.1. In principle it would be interesting to also study these
additional modes as any additional decay process might improve the possibilities to dis-
tinguish different mechanisms via decay rate ratios. The reason for our “ignorance” is
simple, though. The remaining 0νββ modes are expected to have a significantly longer
half-life than the usual 0νβ−β− mode and are therefore unlikely to show up within an
experiment. Nevertheless, we want to discuss this a bit more detailed:

0νβ+β+

This mode can be treated similarly to the usual 0νβ−β− mode just by choosing a negative
nuclear charge Z → −Z to calculate the positron wavefunctions. As such, the expected
half-life will also mainly be determined by the PSF which, as we saw earlier, goes with Q5.
Looking at the second column in Table 3.1 we can see that the Q-values for naturally
occurring isotopes are up to one order of magnitude smaller than usual 0νβ−β− Q-
values. Additionally, the electromagnetic repulsion of the outgoing positrons deforms
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the wavefunctions and decreases the decay rate. Thus, we see that 0νβ+β+ will be
highly suppressed compared to 0νβ−β−. Also, from the similarities of the two decay
modes we cannot see a natural way to enhance the 0νβ+β+-decay rate with respect to
0νβ−β−. The relevant PSFs for the 0νβ+β+-decay of naturally occuring isotopes have
been calculated in [58] and are about 3-5 orders of magnitude smaller than for the usual
0νβ−β− mode.

0νECβ+

The PSFs for the 0νECβ+ mode have also been calculated to good precision in [58] and
are found to be 3-4 orders of magnitude smaller than for 0νβ−β−. The reason is the
same as in the discussion about 0νβ+β+.

0νECEC

As this decay mode has no outgoing particles additional to the daughter isotope, there
needs to be a mass degeneracy between the mother and daughter isotopes to satisfy
conservation of energy and momentum. The degeneracy, though, does not have to be
exact, but the two isotopes can have a small mass offset due to the width of the bound
electrons energy band. In principle, an exact mass degeneracy can result in a resonant en-
hancement of the decay rate [27, 88]. These resonances are often found when considering
excited final state nuclei. The corresponding decay could be detected either by observing
the de-excitation of the daughter nucleus or by observation of an overproduction of the
daughter isotope via, e.g., extraction. Typically, such a de-excitation results in a rather
unique signal of photons and can be very well distinguished from any background [27].
However, studies have shown that the resulting half-lives are still considerably longer
than for 0νβ−β− [88] and hence this mode does not have to be considered in detail in
our study.
While we see that for the usual mass, long-range and short-range mechanisms the 0νECEC
mode can safely be ignored, things might be different when considering Majoron models
which do not necessitate a mass degeneracy.

Bound-State 0νββ

Bound state 0νββ-decay refers to a decay in which one or both of the two outgoing
electrons end up in a bound energy level of the daughter isotope. It is usually referred
to as 0νβEP and 0νEPEP for the one and two bound final state electrons respectively.
Here, EP denotes electron production or electron placement. 0νEPEP again necessitates
a mass degeneracy similar to the 0νECEC as it is just the reverse process. It was studied
in [27] and found to give even longer half-live times than the double electron capture.
The single bound state double-β-decay 0νβEP was investigated in [89] and again found
to have PSFs 6-7 orders of magnitude smaller than the competing 0νβ−β− mode. The
decay rates can be significantly enhanced when considering fully ionized nuclei. For some
isotopes [89] showed that in this case the 0νβEP-decay rate can exceed the usual 0νβ−β−.
While this seems like an interesting case to study within experiments, it is currently not
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possible to fully ionize a significant number of isotopes at the ton or kilogram scale.
Therefore, while the decay rate might be larger, the number of ions would be much too
small to reach relevant precision within an experiment.

Artificial Isotopes

While there are only 69 naturally occurring double-β-decaying isotopes, we found about
∼ 2700 possible 0νββ candidate isotopes when considering the full NIST list of ele-
ments [28]. Some of them having considerably larger Q-values of up to 50 MeV.6 While
such a large Q-value of ∼ 50 MeV would result in a significant enhancement of the decay
rate by ∼ 8 orders of magnitude, there are several problems that arise when considering
real experiments. Although we did not study all of the possible artificial isotopes in detail,
we found the following features to be general limiting factors. First, as the name states,
artificial isotopes need to be produced within the 0νββ experiment. This strongly limits
the number of particles that an experiment can contain. Again ton, kilogram and even
gram scales are usually not possible. This fact alone typically already cancels out the
advantage gained from a larger Q-value. Additionally, many artificial isotopes, especially
the ones with large Q-values, come with additional decay modes that strongly dominate
and limit the half-life of the isotopes sometimes down to nanosecond scales such that
storing them to study the 0νββ mode becomes impossible. The resulting necessity to
continuously produce the artificial isotopes again strongly limits the number of isotopes
that can be studied at once. For these reasons we do not consider artificial isotopes to
be relevant for 0νββ studies.

To summarize the findings stated above: Despite the fact that many different 0νββ-
decay modes exist the usually studied naturally occurring 0νβ−β−-decaying isotopes are
by far the most relevant candidates to study. Other possible modes should only become
relevant in exotic mechanisms which explicitly forbid or limit the leading 0νβ−β−-decay
or somehow significantly enhance other decay modes. As the Feynman diagrams for all
of the above decay modes are the same (ignoring flipping electron lines by 180◦), such
models seem rather unnatural from a particle physics point of view. We therefore do not
consider them here.

4.1.5. Results - Distinguishing the 32 LEFT Operators

Summary - Distinguishing via 0νββ experiments

We found that out of the 32 different LEFT operators one can form 11 operator groups
which are theoretically distinguishable via taking ratios of the half-lives. These are given
in Table 4.2. Even the inclusion of PSF observables does not allow to distinguish opera-
tors within one of these groups. As such, they represent the general set of distinguishable
operator groups within 0νββ experiments.

6Considering only isotopes without a single-β-decay mode already significantly reduces this number
down to 86. None of these has a significantly enhanced Q−value.
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Figure 4.6.: The maximum values of log10Rij and the corresponding combination of iso-
topes are shown. Each of the fields showcases the distinguishability of two
operator pairs labeled on the x/y-axis. The dashed fields represent operator
combinations that can be distinguished via PSF observables. Again, in the
lower left half of the plot we assume the unknown LECs to vanish while in
the upper right half we take the NDA values. We can see that especially for
the dimension-9 vector operators the choice of the LECs makes a significant
difference.

As the half-life ratios are of course depending on the studied isotopes, we want to find
the optimal choice of isotopes to maximize the ratios Rij and hence maximize the pos-
sibility to distinguish the 11 operator groups. Our set of NMEs, as given in Table 3.2,
includes 10 different isotopes. In Figure 4.6 we show the maximum ratios Rij,max for each
operator combination and the corresponding best choice of isotopes. Again, we studied
this for vanishing unknown LECs while keeping gNN1,6,7 = gπNV = g̃πNV = 1 as well as for
assuming the NDA values for the unknown LECs. Especially for the short-range vector
operators this choice does significantly impact the values of the ratios. We find that out
of the 10 isotopes studied, 7 (82Se, 96Zr, , 100Mo, 116Cd, 128Te, 130Te and 136Xe) appear
in Figure 4.6 when assuming the unknown LECs to vanish while 9 (all but 124Sn) appear
if one assumes the NDA values for the unknown LECs. Including PSF observables the
number of necessary isotopes for vanishing unknown LECs reduces to 6 as a measurement
in 100Mo can be replaced by a measurement of the angular correlation coefficient.
It is important to note that although from looking at Figure 4.6 one would presume that
the scalar short-range operators C(9)

S2−S5, while theoretically distinguishable, are in fact
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4. Finding The Underlying Mechanism

practically indistinguishable. This is a result of the specific values of the LECs. Different
choices can significantly enhance these ratios. Additionally, we want to stress the fact
that we study the effects of operators induced at the electroweak scale and not directly
at the χPT scale. The RGE running can induce additional operators [74]. However,
while this does of course affect the numerical values of the ratio, we find that it does not
change the general composition of the different distinguishable operator groups.

Including Measurement Uncertainties

Of course, within a real experiment we will not be able to exactly resolve the half-live
ratios. Hence, it is interesting to quantify the experimental precision on the half-lives
which is necessary to distinguish different sets of operators. The uncertainty on the decay
rate ratios ∆ROi is directly related to the uncertainty on the half-life measurement ∆t1/2
via

∆ROi

ROi
=
√

2
∆t1/2

t1/2
(4.14)

and thus

∆Rij
Rij

= 2
∆t1/2

t1/2
(4.15)

where we assumed the same relative uncertainty for all different isotopes. Using the above
relation in Eq. (4.15) we can determine the experimental precision that is necessary to
identify certain operator groups. Here, we label an operator group Oi as identifiable
within experimental accuracy if

Rij,max −∆Rij,max > 1 ∀j 6= i (4.16)

which, assuming equal half-live uncertainties in all isotopes, can be written as

Rij,max

(
1− 2

∆t1/2

t1/2

)
> 1 ∀j 6= i. (4.17)

In Table 4.3 we show the identifiable/rejectable operators when considering different
half-life uncertainty levels reaching from 0 − 50%. While the results do depend on the
values of the different LECs, it is important to note that for the two different choices
studied here, if the 0νββ-decay is observed at a 5σ level, the mass mechanism can be
identified or rejected at least with a 1σ significance. We can conclude that, given the
0νββ-decay is observed in the relevant isotopes for identifying the mass mechanism (96Zr,
116Cd, 130Te, 136Xe), one can distinguish between the mass-mechanism and general non-
standard mechanisms. If data on the PSF observables is available, only three different
isotopes (96Zr, 116Cd and 136Xe) are necessary in order to achieve this. While 136Xe is
studied in many different experiments, 96Zr and 116Cd both can be studied in the future
SuperNEMO experiment and they both have a reasonable high Q-value of 3.3MeV and
2.8MeV respectively as well as relatively high natural abundances. The same holds for
130Te.
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Identifiable operator groups
∆t1/2
t1/2

[%] mββ C
(6)
VL C

(6)
VR C

(6)
T C

(6)
6,7 C

(9)
S1 C

(9)
S2 C

(9)
S3 C

(9)
S4 C

(9)
S5 C

(9)
V

Unknown LECs = NDA
0 X X X X X X X X X X X
1 X X X X X X X X X
5 X X X X X X X
10 X X X X X X X
15 X * X * X X X
20 X * X X X
25 X * X X X
33 X * X X X
50 *

Unknown LECs = 0
0 X X X X X X X
1 X X X X X X X
5 X X X X X X X
10 X * X * X X X
15 X * X * X X
20 X * X X X
25 * X X X
33 * X X X
50 *

Table 4.3.: List of operators which are identifiable at least at the 1σ level considering
different levels of relative uncertainties on the experimental half-lives. We
consider the relative half-life uncertainty independent of the isotope and ig-
nore uncertainties arising from different NME calculations. Operators that
are identifiable via ratio taking are marked with an X while operators with
a ∗ are only identifiable by including PSF observables. In the upper half we
show the results when taking the unknown LECs to their NDA values and in
the lower half we show the results assuming the unknown LECs vanish.

The Best Case Scenario

Assuming future knowledge of the LECs does provide that contributions from C
(9)
V and

C̃
(9)
V are indeed distinguishable and that the ratios for the scalar short-range operators

C
(9)
S2−S5 are enhanced up to a level that allows 0νββ-decay experiments to distinguish

among them, one can distinguish 12 different operator groups. If, additionally, high-
energy collider data is available one can distinguish 17 different groups of operators as
collider data allows to distinguish between the short-range scalar left and right operators
C

(9)
iL,R of which we have 5 pairs. In this case the only indistinguishable operator pairs

73



4. Finding The Underlying Mechanism

remaining are the short-range operators C(9)
i and their primed counterpart C(9)

i
′ as well

as the operators denoted by the group C6,7.

4.2. Distinguishing specific Models

Now that we introduced methods on how one can experimentally distinguish different
LEFT operators, we want to turn towards complete models rather than just single op-
erators. As we will see and as one would expect, lepton number violating BSM models
will typically introduce several LEFT operators at a time. While we do not expect that
one will be able to identify a specific BSM model by the aforementioned methods as no
finite set of BSM models exists and many different models will result in the same low-
energy physics, we do expect that, given fixed model parameters, one can at least check
if a model fits the observed data and reject it if it does not. In the following parts we
want to briefly discuss three different models beyond the Standard Model taken from the
literature that would lead to 0νββ-decay. We will compare each model to the standard
mass mechanism. To be on the conservative side we will keep the unknown LECs to zero
for the rest of this chapter while still keeping gNN1,6,7 = gπNV = g̃πNV = 1.

4.2.1. Minimal Left-Right Model

The Standard Model is a chiral theory. That is, parity is explicitly broken due to the
gauged SU(2)L symmetry and the lacking right-handed neutrino. The latter together
with the lack of an SU(2)L triplet scalar results in vanishing neutrino masses. A simple
approach to resolve both of these phenomena is to extend the Standard Model’s gauge
group to a left-right symmetric model SU(3)C × SU(2)L × SU(2)R × U(1)B−L [90, 91,
92] which afterwards needs to be broken spontaneously to the Standard Model setting
SU(3)C × SU(2)L × U(1)Y . We will give a brief introduction to the minimal left-right
symmetric Standard Model (mLRSM). A comprehensive review, which we will often
follow, is given in [93]. Extending the Standard Model to a left-right symmetric theory
requires the existence of additional scalars and fermions. The minimal setting includes
two additional scalar triplets ∆L ∈ (1, 3, 1, 2) and ∆R ∈ (1, 1, 3, 2) as well as a scalar
bifield Φ ∈ (1, 2, 2∗, 0) instead of the usual higgs doublet and obviously right-handed
neutrino fields νR (1, 1, 2,−1).7 It is easy to notice some similarities to the particle
content of the seesaw mechanisms that we discussed in Sec. 2.3. Again, the scalar triplets
are defined as

∆L,R =
∑
i

τi∆L,R,i (4.18)

giving

∆L,R =

(1
2δ

+
L,R δ++

L,R

δ0
L,R

1
2δ

+
L,R

)
(4.19)

7Note that also other settings have been considered, e.g. [92].
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and the bifield Φ is given by

Φ =

(
Φ0

1 Φ+
1

Φ−2 Φ0
2

)
. (4.20)

Under UL,R ∈ SU(2)L,R they transform as

Φ −→ ULΦU †R, ∆L −→ UL∆LU
†
L, ∆R −→ UR∆RU

†
R. (4.21)

The fermions are grouped into left- and right-handed doublets

LL =

(
νL
eL

)
∈ (1, 2, 1,−1) , QL =

(
uL
dL

)
∈ (3, 2, 1, 1/3) , (4.22)

LR =

(
νR
eR

)
∈ (1, 1, 2,−1) , QR =

(
uR
dR

)
∈ (3, 1, 2, 1/3) , (4.23)

which transform as

ΨL,R −→ UL,RΨL,R. (4.24)

It is easy to see that the electric charge of a field is given by

Q = I3L + I3R +
B − L

2
(4.25)

Obviously, the field content of this theory is symmetric under a transformation L ↔
R. There are two discrete symmetries which can relate left- and right-handed fermions
namely parity P and charge transformation C [94]. Thus, one can define two different
discrete symmetry transformations

P : ΨL ⇐⇒ ΨR, Φ⇐⇒ Φ†, ∆L,R ⇐⇒ ∆R,L (4.26)

C : ΨL ⇐⇒ (ΨR)c , Φ⇐⇒ ΦT , ∆L,R ⇐⇒ ∆∗R,L. (4.27)

Requiring either P or C invariance results in different constraints on the scalar potential
as well as the Yukawa coupling matrices [94].8

The matching onto the SMEFT and afterwards the relevant LEFT operators has been
discussed in the original “master formula” paper [74]. Here, we will summarize their
findings and expand on the topic of distinguishing this model from the standard mass
mechanism by considering the C symmetric case. Considering Eq. (4.25) we can identify
the neutral components of the scalar fields. Assuming that U(1)Q is an unbroken sym-
metry only these components can gain a VEV and thus the most general form is given
by

〈Φ〉 =
1√
2

(
κ 0
0 κ′

)
, 〈∆L〉 =

1√
2

(
0 0
vL 0

)
, 〈∆R〉 =

1√
2

(
0 0
vR 0

)
. (4.28)

8Note that a combination of both does not fit observational constraints [94].
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We want to point out that generally all four VEVs can be complex, i.e., v = v exp{iαv}.
Two complex phases can be rotated away [95] such that we are left with two complex
VEVs and we can write

〈Φ〉 =
1√
2

(
κ 0
0 κ′eiα

)
, 〈∆L〉 =

1√
2

(
0 0

vLe
iθL 0

)
, 〈∆R〉 =

1√
2

(
0 0
vR 0

)
,

(4.29)

with real parameters κ, κ′, vL, vR, α, θL. The VEVs are related to the parameters of the
scalar potential VHiggs by requiring

∂VHiggs
∂vL

=
∂VHiggs
∂vR

=
∂VHiggs
∂κ

=
∂VHiggs
∂κ′

=
∂VHiggs
∂α

=
∂VHiggs
∂θL

= 0 (4.30)

As vR spontaneously breaks SU(2)R × U(1)B−L −→ U(1)Y it is reasonable to assume
it be the largest VEV. The VEVs of the bidoublet Φ play the part of the usual Higgs
doublet and break the remaining SU(2)L × U(1)Y −→ U(1)Q. As such, they are of
the order of the electroweak scale. Finally, the remaining VEV vL should be very small
since it generates a Majorana mass term for the left-handed neutrinos and additionally
contributes to the masses of the W - and Z-bosons. Thus changes the ρ-parameter at
tree-level [96] which is given by [10]

ρ =
mW

mZ cos2 θW
= 1.00038± 0.00020 (4.31)

and is equal to unity within the Standard Model at tree-level. Therefore, we assume the
following hierarchy

vR � κ, κ′ � vL. (4.32)

The fermion masses arise from the Yukawa couplings of the different scalars and are given
by

Mu
ij =

1√
2

[
Y q
ijκ+ Ỹ q

ijκ
′ exp{−iα}

]
, Md

ij =
1√
2

[
Y q
ijκ
′ exp{iα}+ Ỹ q

ijκ
]

Mν
D,ij =

1√
2

[
Y l
ijκ+ Ỹ l

ijκ
′ exp{−iα}

]
, M l

ij =
1√
2

[
Y l
ijκ
′ exp{iα}+ Ỹ l

ijκ
]

Mν
L,ij =

√
2Y L

ij vL exp{iθL}, Mν
R,ij =

√
2Y R

ij vR

(4.33)

While the quark and charged lepton mass matrices can be diagonalized straight away,
the mass matrices for the light and heavy neutrino fields νi and Ni can be obtained via
the seesaw formula in Eq. (2.87) and must be diagonalized appropriately. The gauge
boson masses arise from the kinetic terms of the scalars as

LW±
m =

(
W+µ
L ,W+µ

R

)
M2
W

(
W−Lµ
W−Rµ

)
+ h.c. (4.34)
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with

M2
W =

1

4

(
g2
L

(
2|vL|2 + |κ|2 + |κ′|2

)
−2gLgR|κ||κ′|eiθ

−2gLgR|κ||κ′|e−iθ g2
R

(
2|vR|2 + |κ|2 + |κ′|2

)) (4.35)

for the charged gauge bosons W±L,R given by

W±L,R =
1√
2

(
W 1
L,R ∓ iW 2

L,R

)
. (4.36)

Since we want to focus on the impact of mLRSM on 0νββ we do not need to care much
about the neutral gauge bosons. From Eq. (4.35) we see that the left and right charged
W bosons mix due to the coupling to the bidoublet Φ. The massive statesW±1,2 are given
by (

W+
L

W+
R

)
=

(
cos ζ − sin ζ exp{−iα}

sin ζ exp{iα} cos ζ

)(
W±1
W±2

)
(4.37)

with

tan ζ ∼ −2ξ

(
MWL

MWR

)2

, ξ =
κ′

κ
(4.38)

Naturally, ξ is expected to be at the order of mb/mt [95] such that the mixing angle ζ is
strongly suppressed. From this discussion we can already infer the different contributions
within the mLRSM to the 0νββ amplitude. The relevant Feynman diagrams are shown
in Figure 4.7.
After ∆R gains its VEV it gives masses to the right-handed gauge bosons as well as the
right-handed neutrinos, the scalar fields ∆L,R and parts of Φ. Integrating out the heavy
fields with masses proportional to vR and matching the theory onto SMEFT results in
the lepton number violating operators [74]

L∆L =C(5)
((
LTCiτ2ΦSM

) (
Φ̃†SML

))
+
(
LTγµeR

)
iτ2ΦSM

(
C

(7)

LeudΦ
dRγµuR + C

(7)
L ΦT

SM iτ2(DµΦSM )
)

+ eRe
c
R

(
C

(9)
eeuduRγ

µdRuRγµdR + C
(9)
eeΦuduRγ

µdR

(
[iDµΦSM ]† Φ̃SM

)
+ C

(9)
eeΦD

(
[iDµΦSM ]† Φ̃SM

)2
) (4.39)

where ΦSM is the Standard Model Higgs doublet. The matching scale is at ∼ mWR
.

Taking a look at Figure 4.7 we see that none of these operators contributes to the ∆L

part of the lower-right diagram which is generated by the exchange of the left-handed
doubly charged triplet scalar δ−−L .The corresponding lepton number violating operators
which contribute to this diagram are obtained from integrating out the heavy double
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d u

e−

e−

d u

WL

νiNi

WL

d u

e−

e−

d u

WR

νiNi

WR

d u

e−

e−

d u

WR

νiNi

WL

d u

d u

e−

e−

WL(R)

WL(R)

∆L(R)

Figure 4.7.: Feynman diagrams arising in the mLRSM that contribute to 0νββ. Here, νi
and Ni represent the light and heavy neutrino mass eigenstates. It should be
noted that, due to mixing of both left- and right-handed neutrinos and gauge
bosons, each diagram (except the triplet exchange diagram) comes with all
possible combinations of the outgoing particle’s chiralities. However, some
diagrams are highly suppressed compared to others.

charged triplet scalars δ++
L,R. The relevant parts of the Lagrangian are

L∆ = Tr
{

(Dµ∆L,R)† (Dµ∆L,R)
}
−∆†L,RM∆∆L,R + Y L,RLTL,RCiτ2∆L,RLL,R

⊃∂µδ−−L,R∂µδ
++
L,R −m

2
δ++
L,R
δ−−L,Rδ

++
L,R +

√
(2)g2

L

2
vLW

+
LW

+
L δ
−−
L

+

√
(2)g2

L

2
vLW

−
LW

−
L δ

++
L + Y L

eee
T
LCeLδ

++
L .

(4.40)

Starting from this Lagrangian and integrating out δ++,−−
L with Mδ++

L
∼ vR one obtains

an effective lepton number violating operator of the form

Y L
ee

√
2g2
LvL

2v2
R

W−LW
−
L ee

c. (4.41)

This operator is proportional to vL and would break the invariance under the Standard
Model gauge group. Hence, it cannot be part of a SMEFT model. However, we can ignore
it and still integrate out heavy fields at a scale where the Standard Model gauge group
is still intact. The reason for this is that for the process of interest (0νββ) it is highly
suppressed for typical values of vL ∼ O (0.1 eV) and vR ∼ O (10 TeV) since the 0νββ
amplitude corresponding to the operator in Eq. (4.41) will be proportional to vL

v2Rm
4
W
.

This has to be compared to the standard mass mechanism amplitude which depends on
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Figure 4.8.: Ratios within the mLRSM for different mββ ranging from 1 eV to 1meV.

the same BSM parameters and is proportional to vL
p2m4

W
with p ∼ O (100 MeV).

The Wilson coefficients at SMEFT level are given by [74]

C(5) =
1

v2

(
Mν
D
TMν

R
−1Mν

D −Mν
L

)
C

(7)

LeudΦ
=

√
2

v

1

v2
R

(
V ud
R

)∗ (
MT
DM

ν
R
−1
)
ee

C
(7)
LΦDe =

2iξ exp{iα}
(1 + ξ2)V ud

R
∗C

(7)

LeudΦ

C
(9)
eeud = − 1

2v4
R

V ud
R

2

[(
Mν
R
†
)−1

+
2

m2
∆R

Mν
R

]

C
(9)
eeΦud = −4

ξ exp{−iα}
(1 + ξ2)V ud

R

C
(9)
eeud

C
(9)
eeΦD = 4

ξ2 exp{−2iα}
(1 + ξ2)2 V ud

R
2
C

(9)
eeud

(4.42)

where v is the Standard Model Higgs doublets VEV given by

v2 = κ2 + κ′2. (4.43)

From the matching scale ∼ mWR
the above coefficients have to be evolved down to

mW ∼ 80 GeV at which one can match onto the relevant LEFT operators by integrating
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out the remaining heavy particles with masses above mW . By doing so one obtains [74]

mββ = −v2C(5)
ee

C
(6)
V L = −iV ud

L

v3

√
2
C

(7)
LΦDe

∗

C
(6)
V R =

v3

√
2
C

(7)

LeudΦ
∗

C
(9)
1R (mW ) = v5V ud

L
2C

(9)
eeΦD(mW )

C
(9)
1R
′(mW ) = v5C

(9)
eeud(mW )

C
(9)
4R (mW ) = −v5V ud

L C
(9)
eeΦud(mW ).

(4.44)

Figure 4.9.: Normalized single electron
spectra (lower left) and an-
gular correlation coefficients
(upper right) generated in
the mLRSM with different
effective Majorana masses
mββ = 1 eV − 0.001 eV. The
shapes are shown for 136Xe.

Evolving the above coefficients down to the
χPT scale of ∼ 2 GeV also generates a non-
zero C(9)

5R coefficient since the RGEs of C(9)
4,5

mix [74]. Setting θL = α = 0 and fixing
ξ = mb/mt, as well as assuming that the
light and heavy neutrino mass matricesMν

andMνR are diagonalized by the same ma-
trix and imposing the similar property for
the mass matrices of the left- and right-
handed Quarks, the Wilson coefficients can
be expressed in terms of the different VEVs
v, vL, vR as well as the physical masses of
the heavy neutrinos mνR1,2,3, , the lightest
neutrino mass mmin and the mass of the
heavy right-handed triplet m∆R

. For sim-
plicity we will study the limit of 1 fermion
generation applying the same mass struc-
ture as [74]

vL = 0.1 eV, vR = 10TeV,
mνR = 10TeV, m∆R

= 4TeV.
(4.45)

Additionally, we adapt Mν
D to vary the

value of mββ between 1 eV − 1meV such
that we can study the impact of the non-
standard operators at different strengths of the mass-mechanism. The ratios are shown
in Figure 4.8. One can see that for values mββ ≤ 10meV the ratios start to be dis-
tinct from the standard mass mechanism as non-standard operators start to dominate.
Here, the main contribution when choosing this parameter setup stems from the scalar
short-range LEFT operators. Below mββ = 1meV the ratios stay at a stable level. The
PSF observables are shown in Figure 4.9. As one can see the different settings cannot be
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distinguished from each other or from the standard mass mechanism. The reason for this
is that either the mββ or the short-range Wilson coefficients C(9)(,)

1,4 dominate the decay
amplitude which all couple to the same PSF G01.

4.2.2. ��Rp - SUSY

Historically, supersymmetric (SUSY) theories have been considered to be attractive ex-
tensions to the Standard Model since they offer a wide field of possible explanations to
urging questions within the particle physics community as, e.g., the hierarchy problem
or the origin of dark matter. A comprehensive review can be found in [97].
Supersymmetric theories contain so-called supermultiplets of fermions and bosons which,
under supersymmetry, transform into each other. The most simple constructions are chi-
ral supermultiplets (

ΨL,R,Φ
Ψ
L,R

)
(4.46)

which relate two component chiral spinors (ΨL,R) and a corresponding complex scalar
ΦL,R. If we want to make the Standard Model supersymmetric, one also needs to consider
gauge supermultiplets (

Aaµ,Ψ
a
)

(4.47)

which relate the Standard Model’s gauge bosons Aaµ to their superpartner fermions Ψa.
One should note that since gauge bosons have 2 degrees of freedom (d.o.f.) and since
a transformation obviously cannot change the number of d.o.f., their superpartners Ψa

also have 2 degrees of freedom. Therefore, they are Majorana fermions.9

Obviously for SUSY to hold, particles within a supermultiplet must share the same mass,
quantum numbers (except spin), interactions and couplings. This fact necessitates that
SUSY, if realized in nature, must be broken to hide the superpartners of the Standard
Model particles which are yet to be observed. Typically, after breaking SUSY there
remains a discrete symmetry called R-parity (Rp) which can be assigned to every field
such that we have Rp = +1 for Standard Model fields and Rp = −1 for the superpartner
fields. One can define R-parity as [97]

Rp = (−1)2s+3(B−L) (4.48)

where s is the spin and B and L are the corresponding baryon and lepton numbers
of the field. If Rp is a conserved quantity, it follows that the lightest superpartner
cannot decay such that it becomes a candidate for explaining the origin of dark matter.10

However, Rp conservation also comes with the conservation of both baryon and lepton
number [97]. Thus, supersymmetric models which want to explain the baryon asymmetry

9Or Weyl fermions in the massless case. However, in the massless case distinguishing Weyl and Majo-
rana fermions is not necessary

10It is often referred to as LSP.
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of the universe via explicit violation of either lepton or baryon number need to break Rp.
This induces new lepton number violating parts to the Lagrangian [98]

L∆L=1
�R p

=− λ′111

[ (
uL, dR

)( ecR
−νcR

)
d̃R

+ (eL, νL) dR

(
ũ∗L
−d̃∗L

)
+
(
uL, dL

)
dR

(
ẽ∗L
−ν̃∗L

)]
+ h.c.

(4.49)

which can contribute to 0νββ-decay. Contributions to 0νββ from ��Rp−SUSY have been
studied first by [98, 99]. The resulting Feynman diagrams are shown in Figure 4.10. The
relevant gluino (g̃) and neutralino (χ) - fermion interactions are given by [98, 100, 101]

Lg̃ = −
√

2g3

∑
a

λ
(a)
αβ

2

(
qL

αg̃q̃βL − qR
αg̃q̃βR

)
+ h.c. (4.50)

and

Lχ =
√

2g2

4∑
i=1

(
εLi (Ψ) ΨLχiΨ̃L + εRi (Ψ) ΨRχiΨ̃R+

)
+ h.c.. (4.51)

One can arrive at the low-energy effective Lagrangian by integrating out the heavy super-
fields as well as the Standard Model particles with masses above∼ mW . After integrating
out the heavy scalar squarks d̃R and ũL as well as the gluino g̃ and neutralinos χi by
solving the e.o.m. and plugging the solutions back into the Lagrangian one after the
other, one finds the different low-energy effective dimension-9 ∆L = 2 operators which
contribute to 0νββ [99]

L�R p
=

G2
F

2mN

[
(ηg̃ + ηχ)

([
u(1 + γ5)d

] [
u(1 + γ5)d

]
− 1

4

[
uσµν(1 + γ5)d

] [
uσµν(1 + γ5)d

])
+
(
ηχẽ + η′g̃ − ηχf̃

) [
u(1 + γ5)d

] [
u(1 + γ5)d

] ]
[e (1 + γ5) ec] .

(4.52)

These can be translated to the C-basis as

C
(9)
2R
′ =

2v

mN

[
2ηg̃ + 2ηχ + ηχẽ + η′g − ηχf̃

]
C

(9)
3R
′ =

4v

mN
[ηg̃ + ηχ] .

(4.53)
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ũL

Figure 4.10.: Feynman diagrams contributing to 0νββ within the ��Rp-MSSM [98].

The coupling constants are given in terms of the gluino, neutralino and squark masses
as [98]

ηg̃ = αsΛ
2mN

mg̃

[
1 +

(
md̃R

mũL

)4
]

η′g̃ = 2αsΛ
2mN

mg̃

(
md̃R

mũL

)2

ηχ =
3α2

4
Λ2

4∑
i=1

mN

mχi

[
ε2Ri(d) + ε2Li(u)

(
md̃R

mũL

)4
]

ηχẽ = 9α2Λ2

(
md̃R

mẽL

)4 4∑
i=1

ε2Li(e)
mN

mχi

ηχf̃ =
3α2

2
Λ2

(
md̃R

mẽL

)2 4∑
i=1

mN

mχi

[
εRi(d)εLi(e) + εRi(u)εLi(d)

(
mẽL

mũL

)2

+ εRi(u)εLi(e)

(
md̃R

mũL

)2 ]

(4.54)
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Figure 4.11.: Half-life ratios resulting from the ��Rp-SUSY contributions to 0νββ com-
pared to the standard mass mechanism.

with

Λ =

√
2π

3

λ′111

GFm2
d̃R

(4.55)

We can see that both gluino and neutralino exchange diagrams contribute to the same
low-energy operators. We calculated the ratios in Figure 4.11. As we saw in the previous
section, distinguishing effects coming from C

(9)
2R
′ and C(9)

3R
′ is not achievable by any prac-

tical means within the current knowledge of LECs. Hence, there is no sense in studying
different parameter settings here. Additionally, both operators contribute only to G01

such that there is not much information to gain when turning towards the phase-space
observables as they are the same as for the mass mechanism.

4.2.3. Leptoquarks

Leptoquarks (LQs) are hypothetical bosons (3, X, Y ) with non-zero color charge which
couple to both quarks and leptons. They arise in numerous Standard Model exten-
sions such as technicolor and composite models [102, 103] or models of grand unifica-
tion [104, 105]. Additionally, they can generate non-zero neutrino masses at 1 loop
level [106]. For a comprehensive review on leptoquarks see [107].
Ignoring leptoquarks which do not directly couple to the Standard Model’s particle con-
tent, one can add up to 10 different leptoquarks which obey the Standard Model sym-
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LQ (Ω) SU(3)C SU(2)L U(1)Y Q
S0 3 1 -2/3 -1/3
S̃0 3 1 -8/3 -4/3
S1/2 3 2 -7/3 (−2/3,−5/3)

S̃1/2 3 2 -1/3 (1/3,−2/3)

S1 3 3 -2/3 (2/3,−1/3,−4/3)
V0 3 1 -4/3 -2/3
Ṽ0 3 1 -10/3 -5/3
V1/2 3 2 -5/3 (−1/3,−4/3)

Ṽ1/2 3 2 1/3 (2/3,−1/3)

V1 3 3 -4/3 (1/3,−2/3,−5/3)

Table 4.4.: List of possible scalar and vector leptoquarks and their transformation prop-
erties under the Standard Model symmetries.

metries [? ]11 They are summarized in Table 4.4. By looking at the relevant Feynman
diagrams in Figure 4.12 we can see that the contributions to 0νββ arise from leptoquarks
with Q(1) = ±1/3 (Figure 4.12 left) and Q(2) = ±2/3 (Figure 4.12 right). The full set of
renormalizable LQ-fermion interactions is given by [108]

LS,f =
(
λRS0

)
ij
SR†0 [uciPRej ] +

(
λR
S̃0

)
ij
S̃†0
[
dciPRej

]
+
(
λRS1/2

)
ij
SR†1/2 [uiPLLj ] +

(
λR
S̃1/2

)
ij
S̃†1/2

[
diPLLj

]
+
(
λLS0

)
ij
SL†0

[
QciPLiτ2Lj

]
+
(
λLS1/2

)
ij
SL†1/2

[
QciPRiτ2ej

]
+
(
λLS1

)
ij

[
QciPLiτ2S

†
1Lj

]
+ h.c.

(4.56)

and

LV,f =
(
λRV0
)
ij
V R†

0µ

[
diγ

µPRej
]

+
(
λR
Ṽ0

)
ij
Ṽ R†

0µ [uiγ
µPRej ]

+
(
λRV1/2

)
ij
V R†

1/2µ

[
dciγ

µPLLj
]

+
(
λR
Ṽ1/2

)
ij
Ṽ †1/2 [uciγ

µPLLj ]

+
(
λLV0
)
ij
V L†

0µ

[
Qiγ

µPLLj
]

+
(
λLV1/2

)
ij
V L†

1/2µ

[
Qciγ

µPRej
]

+
(
λLV1
)
ij

[
Qiγ

µPLV
†

1µLj

]
+ h.c.

(4.57)

for the scalar (S) and vector (V) leptoquarks respectively. Here we follow the nota-
tion of [108] which distinguishes leptoquarks coupling to left- and right-handed quarks.
Additionally to the LQ-fermion interactions, one can write down gauge invariant and

11Note that one sometimes finds a different Y assignment. This is due to a different definition of Y
which results in Q = I3 + Y instead of our definition Q = I3 + Y/2.
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renormalizable LQ-Higgs interactions

LLQ,Φ =hiS0
Φ̃†S̃1/2S

i
0 + hiV0Φ̃†Ṽ µ

1/2V
i

0µ

+hS1Φ̃†S1S̃1/2 + hV1Φ̃
µ
1 Ṽ1/2µ

+Y i
S1/2

(
Φ̃†Si1/2

)(
S̃†1/2Φ

)
+ Y i

V1/2

(
Φ̃†V µi

1/2

)(
Ṽ †1/2µΦ

)
+YS1

(
Φ̃†S†1Φ

)
S̃0 + YV1

(
Φ̃†V †1µΦ

)
Ṽ µ

0

+κiS

(
Φ†S1Φ

)
Si0
† + κiV

(
Φ
µ
1Φ
)
V i

0µ
† + h.c.

−
∑

Ω

(
ηΩM

2
Ω − g

i1i2
Ω Φ†Φ

)
Ωi1†Ωi2

(4.58)

where the leptoquark triplets are defined as

V1 =
∑
i

τiV1i S1 =
∑
i

τiS1i. (4.59)

These LQ-Higgs interactions are essential when considering contributions to 0νββ be-
cause they result in non-zero correlation functions for, e.g.,〈

Si0S̃1/2

〉
∝
∑
Ĩ

NSi0ĨNS̃1/2Ĩ
(4.60)

whereN is the mixing matrix which diagonalizes the mass matrixN TM2N =M2
diag and

Ĩ = N T I are the mass eigenstate fields. This particular example results in contributions
to the right diagram in Figure 4.12. After electroweak symmetry breaking the relevant
mass matrices are given by [108]

MI2
(
Q

(1)
I

)
= ηI


ηIMIL0

2
gLRI0 v

2 hL
I0
v κLI v

2

gLRI0 v
2 ηIMIR0

2
hR
I0
v κRI v

2

hL
I0
v hR

I0
v ηIMI1/2

2
hI1v

κLI v
2 κRI v

2 hI1v MI1
2

 (4.61)

and

M2
I

(
Q

(2)
I

)
= ηI


ηIMI1/2

2
Y L
I1/2

v2 Y R
I1/2

v2
√

2hI1v

Y L
I1/2

v2 ηIMIL
1/2

2
gLRI1/2v

2 0

Y R
I1/2

v2 gLRI1/2v
2 ηIMIR

1/2

2
0√

(2)hI1v 0 0 ηIMI1
2

 (4.62)

with I = S, V ηS = 1, ηV = −1 and M2
= M2

I + ηIgIv
2. The bold constants are mass

scales which are a priori completely free. Of course, they can arise dynamically from
more complete models.
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Figure 4.12.: Feynman diagrams of the vector (V ) and scalar (S) leptoquark interactions
contributing to 0νββ.

After integrating out the heavy LQ degrees of freedom and rearranging the resulting
EFT operators via Fierz transformations one arrives at the effective low-energy 4-Fermi
interactions. The parts of the low-energy Lagrangian, that are relevant to 0νββ, are then
given by [109]

LLQ = [ePLν
c]

{
εS
M2
S

[uPRd] +
εV
M2
V

[uPLd]

}
− [eγµPLν

c]

{(
αRS
M2
S

+
αRV
M2
V

)
[uγµPRd]−

√
2

(
αLS
M2
S

+
αLV
M2
V

)
[uγµPLd]

}
+ h.c.

(4.63)

with the low-energy Wilson coefficients

εI = 2−ηI
[
λLI1λ

R
Ĩ1/2

(
θ̃I43

(
Q1
I

)
+ ηI
√

2θ̃I41

(
Q2
I

))
− λLI0λ

R
Ĩ1/2

θ̃I23

(
Q1
I

)]
(4.64)

αLI =
2

3 + ηI
λLI1/2λ

L
I1 θ̃

I
24

(
Q2
I

)
, αRI =

2

r + ηI
λRI0λ

R
Ĩ1/2

θ̃I23

(
Q1
I

)
. (4.65)

with

θ̃Iij =
∑
k

NikNjk
M2
I

M2
Ik

. (4.66)

Here, “common mass scales” MS and MV have been inserted for convenience. It should
be noted that the exact choice of MS,V does not matter as they drop out. However, the
exact LQ masses do enter into the calculation such that for leptoquark masses which
are about the same order of magnitude one can choose MS,V such that it represents the
supression factor. Looking at Eq. (4.64) and Eq. (4.65), there is a priori no reason from,
e.g., naturalness arguments why any of the low energy coefficients αI and εI should be
suppressed or enhanced compared to the others. However, if the LQ interactions arise
from a more complete model, hierarchical structures might appear. We will therefore
study different settings in which some couplings dominate over the others.
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Figure 4.13.: Half-life ratios resulting from different leptoquark settings when taking 76Ge
as the reference isotope. The ratios are compared to the standard mass
mechanism.

From Eq. (4.63) we can match the Wilson coefficients in Eq. (4.64) and Eq. (4.65) onto
the C-basis and find

C
(6)
SL =

v2

M2
V

εV

C
(6)
SR =

v2

M2
S

εS

C
(6)
V L =

√
2v2

(
αLS
M2
S

+
αLV
M2
V

)
C

(6)
V R = −v2

(
αRS
M2
S

+
αRV
M2
V

)
.

(4.67)

We study 7 different settings of LQ contributions to 0νββ:

1. Full LQ Model: εS = εV = αLS = αRS = αLV = αRV = 1

2. Scalar LQs (S): εS = αLS = αRS = 1

3. Scalar LQs coupling to LH fermions (SL): αLS = 1

4. Scalar LQs coupling to RH fermions (SR): αRS = 1
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Figure 4.14.: Angular correlation coefficients (upper right) and single electron spectra
(lower left) resulting from the different LQ contributions.

5. Vector LQs (V): εV = αLV = αRV = 1

6. Vector LQs coupling to LH fermions (VL): αLV = 1

7. Vector LQs coupling to RH fermions (VR): αRV = 1

The resulting ratios normalized to the neutrino mass mechanism for each of the above
cases are shown in Figure 4.13. The corresponding single electron spectra and angular
correlation coefficients can be seen in Figure 4.14. We can see that distinguishability
between scalar and vector LQs is only given if couplings to both left- and right-handed
fermions are realized while distinguishability between leptoquarks coupling to left- or
right-handed fermions is also possible.
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5. Summary and Conclusions

In this thesis, we studied possibilities to distinguish and identify different mechanisms of
0νββ-decay. We focused our efforts mainly towards low-energy 0νββ-decay experiments
but also shortly covered complementary high-energy collider experiments. To include
all possible 0νββ mechanisms we utilized a low-energy effective field theory framework
designed by [74] that contains a basis of 32 independent LEFT operators.
Studying the observables that can in principle be extracted from 0νββ-decay experi-
ments we found that one can organize these 32 different operators into 11 groups that
are theoretically distinguishable from each other. To arrive at these 11 operator groups
we assumed the NDA values for the unknown LECs. First we studied the impact of the
different operators onto the phase space observables, i.e., the single electron spectrum as
well as the angular correlation coefficient shown in Figure 4.2 and found that in principle
one can distinguish 4 different groups of operators via these observables. Afterwards we
turned towards studying how well different operator groups can be distinguished from
each other utilizing half-life measurements in different isotopes. This approach resulted
in the aforementioned 11 distinguishable groups. In Figure 4.6 we show the maximum
half-life ratios and the corresponding combination of isotopes. We calculated these once
setting the unknown LECs to 0 while keeping gNN1,6,7 = gπNV = g̃πNV = 1 such that we do
not omit contributions from the short-range vector operators and once setting the un-
known LECs to their NDA values. The different choices mostly affect the contributions
from short-range mechanisms. Next, from the results shown in Figure 4.6 we determined
the experimental accuracy on the half-life measurement that is necessary to identify dif-
ferent operators at 1σ. The results are shown in Table 4.3. Again, we studied both
LEC settings. Interestingly, we found that in both settings the mass mechanism can be
identified or rejected at the 1σ level if the necessary accuracy of 5σ on the half-life of
0νββ is reached. Therefore, given the observation of 0νββ in the corresponding isotopes
one can already see whether the mass mechanism is indeed the leading order mechanism
or if some non-standard mechanism gives the leading order contribution.
While these findings encourage measurements in many different isotopes, we do not find
measurements of different 0νββ modes to be very promising as they are typically ex-
pected to be highly suppressed.
We want to emphasize that while our findings should be qualitatively profound, especially
for the short-range mechanism a precise knowledge of the currently unknown LECs is
necessary if one wants to exactly predict quantitative half-life ratios. Additionally, bet-
ter knowledge of the currently unknown LECs could enable us to distinguish between
different short-range vector operators, increasing the number of operator groups that are
distinguishable via 0νββ experiments to 12. Therefore, this work should be viewed as a
motivation towards calculating these within lattice QCD.
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Within our calculations we ignored uncertainties coming from the choice of the NME
calculation method as it is currently not possible to set strict errorbars. However, while
different calculation methods can lead to NMEs differing by factors of 2−3 the difference
of the ratios of NMEs are oftentimes smaller as one can expect that systematic errors
cancel. Additionally, as ab initio methods will become more feasible also for heavier
nuclei the uncertainty on the NMEs should become considerably smaller while it can
become possible to safely quantify uncertainties in the NME calculation.
In the best case scenario we will observe lepton number violation in both 0νββ exper-
iments as well as within collider experiments. Assuming the currently unknown LECs
will allow us to distinguish the maximum of 12 operator groups within 0νββ experi-
ments, one can additionally distinguish between operators of the same quark current but
different lepton current structure using collider data. This would result in 17 different
distinguishable operator groups.
In the last part of this work we applied the above methods onto full models rather than
just single operators and compared them to the standard mass mechanism. While the
assumption of a single operator dominance can be realized in full models such as, e.g., the
mLRSM with vanishing mββ < 10 meV, this does not necessarily hold for every model or
parameter setting. Here we studied three different types of models, mLRSM, ��Rp-SUSY
and Leptoquarks. The obtained ratios are shown in Figures 4.8, 4.11 and 4.13. Of course
one cannot hope to clearly identify a full BSM model utilizing only 0νββ-decay experi-
ments as many different high-energy models can result in the same low-energy effective
theory. However, measuring and comparing the expected decay rate ratios can still help
to reject certain models or parameter sets. Additionally, all three models that we studied
can in principle be distinguished from the mass mechanism.1

In this work we only considered new-physics beyond the weak scale. However, especially
the presence of light2 right-handed sterile neutrinos is a notable exception that we do
not cover by this approach. The impact of which has recently been studied by Dekens
et al. [110] and should also be included in a future work. Especially masses around the
scale of momentum transfer ∼ 100 MeV could be interesting as resonances might appear.

1That is except parameter settings for the mLRSM in which the mass mechanism gave the dominant
contribution.

2, i.e., that are dynamical also at the LEFT scale
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A. Basis Translation

A.1. Fierz Tranformations

Fierz transformations [111, 112] give a relation between fermion quadrilinears of different
Lorentz structures. Defining

eS(1234) = [ω1ω2] [ω3ω4] (A.1)
eV (1234) = [ω1γ

µω2] [ω3γµω4] (A.2)
eT (1234) = [ω1σµνω2] [ω3σ

µνω4] (A.3)
eA(1234) = [ω1γ

µγ5ω2] [ω3γµγ5ω4] (A.4)
eP (1234) = [ω1γ5ω2] [ω3γ5ω4] (A.5)

where Ψi are anti-commuting dirac spinors and with

σµν =
i

2
[γµ, γν ] (A.6)

the standard Fierz transformation gives a relation of the form

eI(1234) =

P∑
J=S

FIJeJ(1432) (A.7)

with

F =


−1

4 −1
4 −1

8
1
4 −1

4
−1 1

2 0 1
2 1

−3 0 1
2 0 −3

1 1
2 0 1

2 −1
−1

4
1
4 −1

8 −1
4 −1

4

 . (A.8)

A.2. Basis translation ε←→ C

Even though they are equal in some parts, in order to correctly translate the ε-basis into
the C-basis one needs to consider a few steps:
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1.: The prefactors of the two descriptions differ by a factor of

Lε9 =
G2
F

2mN
...

=
1

4v4mN
...

=
1

v5

v

4mN
... .

Additionally, the chiral fermion currents in the ε-basis are defined by

Ψ(1± γ5)Ψ = Ψ2PR,LΨ (A.9)

= 2ΨLΨR . (A.10)

Thus, for every chiral fermion current there is a factor of 2 which has to be taken into
account.

2.: The ε-basis contains quark tensor currents. Instead, the C-basis contains color-octet
operators. These are related via Fierz transformations. One can express the color-octet
operators as a mixture of two terms[

uλAd
] [
uλAd

]
= 2uαdβuβdα − 2

3
uαdαuβdβ (A.11)

where α, β are color indices. To get rid of the tensor currents within the ε-basis one needs
the following Fierz transformation[

Ψ1σ
µνΨ2

][
Ψ3σµνΨ4

]
=− 3

[
Ψ1Ψ4

][
Ψ3Ψ2

]
+

1

2

[
Ψ1σ

µνΨ4

][
Ψ3σµνΨ2

]
− 3
[
Ψ1γ5Ψ4

][
Ψ3γ5Ψ2

]
=− 3

([
Ψ1Ψ4

][
Ψ3Ψ2

]
+
[
Ψ1γ5Ψ4

][
Ψ3γ5Ψ2

])
+

1

2

(
− 3
[
Ψ1Ψ2

][
Ψ3Ψ4

]
+

1

2

[
Ψ1σ

µνΨ2

][
Ψ3σµνΨ4

]
− 3
[
Ψ1γ5Ψ2

][
Ψ3γ5Ψ4

])
(A.12)

which results in [
Ψ1σ

µνΨ2

][
Ψ3σµνΨ4

]
=− 4

[
Ψ1Ψ4

][
Ψ3Ψ2

]
− 4
[
Ψ1γ5Ψ4

][
Ψ3γ5Ψ2

]
− 2
[
Ψ1Ψ2

][
Ψ3Ψ4

]
− 2
[
Ψ1γ5Ψ2

][
Ψ3γ5Ψ4

]
.

(A.13)
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Plugging in chiral fermion currents one finds[
Ψ1R,Lσ

µνΨ2L,R

][
Ψ3R,LσµνΨ4L,R

]
= −8

[
Ψ1R,LΨ4L,R

][
Ψ3R,LΨ2L,R

]
− 4
[
Ψ1R,LΨ2L,R

][
Ψ3R,LΨ4L,R

] (A.14)

and [
Ψ1R,Lσ

µνΨ2L,R

][
Ψ3L,RσµνΨ4R,L

]
= 0 (A.15)

With the help of the above relation we can match operators of the type ε2JµνJµνj e.g.

εLLL2

[
uαRσ

µνdαL

] [
uβRσµνd

β
L

]
eLe

c
L

=εLLL2

(
− 8
[
uαRd

β
L

] [
uβRd

α
L

]
− 4
[
uαRd

α
L

] [
uβRd

β
L

])
eLe

c
L

=εLLL2

(
− 8O3 − 4O2

)
eLe

c
L .

(A.16)

Operators with different chiralities can be transformed accordingly. The remaining oper-
ators in the ε-basis which contain tensor currents are of the form ε4J

µJµνj
ν . Obviously,

we cannot use the same trick here again to get rid of the tensor current. Instead, we
have to treat the tensor current as a combination of two vector currents

JµJµν = Ψ1γ
µΨ2Ψ3σµνΨ4

=
i

2

[
Ψ1γ

µΨ2Ψ3γµγνΨ4 −Ψ1γ
µΨ2Ψ3γνγµΨ4

]
=
i

2

[
2Ψ1γ

µΨ2Ψ3γµγνΨ4 − 2Ψ1γ
µΨ2Ψ3gµνΨ4

]
= i

[
Ψ1γ

µΨ2Ψ3γµ

(
γνΨ4

)
−Ψ1γνΨ2Ψ3Ψ4

]
= i

[
−Ψ1

(
γνΨ4

)
Ψ3Ψ2

+
1

2
Ψ1γµ

(
γνΨ4

)
Ψ3γ

µΨ2

+
1

2
Ψ1γµγ5

(
γνΨ4

)
Ψ3γ

µγ5Ψ2

+ Ψ1γ5

(
γνΨ4

)
Ψ3γ5Ψ2

−Ψ1γνΨ2Ψ3Ψ4

]
= i

{
−2Ψ1γνΨ4Ψ3Ψ2 −Ψ1γνΨ2Ψ3Ψ4 for LLX and RRX

Ψ1γ
µΨ2Ψ3γµγνΨ4 −Ψ1γνΨ2Ψ3Ψ4 for LRX and RLX

(A.17)

97



with

γµγν = −γνγµ + 2gµν (A.18)

If we switch the step from line 2 to line 3 to

i

2

[
Ψ1γ

µΨ2Ψ3γµγνΨ4 −Ψ1γ
µΨ2Ψ3γνγµΨ4

]
=
i

2

[
− 2Ψ1γ

µΨ2

(
Ψ3γν

)
γµΨ4 + 2Ψ1γ

µΨ2Ψ3gµνΨ4

]
.

.

.

=i

{
Ψ1γνΨ2Ψ3Ψ4 −Ψ1γ

µΨ4Ψ3γνγµΨ2 for LLX and RRX
Ψ1γνΨ2Ψ3Ψ4 + 2Ψ1Ψ4Ψ3γνΨ2 for LRX and RLX

(A.19)

we finally get

JµJµν = Ψ1γ
µΨ2Ψ3σµνΨ4

= i

{
−2Ψ1γνΨ4Ψ3Ψ2 −Ψ1γνΨ2Ψ3Ψ4 for LLX and RRX
Ψ1γνΨ2Ψ3Ψ4 + 2Ψ1Ψ4Ψ3γνΨ2 for LRX and RLX

(A.20)

We can then use the above relation to get rid of the remaining tensor currents e.g.

εLL4 JµLJµνLj
ν
L = εLL4

[
uαLγ

µdαL

] [
uβRσµνd

β
L

]
eγµγ5e

c

= εLL4

(
− 2i

[
uαLγνd

β
L

] [
uβRd

α
L

]
− i
[
uαLγνd

α
L

] [
uβRd

β
L

])
eγµγ5e

c

= iεLL4

(
−
[
uLλ

AγνdL

] [
uRλ

AdL

]
− 5

3

[
uαLγνd

α
L

] [
uβRd

β
L)
])
eγµγ5e

c

= iεLL4

(
−Oµ9 −

5

3
Oµ8
)
eγµγ5e

c

(A.21)

Again, similar operators with different chiralities can be transformed accordingly.
The translation of the remaining operators which do not contain tensor currents is
straight-forward.

B. Phase Space Factors - Trace
calculations

When taking the absolute square of (3.136), the 5 different lepton currents result in 11
different trace calculations. To calculate these one needs the relations given in (3.81)
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plus some additional relations concering traces of γ5. For convenience we summarize all
the necessary relations and trace identities including the ones from (3.81)

Tr{ABC} = Tr{CAB} = Tr{BCA} (Cyclic Permutation)
Tr{A+B} = Tr{A}+ Tr{B}∑

spins u(p)u(p) = �p+me∑
spins u

c(p)uc(p) = �p−me

}
(Completeness relation)

Tr{γµ} = 0
Tr{γµγ5} = 0

}
(Trace of odd number of γµ vanishes)

Tr{γ5} = Tr{γµγνγ5} = 0

Tr{γµγνγργσγ5} = −4iεµνρσ

Tr{γµγν} = 4gµν

Tr{γµγνγργσ} = 4 (gµνgρσ − gµρgνσ + gµσgνρ)

(γ5)2 = 1

{γ5, γ
µ} = 0

(B.1)

where εµνρσ is the anti-symmetric Levi-Civita tensor. Using these relations the lepton
current traces can be calculated which leads to

Tr
{
|u1u

c
2|

2
}

= 4
(
E1E2 − ~p1 · ~p2 −m2

e

)
Tr
{
|u1PR,Lu

c
2|

2
}

= 2 (E1E2 − ~p1 · ~p2)(
E1 − E2

me

)2

Tr
{
|u1γ0u

c
2|

2
}

= 4
(
E1E2 + ~p1 · ~p2 −m2

e

)
Tr
{
|u1γ0γ5u

c
2|

2
}

= 4
(
E1E2 + ~p1 · ~p2 +m2

e

)
(B.2)

for the simple squared currents and

Tr
{

[u1PR,Lu
c
2]
[
uc2u1

]}
=

1

2
Tr
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2
}

= 2
(
E1E2 − ~p1 · ~p2 −m2

e
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{
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[
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]}
=

1

2
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2
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− Tr
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e
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me
Tr
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[
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Tr
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me
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me
Tr
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[u1PR,Lu
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me
Tr
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[
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Tr
{
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c
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[
uc2γ0γ5u1

]}
= 0

(B.3)
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B. Phase Space Factors - Trace calculations

for the mixed currents. In the above formulas we used the abbreviation

u1,2 = u (p1,2) . (B.4)

We see that, while many different traces appear, there are actually only 6 independent
results.
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