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1 Introduction

The statistically sound treatment of modeled uncertainties in simulations comes with significant ad-
ditional computational costs. Since a deterministic model can already be arbitrarily complex, the
computation of statistics for general problems may soon become infeasible unless some kind of model
reduction is involved.

In this work, we propose a multidimensional Galerkin POD that can simultaneously and optimally
reduces the physical dimensions of the model and the dimensions related to the uncertainties.

For the quantification of uncertainties in PDE models and their numerical discretization, one may
distinguish two categories of solvers [18] – sampling based methods, notably the Monte-Carlo method,
and Galerkin-type projection methods. In this work, we focus on the latter. For a basic explanation
and relevant references on the Monte-Carlo method and its extensions see [18], for an application in
elliptic PDEs see [8], and for a combination with stochastic collocation and tensor techniques see [13].

Galerkin-type methods for solving PDEs with uncertainties are also referred to as spectral stochastic
methods and base on a polynomial chaos expansion (PCE) of the candidate solution. If the involved
random variable is univariate, this means that the solution is formally expanded in a space of univariate
polynomials. These additional degrees of freedom then, via a Galerkin projection with respect to a
measure that encodes the statistical properties of the involved uncertainty, fix the uncertainty in the
solution. If the involved randomness is multivariate, multivariate polynomials are used to resolve the
uncertainty. Since every dimension of the multivariation adds a dimension to the problem, a numerical
discretization quickly becomes infeasible in terms of memory requirements, even if the dimensions are
treated independent of each other.

Several approaches to overcome this complexity have been proposed like sparse grids [11], con-
struction of reduced chaos expansions via, say, Proper Generalized Decomposition [16,19] or Principal
Component Analysis or Karhunen-Loève expansions [1,2,7], or the use of tensor formats to reduce or
to handle the data more efficiently [3, 6, 14,20].

The proposed approach develops a reduction method for tensorized PCE approximations. For a given
PCE, we define bases both for the spatial and the uncertainty dimensions that optimally represent the
data. These generated low-dimensional bases drastically reduce the overall dimension and can be used
for efficient uncertainty quantification and, perspectively, for optimal control of systems with uncertain
parameters.

Finding optimal representations for the dimensions is comparable to identifying low-rank tensor
structures for the data, as it has been treated in [3, 6, 12, 14, 15]. In contrast to these works, where a
predefined structure is adaptively filled to approximate the solution, we take a given, possibly high-
dimensional data set, and reduce it. The justification of this top-down approach is that the obtained
reduction is optimally fitted to the given problem so that it can be used for further efficient explorations
– mainly because this approach admits a direct interpretation of the bases for Galerkin discretizations.
This relation to Galerkin projections defines the common ground with the PGD approaches [16], where
optimal bases are construction in an adaptive bottom-up fashion.

Most similar to our approach is the work [1] on reduced chaos expansions of coupled systems, where,
basically, a Galerkin POD approach is used for two uncertainty dimensions. There, the authors start
with a PCE of bivariate random coefficient and obtain optimal bases via the left and right eigenvectors
of a generalized eigenvalue problem involving a covariance matrix and a mass matrix. This approach
via the eigenvectors of a covariance matrix is one way to define a POD basis (see, e.g., [17]) while
the inclusion of the mass matrix provides optimality in the relevant discrete function spaces; see [5].
Our approach extends the scope of this work by introducing the tensorized formulation that allows for
reduction of multivariate uncertainties together with the spatial dimension in one framework.

The paper is organized as follows. In Section 2, we review the space-time Galerkin POD approach
and how it extends to problems with an uncertainty dimension. Then we formulate the Galerkin POD
for a product space of arbitrary dimensions and provide the POD compression algorithms and results.
Next, in Section 3, we show that a PCE discretization exactly fits into this multidimensional Galerkin
POD framework. In Section 4, we illustrate the use of the PCE and its POD reduction for a generic
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linear convection diffusion PDE. Finally, in Section 5 we provide a numerical example that shows the
applicability and efficiency of this approach and show that a naive POD reduction based on random
snapshots is not useful for PDEs with uncertain parameters.

2 Multidimensional Galerkin POD

In our previous work [4], we introduced space-time Galerkin POD. The idea of locating space and time
dependent functions

x ∈ L2((0, T );L2(Ω)) : (0, T )× Ω 7→ R,

that, e.g., solve a partial differential equation, in the space-time product space

L2((0, T )) · L2(Ω)

naturally extends to functions that depend on space, time and a random parameter α

xα ∈ L2((0, T );L2(Ω)) : (0, T )× Ω 7→ R

in the space-time-uncertainty product space

L2((0, T )) · L2(Ω) · L2(Γ,Pα),

where Γ is the domain of the random parameter and P is the associated probability measure; see, e.g.,
[12] where stationary problems are treated in this setup.

Also, the approach of considering the approximation in the product of the discrete spatial Y ⊂ L2(Ω)
and time S ⊂ L2((0, T )) spaces extends to approximating xα in

S · Y · W,

where W is the finite dimensional space that models a polynomial chaos expansion of L2(Γ,Pα).
And, finally one may approximate a function x via its orthogonal projection onto Ŝ · Ŷ · Ŵ, where

Ŷ ⊂ Y, Ŝ ⊂ S, and Ŵ ⊂ W

were chosen optimally with respect to x for given dimensions of the subspaces.
We provide a general formulation of the product spaces, their discretization, and their optimal

low-dimensional approximation. For i = 1, 2, . . . , N , let

Vi := span{ψ1
i , ψ

2
i , . . . , ψ

di
i }

be di dimensional Hilbert spaces with inner product
(
·, ·
)
Vi

and mass matrix

MVi =
[(
ψki , ψ

`
i

)
Vi

]
i=1,...,di,`=1,...,di

∈ Rdi,di .

We will use the formal vector of the basis functions

Ψi =


ψ1
i

ψ2
i
...

ψdii ,

 (1)

to write, e.g.,
MVi =

(
Ψi,Ψ

T
i

)
Vi
,
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via applying the functional
(
·, ·
)

: ψ`iψ
k
i 7→

(
ψ`i , ψ

k
i

)
pointwise to the entries of the formal matrix ΨiΨ

T
i .

Finally, let LVi ∈ Rdi,di be a factor such that

MVi = LViL
T
Vi .

We consider the product space

V =

N∏
i=1

Vi

of spaces of square integrable functions with the inner product(
y, z
)
V =

∫ ∫
· · ·
∫
yizi d1 d2 · · · dN ,

where di denotes the measure associated with Vi.
We represent a function x ∈ V via

x =

d1∑
k1=1

d2∑
k2=1

· · ·
dN∑
kN=1

xk1k2···kNψk11 ψk22 · · ·ψ
kN
N

or, equivalently, via the N -dimensional tensor of the coefficients

X =
[
xk1k2···kN

]
.

Note that
x = vec(X)T

[
ΨN ⊗ · · · ⊗Ψ2 ⊗Ψ1

]
. (2)

Theorem 2.1. For a function x ∈ V with its representation X as in (2), one has

‖x‖2V =

∫ ∫
· · ·
∫
x2 d1 d2 · · · dN

= ‖LT
V1X

(1)
[
LVN ⊗ · · · ⊗ LV2

]
‖2F ,

where X(1) is the mode-1 matricization of the coefficient tensor X.

Proof. We use the properties of the Kronecker -product ⊗, the µ-mode tensor product ◦µ, the vector-
ization operator vec, and the µ-mode matricization operator ·(µ) to directly compute

‖x‖2V =

∫ ∫
· · ·
∫
x2 d1 d2 · · · dN

= vec(X)T
∫ ∫

· · ·
∫ [

ΨNΨT
N ⊗ · · · ⊗Ψ2ΨT

2 ⊗Ψ1ΨT
1

]
d1 d2 · · · dN vec(X)

= vec(X)T
[
MVN ⊗ · · · ⊗MV2 ⊗MV1

]
vec(X)

= ‖
[
LT
VN ⊗ · · · ⊗ LT

V2 ⊗ LT
V1
]

vec(X)‖22
= ‖
[
LT
VN ⊗ · · · ⊗ LT

V2 ⊗ I
][
I ⊗ · · · ⊗ I ⊗ LT

V1
]

vec(X)‖22
= ‖
[
LT
VN ⊗ · · · ⊗ LT

V2 ⊗ I
]

vec(LT
V1 ◦1 X)‖22

= ‖ vec
([

LT
VN ⊗ · · · ⊗ LT

V2
]
◦2 (LT

V1 ◦1 X)
)
‖22

= ‖
[
LT
VN ⊗ · · · ⊗ LT

V2
]
◦2 (LT

V1 ◦1 X)‖2F
= ‖(LT

V1 ◦1 X)(1)
[
LVN ⊗ · · · ⊗ LV2

]
‖2F

= ‖LT
V1X

(1)
[
LVN ⊗ · · · ⊗ LV2

]
‖2F .
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By permutations of the tensor X, the dimension associated with any Vi can take the role of the
first dimension with LV1 in the formula of Theorem 2.1. To avoid technicalities, we will consider
permutations that simply cycle through the dimensions. Therefore, we introduce the operator that
permutes a tensor

Π: X ∈ Rd1,d2,...,dN 7→ Π X ∈ Rd2,...,dN ,d1

via [
(Π x)k1k2···kN

]
=
[
xk2···kNk1

]
.

Note that ΠN X = X and that, for matrices M (where N = 2), it holds that Π M = MT.

Corollary 2.2 (of Theorem 2.1). For any i ∈ {1, . . . , N}, the norm of x ∈ V can be expressed as

‖x‖2V = ‖LT
Vi(Π

i−1 X)(1)
[
LVi−1

⊗ · · · ⊗ LV1 ⊗ LVN ⊗ · · · ⊗ LVi+1

]
‖2F ,

with the convention that LVi−1 ⊗ · · · ⊗ LV1 is void for i = 1 as is LVN ⊗ · · · ⊗ LVi+1 for i = N .

With these expressions for the norm of the function x ∈ V related to a tensor X via (2), we
can provide an interpretation of the higher-order singular value decomposition [9] in terms of low-
dimensional space discretizations as it is the backbone of the POD.

Theorem 2.3. Given x ∈ V. For any i ∈ {1, . . . , N} and for a corresponding d̂i ≤ di, the space
spanned by

Ψ̂i =


ψ̂1
i

ψ̂2
i
...

ψ̂d̂ii

 := V T
i,d̂i

L−1
Vi


ψ1
i

ψ2
i
...

ψdii

 = V T
i,d̂i

L−1
Vi Ψi,

where Vi,d̂i is the matrix of the d̂i leading left singular vectors of

LT
Vi(Π

i−1 X)(1)
[
LVi−1

⊗ · · · ⊗ LV1 ⊗ LVN ⊗ · · · ⊗ LVi+1

]
,

optimally approximates Vi in the sense that x is best approximated in

V1 · V2 · · · Vi−1 · V̂i · Vi+1 · · · VN

in the V-norm over all subspaces of Vi of dimension d̂i.

Proof. For i = 1, the claim follows directly from [4, Lem. 2.5] with considering V1 · W, and W :=
V2 · V2 · · · VN . For any other i, one can apply Corollary 2.2 first.

For the overall projection error between x and its projection x̂ onto

V̂1 · V̂2 · · · · · V̂N

with V̂i of dimension d̂i as defined in Theorem 2.3, one has that

‖x− x̂‖2V ≤
d1∑

k1=d̂1+1

σ
(1)
k1

2
+

d2∑
k2=d̂2+1

σ
(2)
k2

2
+ · · ·+

dN∑
kN=d̂N+1

σ
(N)
kN

2
, (3)

where σ
(i)
k is the k-th singular value of X(i) as they appear in the SVD for the definition of V̂i.

The estimate (3) follows directly from [9, Eqn. (24)] if one takes into account the scalings by the
factors of the mass matrices. Note that while a single Vi is optimally approximated by V̂i by virtue
of Theorem 2.3, the approximation of V by

∏N
i=1 V̂i might not be optimal in the same sense; see the

discussion in [9, p. 1267].
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3 Polynomial Chaos Expansion as Product Space

Let
α =

(
α1, α2, . . . , αN

)
be a tuple of random variables αi that take on values in a domain Γi ⊂ R and that are distributed
according to a probability measure dPαi

. If ỹ is a function that depends on α, that for every realization
of α takes on values in a Hilbert space, say, L2(Ω) for a domain Ω in R2 or R3, and that has a bounded
variance with respect to α, one may approximate ỹ by a suitable

y ∈ L2(Ω) · L2(Γ1; dP1) · L2(Γ2; dP2) · · · · · L2(ΓN ; dPN ). (4)

Note that y is a random variable and that the expected value Ey ∈ L2(Ω) of y is defined as

Ey =

∫
ΓN

· · ·
∫

Γ2

∫
Γ1

y dP1 dP2 · · · dPN .

A finite dimensional approximation y to ỹ can be sought in

V = V0 · V1 · V2 · · · · · VN (5)

where V0 ⊂ L2(Ω) is a Finite Element space and where, for i = 1, . . . , N , Vi is a finite dimensional sub-
space of L2(Γi; dPi) derived from a Polynomial Chaos Expansion. Here we will consider di-dimensional
spaces

Vi = span{ψ1
i , ψ

2
i , . . . , ψ

di
i },

with ψki being the Lagrange polynomials of degree di − 1 defined through the distinct nodes

{α1
i , α

2
i , . . . , α

di
i } ⊂ Γi.

As for the nodes, we choose the Gaussian quadrature nodes with respect to the measure dPi; see [10]
for formulas and algorithms. With the corresponding quadrature weights

{w1
i , w

2
i , . . . , w

di
i } ⊂ Rdi ,

the quadrature formula ∫
Γi

z(α) dPi ≈
di∑
k=1

wki z(α
k
i ) (6)

is exact for polynomials up to degree 2di − 1. By virtue of this exactness, and since the Lagrange
polynomials are orthogonal and fulfill ψki (αji ) = 1 if k = j and ψki (αji ) = 0 if k 6= j, for the mass matrix
MVi , one has that

MVi =

∫
Γi

ΨiΨ
T
i dPi =


w1
i

w2
i

. . .

wdii

 .

4 Application Example

For a domain Ω ⊂ Rd, with d = 2 or d = 3, for a given-right hand side f ∈ L2(Ω) and a given vector
field b ∈ [L2(Ω)]d, we consider the generic convection-diffusion problem

b · ∇y −∇ · (κα∇y) = f, (7)

where we assume that the diffusivity coefficient depends on a random vector α = (α1, . . . , αN ).
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For the derivation, we assume homogeneous Dirichlet conditions or homogeneous Neumann condi-
tions for the boundary. Nonzero boundary conditions can be included in standard ways.

If, for given f and b, system (7) has a solution y for any realization of α, then y itself can be seen
as a random variable depending on α.

As in standard finite element approaches, for every realization α, we locate the corresponding solution
yα in H1

0 (Ω) and require (7) to hold in the weak sense, namely∫
Ω

v(x)b(x) · ∇yα(x) + κα∇v(x) · ∇yα(x) dx =

∫
Ω

v(x)f(x) dx (8)

for all v ∈ H1
0 (Ω).

To account for the uncertainty, we assume the solution in the product space of the space variable
and the uncertainty dimensions as in (4) and require (8) to hold in expectation, i.e.

∫
ΓN

· · ·
∫

Γ2

∫
Γ1

∫
Ω

vb · ∇y + κα∇v · ∇y dx dP1 dP2 · · · dPN =∫
ΓN

· · ·
∫

Γ2

∫
Γ1

∫
Ω

vf dx dP1 dP2 · · · dPN ,
(9)

where now v is a trial function from the ansatz space

H1
0 (Ω) · L2(Γ1; dP1) · L2(Γ2; dP2) · · · · · L2(ΓN ; dPN ).

We may cluster the uncertainty dimensions Γi into Γ and write∫
Γ

v(α) dP instead of

∫
ΓN

· · ·
∫

Γ2

∫
Γ1

v(α1, . . . , αN ) dP1 dP2 · · · dPN .

For a finite dimensional approximation, let the FEM space V0 be spanned by Ψ0 (compare (1)) and
let Aα ∈ Rd0,d0 be the discrete convection/diffusion operator:

Aα =

∫
Ω

Ψ0(b · ∇ΨT
0 −∇ · κα∇ΨT

0 ) dx =

∫
Ω

Ψ0b · ∇ΨT
0 + κα∇Ψo · ∇ΨT

0 dx,

where the products and the application of the differential operators are understood component-wise.
To save space in the formal derivation of the equations that include the Polynomial Chaos Expansions

we will formally use the strong differential operator

aα : y 7→ b · ∇y −∇ · (κα∇y).

With that, with discrete ansatz spaces as in (5), and with the ansatz for the solution

y = vec(Y)T
[
ΨN ⊗ · · · ⊗Ψ1 ⊗Ψ0

]
=
[
ΨT
N ⊗ · · · ⊗ΨT

1 ⊗ΨT
0

]
vec(Y), (10)

where Y is the tensor of coefficients (cp. (2)), Equation (9) is discretized as∫
Γ

∫
Ω

[
ΨN ⊗ · · · ⊗Ψ1 ⊗Ψ0

]
aαy dx dP =

∫
Γ

∫
Ω

[
ΨN ⊗ · · · ⊗Ψ1 ⊗Ψ0

]
f dx dP,
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where the left hand side, together with (10), becomes∫
Γ

∫
Ω

[
ΨN ⊗ · · · ⊗Ψ1 ⊗Ψ0

]
aα
[
ΨT
N ⊗ · · · ⊗ΨT

1 ⊗ΨT
0

]
dx dP vec(Y) =

=

∫
Γ

∫
Ω

[
ΨN ⊗ · · · ⊗Ψ1 ⊗Ψ0

][
ΨT
N ⊗ · · · ⊗ΨT

1 ⊗ aαΨT
0

]
dx dP vec(Y)

=

∫
Γ

∫
Ω

[
ΨNΨT

N ⊗ · · · ⊗Ψ1ΨT
1 ⊗Ψ0aαΨT

0

]
dx dP vec(Y)

=

∫
Γ

[
ΨNΨT

N ⊗ · · · ⊗Ψ1ΨT
1 ⊗

∫
Ω

Ψ0aαΨT
0 dx

]
dP vec(Y)

=

∫
ΓN

· · ·
∫

Γ2

∫
Γ1

[
ΨNΨT

N ⊗ · · · ⊗Ψ1ΨT
1 ⊗Aα

]
dP1 dP2 · · · dPN vec(Y)

(11)

thanks to the linearity of the involved differential operators and the Kronecker products.
Next we successively approximate the integrals with respect to the probability measures by the

corresponding quadrature rules (cp. (6)) to obtain∫
ΓN

· · ·
∫

Γ2

∫
Γ1

[
ΨNΨT

N ⊗ · · · ⊗Ψ1ΨT
1 ⊗Aα

]
dP1 dP2 · · · dPN vec(Y)

≈
∫

ΓN

· · ·
∫

Γ2

d1∑
k1=1

wk11

[
ΨNΨT

N ⊗ · · · ⊗Ψ1(αk11 )Ψ1(αk11 )T ⊗A
α

k1
1 ,...,αN

]
dP2 · · · dPN vec(Y).

Since the Lagrange polynomials are a nodal basis, it holds that for all i = 1, . . . , N , that Ψi(α
ki
i ) = eki ,

where eki ∈ Rdi is the ki-th canonical basis vector. Accordingly, the coefficient matrix for vec(Y)
becomes

dN∑
kN=1

· · ·
d2∑
k2=1

d1∑
k1=1

wkNN . . . wk22 wk11

[
ekN e

T
kN ⊗ · · · ⊗ ek2e

T
k2 ⊗ ek1e

T
k1 ⊗Aαk1

1 ,...,α
kN
N

]
,

which is a completely decoupled system for every combination (αk11 , . . . , α
kN
N ).

To derive the Galerkin POD reduced system, we replace Ψi by Ψ̂i, for i = 0, 1, . . . , N in (11). We
assume that the reduced bases were obtained as proposed by Theorem 2.3. The derivation, however,
works for any (reduced) basis.

For illustration, we consider the case N = 1, i.e., the spatial dimension and a univariate uncertainty.
Then, the reduced system coefficient matrix reads∫

Γ

∫
Ω

[
Ψ̂1Ψ̂T

1 ⊗ Ψ̂0aαΨ̂T
0

]
dx dP vec(Ŷ) =

=

∫
Γ

[
Ψ̂1Ψ̂T

1 ⊗
∫

Ω

Ψ̂0aαΨ̂T
0 dx

]
dP vec(Ŷ)

=

∫
Γ

[
Ψ̂1Ψ̂T

1 ⊗ Âα

]
dP vec(Ŷ)

=

d1∑
k1=1

wk11

[
Ψ̂1(αk11 )Ψ̂1(αk11 )T ⊗ Â

α
k1
1

]
vec(Ŷ).

(12)

Here, the operator Âα is the POD projection of Aα:

Âα = V T
0,d̂0

L−1
V0 AαL−TV0 V0,d̂0

,
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Figure 1: The subdomains and the boundary patch for the measurements.

whereas, for the given choice of Ψ1 and the weights wk11 , k1 = 1, . . . , d1, one has

wk11

[
Ψ̂1(αk11 )Ψ̂1(αk11 )T

]
= wk11 V T

1,d̂1
L−1
V1

[
Ψ̂1(αk11 )Ψ̂1(αk11 )T

]
L−TV1 V1,d̂1

= wk11 V T
1,d̂1

(
wk11

)−1/2
ek1e

T
k1

(
wk11

)−1/2
V1,d̂1

= V T
1,d̂1

ek1e
T
k1V1,d̂1

;

cp. Theorem 2.3. By orthonormality of the POD basis, one obtains that

d1∑
k1=1

wk11

[
Ψ̂1(αk11 )Ψ̂1(αk11 )T

]
= I;

see [4, Rem. 2.6], which, however, does not help when the terms are multiplied with the (non-constant)
Aα in (12). Accordingly, the reduced system does not decouple and, in this univariate case, requires

the solution of a d̂0 · d̂1-dimensional system.
The derivation of the general reduced multivariate systems goes along the same lines and results in

a possibly fully coupled system of dimension
∏N
j=0 d̂j which still can be prohibitively large. For these

cases, one may consider leaving a certain dimension, say ΓN , unreduced and rather solve dN systems
of size

∏N−1
j=0 d̂j . Using this idea recursively one can balance the number of systems and their size.

5 Numerical Example

Motivated by [12, Example 3.1], we consider a stationary convection diffusion problem as in (7) with
uncertainty in the conductivity coefficient.

As the geometrical setup, let Ω ⊂ R3 be a cylindrical domain of radius Ro = 1 without its core of
radius Ri = 0.4 that is subdivided into 4 subdomains Ωi, i = 1, 2, 3, 4, as illustrated in Figure 1.

To model the uncertainty in the conductivity coefficient κ, independently on each subdomain Ωi,
we assume κ to be a random variable of a random parameter αi via

κ
∣∣
Ωi

= κ̄+ αi

where κ̄ is a reference value, and write κ(α) to express the dependence on the random parameter.
In the presented example, we set κ̄ = 5 · 10−4 and let αi be uniformly distributed on

Γi = [−2 · 10−4, 2 · 10−4], for i = 1, 2, 3, 4.
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−0.1

−0.2

−0.26

−0.044

y

Figure 2: The solution y for ᾱ that is ν = 5 · 10−4.

0

−9.7 · 10−4

2.3 · 10−4
Error in Ey

Figure 3: The difference in Ey computed via the pce[5] and the POD approximation of dimension
k’=9 on the base of pce[2].
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Spatial DOFs Cy
∣∣
κ=4·10−4

56951 1.116582
72206 1.077443
90458 1.069372
127771 1.069769
154545 1.065885
192786 1.065997
237941 1.064628

Table 1: Computed Cy at κ = 4 · 10−4 versus the number of degrees of freedom for the spatial
discretization.

As for boundary conditions, we apply zero Dirichlet conditions at the bottom of the domain and
zero Neumann conditions elsewhere.

Without particular intentions, the convection b is chosen as

b(s1, s2, s3) =

 (s2
1 + s2

2 − 1)s2

−(s2
1 + s2

2 − 1)s1

s2
1 sin(2s3)


and the inhomogeneity as

f(s1, s2, s3) =

{
− sin(2πs1) sin(4πs2)s3(0.5− s3), for (s1, s2, s3) ∈ Ω1 ∪ Ω3,

0, for (s1, s2, s3) ∈ Ω2 ∪ Ω4;

see Figure 2 for a snapshot of the solution at κ(0) = κ̄.
Moreover, we use Cy defined as the spatially averaged value of y over a concentric annular ring of

diameter 0.1 that is aligned with the inner boundary at the top surface of the domain; see Figure 1
for the arrangement of the domain of observation.

The values of interest of this numerical study are the expected value E and the variance V of Cy
that we approximate by a PCE with various levels of refinement.

For the spatial discretization, we use continuous and piecewise linear finite elements on a discretiza-
tion of the domain by tetrahedra. Although the mesh is refined at the critical parts, namely the edges
of the domain and the surfaces where the observation is taken and the Dirichlet condition is applied, we
need about 150, 000 degrees of freedom for the spatial dimension to have a relative error with respect
to the finest considered discretization of less than 10−4; see Table 1.

In the experiments we used PCE with the same number of degrees of freedom pcedim for all uncer-
tainty dimensions and write pce[d] to refer to the PCE discretization of dimension d as well as the
expected value/variance of Cy based on this discretization. As can be seen in Table 2, for computing
the expected value/variance of Cy, convergence of the PCE discretization is achieved already for low
dimensions. However, although the computations are well parallelized, the computation times for the
moderate PCE discretizations are already in the order of days; see Table 2.

This gives motivation for the use of the Galerkin POD approach that, as we will prove, is capable to
improve the estimate of a coarse PCE discretization by one order of magnitude with little computational
overhead.

For that, we use the tensor of coefficients of the pce[2] discretization to compute a basis for the
space discretization that is optimal in terms of Theorem 2.3. We set up the reduced models of varying
size (which we denote by k’) and compare the computed differences to the expected value/variance of
pce[5] for various levels of PCE; see Table 3.

The distribution of the error of the POD approximation of the expected value of the variable y is
plotted in Figure 3.
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pcedim pce[.] runtime [s] difference to pce[5]

2 0.8809823/0.00897246 1248.45 −3.9 · 10−5/ −1.0 · 10−4

3 0.8810921/0.00908018 7097.21 7.1 · 10−5/ 9.8 · 10−6

4 0.8810151/0.00907037 20059.9 −6.0 · 10−6 /−4.2 · 10−7

5 0.8810211/0.00907079 49365.4 —

Table 2: The computed expected value/variance of Cy based on a PCE discretization, the runtime of
its computation, as well as the difference to the value of the finest computed discretization
versus the dimension of the PCE.

k’ pce[2] pce[3] pce[4] pce[5]

3 2.99 · 10−4 2.60 · 10−4 2.59 · 10−4 2.59 · 10−4

6 3.34 · 10−5 1.05 · 10−6 1.20 · 10−6 1.20 · 10−6

9 3.86 · 10−5 3.51 · 10−6 3.29 · 10−6 3.29 · 10−6

12 3.88 · 10−5 1.09 · 10−5 1.09 · 10−5 1.09 · 10−5

15 3.88 · 10−5 8.27 · 10−6 8.26 · 10−6 8.26 · 10−6

16 3.88 · 10−5 4.48 · 10−6 4.36 · 10−6 4.37 · 10−6

Table 3: Absolute value of the error in the POD approximation of ECy for various POD dimensions
of the spatial discretization and various PCE levels. The POD approximation is based on the
data of pce[2], i.e. 16 snapshots located at corresponding quadrature points.

Note that because PCE(2) leads to 24 = 16 snapshots, POD dimensions larger than 16 do not add
additional information to the reduced system; cp. also Table 7 where we tabulate the projection error
from the POD reduction as defined in (3).

We find that, for the expected value Ey, with k’=6 the reduced order model recovers the difference
between pce[2] and pce[5] and that for k’=15 and k’=16 and a pcedim that exceeds the training
data, the approximation error is in the order of finer PCE discretizations with the fine model, which
is about 6 · 10−6; compare Table 2 and Table 3.

As for the timings, we note that for these small POD dimensions, the effort for computing the POD
modes (around 5s) and evaluating the reduced models (around 0.5s) is negligible if compared to the
time to compute the data or even the evaluation of pce[5] with the full model; see Table 2.

These results show that with the multidimensional Galerkin-POD reduction, we can use the pce[2] data
to compute an approximation to the expected value that is more accurate than pce[4] in just a 1/16th
of the computational time (about 1253 vs. 20059.9 seconds.)

As for the approximation of the variance VCy, the Galerkin-POD reduced model (see Table 4
significantly improves the pce[2] approximation and almost reaches the accuracy of pce[3] in less
than 1/5 of the computational time (about 1253 vs. 7097 seconds.)

k’ pce[2] pce[3] pce[4] pce[5]

3 2.46 · 10−4 1.56 · 10−4 1.55 · 10−4 1.55 · 10−4

6 9.72 · 10−5 9.59 · 10−6 9.07 · 10−6 9.07 · 10−6

9 9.88 · 10−5 1.23 · 10−5 1.17 · 10−5 1.17 · 10−5

12 9.83 · 10−5 1.50 · 10−5 1.46 · 10−5 1.46 · 10−5

15 9.83 · 10−5 1.44 · 10−5 1.41 · 10−5 1.41 · 10−5

16 9.83 · 10−5 1.33 · 10−5 1.29 · 10−5 1.29 · 10−5

Table 4: Absolute value of the error in the POD approximation of the variance VCy for various POD
dimensions of the spatial discretization and various PCE levels. The POD approximation is
based on the data of pce[2], i.e. 16 snapshots located at corresponding quadrature points.
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k’ pce[2] pce[3] pce[4] pce[5]

3 1.3 · 10−4/2.4 · 10−4 1.9 · 10−4/2.0 · 10−4 1.9 · 10−4/2.0 · 10−4 1.9 · 10−4/2.0 · 10−4

6 2.9 · 10−4/4.2 · 10−5 2.3 · 10−4/9.2 · 10−5 2.2 · 10−4/9.2 · 10−5 2.2 · 10−4/9.2 · 10−5

9 8.3 · 10−5/8.2 · 10−5 1.3 · 10−4/1.3 · 10−4 1.3 · 10−4/1.5 · 10−4 1.3 · 10−4/1.5 · 10−4

12 9.1 · 10−5/2.4 · 10−5 3.3 · 10−5/5.5 · 10−5 3.2 · 10−5/6.2 · 10−5 3.2 · 10−5/1.0 · 10−4

15 1.2 · 10−5/1.1 · 10−5 5.3 · 10−6/5.0 · 10−5 4.7 · 10−6/7.0 · 10−5 4.7 · 10−6/7.3 · 10−5

16 2.6 · 10−5/2.5 · 10−5 2.5 · 10−5/4.7 · 10−5 1.4 · 10−5/4.3 · 10−5 7.3 · 10−6/3.8 · 10−5

Table 5: Absolute value of the error in the POD approximation of EαCy for various POD dimensions of
the spatial discretization based on 16 random snapshots (median value out of 5/10 realizations)

k’ pce[2] pce[3] pce[4] pce[5]

3 5.7 · 10−4/2.9 · 10−5 6.9 · 10−4/6.1 · 10−5 6.9 · 10−4/6.2 · 10−5 6.9 · 10−4/6.2 · 10−5

6 4.7 · 10−5/7.7 · 10−5 1.6 · 10−4/2.8 · 10−5 1.6 · 10−4/2.9 · 10−5 1.6 · 10−4/2.9 · 10−5

9 6.4 · 10−5/1.0 · 10−4 3.6 · 10−5/2.9 · 10−5 3.7 · 10−5/2.0 · 10−5 3.7 · 10−5/9.7 · 10−6

12 9.1 · 10−5/1.0 · 10−4 9.6 · 10−6/5.5 · 10−6 1.0 · 10−5/1.1 · 10−5 1.0 · 10−5/9.8 · 10−6

15 1.0 · 10−4/1.1 · 10−4 1.3 · 10−5/1.0 · 10−5 1.3 · 10−5/1.0 · 10−5 1.3 · 10−5/8.9 · 10−6

16 1.0 · 10−4/1.0 · 10−4 1.6 · 10−5/4.7 · 10−6 4.1 · 10−5/1.1 · 10−5 3.8 · 10−5/1.3 · 10−5

Table 6: Absolute value of the error in the POD approximation of the variance VαCy for various POD
dimensions of the spatial discretization based on 16 random snapshots (median value out of
5/10 realizations)

To illustrate the fundamental benefit of including the PCE expansion in the POD definition via
the product space approach, we investigate the approximation by reduced models based on random
snapshots. It turns out that, for the same number of snapshots as with the PCE approach, the
approximation errors may reach a similar level but slightly higher level as the snapshots based on
the PCE abscissae; see Table 5. However, the randomness in the snapshots makes the approximation
unreliable. In fact, the median of 10 samples gave a worse approximation than the median of 5 samples.
In the worse case, the error level is one order of magnitude above the error that is achieved with the
same effort via the PCE based reduction 2; see Table 2.

Interestingly, for the approximation of the variance VCy, the reduced model based on random
snapshots performs as well as the PCE based reduction; see Table 6.

Thus, we conclude that because of the randomness that is not compensated by an improved perfor-
mance, a POD based on random snapshots is not well suited to approximate a system with uncertain
coefficients.

This is also indicated by the behavior of the projection error that we quantify as follows. If
{y(αi)}i=1,...,k with ai = (αi1, α

i
2, α

i
3, α

i
4) is a realization of a set of snapshots, then the corresponding

k′ POD modes are the k′ leading left singular vectors of the matrix

LT
Y
[
y(α1) y(α2) · · · y(αk)

]
,

where LY is a Cholesky factor of the mass matrix MY of the finite element discretization; cp. The-
orem 2.3. Let those singular vectors be the columns of the matrix VY,k′ . Then the projection of the
snapshots reads

L−TY VY,k′V
T
Y,k′LY

[
y(α1) y(α2) · · · y(αk)

]
and the projection error in the estimated mean of Cy becomes

eCy;k,k′ :=
1

k
‖C[I − L−TY VY,k′V

T
Y,k′LY ]

[
y(α1) y(α2) · · · y(αk)

]
‖1. (13)

For the case of 16 random snapshots, unlike the PCE case tabulated in Table 7, the projection error
stagnates at the level of 10−10 (see Table 8) and only drops down to machine precision for k = k′,
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k’ 3 6 9 12 15 16

Projection error 5.1 · 10−6 3.1 · 10−8 3 · 10−9 9.5 · 10−12 3 · 10−14 2.4 · 10−15

Table 7: The projection error for varying dimension of the reduced space

k’ 3 6 9 12 15 16

eCy;16,k′ 5.96 · 10−6 1.1 · 10−7 1.88 · 10−8 3.99 · 10−9 2.34 · 10−10 3.1 · 10−15

eCy;80,k′ 5.94 · 10−6 8.34 · 10−8 4.03 · 10−8 1.37 · 10−8 8.99 · 10−9 8.37 · 10−9

Table 8: The projection error in the estimated mean as defined in (13) for k = 16 and k = 80 ran-
dom snapshots and for varying dimension k’ of the reduced space (median values out of 5
realizations).

where the projection becomes the identity. More random snapshots do not improve this situation; see
the lower row of Table 8 where we report the projection errors for 80 random snapshots. In fact, the
reduced models based on 80 random snapshots did not provide a measurable improvement over the
results displayed in Table 5 so that we do not report them here.

All numerical computations were parallelized in 16 threads and performed on a cluster computing
node with 2 Intel Xeon Silver 4110 CPUs with 2.10GHz, 2 · 8 virtual cores and 188GB RAM. The
reported timings are the minimum wall time out of 5 runs. The codes that set up, perform, and post
process the numerical examples as well as the raw data of the presented cases are available as laid out
in Figure 4.

6 Verification of the Approach

The presented numerical example showed that the proposed Galerkin-POD reduction leads to a sig-
nificant speedup and memory savings in the PCE approximation.

In order to verify the PCE approach for uncertainty quantification for convection-diffusion problems
as considered above, we present two illustrative examples that have similar dynamics but that allow
for an analytic expression of the expected values and variances as well as for extensive Monte Carlo
simulations for comparison.

The examples are motivated by the observation that for b = 0 in (7), the solution y to the discrete
problem is given as

y(α) = A−1
α f (14)

where Aα is the discrete Laplacian and f is the right hand side. For this problem and a given
observation operator C, the expected value of Cy is given as∫

Γ

CA−1
α f dPα

For the first example, we mimick the situation that the diffusion coefficient is constant in space
and dependent on a univariate distribution so that Aα = α1A and so that, for the solution y1(α1) =
1
α1

A−1
α f , the expected value reads

Ey1 =

∫
Γ

CA−1
α f dPα = C

∫
Γ1

1

α1
dPα1A

−1f,

which, for α1 being uniformly distributed on Γ1 = [α1, α1], becomes

Ey1 =
1

α1 − α1

∫ α1

α1

1

α
dαCA−1f.
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With the same arguments, the variance can be computed as

Vy1 =
1

α1 − α1

∫ α1

α1

1

α2
dα(CA−1f)2 − Ey2

1 .

Since C, A−1, and f are but constant factors, we can set them to 1 and the expected performance of
PCE or Monte Carlo for such a case can be analyzed by their performance in the numerical integration
of the integral

Ey1 =
1

α1 − α1

∫ α1

α1

1

α
dα or Vy1 =

1

α1 − α1

∫ α1

α1

1

α2
dα− Ey2

1 . (15)

For the second example, we set

α = (α1, α2), Aα =

[
α1 ε
ε α2

]
, f =

[
1
1

]
, C =

[
1 1

]
so that, with α1 as above and α2 being distributed uniformly on Γ2 = [α2, α2], the expected value and
the variance for the corresponding solution y2(α1, α2) read

Ey2 =
1

α1 − α1

1

α2 − α2

∫ α1

α1

∫ α2

α2

1

α1α2 − ε2
(α1 + α2 − 2ε) dα2 dα1 and

Vy2 =
1

α1 − α1

1

α2 − α2

∫ α1

α1

∫ α2

α2

[
1

α1α2 − ε2
(α1 + α2 − 2ε)

]2

dα2 dα1 − (Ey2)2.

(16)

This example simulates the case of a diffusion process with two compartments with different random
diffusion parameters and with a constant ε as the parameter of the coupling.

For the two examples (15) and (16), we use the parameters

α1 = α2 = 3 · 10−4, α1 = α2 = 7 · 10−4, ε = 1 · 10−4

and compute the reference values for the means and variances

Ey1 = 2118.24465097, Vy1 = 274944.360550, Ey2 = 3504.22709343, Vy2 = 261037.034256,

via evaluating the integrals with the help of a computer algebra package.
With the reference values at hand, we can estimate the approximation quality of the PCE and

MC simulations. The PCE simulation provides stable and quickly converging approximations of the
expected values and variances for the example problems; see Table 9 and Table 11. Opposed to that,
plain Monte Carlo simulations, show very slow convergence; see Table 10 and Table 12. In fact, for
example, for estimating the expected value Ey2 up to a relative error in the order of 10−5, it takes
1, 000, 000 Monte Carlo simulations or 16 simulations for the pce[4] approximation.

Since the numerical example of Section 5 has a similar structure as the two illustrative examples of
this section, we conclude that the proposed PCE discretization is well suited for this kind of multivariate
uncertainty quantification. Also, we note that a plain Monte Carlo simulation for verification purposes
is infeasible in the large-scale setup as in Section 5, where one single forward simulation lasts about
one minute.
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Method pce[3] pce[4] pce[5] pce[6]

Relative error for Ey1 −1.18 · 10−4 −5.24 · 10−6 −2.31 · 10−7 −1.01 · 10−8

Relative error for Vy1 −1.00 · 10−2 −6.21 · 10−4 −3.51 · 10−5 −1.88 · 10−6

Table 9: Approximation errors for the 1D problem (15) with PCE discretizations pce[N] with N degrees
of freedom in the uncertainty dimension.

Method mc[10,000] mc[100,000] mc[1,000,000]

Relative error for Ey1 4.01 · 10−4 −1.37 · 10−4 −9.35 · 10−5

Relative error for Vy1 2.36 · 10−3 1.82 · 10−3 4.21 · 10−4

Table 10: Approximation errors for the 1D problem (15) with Monte Carlo simulations mc[N] with N

simulations. (Median value out of 15 realizations).

7 Conclusion

The theory of multidimensional Galerkin POD naturally applies to problems with multivariate un-
certainties and can be made tractable for numerical experiments by exploiting the underlying tensor
structures. The multidimensional POD that includes Polynomial Chaos Expansions of the candidate
solutions lead to a significant efficiency gain in the uncertainty quantification as we have illustrated
in a linear convection diffusion example. For comparison, the direct POD approach based on random
snapshots is somewhat inconclusive. In a few setups, it well competes with the PCE based reduction
but, generally, the approximation is worse and without showing reliable trends that can be used for
finding preferable configurations of number of snapshots and dimensions of the reduced order model.
Future work will include the investigation of POD reduction also for the PCE dimensions and the
inclusion of these reduced models for optimal control of uncertain systems.
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and T. Stykel, editors, Numerical Algebra, Matrix Theory, Differential-Algebraic Equations
and Control Theory, pages 585–608. Springer International Publishing, 2015. doi:10.1007/

978-3-319-15260-8_21.

[6] P. Benner, A. Onwunta, and M. Stoll. Low-rank solution of unsteady diffusion equations with
stochastic coefficients. SIAM/ASA J. Uncertain. Quantif., 3(1):622–649, 2015. doi:10.1137/

130937251.

[7] I. Bianchini, R. Argiento, F. Auricchio, and E. Lanzarone. Efficient uncertainty quantification
in stochastic finite element analysis based on functional principal components. Comput. Mech.,
56(3):533–549, 2015. doi:10.1007/s00466-015-1185-7.

[8] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup. Multilevel Monte Carlo methods and
applications to elliptic PDEs with random coefficients. Computing and Visualization in Science,
14(1):3–15, 2011. doi:10.1007/s00791-011-0160-x.

[9] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition.
SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000. doi:10.1137/S0895479896305696.

[10] A. D. Fernandes and W. R. Atchley. Gaussian quadrature formulae for arbitrary positive measures.
Evolutionary bioinformatics online, 2:251–259, February 2007. URL: http://europepmc.org/
articles/PMC2674649.

[11] J. Garcke. Sparse grids in a nutshell. In J. Garcke and M. Griebel, editors, Sparse Grids and
Applications, pages 57–80, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/

978-3-642-31703-3_3.

[12] S. Garreis and M. Ulbrich. Constrained optimization with low-rank tensors and applications to
parametric problems with PDEs. SIAM J. Sci. Comput., 39(1):A25–A54, 2017. doi:10.1137/

16M1057607.

[13] A.-L. Haji-Ali, F. Nobile, L. Tamellini, and R. Tempone. Multi-index stochastic collocation for
random PDEs. Comput. Methods Appl. Mech. Eng., 306:95–122, 2016. doi:10.1016/j.cma.

2016.03.029.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2020-09-03

https://doi.org/10.5281/zenodo.4005724
https://github.com/mpimd-csc/multidim-genpod-uq
http://dx.doi.org/10.1007/978-3-319-15260-8_21
http://dx.doi.org/10.1007/978-3-319-15260-8_21
http://dx.doi.org/10.1137/130937251
http://dx.doi.org/10.1137/130937251
http://dx.doi.org/10.1007/s00466-015-1185-7
http://dx.doi.org/10.1007/s00791-011-0160-x
http://dx.doi.org/10.1137/S0895479896305696
http://europepmc.org/articles/PMC2674649
http://europepmc.org/articles/PMC2674649
http://dx.doi.org/10.1007/978-3-642-31703-3_3
http://dx.doi.org/10.1007/978-3-642-31703-3_3
http://dx.doi.org/10.1137/16M1057607
http://dx.doi.org/10.1137/16M1057607
http://dx.doi.org/10.1016/j.cma.2016.03.029
http://dx.doi.org/10.1016/j.cma.2016.03.029


P. Benner, J. Heiland: Space-PCE POD for PDEs with Uncertainties 18

[14] B. N. Khoromskij. Tensor numerical methods for multidimensional PDEs: Theoretical analysis
and initial applications. ESAIM: Proceedings, 48:1–28, 2015. doi:10.1051/proc/201448001.

[15] B. N. Khoromskij and C. Schwab. Tensor-structured Galerkin approximation of parametric and
stochastic elliptic PDEs. SIAM J. Sci. Comput., 33(1):364–385, 2011. doi:10.1137/100785715.

[16] A. Nouy. Proper generalized decompositions and separated representations for the numerical
solution of high dimensional stochastic problems. Arch. Comput. Methods Eng., 17(4):403–434,
2010. doi:10.1007/s11831-010-9054-1.

[17] C. W. Rowley. Model reduction for fluids, using balanced Proper Orthogonal Decomposi-
tion. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15(03):997–1013, 2005. doi:10.1142/

s0218127405012429.

[18] C. Soize. Brief overview of stochastic solvers for the propagation of uncertainties. In Un-
certainty Quantification: An Accelerated Course with Advanced Applications in Computational
Engineering, pages 133–139. Springer International Publishing, Cham, 2017. doi:10.1007/

978-3-319-54339-0_6.

[19] L. Tamellini, O. L. Matre, and A. Nouy. Model reduction based on Proper Generalized Decompo-
sition for the stochastic steady incompressible Navier–Stokes equations. SIAM J. Sci. Comput.,
36(3), 2014. doi:10.1137/120878999.

[20] E. Ullmann. A Kronecker product preconditioner for stochastic Galerkin finite element discretiza-
tions. SIAM J. Sci. Comput., 32(2):923–946, 2010. doi:10.1137/080742853.

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2020-09-03

http://dx.doi.org/10.1051/proc/201448001
http://dx.doi.org/10.1137/100785715
http://dx.doi.org/10.1007/s11831-010-9054-1
http://dx.doi.org/10.1142/s0218127405012429
http://dx.doi.org/10.1142/s0218127405012429
http://dx.doi.org/10.1007/978-3-319-54339-0_6
http://dx.doi.org/10.1007/978-3-319-54339-0_6
http://dx.doi.org/10.1137/120878999
http://dx.doi.org/10.1137/080742853

	1 Introduction
	2 Multidimensional Galerkin POD
	3 Polynomial Chaos Expansion as Product Space
	4 Application Example
	5 Numerical Example
	6 Verification of the Approach
	7 Conclusion

