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Abstract
The quantification of multivariate uncertainties in partial differential equations
can easily exceed any computing capacity unless proper measures are taken
to reduce the complexity of the model. In this work, we propose a multidi-
mensional Galerkin proper orthogonal decomposition that optimally reduces
each dimension of a tensorized product space. We provide the analytical frame-
work and results that define and quantify the low-dimensional approximation.
We illustrate its application for uncertainty modeling with polynomial chaos
expansions and show its efficiency in a numerical example.
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1 INTRODUCTION

The statistically sound treatment of modeled uncertainties in simulations comes with significant additional computa-
tional costs. Since a deterministic model can already be arbitrarily complex, the computation of statistics for general
problems may soon become infeasible unless some kind of model reduction is involved.

In this work, we propose a multidimensional Galerkin proper orthogonal decomposition (POD) that can simultane-
ously and optimally reduce the physical dimensions of the model and the dimensions related to the uncertainties.

For the quantification of uncertainties in partial differential equation (PDE) models and their numerical discretiza-
tion, one may distinguish two categories of solvers1 — sampling based methods, notably the Monte-Carlo method, and
Galerkin-type projection methods. In this work, we focus on the latter. For a basic explanation and relevant references on
the Monte-Carlo method and its extensions see Reference 1, for an application in elliptic PDEs see Reference 2, and for a
combination with stochastic collocation and tensor techniques see Reference 3.

Galerkin-type methods for solving PDEs with uncertainties are also referred to as spectral stochastic methods and base
on a polynomial chaos expansion (PCE) of the random variables describing, for example, uncertain parameters or the
candidate solution; see, for example, Reference 4 for a thorough introduction and, for example, References 5 and 6, for
example applications.

If the involved randomness is multivariate, multivariate ansatz functions are used to resolve the uncertainty; see
Reference 7 for a general description of modeling uncertainties via product spaces as it has been used in, for example, in
References 5, 6, and 8.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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Since every dimension of the multivariation adds a dimension to the problem, a numerical discretization quickly
becomes infeasible in terms of memory requirements, even if the dimensions are treated independent of each other. Sev-
eral approaches to overcome this complexity have been proposed like sparse grids,9 construction of reduced chaos expan-
sions via, say, Proper Generalized Decomposition10,11 or Principal Component Analysis or Karhunen-Loève expansions,12-14

or the use of particular tensor formats to reduce or to handle the data more efficiently.15-18

In this work, we extend a Galerkin POD approach from space-time discretizations (as we have considered it in Ref-
erence 19 for optimization with PDE constraints) to general tensor product spaces including, in particular, those Hilbert
spaces that are used for standard PCE formulations. This approach then defines low-dimensional bases both for the spa-
tial and the uncertainty dimensions that optimally represent the data for a given PCE. As a result we drastically reduce the
overall dimension of the problem which enables efficient uncertainty quantification and, prospectively, optimal control
of systems with uncertain parameters.

Finding optimal representations for the dimensions is comparable to identifying low-rank tensor structures for the
data, as it has been treated in References 15-17, 20, and 21. In contrast to these works, where a predefined structure
is adaptively filled to approximate the solution, the proposed POD approach takes a given, possibly high-dimensional,
data set and reduces it. The justification of this top-down approach is that the obtained reduction is optimally fitted
to the given problem so that it can be used for further efficient explorations – mainly because this approach admits a
direct interpretation of the bases for Galerkin discretizations. This relation to Galerkin projections defines the common
ground with the PGD approaches,10 where as in the other approaches mentioned in this paragraph, the optimal bases are
constructed in an adaptive bottom-up fashion.

Most similar to our approach is the work12 on reduced chaos expansions of coupled systems, where, basically, a
Galerkin POD approach is used for two uncertainty dimensions. There, the authors start with a PCE of bivariate random
coefficient and obtain optimal bases via the left and right eigenvectors of a generalized eigenvalue problem involving a
covariance matrix and a mass matrix. This approach via the eigenvectors of a covariance matrix is one way to define a
POD basis (see, e.g., Reference 22) while the inclusion of the mass matrix provides optimality in the relevant discrete
function spaces; see Reference 23. Our approach extends the scope of this work by introducing the tensorized formulation
that allows for reduction of multivariate uncertainties together with the spatial dimension in one framework.

The paper is organized as follows. In Section 2, we review the space-time Galerkin POD approach and how it extends
to problems with an uncertainty dimension. Then we formulate the Galerkin POD for a product space of arbitrary dimen-
sions and provide the POD compression algorithms and results. Next, in Section 3, we show that a PCE discretization
exactly fits into this multidimensional Galerkin POD framework. In Section 4, we illustrate the use of the PCE and its
POD reduction for a generic linear convection diffusion PDE. Finally, in Section 5, we provide a numerical example that
shows the applicability and efficiency of this approach and show that a naive POD reduction based on random snapshots
is not useful for PDEs with uncertain parameters.

2 MULTIDIMENSIONAL GALERKIN POD

We briefly recall the basic notions from our previous work,19 where we considered a Galerkin POD in the two dimensions
space and time. The idea of locating space and time dependent functions

x ∈ L2((0,T);L2(Ω)) ∶ (0,T) × Ω → R,

that, for example, solve a partial differential equation, in the space-time outer product space

L2((0,T))⊙ L2(Ω) ∶= {s ⋅ y | s ∈ L2((0,T)), y ∈ L2(Ω)},

naturally extends to functions that depend on space, time and a random parameter 𝛼, that is,

x(𝛼) ∈ L2((0,T);L2(Ω)) ∶ (0,T) × Ω → R,

in the space-time-uncertainty product space

L2((0,T))⊙ L2(Ω)⊙ L2(Γ,P
𝛼
),

where Γ is the domain of the random parameter and P
𝛼

is the associated probability measure; see, for example, Reference
20 where stationary problems are treated in this setup.
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BENNER and HEILAND 2803

Also, the approach of considering the approximation in the product of the finite dimensional spatial  ⊂ L2(Ω) and
time  ⊂ L2((0,T)) spaces extends to approximating x

𝛼
in

 ⊙  ⊙ ,

where is the finite dimensional space that models a polynomial chaos expansion of the functions in L2(Γ,P
𝛼
).

And, finally one may approximate a function x via its orthogonal projection onto ̂ ⊙ ̂ ⊙ ̂ , where

̂ ⊂  , ̂ ⊂  and ̂ ⊂ ,

are chosen optimally with respect to x for given dimensions of the subspaces.
We provide a general formulation of the product spaces, their discretization, and their optimal low-dimensional

approximation. For i = 1, 2, … ,N, let

i ∶= span{𝜓1
i , 𝜓

2
i , … , 𝜓

di
i },

be di dimensional Hilbert spaces with inner product (⋅, ⋅)i
and mass matrix

Mi =
[(
𝜓

k
i , 𝜓

𝓁
i

)

i

]

i=1,… ,di,𝓁=1,… ,di

∈ R
di×di

.

We will use the formal vector of the basis functions

Ψi =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜓

1
i

𝜓

2
i

⋮

𝜓

di
i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (1)

to write, for example,
Mi =

(
Ψi,ΨT

i
)

i
,

via applying the functional (⋅, ⋅) ∶ 𝜓𝓁i 𝜓
k
i →

(
𝜓

𝓁
i , 𝜓

k
i

)
pointwise to the entries of the formal matrixΨiΨT

i . Finally, let Li ∈
Rdi×di be a factor such that

Mi = Li L
T
i
.

We consider the product space

 = 1 ⊙ 2 ⊙ · · ·⊙ N ,

of spaces of square integrable functions with the inner product

(y, z) =
∫ ∫

· · ·
∫

yizi d1 d2 · · · dN ,

where di denotes the measure associated with i.
We represent a function x ∈  via

x =
d1∑

k1=1

d2∑

k2=1
· · ·

dN∑

kN=1
xk1k2···kN

𝜓

k1
1 𝜓

k2
2 · · ·𝜓kN

N ,

or, equivalently, via the N-dimensional tensor of the coefficients

X =
[
xk1k2···kN

]
.

Note that
x = vec(X)T [ΨN ⊗ · · ·⊗Ψ2 ⊗Ψ1] , (2)
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2804 BENNER and HEILAND

where⊗denotes the Kronecker product and where vec(X) ∈ Rd1⋅d2···dN denotes the vectorization of a tensor X ∈ Rd1×d2×···×dN

defined as the vector of all entries of X in reverse lexicographic order. The mode-1 matricization X(1) that is used in the
following relation is obtained, if, roughly speaking, the first dimension of X is skipped in the vectorization and, instead,
the resulting d2 ⋅ d3 · · · dN vectors of dimension d1 are used as columns of the matrix X(1) ∈ Rd1×(d2⋅d3···dN ). In the same way,
the mode- 𝜇 matricization X(𝜇) ∈ R

d
𝜇

×(d1···d𝜇−1d
𝜇+1···dN ) is defined as the matrix with the vectors obtained from unrolling all

dimensions except of the k-th dimension as columns. Moreover, for a matrix L ∈ R
d∗×d

𝜇 , with d∗ arbitrary, the 𝜇-mode
tensor product L◦

𝜇
X ∈ R

d1×···×d
𝜇−1×d∗×d

𝜇+1×···×dN is defined as the tensor that is obtained by applying the inverse of the
𝜇-mode matricization operation to LX(𝜇).

Lemma 1. For a function x ∈  with its representation X as in (2), one has

||x||2

=
∫ ∫

· · ·
∫

x2 d1 d2 · · · dN

= ||LT
1

X(1) [LN ⊗ · · ·⊗ L2

]
||2F ,

where X(1) is the mode-1 matricization of the coefficient tensor X and || ⋅ ||2F ∶= ||vec(⋅)||22 denotes the squared
Frobenius norm of a tensor (or a vector).

Proof. We use the properties of the Kronecker-product ⊗, the 𝜇-mode tensor product ◦
𝜇

, the vectorization
operator vec, and the 𝜇-mode matricization operator ⋅(𝜇) as introduced right before this Lemma to directly
compute

||x||2

=
∫ ∫

· · ·
∫

x2 d1 d2 · · · dN

= vec(X)T
∫ ∫

· · ·
∫

[
ΨNΨT

N ⊗ · · ·⊗Ψ2ΨT
2 ⊗Ψ1ΨT

1
]

d1 d2 · · · dN vec(X)

= vec(X)T
[
MN ⊗ · · ·⊗M2 ⊗M1

]
vec(X)

= ||

[

LT
N
⊗ · · ·⊗ LT

2
⊗ LT

1

]

vec(X)||22

= ||

[

LT
N
⊗ · · ·⊗ LT

2
⊗ I

] [

I ⊗ · · ·⊗ I ⊗ LT
1

]

vec(X)||22

= ||

[

LT
N
⊗ · · ·⊗ LT

2
⊗ I

]

vec(LT
1
◦1X)||22

= ||vec
([

LT
N
⊗ · · ·⊗ LT

2

]

◦2(LT
1
◦1X)

)

||22

= ||

[

LT
N
⊗ · · ·⊗ LT

2

]

◦2(LT
1
◦1X)||2F

= ||(LT
1
◦1X)(1)

[
LN ⊗ · · ·⊗ L2

]
||2F

= ||LT
1

X(1) [LN ⊗ · · ·⊗ L2

]
||2F .

▪

By permutations of the tensor X, the dimension associated with any i can take the role of the first dimension with
L1 in the formula of Lemma 1. To avoid technicalities, we will consider permutations that simply cycle through the
dimensions. Therefore, we introduce the operator that permutes a tensor

Π ∶ X ∈ R
d1×d2×…×dN → ΠX ∈ R

d2×…×dN×d1

via
[
(Πx)k1k2···kN

]
=
[
xk2···kN k1

]
.

Note that ΠNX = X and that, for matrices M (where N = 2), it holds that ΠM = MT.

Corollary 1 (of Lemma 1). For any i ∈ {1, … ,N}, the norm of x ∈  can be expressed as

||x||2

= ||LT

i
(Πi−1X)(1)

[
Li−1 ⊗ · · ·⊗ L1 ⊗ LN ⊗ · · ·⊗ Li+1

]
||2F ,

with the convention that Li−1 ⊗ · · ·⊗ L1 is void for i = 1 as is LN ⊗ · · ·⊗ Li+1 for i = N.
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BENNER and HEILAND 2805

With these expressions for the norm of the function x ∈  related to a tensor X via (2), we can provide an interpretation
of the higher-order singular value decomposition24 in terms of low-dimensional space discretizations as it is the backbone
of the POD.

Theorem 1. Given x ∈  . For any i ∈ {1, … ,N} and for a corresponding ̂di ≤ di, the space spanned by

̂Ψi =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜓̂

1
i

𝜓̂

2
i

⋮

𝜓̂

̂di
i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∶= VT

i, ̂di
L−1
i

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜓

1
i

𝜓

2
i

⋮

𝜓

di
i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= VT

i, ̂di
L−1
i
Ψi,

where Vi, ̂di
is the matrix of the ̂di leading left singular vectors of

LT
i
(Πi−1X)(1)

[
Li−1 ⊗ · · ·⊗ L1 ⊗ LN ⊗ · · ·⊗ Li+1

]
,

optimally approximates i in the sense that x is best approximated in

1 ⋅ 2 · · ·i−1 ⋅ ̂ i ⋅ i+1 · · ·N ,

in the -norm over all subspaces of i of dimension ̂di.

Proof. For i = 1, the claim follows directly from [Lem. 2.5]19 with considering 1 ⋅ , and  ∶= 2 ⋅
2 · · ·N . For any other i, one can apply Corollary 1 first. ▪

For the overall projection error between x and its projection x̂ onto

̂1 ⋅ ̂2 ⋅ · · · ⋅ ̂N ,

with ̂ i of dimension ̂di as defined in Theorem 1, one has that

||x − x̂||2

≤

d1∑

k1= ̂d1+1

𝜎

(1)
k1

2
+

d2∑

k2= ̂d2+1

𝜎

(2)
k2

2
+ · · · +

dN∑

kN= ̂dN+1

𝜎

(N)
kN

2
, (3)

where 𝜎(i)k is the kth singular value of X(i) as they appear in the SVD for the definition of ̂ i. The estimate (3) follows
directly from [Equation (24) in Reference 24] if one takes into account the scaling by the factors of the mass matrices.
Note that while a single i is optimally approximated by ̂ i by virtue of Theorem 1, the approximation of  by

∏N
i=1
̂ i

might not be optimal in the same sense; see the discussion in [p. 1267 in Reference 24].

3 POLYNOMIAL CHAOS EXPANSION AS PRODUCT SPACE

Let

𝛼 =
(

𝛼1, 𝛼2, … , 𝛼N

)

,

be a tuple of random variables 𝛼i that take values in a domain Γi ⊂ R and that are distributed according to a probability
measure dPi. If ỹ is a function that depends on 𝛼, that for any value of 𝛼 takes on values in a Hilbert space, say, L2(Ω) for
a domain Ω in R2 or R3, and that has a bounded variance with respect to 𝛼, one may approximate ỹ by a suitable

y ∈ L2(Ω)⊙ L2(Γ1; dP1)⊙ L2(Γ2; dP2)⊙ · · ·⊙ L2(ΓN ; dPN). (4)
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2806 BENNER and HEILAND

Note that y is a random variable and that the expected value Ey ∈ L2(Ω) of y is defined as

Ey =
∫ΓN

· · ·
∫Γ2
∫Γ1

y dP1 dP2 · · · dPN .

A finite dimensional approximation y to ỹ can be sought in

 = 0 ⊙ 1 ⊙ 2 ⊙ · · ·⊙ N , (5)

where 0 ⊂ L2(Ω) is a Finite Element space and where, for i = 1, … ,N, i is a finite dimensional subspace of L2(Γi; dPi)
derived from a Polynomial Chaos Expansion. Here we will consider di-dimensional spaces

i = span{𝜓1
i , 𝜓

2
i , … , 𝜓

di
i },

with 𝜓k
i being the Lagrange polynomials of degree di − 1 defined through the distinct Gaussian quadrature nodes

{𝛼1
i , 𝛼

2
i , … , 𝛼

di
i } ⊂ Γi, (6)

with respect to the measure dPi; see Reference 25 for formulas and algorithms. With the corresponding quadrature
weights

{w1
i ,w

2
i , … ,wdi

i } ⊂ R
di
,

the quadrature formula

∫Γi

z(𝛼i) dPi ≈
di∑

k=1
wk

i z(𝛼k
i ), (7)

is exact for polynomials up to degree 2di − 1. By virtue of this exactness, and since the correspondingly defined Lagrange
polynomials are orthogonal and fulfill 𝜓k

i (𝛼
j
i) = 1 if k = j and 𝜓k

i (𝛼
j
i) = 0 if k ≠ j, for the mass matrix Mi , one has that

Mi = ∫Γi

ΨiΨT
i dPi =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

w1
i

w2
i

⋱

wdi
i

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Remark 1. By the fundamental theorem of Gaussian quadrature the nodes {𝛼1
i , 𝛼

2
i , … , 𝛼

di
i } in (6) are the

roots of that polynomial 𝜙di
i of degree di that is orthogonal to all polynomials of degree di − 1 with respect

to the inner product with the measure dPi. For many probability measures dP, there exists a commonly
preferred choice of the corresponding orthogonal polynomials {𝜙𝓁}𝓁=1,… ,d, where the index 𝓁 also denotes
the degree of the polynomial, which can be constructed by explicit recursion formulas; see, for example, [Tab.
4 in Reference 7]. We further note the direct relation of these recursions to the Jacobi matrix (i.e., [Eqns. (4)
and (5) and Tab. 1 in Reference 25]) that is used to define the interpolation points (6); see, as well, [Ch. 2.4 in
Reference 26] for the relevant fundamental mathematical results.

4 APPLICATION EXAMPLE

For a domain Ω ⊂ Rd, with d = 2 or d = 3, for a given-right hand side f ∈ L2(Ω) and a given vector field b ∈ [L2(Ω)]d, we
consider the generic convection-diffusion problem

b ⋅ ∇y − ∇ ⋅ (𝜅
𝛼
∇y) = f , (8)

where we assume that the diffusivity coefficient depends on a random vector 𝛼 = (𝛼1, … , 𝛼N).
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BENNER and HEILAND 2807

For the following derivation of the model equations, we assume homogeneous Dirichlet conditions or homoge-
neous Neumann conditions for the boundary. Nonzero boundary conditions can be included in standard ways. For
well-posedness one may assume that there is at least one boundary patch with Dirichlet conditions, that the domain
is bounded with a boundary smooth enough so that a Poincaré-type inequality holds, that b is sufficiently regular and
bounded, and, most importantly, that 𝜅

𝛼
is positive and bounded away from zero. If this is the case, then unique solvabil-

ity of a weak formulation in the corresponding Sobolev spaces follows by standard arguments. In particular, for given f
and b and 𝜅

𝛼
> 0, we may well assume that system (8) has a unique solution y for any realization of 𝛼 and, thus, y itself

can be seen as a random variable depending on 𝛼.
As in standard finite element approaches, for every realization 𝛼, we locate the corresponding solution y

𝛼
in H1

0(Ω)
and require (8) to hold in the weak sense, namely

∫Ω
v(x)b(x) ⋅ ∇y

𝛼
(x) + 𝜅

𝛼
∇v(x) ⋅ ∇y

𝛼
(x) dx =

∫Ω
v(x)f (x) dx, (9)

for all v ∈ H1
0(Ω).

To account for the uncertainty, we assume the solution in the product space of the space variable and the uncertainty
dimensions as in (4) and require (9) to hold in a weak sense in the Γi inner products (see Sec. 3 in Reference 7), that is,

∫ΓN

· · ·
∫Γ2
∫Γ1
∫Ω

vb ⋅ ∇y + 𝜅
𝛼
∇v ⋅ ∇y dx dP1 dP2 · · · dPN =

=
∫ΓN

· · ·
∫Γ2
∫Γ1
∫Ω

vf dx dP1 dP2 · · · dPN , (10)

where now v is a trial function from the ansatz space

H1
0(Ω) ⋅ L2(Γ1; dP1) ⋅ L2(Γ2; dP2) ⋅ · · · ⋅ L2(ΓN ; dPN).

We may cluster the uncertainty dimensions Γi into Γ and write

∫Γ
v(𝛼) dP instead of

∫ΓN

· · ·
∫Γ2
∫Γ1

v(𝛼1, … , 𝛼N) dP1 dP2 · · · dPN .

This weak formulation both in the spatial and in the uncertainty domain, is readily discretized by finite elements in space
and chaos expansion with quadrature in the uncertainty as follows.

For a finite dimensional approximation, let the FEM space 0 be spanned by Ψ0 (compare (1)) and let A
𝛼
∈ Rd0×d0 be

the discrete convection/diffusion operator:

A
𝛼
=
∫Ω
Ψ0(b ⋅ ∇ΨT

0 − ∇ ⋅ 𝜅𝛼∇Ψ
T
0) dx =

∫Ω
Ψ0b ⋅ ∇ΨT

0 + 𝜅𝛼∇Ψo ⋅ ∇ΨT
0 dx,

where the products and the application of the differential operators are understood component-wise.
To save space in the formal derivation of the equations that include the Polynomial Chaos Expansions, we will formally

use the strong differential operator

a
𝛼
∶ y → b ⋅ ∇y − ∇ ⋅ (𝜅

𝛼
∇y).

With that, with discrete ansatz spaces as in (5), and with the ansatz for the solution

y = vec(Y)T [ΨN ⊗ · · ·⊗Ψ1 ⊗Ψ0] =
[
ΨT

N ⊗ · · ·⊗ΨT
1 ⊗ΨT

0
]

vec(Y), (11)

where Y is the tensor of coefficients (see (2)), Equation (10) is discretized as

∫Γ ∫Ω
[ΨN ⊗ · · ·⊗Ψ1 ⊗Ψ0] a

𝛼
y dx dP =

∫Γ ∫Ω
[ΨN ⊗ · · ·⊗Ψ1 ⊗Ψ0] f dx dP,

where the left-hand side, together with (11), becomes

 10970207, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7229 by M
PI 335 D

ynam
ics of C

om
plex T

echnical System
s, W

iley O
nline L

ibrary on [12/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2808 BENNER and HEILAND

∫Γ ∫Ω
[ΨN ⊗ · · ·⊗Ψ1 ⊗Ψ0] a

𝛼

[
ΨT

N ⊗ · · ·⊗ΨT
1 ⊗ΨT

0
]

dx dPvec(Y) =

=
∫Γ ∫Ω

[ΨN ⊗ · · ·⊗Ψ1 ⊗Ψ0]
[
ΨT

N ⊗ · · ·⊗ΨT
1 ⊗ a

𝛼
ΨT

0
]

dx dPvec(Y)

=
∫Γ ∫Ω

[
ΨNΨT

N ⊗ · · ·⊗Ψ1ΨT
1 ⊗Ψ0a

𝛼
ΨT

0
]

dx dPvec(Y)

=
∫Γ

[

ΨNΨT
N ⊗ · · ·⊗Ψ1ΨT

1 ⊗ ∫Ω
Ψ0a

𝛼
ΨT

0 dx
]

dPvec(Y)

=
∫ΓN

· · ·
∫Γ2
∫Γ1

[
ΨNΨT

N ⊗ · · ·⊗Ψ1ΨT
1 ⊗A

𝛼

]
dP1 dP2 · · · dPN vec(Y), (12)

thanks to the linearity of the involved differential operators and the Kronecker products.
Next we successively approximate the integrals with respect to the probability measures by the corresponding

quadrature rules (see (7)) to obtain

∫ΓN

· · ·
∫Γ2
∫Γ1

[
ΨNΨT

N ⊗ · · ·⊗Ψ1ΨT
1 ⊗A

𝛼

]
dP1 dP2 · · · dPNvec(Y)

≈
∫ΓN

· · ·
∫Γ2

d1∑

k1=1
wk1

1

[

ΨNΨT
N ⊗ · · ·⊗Ψ1(𝛼

k1
1 )Ψ1(𝛼

k1
1 )

T
⊗ A

𝛼

k1
1 ,… ,𝛼N

]

dP2 · · · dPN vec(Y).

Since the Lagrange polynomials are a nodal basis, it holds for all i = 1, … ,N, that Ψi(𝛼
ki
i ) = eki , where eki ∈ Rdi is the ki

th canonical basis vector. Accordingly, the coefficient matrix for vec(Y) becomes
dN∑

kN=1
· · ·

d2∑

k2=1

d1∑

k1=1
wkN

N … wk2
2 wk1

1

[

ekN eT
kN
⊗ · · ·⊗ ek2 eT

k2
⊗ ek1 eT

k1
⊗ A

𝛼

k1
1 ,… ,𝛼

kN
N

]

, (13)

which is a completely decoupled system for every combination (𝛼k1
1 , … , 𝛼

kN
N ).

To derive the Galerkin POD reduced system, we replace Ψi by ̂Ψi, for i = 0, 1, … ,N in (12). We assume that the
reduced bases were obtained as proposed by Theorem 1. The derivation, however, works for any (reduced) basis.

For illustration, we consider the case N = 1, that is, the spatial dimension and a univariate uncertainty. Then, the
reduced system coefficient matrix reads

∫Γ ∫Ω

[
̂Ψ1 ̂Ψ

T
1 ⊗ ̂Ψ0a

𝛼

̂Ψ
T
0

]

dx dPvec( ̂Y) =

=
∫Γ

[

̂Ψ1 ̂Ψ
T
1 ⊗
∫Ω

̂Ψ0a
𝛼

̂Ψ
T
0 dx

]

dPvec( ̂Y)

=
∫Γ

[
̂Ψ1 ̂Ψ

T
1 ⊗ ̂A

𝛼

]

dPvec( ̂Y)

=
d1∑

k1=1
wk1

1

[
̂Ψ1(𝛼

k1
1 ) ̂Ψ1(𝛼

k1
1 )

T
⊗
̂A
𝛼

k1
1

]

vec( ̂Y). (14)

Here, the operator ̂A
𝛼

is the POD projection of A
𝛼
:

̂A
𝛼
= VT

0, ̂d0
L−1
0

A
𝛼
L−T
0

V0, ̂d0
, (15)

whereas, for the given choice of Ψ1 and the weights wk1
1 , k1 = 1, … , d1, one has

wk1
1

[
̂Ψ1(𝛼

k1
1 ) ̂Ψ1(𝛼

k1
1 )

T
]

= wk1
1 VT

1, ̂d1
L−1
1

[
̂Ψ1(𝛼

k1
1 ) ̂Ψ1(𝛼

k1
1 )

T
]

L−T
1

V1, ̂d1

= wk1
1 VT

1, ̂d1

(

wk1
1

)−1∕2
ek1 eT

k1

(

wk1
1

)−1∕2
V1, ̂d1

= VT

1, ̂d1
ek1 eT

k1
V1, ̂d1

;
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BENNER and HEILAND 2809

see Theorem 1. By orthonormality of the POD basis, one obtains that

d1∑

k1=1
wk1

1

[
̂Ψ1(𝛼

k1
1 ) ̂Ψ1(𝛼

k1
1 )

T
]

= I;

see [Rem. 2.6] Reference 19, which, however, does not help when the terms are multiplied with the (nonconstant) A
𝛼

in (14). Accordingly, the reduced system does not decouple and, in this univariate case, requires the solution of a ̂d0 ⋅
̂d1-dimensional system.

The derivation of the general reduced multivariate systems goes along the same lines and results in a possibly fully
coupled system of dimension

∏N
j=0
̂dj which still can be prohibitively large. For these cases, one may consider leaving a

certain dimension, say ΓN , unreduced and rather solve dN systems of size
∏N−1

j=0
̂dj. Using this idea recursively one can

balance the number of systems and their size.

5 NUMERICAL EXAMPLE

In this section, we illustrate how the general ideas of Section 2, as they were made specific for PDEs with multivariate
uncertainties in the parameter in Sections 3 and 4, can be applied for uncertainty quantification in numerical simulations.

Motivated by [example 3.1],20 we consider a stationary convection diffusion problem as in (8) with uncertainty in the
conductivity coefficient.

As the geometrical setup, letΩ ⊂ R3 be a cylindrical domain of diameter Do = 2 without its core of diameter Di = 0.8
that is subdivided into four subdomains Ωi, i = 1, 2, 3, 4, as illustrated in Figure 1. The height of computational domain
is H = 0.5.

To model the uncertainty in the conductivity coefficient 𝜅, independently on each subdomain Ωi, we assume 𝜅 to be
a random variable of a random parameter 𝛼i via

𝜅(𝛼)|Ωi
= 𝛼i,

and write 𝜅(𝛼) to express the dependence on the random vector 𝛼 = (𝛼1, 𝛼2, 𝛼3, 𝛼4).
In the presented examples, we let 𝛼i be distributed on

Γi = [5 ⋅ 10−4
, 1 ⋅ 10−3] for i = 1, 2, 3, 4,

according to two different continuous probability distributions, namely the uniform and a beta distribution with density
functions

𝜌i(𝛼i) = cu and 𝜌i(z) = c
𝛽
s(𝛼i) ⋅ (1 − s(𝛼))4,

respectively, where cu and c
𝛽

are normalization parameters and where s ∶ Γi → [0, 1] is the affine linear mapping that
shifts and scales the parameter range to align with the standard range. We will refer to the distributions as uniform and
beta-2-5* .

F I G U R E 1 The subdomains and the boundary patch used for computing the quantity of interest Υ
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2810 BENNER and HEILAND

As for boundary conditions, we apply zero Dirichlet conditions at the bottom of the domain and zero Neumann
conditions elsewhere.

Without particular intentions, the convection b is chosen as

b(s1, s2, s3) =
⎡
⎢
⎢
⎢
⎣

(s2
1 + s2

2 − 1)s2

−(s2
1 + s2

2 − 1)s1

s2
1 sin(2s3)

⎤
⎥
⎥
⎥
⎦

,

and the inhomogeneity as

f (s1, s2, s3) =

{
− sin(2𝜋s1) sin(4𝜋s2)s3(0.5 − s3), for (s1, s2, s3) ∈ Ω1 ∪ Ω3,

0, for (s1, s2, s3) ∈ Ω2 ∪ Ω4;

see Figure 2 for a snapshot of the solution for 𝜅 = 7.5 ⋅ 10−4 being constant across the domain.
Moreover, we introduce Υ as the quantity of interest defined as the spatially averaged value of the solution y over

the surface of a concentric annular ring of diameter 0.1 that is aligned with the inner boundary at the top surface of the
domain; see Figure 1 for the arrangement.

For the spatial discretization, we use continuous and piecewise linear finite elements on a discretization of the domain
by tetrahedra. Although the mesh is refined at the critical parts, namely the edges of the domain and the surfaces where
Υ is computed or where the Dirichlet condition is applied, we need about 240,000 degrees of freedom for the spatial
dimension to be within four digits of accuracy for some selected parameters; see Table 1. The values of interest of this
numerical study are the expected value EΥ and the variance VΥ of the quantity of interest Υ that we approximate by a
PCE with various levels of refinement.

F I G U R E 2 The solution y for 𝜅 = 7.5 ⋅ 10−4 on all subdomains

T A B L E 1 Computed Υ for various realizations of the randomness 𝛼 on different meshes with increasing degrees of freedom (DOFs)

DOFs 𝚼|
𝜶≡𝜶

𝚼|
𝜶≡𝜶max

𝚼
𝜶≡𝜶min

𝚼
𝜶=𝜶

𝜹

90,458 0.60806 0.47561 0.87145 0.61057

127,771 0.60871 0.47652 0.87161 0.61185

154,545 0.60840 0.47663 0.86979 0.61168

192,786 0.60889 0.47712 0.87010 0.61223

237,941 0.60927 0.47764 0.86979 0.61282

262,702 0.60929 0.47780 0.86921 0.61320

282,310 0.60913 0.47758 0.86949 0.61279

Note: Here, 𝛼 = 7.5 ⋅ 10−4, 𝛼min = 5 ⋅ 10−4, 𝛼max = 10 ⋅ 10−4, and 𝛼
𝛿
= (𝛼max, 𝛼min, 𝛼max, 𝛼min) and the mesh used for the numerical study later with the

seemingly correct digits are printed in bold letters.
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BENNER and HEILAND 2811

In each uncertainty dimension, we apply a PCE with the same number d of Lagrange polynomials of degree d − 1
that, through the particular choice of the interpolation points, are orthogonal with respect to the inner product induced
by the considered density distribution; see Remark 1. We write pce[d] to refer to the PCE discretization of dimension
d as well as the expected value/variance of Υ based on this discretization.

Thus, the considered full order model will compute the solution via the system (13) formulated in the outer product
of the spaces spanned by the FEM basis Ψ0 and the four PCE bases of dimension d represented by the corresponding
orthogonal polynomials:

Ψ0 =
[
𝜓0,k

]237 941
k=1 and Ψn =

[

𝜓

(d)
j

]d

j=1
, n = 1, 2, 3, 4. (16)

As can be seen in Tables 2 and 3, for computing the expected values and variances of Υ, convergence of the PCE
discretization is achieved already for low dimensions. However, even though the computations are well parallelized, the
computation times for the moderate PCE discretizations are already in the order of days; see Table 4.

This gives motivation for the use of reduced-order models based on a small number of realizations to approximate
EΥ and VΥ. As we will see, such an approach is capable to improve the estimate of a low-dimensional PCE discretization
by one order of magnitude with little computational overhead.

We will investigate three approaches to compute projection bases to approximate the full order FEM simulation by a
low-order approximation. Basically, every method computes a reduced approximation space ̂Ψ0 to replaceΨ0 in the ansatz
space defined in (16). Practically, the computation of the reduced spaces comes with definitions of projection matrices,
so that the reduced order FEM operator ̂A

𝛼
can be obtained from the full order operator A

𝛼
as in (15).

• pcePOD – Based on the 16 realizations defined by 𝛼∈ ⊗4
i=1{𝛼

1
i , 𝛼

2
i }, where {𝛼1

i , 𝛼
2
i } are the two nodes that define the

pce[2] polynomials, i = 1, … , 4 and with the reduced-order basis ̂Ψ0 computed as suggested by Theorem 1.
• wRB (weighted reduced bases) – As suggested in Reference 27, the basis ̂Ψ0 is computed by a greedy procedure that

sequentially selects those vector from a set of solutions that most improves the model approximation taking into
account the underlying probability distribution through weighting. Following Reference 27, we consider the approx-
imation error weighted by the corresponding probability distribution function. However, the error is not estimated
(which is one of the core features of reduced bases approaches) but computed directly. This means a possibly overhead
in computational effort but allows for unbiased evaluations of the approximation performance as there is no
additional estimation error. As the training set, we use 16 random realizations of 𝛼. To account for this uncertainty in
the numerical setup, we repeat the experiment 10 times and report the median values.

T A B L E 2 The computed values for EΥ/ VΥ in the uniform distribution case based on a PCE discretization, and the difference to the
value of the finest computed discretization versus the dimension of the PCE

d pce[.] Difference to pce[5]

2 0.6141314593/0.0026984301 −1.5 ⋅ 10−5/ −1.8 ⋅ 10−5

3 0.6141464092/0.0027161019 −1.1 ⋅ 10−7/ −1.0 ⋅ 10−7

4 0.6141465231/0.0027162057 −1.0 ⋅ 10−9/ −9.2 ⋅ 10−10

5 0.6141465241/0.0027162066 —

T A B L E 3 The computed values for EΥ/ VΥ in the beta-2-5 distribution case based on a PCE discretization, and the difference to the
value of the finest computed discretization versus the dimension of the PCE

d pce[.] Difference to pce[5]

2 0.6986880561/0.0014644986 −5.5 ⋅ 10−6/ −7.3 ⋅ 10−6

3 0.6986935556/0.0014717976 −3.4 ⋅ 10−8/ −3.9 ⋅ 10−8

4 0.6986935895/0.0014718366 −4.0 ⋅ 10−10/ −3.3 ⋅ 10−10

5 0.6986935899/0.0014718369 —
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2812 BENNER and HEILAND

T A B L E 4 Overview of the computational tasks and the timings relative to a single evaluation (1h) and a batch evaluation (1H) of 16
runs in parallel on 16 coresa

Computational task Normalized time Realization

Single solve 1h 407 s for this example on our computing cluster

Computing pce[2] 16h ∶= 1H 642 s with parallelization on 16 cores

Computing pce[5] 645h ≈ 39H About 7 h (on 16 cores, upscaled from
1H ≈ 642 s)

SVD of a matrix X ∈ R
237941×16 of 16 solution vectors eps About 7 s (for six singular vectors)

Setup of the pcePOD ROM 1H+ eps Computing pce[2] plus SVD

Setup of the wRB ROM 1H Based on 16 full solves, possibly less with
estimaters, plus a negligible amount of time for
comparisons

Computing the pce[5] with the ROM eps 0.35 s for a 6 dimensional ROM

Note: The timings of the realization were are wall clock times (best out of 5 runs) taken for the presented numerical setup on a computing cluster.
aWith Intel Xeon Silver 4110 (Skylake) CPUs with 8 Cores per CPU (64 Kb L1 Cache, 1024 kb L2 Cache), a Clockrate of 2.1 GHz (3.0 GHz max), and 12 MB
Shared L3 Cache per CPU.

F I G U R E 3 The difference in EΥ in the beta-2-5 distribution case computed via the pce[5] and the pcePOD approximation of
dimension k’=6 on the base of pce[2]

• rndPOD (random POD) – We use random realizations of 𝛼 for computing a POD basis ̂Ψ0 to be used instead of Ψ0 in
the full order model (16). Again, to account for the involved randomness in the basis computation, we resort to the
median value of 10 runs.

We set up the numerical experiments as follows: For varying dimensions (which we denote by k’) of the reduced
space ̂Ψ0, we compute the pce[5] approximation of Υ, EΥ, and VΥ by means of the reduced-order model based on

̂Ψ0 and Ψ(5)n =
[

𝜓

(5)
j

]5

j=1
, n = 1, 2, 3, 4,

and compare to the computed expected value and variance of Υ computed by a pce[5] discretization of the full order
model based on (16). A view of the difference in the expected value over the full domain is given in Figure 3.

The computed results are laid out in Figures 4 and 5 for plots of the errors and in Figures 6 and 7 for their distribution
over 10 realizations (of thewRB andrndPOD approximation) for the two considered distributions of the random variables.
There, we also compare to the error level of a full order pce[2] approximation so that every reduced-order model (ROM)
result that underbids this level is easily identified as a real improvement in terms of accuracy.

For a measure beyond the comparison of the first and second moment, we employed the Kolmogorov metric that
measures the maximum difference between the cumulative distribution function of two random variables y1 and y2, that
is,

m(y1, y2) ∶= max
y∗∈R

|Fy1(y
∗) − Fy2(y

∗)|, (17)
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BENNER and HEILAND 2813
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F I G U R E 4 Median errors in the approximation of EΥ in the beta-2-5 distribution case versus the dimension of the reduced-order
model for pcePOD (based 16 full order solves) and for wRB and rndPOD (based on 16 and up to 64 full order solves). The dashed line marks
the error level of the pce[2] approximation

2 4 6 8 10 12 14 16
10−6

10−5

10−4

10−3

10−2

10−1

ROM dimension

Median ROM Approximation Errors for the Expected Value

F I G U R E 5 Median errors in the approximation of EΥ in the uniform distribution case versus the dimension of the reduced-order
model for pcePOD (based on 16 full order solves) and for wRB and rndPOD (based on 16 and up to 64 full order solves). The dashed line
marks the error level of the pce[2] approximation

where for y∗ ∈ R the cumulative distribution function Fyi ∶ R → [0, 1] describes the probability that the value of the
random variable yi is less or equal y∗, i = 1, 2. For our experiments, we let ΥpcePOD, ΥrndPOD, ΥwRB denote the
approximation to the random variable Υ that was computed by means of pcePOD, rndPOD, and wRB, respectively and
compute the Kolmogorov metric to measure the distance to full order solutionΥ. The numerical evaluation of the metric
was conducted for k’=8 for both considered distributions of 𝛼 using the empirical cumulative distribution function based
on 106 samples and a subsequent linear interpolation to a common grid of 2000 points. The values of the measurements
are displayed in Table 5. Again, the reported values for rndPOD and wRB are the median value of 10 realizations. Overall,
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F I G U R E 6 Detailed plots of the median errors and their distribution over the 10 realizations in the approximation of EΥ and VΥ in
the beta-2-5 distribution case. For a comparison of the median errors in one plot see Figure 5
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Median ROM Approximation Errors for the Expected Value

F I G U R E 7 Detailed plots of the median errors and their distribution over the 10 realizations in the approximation of EΥ and VΥ in
the uniform distribution case. For a comparison of the median errors in one plot see Figure 5

since the sampling introduces an extra layer of randomness to the evaluations, we have repeated the evaluations 5 times
and reported the median value. In addition, we have plotted the differences FΥpcePOD

− FΥ, FΥrndPOD
− FΥ, and FΥwRB

− FΥ
(the latter two for five realizations each) in Figure 8.

The improvement in terms of computational effort can be inferred from the measured timings laid out in Table 4.
We note that for these small POD dimensions, the effort for computing the POD modes (around 7 s) and computing the
pce[5] approximation with the reduced-order models (around 0.35 s) is negligible if compared to the time to compute
the data or even the evaluation of pce[5] with the full model; see Table 4.

The presented results can be summarized and interpreted as follows:

• Concerning our proposed approach pcePOD, for both choices of the distribution of 𝛼, we observe that for k’=5 the
error in the reduced-order model drops below the error of a direct pce[2] approximation. Further enrichment of the
basis does not show a reliable improvement, which lead us to the conclusion that little accuracy is added by the basis
vectors beyond k’=5.
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F I G U R E 8 The estimated differences in the cumulative distribution function for Υ estimated by a full order FEM and pce[5]
approximation and by the reduced order models pcePOD, wRB, and rndPOD for the beta-2-5 (left) and the uniform distribution (right)
of 𝛼. Note that for display purposes not every data point is included in the plots so that the peak values are not as high as reported in the
numbers in Table 5

T A B L E 5 The Kolmogorov metric for the approximation of the random variable Υ (evaluated by a full order pce[5]) by the reduced
order models namely the different reduced FEM basis of size k’=8 by pcePOD, wRB, and rndPOD and an approximation by a pce[2]
discretization with the full order FEM basis

Method pce[2] pcePOD-16 wRB-16 wRB-32 rndPOD-16 rndPOD-32

m(Υ,Υmethod) 0.00741 0.00102 0.00212 0.00179 0.00208 0.00201 (beta-2-5)

m(Υ,Υmethod) 0.00747 0.00114 0.00226 0.00229 0.00197 0.00200 (uniform)

Note: The upper line are the results for the beta-2-5 distribution and the lower line the results for the uniform distribution of 𝛼.

• In contrast, the wRB and rndPOD approaches show a steady drop in the approximation error with increasing ROM
dimensions, though at a higher median error level. Only for k’=15, 16, these approaches show better results than
the pce[2] approximation with the full order model.

• Since both wRB and rndPOD base on a training set with random realizations, we checked if the approximation can be
improved by a larger training set. While for rndPOD a positive effect of a larger training set seems to be indicated by
the data, for the wRB approximation some data points even suggest a reverse effect.

• Another observation with wRB and rndPOD is that the realization of the training set can influence the performance by
about two orders of magnitude, as can be seen from the scatter plots of 10 realizations in Figures 6 and 7.

• We note that the definition of the bases is optimized towards the expected value of the solution, at least the bases in
pcePOD and rndPOD are optimal in the corresponding inner product. Nonetheless, from the computation of VΥ by a
pce[5] approximation with the ROM, we find that the approximation quality of VΥ follows that of EΥ.

• The differences in the cumulative distribution function (displayed in Table 5), as estimated via the Kolmogorov metric
defined in (17), indicate that a lower order PCE approximation may well approximate the moments but seems to be
missing the actual distribution. On the other hand, with roughly the same effort of a lower order PCE, one may set up
the reduced order models to estimate the random variable with an improved accuracy of a factor between 3 and 7. Here,
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2816 BENNER and HEILAND

F I G U R E 9 Link to code and data

again the pcePOD approach clearly and reliably outperforms the wRB and rndPOD reduced order models. Moreover,
as for the computation of the moments, using a larger set of training data for wRB and rndPOD did not show a visible
improvement in accuracy.

The codes that set up, perform, and post process the numerical examples as well as the raw data of the presented cases
are available as laid out in Figure 9.

6 CONCLUSION

The theory of multidimensional Galerkin POD naturally applies to problems with multivariate uncertainties and can be
made tractable for numerical experiments by exploiting the underlying tensor structures.

We have confirmed that multidimensional POD that includes Polynomial Chaos Expansions of the candidate solutions
leads to a significant efficiency gain in the uncertainty quantification. For illustration, we considered a high-dimensional
linear convection diffusion example with a multivariate uncertainty in the parameters. In comparison, the direct POD
approach based on random realizations and a distribution-informed weighted greedy method to select a reduced basis
from a training set proved to be similarly capable of improving the computation, though at significantly higher dimensions
of the reduced-order model.

In this study, we showed that the very low-dimensional reduced-order models could even improve on the approxima-
tion of relevant statistical quantities by the training set. As a future direction we want to state that accurate uncertainty
quantification with a very low-dimensional model provides an efficient approach to the more challenging task of optimal
control of uncertain PDE systems.
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ENDNOTE
∗The numbers in the name for the beta distribution reflect the general way of defining the 𝛽(p, q)-distribution on (0, 1) via the two parameters
p and q and the density function 𝜌(x) = xp−1(1−x)q−1

∫
1

0 sp−1(1−s)q−1 ds
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