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Department of Mathematics, University of Pécs, Pécs, Hungary
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Abstract

The notion of block divisibility naturally leads one to introduce unitary cyclotomic

polynomials. We formulate some basic properties of unitary cyclotomic polynomials

and study how they are connected with cyclotomic, inclusion-exclusion and Kro-

necker polynomials. Further, we derive some related arithmetic function identities

involving the unitary analog of the Dirichlet convolution.

1. Introduction

1.1. Unitary Divisors

A divisor d of n (d, n ∈ N) is called a unitary divisor (or block divisor) if (d, n/d) = 1,

notation d || n (observe that this is in agreement with the standard notation pa || n
used for prime powers pa). If the prime power factorization of n is n = pa11 · · · pass ,

then the set of its unitary divisors consists of the integers d = pb11 · · · pbss , where

bi = 0 or bi = ai for any 1 ≤ i ≤ s.
The study of arithmetic functions defined by unitary divisors goes back to Cohen

[4] and Vaidyanathaswamy [29]. For example, the analogs of the sum-of-divisors

function σ and Euler’s totient function ϕ are σ∗(n) =
∑
d||n d, respectively ϕ∗(n) =

#{j : 1 ≤ j ≤ n, (j, n)∗ = 1}, where

(j, n)∗ = max{d : d | j, d || n}.

Several properties of the unitary functions σ∗ and ϕ∗ run parallel to those of

σ and ϕ, respectively. For example, both functions σ∗ and ϕ∗ are multiplicative,

and σ∗(pa) = pa + 1, ϕ∗(pa) = pa − 1 for prime powers pa (a ≥ 1). The unitary
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convolution of the functions f and g is defined by

(f × g)(n) =
∑
d||n

f(d)g(n/d) (n ∈ N).

The set of arithmetic functions f such that f(1) 6= 0 forms a commutative group

under the unitary convolution, and the set of multiplicative functions is a subgroup.

The identity is the function ε, given by ε(1) = 1, ε(n) = 0 (n > 1), similar to the

case of the Dirichlet convolution. The inverse of the constant 1 function under the

unitary convolution is µ∗(n) = (−1)ω(n), where ω(n) denotes the number of distinct

prime factors of n. That is,∑
d||n

µ∗
(n
d

)
=
∑
d||n

µ∗(d) = ε(n) (n ∈ N). (1)

For these and related general properties of arithmetic functions see, e.g., the

books by Apostol [1], McCarthy [14] and Sivaramakrishnan [21].

1.2. Unitary Ramanujan Sums

The unitary Ramanujan sums c∗n(k) were defined by Cohen [4] as follows:

c∗n(k) =
∑

1≤j≤n
(j,n)∗=1

ζjkn (k, n ∈ N),

where ζn := e2πi/n. (The classical Ramanujan sums are defined similarly, but with

(j, n)∗ = 1 replaced by (j, n) = 1.)

The identities

c∗n(k) =
∑

d||(k,n)∗

dµ∗(n/d) (n, k ∈ N), (2)

∑
d||n

c∗d(k) = %n(k), (3)

where

%n(k) :=

{
n if n | k;

0 otherwise,

can be compared to the corresponding ones concerning the classical Ramanujan

sums cn(k). Note that c∗n(n) = ϕ∗(n), c∗n(1) = µ∗(n) (n ∈ N).

1.3. Unitary Cyclotomic Polynomials

The cyclotomic polynomials Φn(x) are defined by

Φn(x) =

n∏
j=1

(j,n)=1

(
x− ζjn

)
. (4)
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They arise as irreducible factors (see Weintraub [30]) on factorizing xn − 1 over

the rationals:

xn − 1 =
∏
d|n

Φd(x). (5)

By Möbius inversion it follows from (5) that

Φn(x) =
∏
d|n

(
xn/d − 1

)µ(d)

=
∏
d|n

(
xd − 1

)µ(n/d)
, (6)

where µ denotes the Möbius function.

The unitary cyclotomic polynomial Φ∗n(x) is defined by

Φ∗n(x) =

n∏
j=1

(j,n)∗=1

(
x− ζjn

)
; (7)

see [21, Ch. X]. It is monic, has integer coefficients and is of degree ϕ∗(n). Further-

more, for any natural number n we have

xn − 1 =
∏
d||n

Φ∗d(x) (8)

and

Φ∗n(x) =
∏
d||n

(
xn/d − 1

)µ∗(d)

=
∏
d||n

(
xd − 1

)µ∗(n/d)
. (9)

See Section 2 for short direct proofs of these properties and further basic prop-

erties of unitary cyclotomic polynomials.

If n is squarefree, then the unitary divisors of n coincide with the divisors of

n and hence comparing (6) with (9) yields Φ∗n(x) = Φn(x). In this case Φ∗n(x) is

irreducible over the rationals. However, a quick check shows, that for certain non-

squarefree values of n, the polynomial Φ∗n(x) is reducible over the rationals. For

example, Φ∗12(x) = Φ6(x)Φ12(x) and Φ∗40(x) = Φ10(x)Φ20(x)Φ40(x). Indeed, we will

show that Φ∗n is reducible for every non-squarefree integer n. This is a corollary of

the fact that each polynomial Φ∗n(x) can be written as the product of the cyclotomic

polynomials Φd(x), where d runs over the divisors of n such that κ(d) = κ(n), with

κ(n) the squarefree kernel of n (Theorem 2). In fact, this is a consequence of a

more general result (Theorem 3) involving unitary divisors.

One can introduce the bi-unitary cyclotomic polynomials Φ∗∗n (x) defined by

Φ∗∗n (x) =

n∏
j=1

(j,n)∗∗=1

(
x− ζjn

)
,
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where (j, n)∗∗ stands for the greatest common unitary divisor of j and n. The

degree of the polynomial Φ∗∗n (x) equals ϕ∗∗(n), the bi-unitary Euler function, which

is defined as ϕ∗∗(n) = #{j : 1 ≤ j ≤ n, (j, n)∗∗ = 1}, see the paper [26]. Although

these definitions seem to be more natural than the previous ones, the properties

of Φ∗∗n (x) and ϕ∗∗(n) are not similar to their unitary analogs. For example, the

function ϕ∗∗(n) is not multiplicative and the coefficients of the polynomials Φ∗∗n (x)

are in general not integers (we have, e.g., Φ∗∗6 (x) = x3 − ηx2 + ηx + η, where

η = (1 + i
√

3)/2 and η = (1− i
√

3)/2).

1.4. Inclusion-exclusion and Kronecker Polynomials

Let ρ = {r1, r2, . . . , rs} be a set of increasing natural numbers satisfying ri > 1 and

(ri, rj) = 1 for i 6= j, and put

n0 =
∏
i

ri, ni =
n0

ri
, nij =

n0

rirj
[i 6= j], . . . .

For each such ρ we define a function Qρ by

Qρ(x) =
(xn0 − 1) ·

∏
i<j(x

nij − 1) · · ·∏
i(x

ni − 1) ·
∏
i<j<k(xnijk − 1) · · ·

. (10)

It can be shown that Qρ(x) is a polynomial of degree n0

∏
ri|n0

(1 − 1/ri) having

integer coefficients. This class of polynomials was introduced by Bachman [2], who

named them inclusion-exclusion polynomials.

A Kronecker polynomial f ∈ Z[x] is a monic polynomial having all its roots inside

or on the unit circle. It was proved by Kronecker, cf. [6], that such a polynomial is

a product of a monomial and cyclotomics and so we can write

f(x) = xs
∏
d

Φd(x)ed , (11)

with s, ed ≥ 0 and ed ≥ 1 for only finitely many d.
We will show how a unitary cyclotomic can be realized as an inclusion-exclusion

cyclotomic. As Qρ(x) is monic and in Z[x], it follows from (10) that it is Kronecker.
Thus we have the following inclusions:

{unitary cyclotomics} ⊂ {inclusion-exclusion polynomials} ⊂ {Kronecker polynomials}.
(12)

The inclusion-exclusion polynomials that are unitary can be precisely identified
(for the proof see Section 6.1).

Theorem 1. The set of unitary polynomials Φ∗n(x) with n ≥ 2 equals the set of
inclusion-exclusion polynomials Qρ(x) with ρ having prime power entries, with no
base prime repeated. More precisely there is a one-to-one map between these sets
that sends n to ρ = {pe11 , . . . , p

es
s }, where pe11 · · · pess with pe11 < . . . < pess is the prime

factorization of n, resulting in

Φ∗n(x) = Q{pe11 ,..., pess }(x).
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This theorem shows that the first inclusion in (12) is strict, e.g., Q{5,6}(x) is not
a unitary cyclotomic. By Theorem 2 (or Theorem 9) any Kronecker polynomial
divisible by Φd(x)2 for some d ≥ 1 cannot be an inclusion-exclusion polynomial,
and so also the second inclusion is strict. Even more, it is easy to see that for both
inclusions the set theoretic differences are infinite.

We would like to point out that in this paper, with the exception of Theorem 8,
the nomination “theorem” is not used to indicate a deep result, but rather a key
fact.

2. Elementary Properties of Unitary Cyclotomic Polynomials

The polynomials Φ∗n(x) have integer coefficients. This follows by induction on n
by taking into account identity (8), similar to the case of classical cyclotomic poly-
nomials. Indeed, several of our arguments in this section closely mirror those for
cyclotomic polynomials and can, in somewhat more detail than we provided, be
found in Thangadurai [24].

By the definition (7) and the identity (1),

log Φ∗n(x) =

n∑
j=1

(j,n)∗=1

log
(
x− ζjn

)
=

n∑
j=1

log
(
x− ζjn

) ∑
d||(j,n)∗

µ∗(d).

Note that d || (j, n)∗ holds if and only if d | j and d || n. Hence

log Φ∗n(x) =
∑
d||n

µ∗(d)

n/d∑
k=1

log
(
x− ζkn/d

)
=
∑
d||n

µ∗(d) log(xn/d − 1),

giving (9), which by unitary Möbius inversion is equivalent to (8).

The unitary divisors of prime powers pa (a ≥ 1) are 1 and pa. We deduce by (8)
that

Φ∗pa(x) =
xp

a − 1

x− 1
=

a∏
j=1

Φpj (x). (13)

From formula (9) we immediately see that the Taylor series of Φ∗n(x) around
x = 0 has integer coefficients, showing again that the coefficients of Φ∗n(x) have to
be integers.

Using (1), we see that, for n > 1, we can rewrite (9) as

Φ∗n(x) =
∏
d||n

(1− xd)µ
∗(n/d). (14)

From (14) and (9) it follows that for n > 1

Φ∗n(x) = xϕ
∗(n)Φ∗n(1/x), (15)
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in other words, unitary cyclotomics are self-reciprocal.

For odd n > 1, we have
Φ∗2n(x) = Φ∗n(−x). (16)

In order to prove this we invoke (14) and group the even and odd unitary divisors
together. This leads to

Φ∗2n(x) =
∏

2d||2n

(1− x2d)µ
∗(n/d)

∏
d||n

(1− xd)µ
∗(2n/d);

=
∏
d||n

(1− x2d)µ
∗(n/d)

∏
d||n

(1− xd)−µ
∗(n/d);

=
∏
d||n

(1 + xd)µ
∗(n/d) = Φ∗n(−x).

Let k ≥ 1 be an integer and p - n a prime. The unitary divisors of pkn come
in two flavors: those of the form pkd with d || n, and those of the form d || n. On
grouping these together we obtain from (14) that

Φ∗pkn(x) =
Φ∗n(xp

k

)

Φ∗n(x)
. (17)

Also,

Φ∗pkn(x) =

k−1∏
j=0

Φ∗pn(xp
j

). (18)

To see this we write each of the terms appearing in right hand side as a quotient
of two unitaries given by (17). We so obtain a quotient of two unitaries, which
equals the left hand side of (18) by (17) again.

Let Φ∗n(x) = xϕ
∗(n) + b1x

ϕ∗(n)−1 + . . .+ bϕ∗(n). It follows, similar to the classical
case, that b1 = −c∗n(1) = −µ∗(n) for every n ∈ N.

3. Unitary Cyclotomic Polynomials as Products of Cyclotomic Polyno-
mials

Recall that κ(n) =
∏
p|n p is the square-free kernel of n.

Theorem 2. For any natural number n we have

Φ∗n(x) =
∏
d|n

κ(d)=κ(n)

Φd(x). (19)

Proof. Combining (9) with (5) yields

Φ∗n(x) =
∏
d||n

(xd − 1)µ
∗(n/d) =

∏
d||n

(∏
δ|d

Φδ(x)
)µ∗(n/d)

. (20)
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We thus find that Φ∗n(x) =
∏
δ|n Φδ(x)eδ , with

eδ =
∑
kδ||n

µ∗
( n
kδ

)
. (21)

The exponents eδ are integers that are to be determined. Given a divisor δ of
n, we let d be the smallest multiple of δ that is a block divisor of n. Note that if
kδ || n, then there is an integer m such that kδ = md. The condition kδ || n is in
general not equivalent with k || n/δ, however the condition md || n is equivalent
with m || n/d. Using these observations and (1) we conclude that

eδ =
∑
kδ||n

µ∗
( n
kδ

)
=
∑
md||n

µ∗
( n

md

)
=

∑
m||n/d

µ∗
( n

md

)
= ε

(n
d

)
. (22)

It follows that eδ = 0, except when n is the smallest multiple of δ that is a block
divisor of n (which occurs if and only if κ(δ) = κ(n)), in which case eδ = 1.

Remark 1. An alternative form of (19) is

Φ∗n(x) =
∏
d| n
κ(n)

Φκ(n)(x
d), (23)

which is obtained on noting that

Φ∗n(x) =
∏
d|n

κ(d)=κ(n)

Φd(x) =
∏

dκ(n)|n

Φdκ(n)(x) =
∏
d| n
κ(n)

Φκ(n)(x
d),

where in the last step we used repeatedly that Φpn(x) = Φn(xp) if p | n.

Remark 2. Theorem 1 says that Φ∗n(x) is an inclusion-exclusion polynomial as-
sociated to the prime power factorization of n. A formula of Bachman giving the
factorization of an inclusion-exclusion polynomial in cyclotomic polynomials (The-
orem 9), then leads to an alternative proof of Theorem 2 (Section 6.1).

Remark 3. The convolution defined by

(f � g)(n) =
∑
d|n

κ(d)=κ(n)

f(d)g(n/d) (n ∈ N)

was mentioned by Subbarao [23] and investigated by Thrimurthy [25]. It preserves
the multiplicativity of functions, although it is noncommutative and nonassociative.
However, as it is easy to check, for any arithmetic functions f, g and h,

(f � g) � h = f � (g ∗ h), (24)

where ∗ is the Dirichlet convolution. See also the review MR0480305 (58 # 478) of
[25].
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Our next theorem generalizes Theorem 2. Indeed, Theorem 2 follows from (25)
on making the choice g(n) = log Φn(x) (hence f(n) = log(xn − 1)) and g∗(n) =
log Φ∗n(x). In addition, with this choice (26) yields the identity

Φn(x) =
∏
d|n

κ(d)=κ(n)

Φ∗d(x)µ(n/d) (n ∈ N),

expressing a cyclotomic in terms of unitary cyclotomics. Note that if d | n, then
κ(d) = κ(n) holds iff κ(n) | d iff κ(n/d) | d.

Theorem 3. Let g, g∗ : N → C be arbitrary functions. Put f(n) =
∑
d|n g(d).

Assume that
f(n) =

∑
d||n

g∗(d) (n ∈ N).

Then
g∗(n) =

∑
d|n

κ(d)=κ(n)

g(d) (n ∈ N) (25)

and
g(n) =

∑
d|n

κ(d)=κ(n)

g∗(d)µ(n/d) (n ∈ N). (26)

Remark 4. In Theorem 3 the function g is multiplicative if and only if g∗ is
multiplicative.

Proof of Theorem 3. By Möbius inversion we have

g(n) =
∑
d|n

f(d)µ(n/d) (27)

and
g∗(n) =

∑
d||n

f(d)µ∗(n/d). (28)

These identities show that given g, the function g∗ is uniquely determined and
reversely. We have

g∗(n) =
∑
d||n

µ∗(n/d)
∑
δ|d

g(δ) =
∑
δ|n

g(δ)eδ,

where eδ is given by (21). The proof of (25) is now easily completed on invoking
(22), cf. the proof of Theorem 2.

Now we prove identity (26). Put f := g, g := 1 (constant 1 function), h := µ in
identity (24). This gives

(g � 1) � µ = g � (1 ∗ µ).



INTEGERS: 20 (2020) 9

Here, g � 1 = g∗ by (25). Also, 1 ∗ µ = ε, which is a basic property of the
classical Möbius function. Since the function ε is the identity for the � operation,
we conclude that

g∗ � µ = g,

completing the proof.

4. Further Properties of Unitary Cyclotomic Polynomials

4.1. Calculation of Φ∗
n(±1)

In this section we determine Φ∗n(±1). For completeness and comparison we mention
the analogous classical results for Φn(1).

Let Λ∗ denote the unitary analog of the von Mangoldt function Λ. It is given by

Λ∗(n) =

{
a log p if n = pa is a prime power (a ≥ 1);

0 otherwise,
(29)

and satisfies
∑
d||n Λ∗(d) = log n (cf. the classical identity

∑
d|n Λ(d) = log n).

Lemma 1. We have

Φn(1) =


0 if n = 1;

p if n = pe;

1 otherwise,

and Φ∗n(1) =


0 if n = 1;

pe if n = pe;

1 otherwise,

with p a prime number and e ≥ 1.

In terms of the (unitary) von Mangoldt function this can be reformulated as
follows.

Lemma 2. We have Φ1(1) = 0 and Φ∗1(1) = 0. For n > 1 we have

Φn(1) = eΛ(n) and Φ∗n(1) = eΛ∗(n).

Proof of Lemma 1. From (5) and (8) we obtain (respectively)

xn − 1

x− 1
=

∏
d|n, d>1

Φd(x) and
xn − 1

x− 1
=

∏
d||n, d>1

Φ∗d(x).

Thus (respectively)

n =
∏

d|n, d>1

Φd(1) and n =
∏

d||n, d>1

Φ∗d(1). (30)

By Möbius inversion the latter identities for all n > 1 determine Φm(1) and Φ∗m(1)
uniquely for all m > 1. It is thus enough to verify that the values claimed for Φn(1)
and Φ∗n(1) verify (30), which is evident.
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Remark 5. It is possible to prove Lemma 2 with the (unitary) von Mangoldt
function naturally appearing in the proof. To do so one proceeds as in the proof of
Lemma 1 and deduces (30) and concludes that these equations uniquely determine
Φm(1) and Φ∗m(1). It remains then (after taking logarithms) to prove the well-
known (trivial) identity log n =

∑
d|n, d>1 Λ(d) =

∑
d|n Λ(d), and likewise in the

unitary case, log n =
∑
d||n, d>1 Λ∗(d) =

∑
d||n Λ∗(d).

It is not much more difficult to evaluate Φ∗n(−1).

Lemma 3. We have

Φ∗n(−1) =


−2 if n = 1;

0 if n = 2a;

pb if n = 2apb;

1 otherwise,

with p an odd prime and a, b ≥ 1.

Proof. This follows from the identity (23), Lemma 1 and the well-known result

Φn(−1) =


−2 if n = 1;

0 if n = 2;

p if n = 2pe;

1 otherwise,

(31)

with p ≥ 2 a prime number and e ≥ 1.

Assume that Φ∗n(−1) 6= 1. By (23) it follows that Φ∗n(−1) = Φκ(n)(−1)eΦκ(n)(1)f ,
for some integers e, f ≥ 0. The formulas for Φn(±1) then show that κ(n)|2p, with
p an odd prime, and so n = 2apb, a, b ≥ 0. In case a, b ≥ 1, we have Φ∗n(−1) =
Φ2p(−1)bΦ2p(1)ab−b = Φ2p(−1)b = pb, by, respectively, (23), Lemma 1 and (31).
The remaining cases are left to the reader.

Using identity (23) one can likewise immediately evaluate Φ∗n(1) from Φn(1).

4.1.1. Some Products Involving the cos and sin Functions

It is known that for any n ≥ 2,

n∏
j=1

(j,n)=1

sin
(πj
n

)
=

Φn(1)

2ϕ(n)
,

n∏
j=1

(j,n)=1

cos
(πj
n

)
=

Φn(−1)

(−4)ϕ(n)/2
, (32)

proved in [7] (for (32) in case n is odd only) and [28] (for any n ≥ 2) by two different
methods; see also [13]. Here we provide the unitary analogs of these products,
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which in combination with the results of the previous section allow one to explicitly
evaluate them.

Theorem 4. For any n ≥ 2,

n∏
j=1

(j,n)∗=1

sin
(πj
n

)
=

Φ∗n(1)

2ϕ∗(n)
, (33)

n∏
j=1

(j,n)∗=1

cos
(πj
n

)
=

Φ∗n(−1)

(−4)ϕ∗(n)/2
. (34)

Proof. We adapt the approach in [28] to the unitary case. We need the simple
formula

S∗(n) :=

n∑
j=1

(j,n)∗=1

j =
nϕ∗(n)

2
(n ≥ 2), (35)

which can be shown similarly to the usual case. We will only prove (34), the proof
of (33) being similar. The product in the left hand side of (34) we denote by P ∗(n).

If n = 2a, a ≥ 1, then we note that (2a−1, 2a)∗ = 1 and so the product in (34)
is zero. By Lemma 3 it follows that also Φ∗n(−1) is zero and thus in this case (34)
holds. Therefore we may assume that n has an odd prime factor, which implies
that ϕ∗(n) is even. By (7) and (35) we then see that

Φ∗n(−1) =
∏

(j,n)∗=1

(
−1− ζjn

)
=

∏
(j,n)∗=1

(
−ζj/2n

)(
ζj/2n + ζ−j/2n

)
= 2ϕ

∗(n)P ∗(n)
∏

(j,n)∗=1

(
−ζj/2n

)
= (−2)ϕ

∗(n)ζS
∗(n)/2

n P ∗(n)

= (−2)ϕ
∗(n)ζnϕ

∗(n)/4
n P ∗(n) = (−2i)ϕ

∗(n)P ∗(n),

= (−4)ϕ
∗(n)/2P ∗(n),

completing the proof of (34).

Remark 6. A completely similar argument leads to a proof of (32). The argument
in that case is even easier, as ϕ(n) is even for n ≥ 3 and it is not necessary to deal
with the powers of two separately.

4.1.2. Calculation of Φ∗n at Other Roots of Unity

It is known how to explicitly evaluate Φn(ζm) for m ∈ {3, 4, 5, 6, 8, 10, 12}; see [3].
This in combination with identity (23) then allows one to evaluate Φ∗n(ζm) for these
values of m.
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4.2. Unitary Version of Schramm’s Identity

In this section x will be a real variable. It was proved by Schramm [19] that

Φn(x) =

n∏
j=1

(
x(j,n) − 1

)cos(2πj/n)

(x > 1, n ∈ N).

We will prove the following unitary analog.

Theorem 5. We have

Φ∗n(x) =

n∏
j=1

(
x(j,n)∗ − 1

)cos(2πj/n)

(x > 1, n ∈ N).

This is, in fact, a corollary of a more general identity concerning the discrete
Fourier transform (DFT)

F ∗f (m,n) :=

n∑
k=1

f((k, n)∗)ζ
km
n (36)

of functions involving the quantity (k, n)∗.

Theorem 6. Let f be an arbitrary arithmetic function. For every m,n ≥ 1,

F ∗f (m,n) =
∑

d|(m,n)∗

d (µ∗ × f)(n/d). (37)

Furthermore, we have

F ∗f (m,n) =
∑
d||n

f(d)c∗n/d(m). (38)

Proof. We have by using that d || (k, n)∗ if and only if d | k and d || n,

F ∗f (m,n) =

n∑
k=1

ζkmn
∑

d||(k,n)∗

(µ∗ × f)(d)

=
∑
d||n

(µ∗ × f)(d)

n/d∑
j=1

ζjmn/d =
∑
d||n

(n/d)|m

(µ∗ × f)(d)
n

d
,

which proves (37).

By grouping the terms according to the values of (k, n)∗ = d, we have

F ∗f (m,n) =
∑
d||n

f(d)

n/d∑
r=1

(r,n/d)∗=1

ζrmn/d =
∑
d|n

f(d)c∗n/d(m),

which proves (38),
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Remark 7. By (2) and (3) the unitary Ramanujan sum satisfies c∗.(m) = %.(m)×
µ∗. Thus, the sum in (37) equals (%.(m) × µ∗ × f)(n) = (c∗.(m) × f)(n), leading
to another proof of (38).

Remark 8. Identity (37) shows that if f is a real valued function, then so is
F ∗f (m,n). Hence, in this case, the factor ζkmn in (36) can be replaced by cos(2πkm/n).
More exactly, if f is a real valued function, then

n∑
k=1

f((k, n)∗) cos(2πkm/n) =
∑

d|(m,n)∗

d (µ∗ × f)(n/d), (39)

n∑
k=1

f((k, n)∗) sin(2πkm/n) = 0.

In the special case f(n) = n (n ∈ N) and m = 1 we obtain the following identities:

n∑
k=1

(k, n)∗ cos(2πk/n) = n
∑
d||n

µ∗(d)

d
= ϕ∗(n) and

n∑
k=1

(k, n)∗ sin(2πk/n) = 0.

In the classical case where (k, n)∗ is replaced by (k, n) and ϕ∗(n) is replaced by
ϕ(n), these were pointed out by Schramm [18, 19].

Proof of Theorem 5. By taking f(n) = log(xn − 1) we have by (9) that

(µ∗ × f)(n) =
∑
d||n

µ∗(d) log(xn/d − 1) = log Φ∗n(x).

The assumption that x > 1 ensures that f is real. It then follows from (39) that

n∏
j=1

(
x(j,n)∗ − 1

)cos(2πjm/n)

=
∏

d||(m,n)∗

Φ∗n/d(x)d (m,n ∈ N).

The proof is completed on putting m = 1.

5. The Coefficients of Unitary Cyclotomic Polynomials

We write

Φ∗n(x) =

∞∑
j=0

a∗n(j)xj . (40)

This notation looks perhaps strange to the reader, but implicitly defines the coeffi-
cients for every j, which serves our purposes. In [11] the following result is proven.

Theorem 7. Let m ≥ 1 be fixed. We have {a∗mn(j) : n ≥ 1, j ≥ 0} = Z.
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Given any polynomial f, its height h(f) is defined as its maximum coefficient in
absolute value.

Conjecture 1. For any given natural number m there is a cyclotomic polynomial
having height m.

This conjecture was put forward by Kosyak et al. [12]. Here we propose the
following conjecture.

Conjecture 2. For any given natural number m there is a unitary cyclotomic
polynomial having height m.

These two conjectures are closely connected.

Proposition 1. If Conjecture 1 is true, then so is Conjecture 2.

Proof. Suppose that h(Φn) = m. Then, by elementary properties of cyclotomic
polynomials, h(Φκ(n)) = m. Now note that h(Φ∗κ(n)) = h(Φκ(n)) (since Φ∗κ(n) =

Φκ(n)).

The best result available to date regarding these two conjectures is the following.

Theorem 8. Almost all positive integers occur as the height of an (unitary) cyclo-
tomic polynomial. Specifically, for any fixed ε > 0, the number of positive integers
≤ x that do not occur as a height is �ε x

3/5+ε. Under the Lindelöf Hypothesis this
number is �ε x

1/2+ε.

Proof. The result is actually a corollary of [12, Theorem 4]. In that theorem only
certain special cyclotomic polynomials of the form Φpqr, with p < q < r primes,
feature. As Φ∗pqr = Φpqr, we are done.

This theorem is deep, as it relies on deep results from analytic number theory on
gaps between consecutive primes.

Let k be a squarefree integer. Consider the set

B(k) := {h(Φ∗n) : κ(n) = k}. (41)

Note that if we replace h(Φ∗n) by h(Φn) this set will be {h(Φk)}.

Lemma 4. Let k be a squarefree integer. Suppose that k has at most two distinct
prime factors. Then B(k) = {1}.

Proof. If k is a prime power, the conclusion follows from (13). If k has precisely two
distinct prime factors, say p and q, we can write Φ∗n(x) = Q{pe, qf}(x) by Theorem
1. The polynomial Q{pe, qf}(x) can be interpreted as the semigroup polynomial

associated to the numerical semigroup 〈pe, qf 〉 and as such will have height 1 (see
Jones et al. [11] or Moree [16]). A shorter, but less conceptual, proof is obtained on
merely invoking Lemma 4 of [8].
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Remark 9. By the above proof and (16) we also have h(Φ∗2peqf ) = 1. However, it

is not always true that h(Φ∗4peqf ) = 1 (for example h(Φ∗60) = 2).

Computer work by Bin Zhang suggests that B(k) will be large if k has at least
three prime factors. This suggests that perhaps there is hope of proving a stronger
result on heights assumed by unitary cyclotomic polynomials than is provided by
Theorem 8.

Question 1. Suppose that k has at least three odd prime factors. Is B(k) un-
bounded?

If k has four or more prime factors, we would not be surprised if B(k) is un-
bounded. If it has precisely three factors, the situation is not so clear. For example,

max{h(Φ∗n) : n = 2a3b5c, a > 0, b > 0, c > 0, 1 < n < 107} = 15.

6. More on Inclusion-exclusion Polynomials

The following result gives the factorization of an inclusion-exclusion polynomial
Qρ(x) into cyclotomics.

Theorem 9 (Bachman, [2]). Let ρ = {r1, r2, . . . , rs} be a set of increasing natural
numbers satisfying ri > 1 and (ri, rj) = 1 for i 6= j. Put

Dρ = {d : d|
s∏
i=1

ri and (d, ri) > 1 for all i}.

Then Qρ(x) =
∏
d∈Dρ Φd(x).

Our proof of Theorem 1 makes use of the following basic property of inclusion-
exclusion polynomials.

Theorem 10. It Qρ1(x) = Qρ2(x), then ρ1 = ρ2.

Its proof rests on the following easy lemma (with the proof of the uniqueness
being due to the referee).

Lemma 5. A Kronecker polynomial can be written as

f(x) = xs
∏
d∈D

(xd − 1)ed , (42)

where D is a unique finite set of positive integers and s ≥ 0 and the ed 6= 0 are
unique integers.
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Proof. From (11) and (6) we deduce that f(x) can be written as claimed and with
D a finite setof positive integers. It remains to show the uniqueness. The integer
s ≥ 0 is merely the order of f(x) in x = 0. Let m be the maximal element of D.
Then em is the order of f(x) at x = ζm. Applying the same reasoning to (the
possibly rational) f(x)(xd − 1)−em , we get em for the next maximal m. Repeating
this argument, we complete the proof.

Remark 10. By a similar reasoning one can show that if f(x) ∈ Z[[x]] satisfies
f(x) ≡ 1 (mod x), there exist unique integers e1, e2, . . . such that in Z[[x]]

f(x) =

∞∏
n=1

(1− xn)en .

This is the so-called Witt expansion which arises in many areas of mathematics, see
for example Moree [15] for more information.

Proof of Theorem 10. Given an inclusion-exclusion polynomial f(x) in the standard
form f(x) =

∑
i aix

i, we give a procedure leading to a unique ρ = {r1, . . . , rm}
such that f(x) = Qρ(x). As f(x) is a Kronecker polynomial satisfying f(0) = 1, by
Lemma 5 we can write

f(x) =
∏
d∈D

(xd − 1)ed ,

where D and the ed 6= 0 are unique and computable. Comparison with (10) then
shows that D = {n0, ni, nij , nijk, . . .}. The question is to know which ρ correspond
to the set D. We know for example, that whatever ρ is, the product of its ri is
certainly unique and equals n0 = maxD. The numbers ri themselves, also turn out
to be unique. We order the elements in D in such a way that d1 < d2 < . . . . We
put r1 = d1. If d2 is coprime with r1 we put r2 = d2, if not we consider d3. If an di
is coprime to every r1, . . . , rg we have at a certain point, we put rg+1 = di. If rm is
the last r number so found, we have f(x) = Qρ(x) with ρ = {r1, . . . , rm} uniquely
determined.

6.1. Unitary Cyclotomics as Inclusion-exclusion Polynomials

Armed with Theorem 10 we are now ready to prove Theorem 1.

Proof of Theorem 1. Let n ≥ 2 be an integer and
∏s
i=1 p

ei
i its canonical factoriza-

tion with pe11 < pe22 < . . . < pess . On comparing formula (9) with (10) it follows that
Φ∗n(x) = Q{pe11 ,..., pess }(x). Conversely, given any ascending sequence of prime powers

pe11 < . . . < pess with distinct base primes p1, . . . , ps, the polynomial Q{pe11 ,..., pess }(x)

is seen to correspond to Φ∗n(x) with n =
∏s
i=1 p

ei
i . The one-to-one part of the claim

is a consequence of Theorem 10.

Theorem 1 together with Theorem 9 can be used to reprove Theorem 2.
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Alternative proof of Theorem 2. For n = 1 the result is obviously true. Now let n ≥
2 be an integer and

∏s
i=1 p

ei
i its canonical factorization with pe11 < pe22 < . . . < pess .

Put ρ = {pe11 , . . . , p
es
s }. Then by Theorem 1, respectively Theorem 9,

Φ∗n(x) = Qρ(x) =
∏
d∈Dρ

Φd(x),

with Dρ = {d : d | n, p1 · · · ps | d} = {d : d | n, k(d) = k(n)}.

7. Applications of Theorem 3

By selecting g(n) = cn(k), g∗(n) = c∗n(k) (Ramanujan, respectively unitary Ra-
manujan sums), where f(n) = %n(k), we deduce from Theorem 3 the following
identities.

Corollary 1. For any n, k ∈ N we have

c∗n(k) =
∑
d|n

κ(d)=κ(n)

cd(k) (43)

and
cn(k) =

∑
d|n

κ(d)=κ(n)

c∗d(k)µ(n/d).

Let ids(n) = ns (s ∈ R). In the case g(n) = Js(n) := (µ ∗ ids)(n) (Jordan
function of order s), g∗(n) = J∗s (n) := (µ∗ × ids)(n), the unitary Jordan function
of order s, where f(n) = ns, we deduce the following corollary of Theorem 3.

Corollary 2. For every n ∈ N, s ∈ R we have

J∗s (n) =
∑
d|n

κ(d)=κ(n)

Js(d) (44)

and
Js(n) =

∑
d|n

κ(d)=κ(n)

J∗s (d)µ(n/d).

Identity (43) was deduced by McCarthy [14, Ch. 4], while (44) was obtained
by Cohen [5, Lemma 3.1] using different reasoning. If s = 1, then J1(n) = ϕ(n),
J∗1 (n) = ϕ∗(n), and we deduce the following corollary.

Corollary 3. We have

ϕ∗(n) =
∑
d|n

κ(d)=κ(n)

ϕ(d) (n ∈ N).
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This result also follows by setting k = n in Corollary 1, or by comparing the degrees
of the polynomials in (19).

We remark that Cohen [5, Lemma 4.1] also showed that the identity

κs(n) =
∑
d|n

κ(d)=κ(n)

dsµ2(d) (n ∈ N)

holds for any s.

Putting k = 1 in Corollary 1 and noting that κ(n) is the only squarefree divisor
d of n satisfying κ(d) = κ(n), we obtain the following corollary.

Corollary 4. We have

µ∗(n) =
∑
d|n

κ(d)=κ(n)

µ(d) = µ(κ(n)) (n ∈ N).

On taking g(n) = Λ(n), g∗(n) = Λ∗(n) and by using that
∑
d|n Λ(d) = log n, we

see that f(n) = log n and obtain the final corollary.

Corollary 5. We have

Λ∗(n) =
∑
d|n

κ(d)=κ(n)

Λ(d) (n ∈ N).

From this identity we deduce the truth of (29).

8. Connection With Unitary Ramanujan Sums

Certain formulas involving unitary cyclotomic polynomials and unitary Ramanujan
sums can be easily deduced from their classical analogues, by using the identities
of Section 7. For example, we have

Corollary 6. For any n > 1 and x ∈ C, |x| < 1,

Φ∗n(x) = exp

(
−
∞∑
k=1

c∗n(k)

k
xk

)
. (45)

Proof. It is known that for any n > 1 and |x| < 1,

Φn(x) = exp

(
−
∞∑
k=1

cn(k)

k
xk

)
, (46)
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see Nicol [17, Cor. 3.2], Tóth [27, Th. 1] or Herrera-Poyatos and Moree [9]. By
Theorem 2 and the identity (43) we then obtain

Φ∗n(x) =
∏
d|n

κ(d)=κ(n)

Φd(x) = exp

− ∞∑
k=1

xk

k

∑
d|n

κ(d)=κ(n)

cd(k)

 = exp

(
−
∞∑
k=1

c∗n(k)

k
xk

)
,

completing the proof.

For any n > 1 the series
∑∞
k=1 cn(k)/k converges, see, e.g., Hölder [10]. There-

fore, Lemma 2 in combination with (46) gives

log Φn(1) = Λ(n) = −
∞∑
k=1

cn(k)

k
(n > 1). (47)

The second identity was first discovered by Ramanujan and expresses an arithmetic
function as an infinite series involving Ramanujan sums (for a different proof see
Sivaramakrishnan [21, Theorem 87]). Such expressions are now called Ramanujan
expansions, see, e.g., Schwarz and Spilker [20, Chapter VIII].

The convergence of
∑∞
k=1 cn(k)/k for n > 1 in combination with (43) shows that

also
∑∞
k=1 c

∗
n(k)/k converges for any n > 1. Thus, by Lemma 2 again,

log Φ∗n(1) = Λ∗(n) = −
∞∑
k=1

c∗n(k)

k
(n > 1). (48)

The second identity in (48) was obtained by Subbarao [22], without referring
to unitary cyclotomic polynomials and with an incomplete proof, namely without
showing that the corresponding series converges.
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