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Abstract

We study the Dirac propagator dressed by an arbitrary number N of photons by means of a worldline
approach, which makes use of a supersymmetric A" = 1 spinning particle model on the line, coupled to
an external Abelian vector field. We obtain a compact off-shell master formula for the tree level scattering
amplitudes associated to the dressed Dirac propagator. In particular, unlike in other approaches, we express
the particle fermionic degrees of freedom using a coherent state basis, and consider the gauging of the
supersymmetry, which ultimately amounts to integrating over a worldline gravitino modulus, other than the
usual worldline einbein modulus which corresponds to the Schwinger time integral. The path integral over
the gravitino reproduces the numerator of the dressed Dirac propagator.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The use of first-quantized methods to compute scattering amplitudes and effective actions has
been known since the renowned work of Feynman [1,2], who proposed a worldline representation
for the scalar QED propagator, which even included one-loop photon self energy contributions.
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However, it was only in the early nineties that these methods were taken seriously for Quan-
tum Field Theory (QFT) computations, as an alternative to second-quantized approaches, namely
after the work of Bern and Kosower [3], who derived a compact master formula for one-loop
gluon scattering amplitudes, from the infinite tension limit of string theory, and after Strassler’s
work [4], who rederived Bern-Kosower master formula for QED amplitudes, directly from parti-
cle path integrals. After these seminal contributions there have been numerous applications of the
method—see the papers [5,6] for a self-contained summary of the worldline applications to quan-
tum field theory computations and for an extensive bibliography. In particular, for QED related
physics, these first-quantized “string-inspired”” methods have found a variety of applications, in-
cluding multiloop calculations [7,8], Euler-Heisenberg lagrangians [9,10], derivative-expansions
of the effective action [11-14], as well as the inclusion of constant external electromagnetic
fields [15-17] and finite temperature computations [18-23], just to name a few. Although a
generalization of the Bern-Kosower master formula to the open line case for a scalar field was
proposed soon after Strassler’s worldline papers by Daikouji et al. [24], the amount of scientific
results concerning the use of worldline techniques to the computation of QFT results which in-
volve open lines, so far, has been much less than that concerning QFT loops. Some exceptions
include computations of thermal Green’s functions [25-27], open line spin factors [28], parti-
cle path integral representations for the scalar and Dirac propagators [29,30], the worldgraph
approach [31-33], spinning particle representations for Einstein gravity [34], and Compton-like
scattering for scalar particles coupled to gravity [35]. An important reason why string-inspired
methods have developed more for loop computations, is that one-loop effective actions, and their
associated one-loop one-particle irreducible correlations functions, are represented in terms of
traces of differential operators, which find a rather natural representation in terms of particle
models, as already shown by Alvarez-Gaumé and Witten in their renowned work about gravi-
tational anomalies [36] (see the book [37] for a recent detailed review of the subject.) In fact,
in such cases, spinorial degrees of freedom can often be conveniently represented in terms of a
matrix-valued potential inside purely bosonic particle models.

However, recently, an efficient first-quantized formalism to the computation of a Dirac propa-
gator dressed by external electromagnetism, has been developed [38,39], which makes use of an
N =1 supersymmetric spinning particle model. In that approach the denominator of the Dirac
propagator—referred to as ‘the kernel’—is represented in terms of a worldline path integral and
the fermionic degrees of freedom are obtained by using the spinning particle method, proposed
years ago by Gitman and Fradkin [40], who developed earlier constructions [41-43]—the spe-
cific feature of such formalism is the use of ‘Weyl symbols’ [41,44]. In the Refs. [38,39] the
numerator—and the final expression for the propagator—is obtained by acting on the denomina-
tor with the dressed Dirac operator. In the present manuscript instead, we take a complementary
path and decide to represent the fermionic degrees of freedom of the Dirac particle in terms of a
coherent state basis. Moreover, in our approach we gauge the worldline supersymmetry, and the
resulting worldline gravitino gauge field leaves a Grassmann modulus, in the path integral, which
inserts the numerator of the (dressed) Dirac propagator. This allows us to obtain a Bern-Kosower-
like master formula for the Dirac propagator in momentum space, dressed with the insertion of
N photon, which we will refer to as the “N-photon Dirac propagator” and which, similarly to
other worldline master formulas, is valid off the mass-shell of the particles involved. Another
advantage of our derivation, compared to the more conventional Feynman rules based on the
space-time QED lagrangian, is that the full final expression is expressed in terms of products of
coherent states eigenvalues, rather than products of gamma matrices, similarly to what happens
in the aforementioned method based on the symb map. The price to pay is the presence of the
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aforementioned gravitino modulus, which mixes with the open-line boundary conditions, in or-
der to ultimately reproduce the numerator of the dressed propagator. Other auxiliary Grassmann
numbers are introduced, which help imposing the multilinearization in the photon polarizations;
they can be seen to naturally emerge by describing the spinning particle in terms of a super
worldline time (see e.g. [38]).

2. The spinning particle model

Let us describe the particle model we use to compute our main master formula, which con-
sists of a locally symmetric N'= 1 supersymmetric massive spinning particle model, coupled
to external electromagnetism. The dynamical variables are phase-space geometric coordinates,
(x*, pu), and a set of Majorana coordinates, ¥*, plus an additional Majorana variable, WS. Al-
though the spinning particle model below can be defined in any spacetime dimension, in odd
spacetime dimensions there is no obvious definition of chirality. Thus, the worldline representa-
tion of massive Dirac particles in terms of the present worldline spinning particle models should
be restricted to even-dimensional spacetimes. Here, for definiteness, we stick to four-dimensional
spacetime, in which the Minkowskian phase space action of the model reads, !

1
Sle, x; x, p, ¥, 1/f5;A]=/dT[Pu5€”+ Lymy™

0
— e (T, " (A) + m?* + ieFu, Y y)

H
—ix T+ my) | @1

[ ——

0

where 4 =0, ...,3, whereas M =0, ...,3,5, and I, = p,, —eA, is the covariant momen-
tum. The first class constraints H and Q satisfy the classical A/ = 1 supersymmetry algebra
{Q, O}p.». = —2i H. The Euclidean configuration space action, which we obtain by performing

the Wick rotation ie — e and i y — x, and by integrating out the particle momentum, reads
1
. 2 ; .
Sle, x:x, ¥, ¥>; Al :/dr[zie(x“ — Xy + %leﬂM —iexMA, + %em2
0

ixmyd + %eW‘F,ww”] . 2.2)

At the quantum level, in order to build the fermionic Hilbert space, we find it convenient to use the
so-called doubling trick, which consists in doubling the number of Grassmann-odd coordinates,
by adding a new set of free variables /'", which satisfy the same Dirac brackets as the ’s.
This thus allows us to complexify the fermion coordinates, U™ := %(w’” +iy'M) and use the

coherent state basis, for the corresponding fermionic operators, i.e. (A|UM = (A|AM, UM|p) =

' Note that such action can be easily obtained from dimensionally reducing the free five-dimensional spinning particle
and covariantizing the momentum.
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n™ |n). However, the coupling in the action will only involve the original Majorana fields, which
now read yM = Lz(lIJM + WMy,

The dressed Dirac propagator, in the coherent state basis, is thus linked to the line path integral
of the model (2.2), extended with the aforementioned doubling trick, and equipped with the
suitable boundary term, i.e.,

o 1 _ TI(A) + mP>
ST (e m; Ap) ::_—(x’,Mﬁlx,n)
(Alm) [12(A) +m
x(1)=x’ W(l)=1
~ e—i’ifiDeDX / Dx / DUDW ¢~ Suule-xix WAL (3 3y
Vol. Gauge
x(0)=x V(0)=n

where the quantum action reads
1
Squle, x5 x, W; Al = /dr[%(x“ - X‘ﬂ“)z + Uy UM —ieit A, + %em2
0

+ imes + %CWLFMVW]
— UMy . (2.4)

Above, we already divide out the coherent state normalization (A|n) = ¢*" and the first path
integral, over the gauge fields e and y, is intended to be performed by suitable gauge-fixing and
by removing the overall gauge group volume. The gauge transformations for e and y in (2.2)
read

Se=£+i2xe (2.5)
Sx =¢ (2.6)

where, & and € are the gauge parameters for the local worldline translation and local worldline
supersymmetry, respectively, which on the open line, vanish at the end points T = 0, 1. Thus,
one can easily show that e and x can be gauged away, up to two constant moduli, which are
orthogonal to the gauge transformations and are supported by the open-line boundary conditions
(on the closed circle, due to antiperiodicity, there is no modulus for the gravitino); namely ¢ —
2T and x — 60, with T being a positive real number, and 6 a Grassmann number. Hence, we
have

00 x(D=x' W(l)=r
SYE s Ay) = fze—“?/dT[de / Dx / DWDW ¢~ Saul2T0:x. 04l (. 7)
0 x(0)=x v(0)=n

and the factor /2, is a normalization factor that takes into account that the IZIM ’s satisfy the
conventional Clifford algebra, up to a factor of 2, i.e. ¥ = %?M and pM = WM L UM [30].
In order to explicitly perform the path integral (2.7), we find it convenient to use the back-

ground field method and split the paths as (indices are raised/lowered with the flat Minkowski
metric)
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xH(r) =x* + (' = x)t 4+ g* (1)
() =n"+ 0% () 2.8)
Wy (1) =Am + Om(T)

where ¢, Q, Q can be interpreted as quantum fluctuations from the classical solutions to the free
e_quations of motion. These fields satisfy the boundary conditions g*(0) = ¢g*(1) = QM 0) =
O um (1) =0. The splitting for Majorana fields reads

yM @) =1"+ %(QM(t) +0M(1)) (2.9)

M._ MM :
where T" := VR Thus, the path integral finally becomes

xx)

(0.¢]
/ - 2 / :
G s A =2 / dT / 49 &~ T= ST+ T =) im0

q(1)=0 | Q=0
pge~ir /¥ / DODQe /0Qp514:0.0:4] (2.10)
q(0)=0 2O=0
where
S'lq, Q, 0; Al

1
=/dr[ 2\[T(()c —x)+q)“(Qﬂ+Q#)—ze(x —x+q)“AM(x+(x —Xx)T+q)
0

+lTe(T“+ (QM"FQM)) ;W(X—f-(x —x)‘c—}—q)(T” %(QV-FQV))

+im0 (0% + 0 )] @2.11)

The latter is valid for an arbltrary Abelian field A, and is suitable to be used also in the presence
of a non trivial electromagnetic background, which can represent a macroscopic classical back-
ground and/or a set of photons. An interesting scenario is when the classical field is constant.
In such a case, the worldline approach is particularly more efficient than the second-quantized
counterpart, as the whole effect of constant external potential is quadratic in the worldline fields
and can be fully encoded in the worldline Green’s functions [15]. For the scalar case, a master
formula for the dressed propagator in the presence of a constant external field was derived in
Ref. [46].

Here, however, we specialize to the case of a vector field which represents a number N of
external photons, in vacuum, i.e. in the absence of a macroscopic background. In such a case, we
can rewrite (2.10) in terms of a master formula which yields the Dirac propagator with N photon
1nsertions.

3. N-photon Dirac propagator master formula
We aim to compute a generic tree level amplitudes where the fermion line is dressed with N
photons. The insertion of (truncated) photon lines of fixed momenta k; and polarizations &; can

be achieved within the worldline approach, by writing the vector potential as

5
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N
Ap(x) = ey eh @ (3.1)

inserting it into the path integral (2.10) and singling out the multilinear part in all the ¢’s. By
doing this, one is led to identify the photon insertion in terms of a vertex operator, in the same
way as it happens in string theory. In the present case the photon vertex operator reads (modulo
the coupling constant ie):

1
Vx/,x[k’ e] = /drel‘k~()€+(x/—)€)f+q(r)) I:E . (()C/ —x)+ q(‘[))
0
— iT(T+ %(Q(t) + Q(r))) f (T+ %(Q(‘C) + Q(r)))] ’
(3.2)

where f,, := k&, — k,g,. Thus, considering the insertion of N photons we get the following
path integral representation for the N-photon Dirac propagator

xx)

o0
/ - 2 L 5
S;,"‘(A,n;kl,sl,...,kN,sN)=f2/drfd9e"" T g O T ) i Y

4(1)=0 o om=0
Lo - 5
Dge T4 f DODQe /22
4(0)=0 0(0)=0

—. —ﬂ S / /
f[sze«x DHEQ+O@) = FOQ +05(0] St 811 VE T [ o]

(3.3)
where the ‘dot’ product represents contraction of the Greek indices and juxtaposition the con-

traction of capital Latin indices. The previous expression can be promptly simplified by using
the Green’s function of the Grassmann coordinates, i.e.

<QN(‘L')QM(‘L'/)> =5V — 1) =8N Gr(r, 1), (3.4)

which inverts the kinetic operator d; and satisfies the correct boundary conditions—here ¢ is
the Heaviside function. We can thus shift the Grassmann variables, in order to absorb the linear
terms, namely

Q" (7) = Q"(x) + Z%TGF o &M(1) = Q"(1) + 2%T(x“(r) — ') (3.5)
0,,(1) = 0u(1) = 5757 0 Gr(1) = Qu(D) + 575 (xu(D) — x7,) (3.6)
0°(r)=Q (1) + Gm) o2 (3.7)
05(7) = 0s(1) — T o Gp(r) (3.8)

where the symbol ‘o’ represents an integration over the worldline time: for example GFr o
X (r) = [dtv'GF(r, v)x*(1'). By noting that the shifted fields satisfy the same boundary con-
ditions as the original ones, and have the same kinetic operator, they thus give rise to the same
Green’s function as in Eq. (3.4). Hence, we can just rename the new fields as the old ones, pro-
vided we perform the shift in the vertex operators, i.e.

6
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xx)

/ — 2 L I_ . 5
Sy Gomiken, ..k, gN)_f/dT/dee —ar Tor 0 e —ime Y

q(1)=0 0(1H)=0
_LI-Z A —/QQ X' x x'x
/ Dge 4T /1 f DODQe VA lkr, el Vo ks end (3.9
q(0)=0 Q(0)=0
where

1
yxx [k, e] = / dr etk OG+E =0)T4q(1) fo (' =x)+4 (1) —iT E(r.x.x")- f-E(T.x.x")

lin.e
0
(3.10)
B4 (r,x,x) =1+ (M (D) + 0M(D) = 77 (¢ (@) + ' —x) (@ = D). B
and the path integral now only involves Q*, O*, and g* (‘lin. & stands for ‘linear in ). The
latter give rise to the bosonic Green’s function

<q“(r)q”(r’)> = MG (T, 7)) = —2T 8" A(z. 7)),

lt—1| 47

At =7’ - , 3.12
(r, )=t + 7 5 ( )
which satisfy (left/right bullet denotes derivative with respect to the first/second variable)
AT, T =7 - 9@ — 1) =7+ S (500 — 1)
A, ) i=1-68(t —1)), (3.13)

with s;,/ := sgn(t — t’) being the sign function. Note also that the Grassmann dynamical vari-
ables always appear in the combination Q + Q, in terms of which

(@Y @) + 0" @) (@u ) + 0w (x')) =b3yseer (3.14)
Thus,
S]f,/’x()_», ni ki, €1, ..., kn, enN)

o
zﬁ/ @ 'dTT)_D/z f 49 & T~ ST S i Y
T

x <vx/’X[k1,gl] s v"“)‘[kN,sN]Mml , (3.15)

where the correlators are computed in terms of the Green’s functions given above, and ‘m.1.’
stands for ‘multilinear’ i.e. linear in each polarization vector.

For amplitude computations, in order to have expressions only dependent on particle mo-
menta, it is obviously more convenient also to Fourier transform the end points of the fermion
line,

S]{’,,’p(i, niki,el,... ky,en) = /dede/ PP D Y X R ke, kL EN)
(3.16)
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where p and p’ are the momenta of the incoming/outgoing Dirac fermions sitting on the fermion
line; both momenta are taken to be flowing in. The previous can be performed with the convenient
change of variables x; := x';xl, x_ = x’ — x, so that the integral over x4 produces a global
momentum conservation delta function 27)?8? (p + p’ + >, ki), whereas the integral over x_

is a Gaussian integral of the form:

1
/de_ ¢~ AT — (4 TYD/2 TV (3.17)

whose numerical prefactor cancels the denominator of Eq. (3.15). Above, the vector b reads

N N
. . o . i i 5
bt =ip'* + ,_E 1 ik} + &) + ﬁTﬂ +i6 IE_I(TI — A0+ %(le +0n)) .
(3.18)

Hence (the tilde sign below takes into account of the stripping off of the momentum conservation
delta function),

oo
S;’,“”(X,n;kl,s],...,kN,eN)zfz/dT/de om0
0

« <eT(_m2+b2)V[k1, el VIky. 81\]])‘ 1 (3.19)
m.l.
where now,

1

V[k, 8] Z/df eik~q(r)+s'q'(r)fiTE(r)~f~E(t)+i0q(t)~f~E(t) ; (3.20)

m. e

0

B (1) =11 + 5 (" (1) + 0M(1)) . (3.21)

In order to write down our main master formula we need to introduce some more notation which,
in particular, allows us to systematically deal with the terms quadratic in the E’s, which occur
in the vertex operators. This is achieved with the help of new Grassmann numbers & and &/, in
terms of which

k=g, & =gle) (3.22)
gli=gge),  f =g 1" (3.23)

where the tilded quantities are Grassmann even, whereas the hatted ones are Grassmann odd.
This can be equivalently achieved by worldline superfields, in which the above Grassmann vari-
ables are related to the supersymmetric partners of the worldline times t; [38]. Thus, we can
write the vertex operator as

1
VIk. 8]:/d_[/d%_d%_/eik-q(r)+€~z}(r)+i0q(r)~f~E(r)+«/—i2T(l€+§)‘E(r) (3.24)
0

and
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oo
PP Gomikis 1, ks en) =ﬁ/ded9/dgdg/ emime"?
0

x <V[k1 ,&1]--- Viky, EN]eT(_m2+E2)> (3.25)

where now déd&’ :=d&d&| - - - déydE), and

N N
. ~ 4 , ~
bt =ipt+ > (inkl + &) + o7 06 > @ -Df" e, (3.26)
=1 =1
so that

N N
b= —p/2 + Z (— Tk -kpy +&p- &y +i2nk - 51/) +i2p - Z(il’[k[ + ;)

1LI'=1 =1
N N
+20(ip' + Y ki + ) - (F Y +i D@ = D - Er). (3.27)
=1 I'=1

Most of these terms combine with the correlators of the vertex operators. In particular, let us first
perform the bosonic v.e.v.’s of the product of vertex operators, i.e.

- 11
<V[k1 , 81] . V[kN, SN]) — eT Z“/ (k1~k]/+20k1-f1/-ul/)(rlrl/—&-zr”/ 2(‘[1-‘,—‘[1/))
q
I . oy 1
% e—T Z”/ 81.81/(1_‘{”/)6712T Z”/ (k1+0f1‘:‘1)'e,/(r17§(s,,/_H))

% oV —I2T Xy ki +80)-E1 (3.28)

where we have used the shortcut notations, 7y := |7y — 17|, 53 1= sgn(t; — 1) and dyp := (717 —
. . . 2,52 .
7). The previous combines with the e ="+ term to give

1 1
<V[k1781]-~'V[kN,8N]eT(_m2+I;2)> :/dfl ~~-/drN
q
0 0

% e—T(m2+p/2)+T Z”/ (k[-k,/ %T”/-Hk]'51/5”/“1'51'51/(1”/)+iT(p/—P)'Z] (itrkj+21)

X e«/ —i2T ZI(IE]—&-Q‘])-E] €T9 Zl T El-fl-(p’—p) e—T@ 21 E[~.f~2~(p,+21/(k,/‘[l]/+i§l/511/))

« e@(ip’+zl(i1’1k1+51))~Y (3.29)
where the first exponential alone would yield the scalar master formula found in Ref. [24]. Fi-
nally, we are left to perform the fermionic v.e.v.’s, which using expressions (3.21) and (3.14)
promptly yield

o) 1 1
S]’;“”(X,n;kl,el,...,kN,gN)zﬁdefdQ/dsds’ e*"mmsqu--./dm
0 0 0

x e—T(m2+p’2)+T Z”/ (k[-kl/ %‘L'”/-H']q-§]rsll/+5l-§1/d”/)+iT(p/—p)-Zl itk +2p)

« V12T Zl(k1+81)~T617 S s i 420)-Ghyr+8y)
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% eTTg«/ —i2T le’ N4 (1€[+§1)<{Tl/flw(p/—[))—flw(p/-i—zr/ (rl’r’kr’+isl’r’gr’))}
s AP+, Tk +ED)- Y JT0 3 uY-fi-(p'=p) =T60 3, Y- fi-(p'+ Xy Chyryr +i&yrsyn) (3.30)
This is the final master formula for the N-photon Dirac propagator, where for future reference

we have left the gravitino modulus 6 unintegrated. On the other hand, the 6-integrated version of
the formula reads

00 1 1
37 Gnkueerkyoon) =2 [ ar [asde’ [ an- [any
0 0 0

- e—T(m2+p’2)+T S (ki kyr %7:”/+ik1-El/sll/+§l-§,/d”/)+iT(p—p’)-Z, (ki +&)

A ¥ AN D A
% e«/*iZT Zl(k1+81)~T617 S s k&) - (ky+8p)

X [—ist + %x/—iZT Zsllr(lgz + &)

i

’ I:Tl/ﬁ/ ’ ([7/ - [7) - fl’ : (p/ + Z(fl’r’kr/ + isl’r’gr’))]
+(ip'+ Yk + &) - THT Y T i (0 = p)
I I
- TZT-fz ' (p’+Z(kww +i§1fS11’))} . (3.31)
I 4

The previous master formula is valid off the mass-shells of photons and Dirac particles, and can
thus be used as a building block to construct general spinor QED amplitudes.
In the following section we test such formula by considering the simplest non-trivial cases.

3.1. Special cases: N =0, 1, 2

In order to check the effective validity of the master formula proposed above, let us single
out a few special cases, and map them to their corresponding expressions in terms of gamma
matrices.

Firstly, let us check that for N = 0, i.e. no photon insertions, one recovers the free Dirac
propagator. This also helps us check the overall normalization of the path integral formula. From
Eq. (3.30) we simply get

o8]
Sy oL m=v2 / dT f df e=imOT =T On*+p ) +ibp' Y
0

LY —mYd —i - p-p+mp’
S Ny | A e Rl (3.32)
p'e+m (Alm) pt+m
which is obviously the free Dirac propagator in the coherent-state basis. Here we have simply
used the definition of the coherent states to re-instate the fermionic operators. In other words

V2rM = ——GpMn) (3.33)

10
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Finally, by stnpplng off the >, one is left with the operator P> (p - y +m), where the new gamma

operators satisfy {y“ y = —277’“’ which is consistent with conventions adopted in Ref. [45],
in order to have a hermitian 7 in the presence of a mostly-positive metric signature.

For N =1, we have to consider the insertion of a single photon vertex into the above path
integral formula. In fact, since in this special case only equal time correlators are involved, and
the equal time correlator of two Q(t) + O(1) vanishes, we can drop this combination from the
vertex operator, and identify E#(t) — Y*. We are thus left with

S{"*P(x, n; k,¢e)
0 1

=ﬁ/dT/dr/d$d§/ o= T4 p 242 (P = p )+ TE(p — p)+/ =TT (h+£) X
o0

x { —im Y 4 i(p +th) Y48 Y1 = Te(p? = p D)) +Tp k& - T
—Tp Ek-Y+Tt(p — p)-ék-T} (3.34)

where we have already integrated over the gravitino modulus, and have used the total momentum
conservation. Integrating over & and &’ which enforces the linearity in the photon polarization,
and by making use of the Bianchi identity to drop a term, yields

00 1
SPP (k. e) =ﬁde/dr e—”m2+ﬂ’2+f<1'2—1”2>>[Tp’.f.wr
0
+T(e-(p'=p) =Y f-Y)(mY —p'-Y)
te-T(1—Tr(p?— p/2))} . (3.35)
The integrands in the first two lines are t-independent; thus, for all of them, the time integrals
just produce the denominator (p’ 2+ m?)(p? + m?). The last term involves terms of the form
1
fdr e"(1+ar)=(1 +a3a)/dt T=e¢, a=-T(p*-p'?, (3.36)
0

which, integrated over the Schwinger time 7', simply gives However, note that the two

1
prm?
terms in the integrand of Eq. (3.36) would separately lead to contributions which behave as 1/T,
and which would diverge in the T integral. However, these would-be singular terms cancel each

other in the combination (3.36). Thus, the final expression reads

V2
(p'? +m?)(p? +m?)

S‘f,’p(x,n;k,s)z {p’-f-T
+(e- (P =p) =0 f-X)(mY> = p - )
Yo T(p? +m2)} . (3.37)

In order to complete our test, we relate the previous to the Dirac propagator written in the spin
(Fock) basis, i.e. we map the products of Y’s to (products of) gamma matrices. Above we have
written the map for a single Y. However, it is easy to show that a product of an arbitrary number
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of Y’s, due to their Grassmannian nature, corresponds to the antisymmetric product of gamma
matrices, i.e.

Y15 Mi-M,
IR A U] L vy

YMi oy Me — L

M
2k/2W —> 2]{TJ/ (3.38)

where the juxtaposition of indices in the gamma matrix product means antisymmetrization. In the
last step, in order to simplify the notation, we have stripped off the coherent state basis vectors
and omitted the operator symbol in the product of gamma matrices. In particular, the products
that appear in Eq. (3.37) are

TMN %J/MN _ %(VMJ/N _ UMN) (3.39)
YHANYR s Loy MNR = L (y My Ny R - pMNy Ry gMRy N _ VR M) (3.40)

Thus, using such an identification in the expression (3.37), and using the Clifford algebra, we
obtain

—p' +my)¢(p+my’)
(p'?+m?)(p* + m?)
which is the Dirac propagator for an incoming electron of momentum p, an outgoing electron
of momentum — p’ flowing out, and the insertion of a photon of momentum k = —(p + p’) and

polarization &.”
Note that, in the previous computation, we have never used the photon on-shell condition and
no gauge choice has been made. In fact, as already stressed, our master formula is valid off-shell.
Finally, let us check the validity of the master formula (3.30) for N =2, i.e. for the tree level
Compton scattering. Here we will content ourselves and impose on-shell condition and Lorentz
gauge to the photons, k> = k - ¢ = 0. We thus obtain

SPP Rk ) —> (—iy2? (3.41)

o
/dT/de/dtldrze*T(p,2+p7'(klT]+k2f2)+m2)+i0((p/+k1T1+k2‘[2)~'Y'7mg05)+Tk1~k2‘[12{
0

T2
—2T2Y- fi- fo- Ys12 — Ttr(fl f2) +2Te - £28(t) — 12)

—iTe10- fr-Ysio—iTeab - fi - Tsay

+(e10 - Y+iTey-p. —iTey -kosio —iTY- f1-Y)(1 < 2)

—i0T*(p_-e1—e1-kasio =T fi - V)T fo-(p' + ki1 — p_T2)

—i0T*(p_ &2 —&2-kisai = Y- fo- V)Y fi-(p) + ko2 — p_11)

+iOT>Y - fi- for(p' + kit — p_12)si2 +i0T*(p' +kitia — p_11) - f1 - fo - TSlz} ,
(3.42)

where we have used the p_:= p’ — p.

In expression (3.42), similarly to the N = 1 case, one can see that some of the terms are
individually divergent upon the integral over the Schwinger time. However, these potentially
divergent contributions cancel each other already at the integrand level, analogously to what
happens in Eq. (3.36) [47].

2 Note that, throughout the paper, the ‘slash’ denotes a contraction with respect to the y#, not with respect to the y*.
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After all the Grassmann integrals are computed, Eq. (3.42) becomes

o0
/dT/d.[]drze—T(P'2+P_-(k1T1+k2T2)+m2)+Tk1-szlz[
0

_ 2 _T_2 _ N _ 5
2T°Y - fi- f>- Ys12 Ztr(f1f2)+2T81~826(t1 ©))i(p' - T —mY>)

—iT*(p_-e1—¢1-kasn— Y- fi- D1 < 2)(p' - T—mY?)
+iT*(p_-e1—e1-kasia— Y- fi-X)p' - fo- Y+iT*T- fi -fz-p’m}

o0
+iT / dT e~ T Hm*+p_ki—ki-k2)

0
1

/dfz e~ Tp-fethkik)n (81 “Y(2p-e2—"-fo-V)—e1- f2- T)
0

o0
+l-T/dTe—T(p/2+m2+p7'kz—kl-kz)
0

1
/dn T kithiko)n (82 YQp el =T fi-T)—er- fi -T). (3.43)
0

For the sake of comparison, it is helpful to identify the contributions of single Feynman diagrams
to the amplitude which, as usual in the worldline approach, is a straightforward task. For example,
considering the following contribution associated to the time ordering 71 > 7o, we get

00 1 1
de TZe—T(P’2+m2)/dTl /dfz e—TP,‘(k1f1+k2r2)+Tk1-kz\flzlly(rl —n)=
0 0 0

1 1

P2+ m2) (P2 mO(p + k)2 +m2] (pZ+m2)(p2 +m2)[(p + ka)? + m?]
(3.44)

which is the correct denominator for one of the two Feynman diagrams of the spinor tree-level
Compton scattering. Similarly, taking the opposite time ordering one gets a similar expression
with k; replaced by kp, and viceversa. Therefore, for the sake of extracting single Feynman
diagrams, it is sufficient to express ‘sign’ functions in terms of Heaviside’s. Moreover, the terms
which have single 7 integrals give denominators with double poles, one with (p'2 + m?)((p +
k 1)2 + m2), the other with k; — k;. Thus, let us collect all terms with momentum p + k» in the
denominator, i.e.

i 1 I 5
(p/?+m2>(p2+m2>[<p+k2>2+m2]K‘”'fl'fz'T_Etr(f1f2)>(” =T
—(p7~81 — €] -k2—T~f1 ~T)(p7 -8+ &2 -k —T-fz-T)(p/~T—mT5)
+(p_e1—er-ko="-f1-X)p' - fo- Y+(p_-e2+e2-ki =0 fo-X)p'- f1- Y
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+Y - fi - fo P =P fifa T4 Y(pe2a+er-ki =Y fo- (' *+m?)
—er- oo Y2+ mh)] (3.45)
which, using the map (3.38), yields

i(p—mydg | (—p— ko —my )y (p+my®)  i(p) —my )¢y

— , 3.46
(p'2 +mA)(p* +m)[(p + k2)* + m?] (p'2 +m?)(p? +m?) (340
whereas the ‘symmetric’ contributions associated to the replacement 1 <> 2, are
PP —my ) p— ki —my D pEmy®) i —my)ad (3.47)
(p'2 +m?)(p? + m)[(p + k1)* +m?] (p'2+m?)(p> +m?) '
Finally, the term with the delta function gives
2i(p —my>)ey -
i(pi—my)er - & (3.48)

(p'? +m?)(p* +m?)

which precisely cancels the last two terms in equations (3.46), (3.47). Overall, we finally obtain

(—i)*(iq)? (3.49)

v 5 5
pTmy <¢1 ptkatmy #r+ ¢

p+k+my’ ; p+my’
p'r+m? (p+k2)? +m? :

(p+k)>+m2"" ) p2 +m?

which is exactly the (untruncated) Compton scattering amplitude.
4. Conclusions and outlook

In the present manuscript we have introduced a worldline first-principled way to compute the
Dirac propagator dressed with an arbitrary number of external photons, making use of a locally
supersymmetric ' = 1 spinning particle model, which allows to represent the numerator of
the Dirac propagator directly from the worldline action, and representing the spinorial degrees of
freedom by means of a coherent state basis. The main result consists in a compact master formula
akin to those derived earlier for one-loop scattering amplitudes, and more recently for tree-level
scattering amplitudes, with a scalar line and a fermion line. Such master formulas, at each N,
provide the full scattering amplitude, i.e. the sum of the different Feynman diagrams involved
in a given process. At loop level this property was exploited in the computation of higher loop
contributions to the Euler-Heisenberg lagrangians [17,48]. The tree level master formula may
instead turn out to be helpful for higher loop g — 2 computations.

There are several natural extensions to the present computation, which we leave for future
work. Firstly, it would be helpful to generalize the master formula including the coupling to a
non-Abelian external field [49] and/or to gravity: to the best of our knowledge, no such deriva-
tions exist in the literature. Another intriguing avenue would be to pack together the coherent
state approach to the spinor helicity formalism, which has proven to be quite efficient for on-
shell scattering amplitude computations. Finally, it would be a welcome addition to extend the
present approach to the dressed Dirac propagator in the presence of an external background
field, for example a constant electromagnetic field, such as it was done in Ref. [46] for the scalar
line. Such extension should be relatively straightforward, yet computationally trickier, since the
Green’s functions become matrix-valued.
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