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Inspired by various astrophysical phenomenons, it was suggested that pulsar-like compact stars
may in fact be strangeon stars, comprised entirely of strangeons (quark-clusters with three-light-
flavor symmetry) and a small amount of electrons. To examine such possibilities, in this work
we propose a linked bag model, which can be adopted for strong condensed matter in both 2-
flavoured (nucleons) and 3-flavoured (hyperons, strangeons, etc.) scenarios. The model parameters
are calibrated to reproduce the saturation properties of nuclear matter, which are later applied to
hyperonic matter and strangeon matter. The obtained energy per baryon of strangeon matter is
reduced if we adopt larger quark numbers inside a strangeon, which stiffens the equation of state
and consequently increases the maximum mass of strangeon stars. In a large parameter space,
the maximum mass and tidal deformability of strangeon stars predicted in the linked bag model
are consistent with the current astrophysical constraints. It is found that the maximum mass of
strangeon stars can be as large as ∼ 2.5M�, while the tidal deformability of a 1.4M� strangeon star
lies in the range of 180 <∼ Λ1.4

<∼ 340. More refined theoretical efforts as well as observational tests
to these results are necessary in the future.

I. INTRODUCTION

What is the state of matter if normal baryonic matter
is compressed so tightly that baryons come into close
contact? This question is not only relevant to low-
energy strong force, as in the case of nuclear physics,
but also important for us to understand an interesting
piece of Nature: the huge and dense lump left behind
after a core-collapse supernova when gravity dominates
inside an evolved massive star. The density of matter
in the lump is extremely high, which may even surpass
5n0 in the center region with n0 being the nuclear
saturation density. Two questions are frequently raised
in the study of such core-compressed matter [1]: 1.
Does deconfinement phase transition take place [2–13]?
2. Does strangeness play an important role [14–27]?
Normal atomic nucleus is 2-flavoured (u and d), but
“giant nucleus” at supra-nuclear densities may very
well lie in the regime of 3-flavours of quarks (u, d,
and s). It is thus proposed that the core-collapse
compressed matter could actually be strange matter,
either strange quark matter (quarks free, e.g., Refs. [28–
31]) or strangeon matter (quarks localized almost in a
certain unit, called strangeon [32, 33]). In principle,
a strangeon is a colorsinglet Nq-quark state with the
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number of quarks Nq = 6, 9, 12, 12, 15, and 18,
which includes same amounts of u, d, and s quarks.
Due to the non-observation of those multi-quark states,
a strangeon may not be stable or only weakly bound
in vacuum according to various investigations [34–41].
However, if strangeons are compressed tightly together,
the corresponding strangeon matter may become stable
due to the strong attractive interactions [42–44], which
could form compact stars called strangeon stars [45].
Astrophysically, observational consequences of strangeon
stars show that different manifestations of pulsar-like
compact objects could be understood in the regime of
strangeon stars [46–51], to be tested by future advanced
facilities (e.g., FAST, SKA, and eXTP). Both nucleon
matter and strangeon matter can be regarded as strong
condensed-matter, simply termed strong matter [45],
merely with quark-flavour number being 2 for the former
and 3 for the latter.

The properties of strangeons in vacuum (i.e., H-
dibaryons, strange tribaryons, etc.) were investigated
extensively based on various methods. For example,
their masses were obtained with QCD-inspired models,
i.e., the MIT bag model [34–37, 52, 53], nonrelativistic
quark cluster model [54–57], Skyrme model [58–61],
diquark model [38], and so on. In recent years, the
properties of H-dibaryons were investigated with lattice
QCD close to the physical π mass [39–41]. However, as
the number of quarks Nq increases, the numerical cost
of lattice QCD grows drastically. Similar situation is
expected for nonrelativistic quark cluster model since
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the number of basises grows exponentially. In such
cases, for the sake of simplicity, we adopt the MIT bag
model [62] to investigate the 2- and 3-flavoured strong
matter in a unified manner, where quarks are assumed
to be free in a bag-like hadron (perturbative QCD
vacuum inside) but this bag is embedded in QCD vacuum
characterized by the bag constant, B. For infinite strong
matter with negligible surface effect, the interactions
between two or more bags can be accounted for if the
bags are connected, i.e., a linked bag model, or a bag
crystal model [63]. The dynamics of quark propagation
between separated bags would thus introduce effective
interactions so that “bags” are condensed in strong-
matter. With the model parameters carefully calibrated,
as will be shown in this work, the properties of nuclear
matter, hyperonic matter, and strangeon matter can be
obtained simultaneously based on the linked bag model.
Surely we are cautious to make any strong conclusions
on the exact states of strong matter at different densities
due to the complex nature of non-perturbative QCD.
Nevertheless, the phenomenological linked bag model
helps, at least for a rough estimation with a clear physical
picture.

In this paper, we propose a simple version of linked bag
model for strong matter (both 2- and 3-flavored) based on
a Fermi-gas approximation. The model parameters will
be determined by matching constraints of nuclear matter
properties from terrestrial experiments of 2-flavoured
nucleon matter. We then extend the model parameters
into 3-flavoured matter in a natural way. Further study
on strangeon matter is carried out, where the mass-
radius relation and tidal deformability of strangeon stars
are obtained. The results are then compared with both
the mass measurements of massive pulsars and the tidal
deformability measured by the event of GW170817.

This paper is organized as follows. In Sec. II, we
introduce the basic framework of the linked bag model
for both 2- and 3-flavored strong matter, where the
model parameters are fixed according to the saturation
properties of nuclear matter. The model is then applied
to investigate the properties of nuclear matter, hyperonic
matter, and strangeon matter in Sec. III. With the
obtained equation of states (EOSs), the structures of
neutron stars, hyperon stars, and strangeon stars are ex-
amined and confronted with astrophysical observations.
We draw our conclusions in Sec. IV.

II. THEORETICAL FRAMEWORK

A. The linked bag model

In the linked bag model scenario, we suggest that
strong matter is composed of quark bags with radius
rbag and quark number Nq. In particular, we assume
that the bags arrange themselves in simple cubic lattices.
The lattice constant a is related to the baryon number
density n by a = (A/n)1/3, where A = Nq/3 is the baryon

FIG. 1. (Color online) A schematic illustration of a lattice
cell in strong condensed-matter, in which point “O” is the
center of the cell. A spherical bag (centered at “O” too, not
shown) is inside the cell, but the cosine of the angle θ is cos θ =
a/(2rbag), with a the lattice constant and rbag the bag radius.
Note that the bag will be linked to other ones through the six
windows (the red circles plotted) on the bag’s surface.

number of a single bag in a lattice cell. If rbag > a/2, the
bags overlap with each other, and those six parts beyond
the cell in Fig. 1 are cut off since they are connected with
adjacent cells, leaving behind the main part of the bag
with six windows on the surface. The open angle of the
window is defined as θ = arccos(a/2rbag). Obviously, the

bag surface will disappear when rbag ≥
√

3a/2 (i.e., θ ≥
54.7◦), implying that the strong matter may go through
a phase transition into uniform quark matter. Therefore
this linked bag model is different from conventional MIT
bag model adopted for strange stars, where we have
introduced finite surface structures between bags.

In the Fermi-gas approximation, the energy per lattice
cell is obtained with

E =
∑
j

(Ωj +Njµj) +BV − z0

rbag

ω

4π
, (1)

where Ωj , Nj and µj denote the thermodynamic poten-
tial, total particle number, and chemical potential of
particle type j. Here after we use j for both quarks
and electrons, while i only for quarks, B for the bag
parameter, and V for the enclosed volume of the bag.
The third term of Eq. (1) looks like the zero-point energy
introduced in MIT bag model, which is associated with
the quantum fluctuation modes inside the bag and is
determined by matching hadron spectra [64]. However,
in the linked bag model, we consider z0 as a parameter to
distinguish the difference between the estimated energy
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with Fermi-gas approximation and the real value of quark
energy, where the variable ω represents the solid angle of
the remaining bag. In the extreme case of isolated bags,
we have ω = 4π and the dimensionless parameter z0 is
fixed by fitting to hadron spectra. The solid angle ω
starts to decrease from 4π when the bags are linked as
indicated in Fig. 1. Once rbag reaches

√
3a/2, ω vanishes

and the bag takes up the entire volume of the lattice
cell with V = a3, i.e., a deconfinement phase transition
that restores Eq. (1) into its original MIT bag model
description of quark matter. Since we have adopted the
Fermi-gas approximation instead of solving the quark
single particle energies exactly, the parameter z0 needs
to vary with density to restore the discrete levels, i.e.,
z0 = z0(n). In practice, we fix z0(n) by reproducing the
saturation properties of nuclear matter.

Due to the finite-sized structure of the linked bag,
the surface and curvature contributions to quark energy
should be taken into account, i.e.,

Ωi = Ωi,V V + Ωi,SS + Ωi,CC, (2)

where Ωi,V , Ωi,S and Ωi,C are given by [65–68]

Ωi,V = − gi
24π2

[
µiui(µ

2
i −

5

2
m2
i ) +

3

2
m4
i ln

µi + ui
mi

]
(3)

+
giαs
12π3

[
3

(
µimi −m2

i ln
µi + ui
mi

)2

− 2u4
i

+

(
6m2

i ln
Λ̄

mi
+ 4m2

i

)(
µiui −m2

i ln
µi + ui
mi

)]
,

Ωi,S =
gi
8π

[
µiu

2
i

6
− m2

i (µi −mi)

3
− 1

3π

(
µ3
i arctan

ui
mi

−2µiuimi +m3
i ln

µi + ui
mi

)]
, (4)

Ωi,C =
gi

48π2

(
m2
i ln

µi + ui
mi

+
π

2

µ3
i

mi
− 3πµimi

2
+ πm2

i

− µ
3
i

mi
arctan

ui
mi

)
, (5)

with ui ≡
√
µ2
i −m2

i and gi the degeneracy factor
(gu = gd = gs = 6) for quark flavor i. The area
S and curvature C of the bag are obtained with S =
ωr2

bag and C = 2ωrbag, respectively. Note that in

Eq. (3) we have considered the first-order correction
to the thermodynamic potential of QCD. The coupling
constant αs and quark massesmi are running with energy
scale [65], i.e.,

αs(Λ̄) =
1

β0L

(
1− β1 lnL

β2
0L

)
, (6)

mi(Λ̄) = m̂iα
γ0/β0
s

[
1 +

(
γ1

β0
− β1γ0

β2
0

)
αs

]
, (7)

where L = 2 ln(Λ̄/ΛMS) and ΛMS is the MS renormaliza-
tion point. In this work we take ΛMS = 376.9 MeV and
m̂u = m̂d = 0, m̂s = 220 and 280 MeV. The parameters

of β-function and γ-function are β0 = 1
4π (11− 2

3Nf), β1 =
1

16π2 (102 − 38
3 Nf), γ0 = 1/π and γ1 = 1

16π2 ( 202
3 −

20
9 Nf)

with Nf = 3 [69]. The renormalization scale envolves
with the chemical potentials of quarks, and we adopt
Λ̄ = C1

3

∑
i µi with C1 = 1 ∼ 4 [70].

The bag parameter B was introduced to account
for the energy difference between physical vacuum and
perturbative vacuum of QCD [62]. Its value was es-
timated under various circumstances, while we still do
not know how exactly does the bag parameter vary with
density. According to QCD sum-rule [71], one finds B '
455 MeV/fm3 at vanishing chemical potentials, while
fitting to the hadron spectra gives a lower value B '
50 MeV/fm3 [64]. At larger chemical potentials, however,
it is found that B prefers a larger value by comparing
with the pQCD calculations to higher orders [70]. To
account for these values in our current study, we take a
third-order expansion of B with respect to ξ, i.e.,

B = B0 +B1ξ +B2ξ
2 +B3ξ

3, (8)

where ξ = (
∑
iNiµi/A − mN )/mN with the baryon

number of a lattice cell A =
∑
iNi/3 and the nucleon

mass mN = 938 MeV. This expansion is composed by
three parts: the constant part B0, the symmetric part
B2ξ

2 and the asymmetric part B1ξ +B3ξ
3. In this work

we fix B = B0 = 50 MeV/fm3 at
∑
iNiµi/A = mN

(ξ = 0), while the first-order term is discarded by taking
B1 = 0 so that ∂B/∂µi = 0 at ξ = 0. The remaining
parameters B2 and B3 are left undetermined and will be
fixed later. The particle number Nj is then related to
the chemical potentials µj via

Nj = −∂Ωj
∂µj

− ∂B

∂µj
V. (9)

The bag radius rbag is then fixed by minimizing the
total energy E at a given cell volume a3 and particle
numbers Ni. With the energy per baryon determined by
E/A, the energy density reads

ε = nE/A. (10)

According to the basic thermodynamic relations, the
baryon chemical potential and pressure are obtained with

µb =
dε

dn
, (11)

P = n2 d

dn

ε

n
= n

dε

dn
− ε = nµb − ε. (12)

B. Model parameters

In our linked bag model, the energy per baryon of
both symmetric nuclear matter and neutron matter is
obtained by taking Nu = Nd = 3/2 and Nu = Nd/2 = 1,
respectively. At given B2 and B3, the model parameters
C1 and z0(n0) are fixed by reproducing the saturation
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TABLE I. Parameter sets (C1, m̂s, B2, B3, z0(n0)) chosen to reproduce saturation properties in nuclear matter: the saturation
density n0 = 0.16 fm−3, the minimum energy per baryon E0(n0) = 922 MeV, the incompressibility K = 240 MeV, the symmetry
energy Esym(n0) = 31.7 MeV. consequent symmetry energy slope L (in MeV) is also listed.

C1 m̂s[MeV] B2[MeV/fm3] B3[MeV/fm3] z0(n0) L[MeV]

(i) 2.7 220 136.7 50 2.944 45.1

(ii) 2.7 220 112.7 100 2.926 52.7

(iii) 2.7 280 125.0 100 2.908 56.6

(iv) 3.2 280 162.3 100 2.843 62.8

120 140 160 180
B2 [MeV/fm3]

0

20

40

60

80

100

120

B 3
[M

eV
/fm

3 ]

FIG. 2. (Color online) The values of B3 as functions of B2.
The black curves adopt constant values of C1, with C1 =
2.3, 2.6, 2.9, 3.2 from lower-left to upper-right. Alternatively,
the red curves adopt constant values of symmetry energy slope
L, with L = 30, 40, 50, 60 MeV from lower-left to upper-
right. For the solid and dashed curves, two invariant strange
quark masses m̂s = 280 MeV and 220 MeV are adopted,
respectively.

properties of nuclear matter, while z0(n) at n 6= n0 is
obtained by fitting to the energy per baryon of symmetric
nuclear matter. In this work, the energy per baryon of
nuclear matter is determined by a parabolic expansion,
i.e.,

ENM = E0(n0) +
K0

2
(
n− n0

3n0
)2 + Esym(n)δ2 (13)

with the symmetry energy

Esym(n) = Esym(n0) + L(
n− n0

3n0
). (14)

Here δ = (nn − np)/n = Nd − Nu represents the
isospin asymmetry with np and nn being the proton
and neutron number densities. According to various
experimental investigations and nuclear theories [72–
74], the parameters in Eq. (13) are constrained with
the nuclear saturation density n0 ≈ 0.16 fm−3, the
minimum energy per baryon E0(n0) ≈ 922 MeV, the

0.0 0.2 0.4 0.6 0.8
n [fm 3]

3.0

3.5

4.0

z 0

(i)
(ii)
(iii)
(iv)

FIG. 3. (Color online) The zero-point parameter as a function
of baryon number density for the selected parameter sets
listed in Table I.

incompressibility K0 = 240 ± 20 MeV, the symmetry
energy Esym(n0) = 31.7 ± 3.2 MeV and its slope L =
58.7 ± 28.1MeV. We thus take their central values with
K0 = 240 MeV and Esym(n0) = 31.7 MeV, while several
values of L are adopted due to its larger uncertainty.

The parameters C1 and z0 are then fixed at given
B2 and B3. In Fig. 2 we present the constraints on
the parameter set (B2, B3), where we have taken either
C1 (red curves) or L (black curves) as constant values.
According to Fig. 2, in this work we adopt four parameter
sets (i-iv) with the corresponding values listed in Table I.

The obtained values of z0 corresponding to sets (i-iv)
are presented in Fig. 3. It is interesting to notice that
z0 increases with density and reaches its peak value at
n ≈ 3.5n0, which later decreases at larger densities. This
may be related to the variations of nucleon structures as
well as the strong correlations with neighboring nucleons
in nuclear medium, e.g, the EMC effect [75]. However,
a more detailed investigation with the single particle
energies more accurately determined might be necessary
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in the future. In our current study, the obtained nucleon
radius is decreasing with density, and is approaching to
a constant value at highest densities.

For hyperonic and strangeon matter with Nq ≥ 3
and Ns 6= 0, we adopt the same values of B0, B2, and
B3 as indicated in Table I since one would expect that
strong interactions do not vary with quark flavor. For the
parameter z0, keeping z0 unchanged might be reasonable
for Nq = 3. However, z0(n) could be different at larger
Nq, which contains quark energy level corrections that
are approximately proportional to the quark number Nq,

i.e., z0
rbag
∝ Nq. As a crude estimate, we have z0 ∝ N

4/3
q

since rbag ∝ N
1/3
q at fixed number density. In fact,

our Fermi-gas approximation overestimates the energy
at small Nq with quarks occupying the 1s1/2 orbit, while
this approximation should holds at large enough Nq,
i.e., vanishing quark energy level corrections. Under
such circumstances, with the parameter z̃0 obtained by
reproducing nuclear matter properties, we fix z0 with an

effective formula z0 = (
Nq

3 )4/3z̃0−f , where a dampening
factor f is introduced to account for the reduction of
quark energy level corrections. Note that we take f = 0
at Nq = 3, i.e., z0 = z̃0, while larger f may be expected
at larger Nq.

III. STRONG MATTER AND COMPACT STARS

A. Properties of nuclear matter, hyperonic matter,
and strangeon matter

In this section we study strong matter inside compact
stars, which is comprised of bags with quark number Nq.
The electrons are included to fulfill the charge neutrality
condition ∑

i

QiNi +QeNe = 0, (15)

where Qi and Qe are respectively the charge of quark fla-
vor i and electrons, i.e., Qu = 2/3, Qd = Qs = −1/3 and
Qe = −1. Note that electrons are not confined within the
bags, the corresponding thermodynamic potential can
then be obtained with

Ωe = Ωe,Va
3 = − µ4

e

12π2
a3. (16)

In principle, µ− will appear in the centre region of a
neutron star. However, we neglect the contribution of
µ− since it becomes insignificant for hyperon stars and
strangeon stars.

The quarks and leptons will undergo various weak
reactions, i.e.,

u+ e− → d+ νe, d→ u+ e− + ν̄e. (17)

If strangeness is involved (3-flavored matter), the follow-

ing reactions take place, i.e.,

u+ e− → s+ νe, s→ u+ e− + ν̄e, (18a)

s+ u↔ d+ u. (18b)

Then the β-equilibrium is reached, i.e.,

µu + µe = µd = µs. (19)

In this work, the β-equilibrium condition is satisfied
by minimizing the total energy with respect to the
particle numbers Ni at a given total baryon number A =∑
iNi/3 = Nq/3. Then the energy density and pressure

are obtained with Eqs. (10-12), which correspond to the
EOS of strong matter. As illustrated in Sec. II B, we keep

B unchanged and z0 = (
Nq

3 )4/3z̃0 − f with f being the
dampening factor. In this paper, we limit our discussions
for strong matter with Nq = 3 and Nq = 9. Particularly,
we take f = 0 for Nq = 3 and f = 5.8 for Nq = 9.

In Fig. 4 we present the energy per baryon as well as
the EOSs of nuclear matter (Nq = 3, Ns = 0), hyperonic
matter (Nq = 3, Ns 6= 0), and strangeon matter (Nq = 9)
in compact stars, which are obtained with the selected
parameter sets in Table I. In this work, our model is
restricted to describe strong matter at n ≥ 0.16 fm−3.
In the density regime of n < 0.16 fm−3, we employ the
results of Negele & Vautherin [76] for 0.001 fm−3 < n <
0.08 fm−3, and of Baym et al. [77] for n < 0.001 fm−3.
Between 0.08 fm−3 and 0.16 fm−3, we simply take a linear
interpolation since the structures of compact stars are
insensitive to the EOSs adopted in this density region.
For each parameter set, the energy per baryon of nuclear
matter is decreased once s-quarks (hyperons) emerge at
about twice the nuclear saturation density. The energy is
further reduced if we take Nq > 3, i.e., strangeon matter
with Nq = 9. We notice that strangeon matter reaches
its minimum at 2∼3n0. For a few cases, the energy per
baryon of strangeon matter can even be smaller than
930 MeV, namely strangeon matter is more stable than
56Fe. Combined with Fig. 2, we notice that the minimum
energy per baryon of strangeon matter increases while the
corresponding density decreases along the curves with
fixed C1 from top-left to lower-right regions.

In the right panel of Fig. 4, it is easy to see that the
EOSs of strangeon matter are stiffer than that of nuclear
matter and hyperonic matter, which indicates that the
introduction of linked bag will results in stiffening of
EOSs. The energy densities at zero pressure lie between
∼280 MeV/fm3 and ∼360 MeV/fm3, or, equivalently,
∼1.8 and ∼2.4 times the nuclear saturation density (mass
density). It is worth noting that, although the equation
of state is very stiff, the causality condition is still
satisfied for strangeon matter [78].

B. Structure of neutron stars, hyperon stars, and
strangeon stars

The equilibrium configurations of compact stars can
be obtained by solving the Tolman-Oppenheimer-Volkoff
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FIG. 4. (Color online) Left: The energy per baryon as a function of density for strong matter obtained with the parameter
sets listed in Table I. Right: The corresponding EOS for each case. The obtained results for traditional neutron stars (Nq = 3
in dash-dotted lines), hyperon stars (Nq = 3 in dashed lines), and strangeon stars (Nq = 9 in solid lines) are plotted. For
strangeon matter with Nq = 9, we take f = 5.8. The horizontal line in the left panel corresponds to E/A = 930 MeV, which is
the energy per baryon of the most stable atomic nucleus, 56Fe. The solid dots indicate the critical densities at which s quark
starts to appear in hyperon matter.

(TOV) equations for the pressure P and the enclosed
mass m, i.e.,

dP (r)

dr
= −m(r)ε(r)

r2
(20)

× [1 + P (r)/ε(r)][1 + 4πr3P (r)/m(r)]

1− 2m(r)/r
,

dm(r)

dr
= 4πr2ε(r), (21)

where P (r) and ε(r) are the pressure and energy density
at the radial coordinate r, respectively. Starting with a
central density ε(r = 0) ≡ εc, we integrate out until the
pressure on the surface vanishes. This gives the stellar
radius R and the gravitational mass, i.e.,

M ≡ m(R) = 4π

∫ R

0

dr r2ε(r). (22)

The Love number k2 measures how easily a star is
deformed by an external tidal field. The tidal deforma-
bility λ describes the amount of induced mass quadruple
moment Qij when reacting to a certain external tidal
field Eij , i.e., Qij = −λEij . The dimensionless tidal
deformability is related to the Love number k2 through
Λ = 2

3k2c
−5, where c = M/R is the compactness of the

star. The Love number is given by

k2 =
8c5

5
(1− 2c)2[2 + 2c(yR − 1)− yR]

× {2c[6− 3yR + 3c(5yR − 8)]

+ 4c3[13− 11yR + c(3yR − 2) + 2c2(1 + yR)]

+ 3(1− 2c)2[2− yR + 2c(yR − 1)] ln(1− 2c)}−1,

(23)

where yR = y(R) is obtained by solving the following
differential equation:

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2Q(r) = 0, (24)

with

F (r) = {1− 4πr2[ε(r)− P (r)]}[1− 2m(r)

r
]−1,(25)

Q(r) =4π[5ε(r) + 9P (r) +
ε(r) + P (r)

∂P (r)/∂ε(r)
− 6

4πr2
]

× [1− 2m(r)

r
]−1 − 4m(r)2

r4
[1 +

4πr3P (r)

m(r)
]2

× [1− 2m(r)

r
]−2.

Note that the solution y(r) will be altered in case of
density discontinuity by yout(rd) = yint(rd)− ∆ε

4πm(rd)/r3d
,

rd is the radius of discontinuity point and ∆ε is the
energy density jump. Such situation is expected on the
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FIG. 5. (Color online) Mass-radius relations (left panel) and tidal deformability as a function of stellar mass (right panel).
The obtained results for traditional neutron stars (Nq = 3 in dash-dotted lines), hyperon stars (Nq = 3 in dashed lines), and
strangeon stars (Nq = 9 in solid lines) are plotted. For strangeon stars with Nq = 9, we take f = 5.8. The observational masses
of PSR J1614-2230 (1.928±0.017 M�) [79, 80] and PSR J0348+0432 (2.01±0.04 M�) [81] are indicated with horizontal bands.
The horizontal dashed lines correspond to M = 1.4M�. The the LIGO/Virgo constraint [82] from GW170817 on the tidal
deformability for a 1.4M� star, Λ1.4 = 190+390

−120, is also displayed in right panel.
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FIG. 6. (Color online) Maximum mass MTOV and tidal
deformability of a typical 1.4M� star (Λ1.4) for strangeon
stars with Nq = 9. The invariant strange quark mass is
m̂s = 280 MeV. Contours of MTOV are illustrated in colors,
while contours of Λ1.4 are plotted in black dashed lines. The
lower-left grey region is ruled out since strangeon matter
becomes unstable with the minimum energy per baryon
E/A > 930 MeV.

surfaces of strangeon stars at rd = R, where the energy
density vanishes with ε(R+) = 0 and ∆ε = ε(R−).

Based on the EOSs presented in Fig. 4, the mass-
radius relations of compact stars are obtained by solving
Eqs. (20-22), while the tidal deformability is deter-
mined by Eqs. (23-26). The results are presented in
Fig. 5, where various parameter sets listed in Table I are

adopted. The corresponding properties of strangeon stars
are listed in Table II. In general, the maximum masses
of strangeon stars are higher than those of neutron stars
and hyperon stars due to the stiffer EOSs of strangeon
stars. It is shown that the radius of a typical 1.4M� star
ranges from 9.5 km to 13 km, where strangeon stars with
Nq = 9 have smaller radii and larger maximum mass
than those with Nq = 3. In right panel of Fig. 5, we
find Λ decreases monotonously with mass. Except for the
traditional neutron star obtained with parameter set (iv),
the tidal deformability of a typical 1.4M� star Λ1.4 is
found between about 190 and 550 for all presented cases,
which fulfills the GW170817 constraint of Λ1.4 < 580 [82].

To investigate the effects of different parameters more
carefully, in Fig. 6 we present contours of maximum
mass and tidal deformability for strangeon stars. It
is found that the maximum mass increases with B2

and B3, which even exceeds 2.5M� in the top right
corner. In light of the recent measured massive com-
pact object (2.50-2.67M�) in a compact binary coales-
cence of GW190814 [83], the object may in fact be a
strangeon star instead of a black hole. Meanwhile, even
in the lower left corner, the maximum mass remains
higher than 2M�, which fulfills the recent observa-
tional constraints of two massive stars: PSR J1614-
2230 (1.928 ± 0.017 M�) [79, 80] and PSR J0348+0432
(2.01 ± 0.04 M�) [81]. Since the central densities of
1.4M� strangeon stars are much smaller than the most
massive stars, the tidal deformability Λ1.4 is somewhat
insensitive to B2 and B3, while Λ1.4 is decreasing slightly
with B3. In the parameter space indicated in Fig. 6, Λ1.4

ranges from ∼ 180 to ∼ 340, which fulfills the GW170817
constraint [82].

In the discussions above, we have fixed f = 5.8
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TABLE II. The surface baryon number (nsurf) and energy (εsurf) densities, radius (R1.4), tidal deformability (Λ1.4), TOV mass
(MTOV), and centre baryon number density (nc) for strangeon stars obtained with the parameter sets listed in Table I.

nsurf [fm
−3] εsurf [MeV/fm3] R1.4[km] Λ1.4 MTOV[M�] nc[fm

−3]

(ii) 0.395 359.38 9.519 187.9 2.411 1.069

(iii) 0.348 320.56 9.710 208.8 2.394 1.086

(iv) 0.388 348.11 9.666 210.4 2.438 1.080

2.36
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M
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f

180
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1.
4

FIG. 7. (Color online) Maximum mass M and tidal
deformability (Λ1.4) of strangeon stars as functions of the
dampening factor f .

for strangeon stars with Nq = 9. However, f is a
free parameter introduced to denote the energy level
correction and the exact value of f is unknown. It
is thus meaningful to investigate the effects of f on
strangeon star structures. For this reason, in Fig. 7 we
present the maximum mass M and tidal deformability
(Λ1.4) of strangeon stars as functions of the dampening
factor f . In general, the maximum mass and tidal
deformability monotonously decrease with f . At lower
f , the maximum mass MTOV may exceeds 2.4M�. We
also notice for both cases displayed in Fig. 7, Λ1.4

lies in the range of GW170817 constraint [82]. In a
word, there exists a large parameter space for f that
the linked bag model predicts compact star structures
satisfying the observational constraints on mass and tidal
deformability.

IV. DISCUSSIONS AND CONCLUSIONS

It is a giant leap in fundamental physics to recognize
microscopically that ordinary objects are composed by
“uncuttable” atoms during the ancient Greece time of
Democritus, but the interaction between atoms could
not be understood until the era of quantum physics
in which electrons could penetrate through the atoms,
e.g., via quantum tunneling. In an analogy of this
normal condensed (electric) matter, quarks propagate
between the strong units (baryons or strangeons) may
also introduce interaction for strong matter. In fact,
this is understandable since a perturbative approach
of quantum mechanics could usually result in a lower
ground state than the “unperturbed” one, as is remarked
in text books (for the ground state, the second-order shift
is negative [84]), leading to an attractive interaction at
long distances.

In this paper, we model the strong condensed matter of
3-flavoured strangeons with a linked bag approach. For
fixed bag parameters B2 and B3, the model parameters
C1 and z0 are calibrated by reproducing the saturation
properties (E/A, K0, Esym and L) of nucleon matter.
Beside these, a dampening factor f is introduced to
account for the reduction of quark energy level correc-
tions. The obtained energy per baryon of strangeon
matter is usually smaller than that of nuclear and
hyperonic matter, which can be further reduced if we
adopt larger quark numbers (Nq) inside a strangeon.
The corresponding EOSs of strangeon matter become
stiffer as well, which increases the maximum mass of
strangeon stars. It is found that, for Nq = 9, the
maximum mass of strangeon stars could be ∼ 2.5M�,
while the tidal deformability of a 1.4M� strangeon star
Λ1.4 ' (180 ∼ 340). To investigate the parameter
dependence, the maximum mass and tidal deformability
of strangeon stars predicted by the linked bag model
are examined by adopting various B2, B3, and f , which
are consistent with the current astrophysical constraints
in a large parameter space. Nevertheless, more refined
theoretical efforts are required in our future study, where
the quark single particle energy [63], the interactions
among quarks (instanton, electric and magnetic gluon
exchange, etc.), the center-of-mass correction [85], the
effects of color superconductivity [86, 87], the quark
composition of strangeons, and the possible mixing of
different types of strangeons and baryons should be
examined carefully. Those effects could easily alter our
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predictions on MTOV and Λ1.4 of strangeon stars, which
should be tested further in the era of multi-messenger
astronomy.
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Rev. Mod. Phys. 80, 1455 (2008).

http://dx.doi.org/10.1103/PhysRevD.21.2653
http://dx.doi.org/10.1103/PhysRevD.21.2653
http://dx.doi.org/https://doi.org/10.1016/0370-2693(82)90096-X
http://dx.doi.org/10.1016/0370-2693(83)91523-X
http://dx.doi.org/10.1016/0370-2693(83)91523-X
http://dx.doi.org/ 10.1016/0370-2693(88)90763-0
http://dx.doi.org/10.1016/0375-9474(91)90267-A
http://dx.doi.org/ 10.1088/0954-3899/25/9/304
http://dx.doi.org/ 10.1088/0954-3899/25/9/304
http://dx.doi.org/10.1103/PhysRevLett.52.887
http://dx.doi.org/10.1016/0550-3213(85)90622-4
http://dx.doi.org/10.1103/PhysRevD.32.816
http://dx.doi.org/10.1016/0375-9474(92)90661-3
http://dx.doi.org/10.1016/0375-9474(92)90661-3
http://dx.doi.org/ 10.1103/PhysRevD.9.3471
http://dx.doi.org/10.1103/PhysRevC.46.2294
http://dx.doi.org/10.1103/PhysRevC.46.2294
http://dx.doi.org/10.1103/PhysRevD.12.2060
http://dx.doi.org/10.1103/PhysRevD.71.105014
http://dx.doi.org/10.1103/PhysRevD.71.105014
http://dx.doi.org/10.1103/PhysRevC.35.213
http://dx.doi.org/10.1103/PhysRevC.44.566.2
http://dx.doi.org/10.1103/PhysRevD.50.3328
http://dx.doi.org/10.1016/S0370-2693(97)00660-6
http://dx.doi.org/10.1016/S0370-2693(97)00660-6
http://stacks.iop.org/2041-8205/781/i=2/a=L25
http://stacks.iop.org/2041-8205/781/i=2/a=L25
http://dx.doi.org/http://dx.doi.org/10.1016/0370-2693(78)90453-7
http://dx.doi.org/10.1140/epja/i2006-10100-3
http://dx.doi.org/10.1140/epja/i2006-10100-3
http://dx.doi.org/http://dx.doi.org/10.1016/j.physletb.2013.10.006
http://dx.doi.org/10.1103/RevModPhys.89.015007
http://dx.doi.org/10.1103/RevModPhys.89.015007
http://dx.doi.org/ https://doi.org/10.1016/0370-2693(83)90437-9
http://dx.doi.org/ https://doi.org/10.1016/0370-2693(83)90437-9
http://dx.doi.org/10.1016/0375-9474(73)90349-7
http://dx.doi.org/10.1016/0375-9474(73)90349-7
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/151216
http://dx.doi.org/ 10.1007/s11433-018-9205-5
http://dx.doi.org/ 10.1007/s11433-018-9205-5
http://www.nature.com/nature/journal/v467/n7319/full/nature09466.html
http://stacks.iop.org/0004-637X/832/i=2/a=167
http://dx.doi.org/ 10.1126/science.1233232
http://dx.doi.org/ 10.1126/science.1233232
http://dx.doi.org/10.1103/PhysRevLett.121.161101
http://dx.doi.org/10.1103/PhysRevLett.121.161101
http://dx.doi.org/10.3847/2041-8213/ab960f
http://dx.doi.org/10.3847/2041-8213/ab960f
http://dx.doi.org/10.1007/978-3-540-71933-5
http://dx.doi.org/10.1103/PhysRevD.29.1035
http://dx.doi.org/ http://dx.doi.org/10.1016/j.physrep.2004.11.004
http://dx.doi.org/10.1103/RevModPhys.80.1455

	Strangeon matter and strangeon stars in a linked bag model
	Abstract
	I Introduction
	II Theoretical framework
	A The linked bag model
	B Model parameters

	III Strong matter and compact stars
	A Properties of nuclear matter, hyperonic matter, and strangeon matter
	B Structure of neutron stars, hyperon stars, and strangeon stars

	IV Discussions and Conclusions
	 ACKNOWLEDGMENTS
	 References


