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A RATIONAL EVEN-IRA ALGORITHM FOR THE SOLUTION OF
\bfitT -EVEN POLYNOMIAL EIGENVALUE PROBLEMS\ast 

PETER BENNER\dagger , HEIKE FASSBENDER\ddagger , AND PHILIP SALTENBERGER\ddagger 

Abstract. In this work we present a rational Krylov subspace method for solving real large-scale
polynomial eigenvalue problems with T -even (that is, symmetric/skew-symmetric) structure. Our
method is based on the Even-IRA algorithm [V. Mehrmann, C. Schr\"oder, and V. Simoncini, Linear
Algebra Appl., 436 (2012), pp. 4070--4087]. To preserve the structure, a sparse T -even linearization
from the class of block minimal bases pencils is applied (see [F. M. Dopico et al., Numer. Math.,
140 (2018), pp. 373--426). Due to this linearization, the Krylov basis vectors can be computed in
a cheap way. Based on the ideas developed in [P. Benner and C. Effenberger, Taiwanese J. Math.,
14 (2010), pp. 805--823], a rational decomposition is derived so that our method explicitly allows for
changes of the shift during the iteration. This leads to a method that is able to compute parts of
the spectrum of a T -even matrix polynomial in a fast and reliable way.
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structure-preserving linearization, Krylov subspace method, rational Krylov decomposition
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1. Introduction. Eigenvalue problems are ubiquitous in engineering, physics,
mechanics, and many more scientific disciplines. Moreover, they lie at the heart of
numerical linear algebra. As eigenproblems stemming from real-world applications
are often subject to physical constraints and side conditions, they frequently and
naturally inherit structure. For instance, mechanical vibration systems are usually
described by symmetric mass, damping and stiffness matrices (see [21]). Optimal
control problems often involve Hamiltonian/skew-Hamiltonian matrix pencils [22].
But, after all, which features and properties single out faithful numerical algorithms
for structured problems from universal methods? In the first place, the occurrence of
structure can be utilized to speed up algorithms and reduce memory requirements.
This originates from the deeper focus on the true nature of the problem compared
to standard methods. In addition to that, the adequate exploitation of structure is
beneficial (and indispensable, sometimes) for the reliability of an algorithm. Indeed,
a proper numerical treatment of structure will often produce more accurate and phys-
ically meaningful results. Consequently, it seems reasonable to design tailor-made
algorithms instead of addressing structured problems without any care by standard
means. We present an algorithm for real, T -even polynomial eigenvalue problems
of large scale that takes into account all the aforementioned aspects. The method
we propose is an implicitly restarted rational Krylov--Schur approach based on the
Even-IRA algorithm introduced in [24] (see also [12]). In contrast to the Even-IRA
algorithm and motivated by [3], our approach explicitly allows for changes of the shift
parameter during the iteration. This leads to a flexible and adjustable rational Krylov
algorithm.
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A RATIONAL EVEN-IRA ALGORITHM 1173

There exist various major applications, including the vibration of gyroscopic sys-
tems and control theory, that lead to T -even polynomial eigenproblems of large size
(see, e.g., [24, 7] and the references therein). A matrix polynomial P (\lambda ) is an element
from \BbbR m\times n[\lambda ], i.e.,

(1.1) P (\lambda ) =

\ell \sum 
k=0

Pk\lambda 
k = P\ell \lambda 

\ell + P\ell  - 1\lambda 
\ell  - 1 + \cdot \cdot \cdot + P1\lambda + P0

with matrices Pj \in \BbbR m\times n. The degree deg(P ) of P (\lambda ) is the largest index j with
Pj \not = 0. Often, we write P (\lambda ) as a matrix with polynomial entries, i.e., as an el-
ement from \BbbR [\lambda ]m\times n. Here, we are mostly interested in square matrix polynomi-
als P (\lambda ) \in \BbbR [\lambda ]n\times n with some particular structure in its matrix coefficients. We
call P (\lambda ) \in \BbbR n\times n[\lambda ] as in (1.1) T -even if Pj = PT

j holds whenever j is even and

Pj =  - PT
j holds otherwise (see [16, sect. 6]). Equivalently, P (\lambda )T = P ( - \lambda ). Ei-

genvalue/eigenvector pairs (\mu , x) \in \BbbC \times \BbbC n of P (\lambda ) are characterized by the relation
P (\mu )x = 0. To find eigenvalues of P (\lambda ), it is a common approach to turn P (\lambda ) into
a matrix polynomial \scrL P (\lambda ) = \lambda X + Y of degree one1 (e.g., the Frobenius companion
form [20]) by linearization. Then, the eigenvalues of P (\lambda ) and \scrL P (\lambda ) coincide and
the generalized eigenproblem corresponding to the linearization \scrL P (\lambda ) may be solved
by, e.g., the standard QZ algorithm (cf. [25]). However, solving a structured (i.e.,
T -even) eigenvalue problem via the QZ algorithm and the Frobenius companion form
is not conducive in the light of the problem's nature and structure.

In particular, the spectrum of T -even matrix polynomials has a Hamiltonian
structure, that is, it is symmetric with respect to both the real and the imaginary
axes. The algorithm we present takes care of this fact in two different ways. On the
one hand, the linearization \scrL P (\lambda ) = \lambda X+Y of P (\lambda ) we consider is a symmetric/skew-
symmetric matrix pencil (i.e., Y = Y T , X =  - XT ). In particular, \scrL P (\lambda ) itself is
T -even and so it naturally preserves the Hamiltonian spectral structure of P (\lambda ). On
the other hand, for any \zeta \in \BbbC outside the spectrum of P (\lambda ), we consider the special
shift-and-invert transformation

\scrL P (\zeta ) = \zeta X + Y \mapsto \rightarrow K(\zeta ) := \scrL P (\zeta )
 - TX\scrL P (\zeta )

 - 1X

as proposed in [22, 24]. Each eigenvalue pair (+\mu , - \mu ) of \scrL P (\lambda ) is transformed to
only one eigenvalue \theta = (\mu 2 - \zeta 2) - 1 of K(\zeta ). Consequently, K(\zeta ) preserves eigenvalue
pairings and the spectral symmetry inherent to the problem is respected.

The foundation of our method is the Even-IRA algorithm from [24]. This method
is a sophisticated variant of the Krylov--Schur algorithm (see Stewart [29]) applied to
K(\zeta ) for some appropriately chosen shift parameter \zeta and a T -even linearization
\scrL P (\lambda ) for P (\lambda ). Rather than applying a (structure-preserving) symplectic Lanczos
process as in [4, 5], our approach is related to the ideas established for the SHIRA
algorithm in [22] (see also [3]). To define K(\zeta ), we take \scrL P (\lambda ) = \lambda X + Y to be
a special linearization from the class of block minimal bases pencils (see [9]). Due
to the structure and sparsity of \scrL P (\lambda ), the computation of matrix-vector-products
K(\zeta )x can be realized implicitly without ever forming K(\zeta ) at all. Moreover, linear
systems with \scrL P (\zeta ) and \scrL P (\zeta )

T (that arise in Arnoldi-like processes from matrix-
vector-products involving K(\zeta )) can be solved implicitly through systems involving
only P (\zeta ) and P ( - \zeta ). Accordingly, the complexity of computing K(\zeta )x is reduced

1Matrix polynomials of degree one are often called matrix pencils.
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1174 P. BENNER, H. FASSBENDER, AND P. SALTENBERGER

by a significant amount since the size of P (\zeta ) is substantially smaller than the size of
\scrL P (\zeta ). For the same reason, memory requirements (e.g., for storing matrix decompo-
sitions) can be decreased. These advantages of \scrL P (\lambda ) over other linearizations (see,
e.g., [16]) have already been successfully applied in [12] to the Even-IRA algorithm.
However, as the Even-IRA algorithm does not allow for changes of the shift \zeta during
the iteration, this feature is incorporated in our method. Based on [3] and [26], our
rational Even-IRA algorithm permits shift adjustments during the iteration without
discarding the information that has been accumulated so far. Retaining the advan-
tageous computational aspects, this endows our approach with more flexibility. As a
consequence, the rational Even-IRA algorithm we present is a new reliable, flexible,
and fast numerical method with reasonable costs.

This work is structured as follows:
1. The basic definitions regarding matrix polynomials and their eigenvalues are

presented in section 2. We introduce the concept of linearization and show
how a T -even linearization can be constructed.

2. In section 3, we briefly review the Even-IRA algorithm from [24]. It is
the basis of our rational method to compute eigenvalues of T -even matrix
polynomials in a structure-preserving way.

3. We show how the matrix-vector-multiplications involved in the Even-IRA
algorithm can be carried out in a very efficient and implicit way in section 4.
This is possible without forming the corresponding large-scale matrix at all.

4. Section 5 is dedicated to the rational Arnoldi decomposition. We show how
a rational decomposition can be invoked for the Even-IRA algorithm and
how it is applied in a useful fashion for our purpose.

5. We introduce the rational Even-IRA algorithm in section 6. We discuss the
Krylov--Schur restart procedure in detail and also address the issue of infinite
eigenvalues to guarantee a stable convergence of the algorithm.

6. Some numerical examples are given in section 7. We also illustrate how the
shift strategy influences the algorithms success.

Some conclusions are given in section 8.

2. Definitions of matrix polynomials and notation. Recall that a matrix
polynomial P (\lambda ) \in \BbbR [\lambda ]n\times n as in (1.1) is said to be T -even if P (\lambda )T = P ( - \lambda ). The
classes of regular, singular, and unimodular matrix polynomials are defined as follows:

1. A matrix polynomial P (\lambda ) \in \BbbR [\lambda ]n\times n is called regular if det(P (\lambda )) \not = 0 and
singular otherwise (notice that det(P (\lambda )) \in \BbbR [\lambda ]).

2. A matrix polynomial Q(\lambda ) \in \BbbR [\lambda ]n\times n is called unimodular if det(Q(\lambda )) is a
nonzero constant.

Let P (\lambda ) \in \BbbR [\lambda ]n\times n be regular. We call \mu \in \BbbC a (finite) eigenvalue of P (\lambda ) if

P (\mu ) =

m\sum 
k=0

\mu kPk \in \BbbC n\times n

is a singular matrix. Thus, \mu \in \BbbC is an eigenvalue of P (\lambda ) if and only if det(P (\mu )) =
0. Therefore, the set of all finite eigenvalues of P (\lambda ) coincides with the roots of
det(P (\lambda )) \in \BbbR [\lambda ] [20, sect. 2]. The algebraic multiplicity of \mu is defined as the multi-
plicity of \mu as a root of det(P (\lambda )). In addition, if \mu \in \BbbC is some eigenvalue of P (\lambda ),
the corresponding nullspace null(P (\mu )) is called the eigenspace for \mu . Its dimension
is referred to as the geometric multiplicity of \mu .
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A RATIONAL EVEN-IRA ALGORITHM 1175

We define for any d \geq deg(P )

revdP (\lambda ) := \lambda dP (\lambda  - 1).

Then revdP (\lambda ) is again a matrix polynomial, i.e., revdP (\lambda ) \in \BbbR [\lambda ]n\times n. It is called
the d-reversal corresponding to P (\lambda ) [20, Def. 2.2]. In case d = deg(P ), we call
revP (\lambda ) := revd P (\lambda ) the reversal of P (\lambda ). It is easily verified that the finite eigen-
values of revP (\lambda ) are the reciprocals of the eigenvalues of P (\lambda ). In accordance with
this observation, we call \infty an eigenvalue of P (\lambda ) if zero is an eigenvalue of revP (\lambda ).
The algebraic and geometric multiplicities of the eigenvalue \infty are defined in terms
of revP (\lambda ) and its finite eigenvalue \mu = 0 [20, Def. 2.3]. The set of all eigenvalues of
P (\lambda ) \in \BbbR [\lambda ]n\times n is called the spectrum of P (\lambda ) and is denoted by \sigma (P ).

The following important property is intrinsic for the eigenvalues of T -even matrix
polynomials P (\lambda ).

Proposition 2.1. The spectrum \sigma (P ) of real, T -even matrix polynomials P (\lambda )
has a Hamiltonian structure. That is, \sigma (P ) is symmetric with respect to both the real
and the imaginary axis.

Two matrix polynomials S(\lambda ), P (\lambda ) \in \BbbR [\lambda ]n\times n are called unimodular equiva-
lent if there exist unimodular matrix polynomials U(\lambda ), V (\lambda ) \in \BbbR [\lambda ]n\times n such that
S(\lambda ) = U(\lambda )P (\lambda )V (\lambda ) holds. Linearizations for matrix polynomials are defined by
unimodular equivalence as follows.

Definition 2.2 (Linearization [9, Def. 2.12]). Let P (\lambda ) \in \BbbR [\lambda ]n\times n.
(i) Any matrix polynomial \scrL (\lambda ) = \lambda X + Y that can be expressed as

(2.1) \scrL (\lambda ) = U(\lambda )

\biggl[ 
Is 0
0 P (\lambda )

\biggr] 
V (\lambda ) \in \BbbR [\lambda ](n+s)\times (n+s)

for two unimodular matrix polynomials U(\lambda ), V (\lambda ) of size (n + s) \times (n + s)
and some s \in \BbbN 0 is called a linearization for P (\lambda ).

(ii) Assume deg(P ) = k. A linearization \scrL (\lambda ) for P (\lambda ) as in (2.1) is called strong
(linearization) whenever rev1\scrL (\lambda ) is a linearization for revkP (\lambda ) = revP (\lambda ),
too.

Notice that unimodular matrix polynomials do not have any finite eigenvalues.
Therefore, any linearization \scrL (\lambda ) as in (2.1) of P (\lambda ) has the same finite eigenvalues
(with the same algebraic and geometric multiplicities) as P (\lambda ) [9]. Furthermore, if
\scrL (\lambda ) is strong, the same holds for the eigenvalue \infty in the case \infty \in \sigma (P ).

The problem of finding linearizations for matrix polynomials P (\lambda ) \in \BbbR [\lambda ]n\times n has
been addressed in, e.g., [20, 28]. Particular research has been done on conditioning
[13], structure-preservation [14], and nonstandard polynomial bases [11, 17, 18]. In
[9], a new class of linearizations was introduced (so-called block minimal bases lin-
earizations) that has recently attracted much attention. The linearization we present
in Theorem 2.5 will belong to this class.

Due to Proposition 2.1, we are particularly interested in T -even linearizations
(whenever P (\lambda ) \in \BbbR [\lambda ]n\times n is T -even) to preserve the symmetries inherent to the
spectrum of P (\lambda ). The structure of the T -even linearization \scrL P (\lambda ) we define in (2.4)
varies slightly depending on the parity of deg(P ) (which can be even or odd). Thus we
define MP (\lambda ) in Definition 2.3 depending on the degree of P (\lambda ) to treat both cases in
Theorem 2.5 in a common framework. Here and hereafter, we use the notation \langle x, y\rangle 
to represent the scalar product xT y \in \BbbR of two vectors x and y and \oplus to denote the
direct sum of matrices, i.e., A\oplus B = diag(A,B) for any A,B \in \BbbR n\times n.

D
ow

nl
oa

de
d 

08
/0

9/
21

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1176 P. BENNER, H. FASSBENDER, AND P. SALTENBERGER

Definition 2.3. Assume P (\lambda ) \in \BbbR [\lambda ]n\times n is T -even and given as in (1.1).
(a) If deg(P ) is odd, we define

(2.2) MP (\lambda ) :=

\ell  - 1\bigoplus 
k=0

( - 1)k
\bigl( 
\lambda Pd - 2k + Pd - 2k - 1

\bigr) 
\in \BbbR [\lambda ]\ell n\times \ell n

with d = deg(P ) and \ell = (d+ 1)/2.
(b) If deg(P ) is even, we define MP (\lambda ) as in (2.2) above with d = deg(P ) + 1,

\ell = (d+ 1)/2, and Pd := 0n\times n.

Notice that (\lambda Pd - 2k+Pd - 2k - 1)
T =  - \lambda Pd - 2k+Pd - 2k - 1 holds for all summands in

(2.2) regardless of the parity of deg(P ). That means MP (\lambda )
T = MP ( - \lambda ), so MP (\lambda )

is always T -even. With the definition \Lambda k(\lambda ) := [\lambda k \lambda k - 1 \cdot \cdot \cdot \lambda 1 ] \in \BbbR [\lambda ]1\times (k+1) for
any k \geq 1, we make the following important observation.

Remark 2.4. According to the construction of MP (\lambda ) for P (\lambda ) as in (2.2) it can
be verified by a direct calculation that\bigl( 

\Lambda \ell  - 1( - \lambda )\otimes In
\bigr) 
MP (\lambda )

\bigl( 
\Lambda \ell  - 1(\lambda )

T \otimes In
\bigr) 
= P (\lambda )

holds. This property will be exploited in section 4.

Let P (\lambda ) \in \BbbR [\lambda ]n\times n be T -even. With the use of MP (\lambda ) and

(2.3) Lk(\lambda ) :=

\left[     
1  - \lambda 

1  - \lambda 
. . .

. . .

1  - \lambda 

\right]     \in \BbbR [\lambda ]k\times (k+1), k \geq 1,

we present a structure-preserving, i.e., T -even, linearization \scrL P (\lambda ) for P (\lambda ) in the
following Theorem 2.5. It is a block minimal bases pencil (as introduced in [9]) and
was already used in [12]. In particular, Theorem 3.3 in [9] applies to the matrix pencil
\scrL P (\lambda ) defined in (2.4) below and confirms that it is in fact a linearization for P (\lambda ).

Theorem 2.5. Let P (\lambda ) \in \BbbR [\lambda ]n\times n be T -even. Then the matrix pencil

(2.4) \scrL P (\lambda ) :=

\biggl[ 
MP (\lambda ) L\ell  - 1( - \lambda )T \otimes In

L\ell  - 1(\lambda )\otimes In 0

\biggr] 
\in \BbbR [\lambda ]dn\times dn

defined for P (\lambda ) with MP (\lambda ), d, and \ell given as in Definition 2.3 and L\ell  - 1(\lambda ) as
introduced in (2.3) is T -even. Moreover, \scrL P (\lambda ) is a strong linearization for P (\lambda ) if
deg(P ) is odd and a linearization for P (\lambda ) if deg(P ) is even.

Due to the linearization property, the matrix pencil \scrL P (\lambda ) \in \BbbR [\lambda ]dn\times dn defined
in (2.4) has the same finite eigenvalues as P (\lambda ) \in \BbbR [\lambda ]n\times n (from whose matrix co-
efficients it is defined). Moreover, since \scrL P (\lambda ) is T -even whenever P (\lambda ) is T -even,
we call \scrL P (\lambda ) a structure-preserving linearization for P (\lambda ). To illustrate the form of
\scrL P (\lambda ) consider the following example.

Example 2.6. The linearization \scrL P (\lambda ) defined for a T -even matrix polynomial
P (\lambda ) \in \BbbR [\lambda ]n\times n has a very sparse and clear structure. This is illustrated below for

P (\lambda ) =
\sum 7

k=0 \lambda 
kPk of degree seven. Writing \scrL P (\lambda ) in the form \lambda X + Y for two
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A RATIONAL EVEN-IRA ALGORITHM 1177

7n\times 7n matrices X and Y we have

(2.5)

\scrL P (\lambda ) =

\left[          

 - P7

P5 In
 - P3 In

P1 In
 - In

 - In
 - In

\right]          
\lambda 

+

\left[          

 - P6 In
P4 In

 - P2 In
P0

In
In

In

\right]          
.

Since P (\lambda ) was assumed to be T -even, it is seen directly that Y is symmetric while
X is skew-symmetric. In addition, notice that if P (\lambda ) was only of degree six, \scrL P (\lambda )
as defined in (2.4) would be as in (2.5) with P7 = 0.

In general, determining \sigma (P ) for a matrix polynomial P (\lambda ) is sometimes referred
to as the polynomial eigenvalue problem (PEP). If P (\lambda ) = \lambda X +Y is a matrix pencil,
the term generalized eigenvalue problem (GEP) is often used. A common way to solve
a PEP corresponding to P (\lambda ) \in \BbbR [\lambda ]n\times n is to compute \sigma (P ) (or just a part of it)
through a linearization \scrL (\lambda ) for P (\lambda ) using a method for GEPs. Notice that the size
of \scrL (\lambda ) is usually much larger than the size of P (\lambda ) (depending on the degree of P (\lambda )).
Thus it is often appropriate (or even necessary) not to compute all eigenvalues of \scrL (\lambda )
but only some (e.g., in a predefined area of the complex plane). For such purposes
Krylov subspace methods are among the most appropriate algorithms (cf. [1] for an
overview of different Krylov subspace algorithms). The area where eigenvalues are to
be found is controlled via a shift parameter \zeta \in \BbbC . With some abuse of terminology,
a Krylov subspace method can be called rational if it admits changes of this shift
parameter during its iteration (see [26, 27]).

All subsequent investigations mainly aim for the construction of a rational Krylov
subspace algorithm to determine eigenvalues of \scrL P (\lambda ) defined as in (2.4) for some
given T -even matrix polynomial P (\lambda ) \in \BbbR [\lambda ]n\times n. The T -even structure of \scrL P (\lambda ) is
exploited to preserve the spectral symmetries.

3. The EVEN-IRA algorithm. According to Proposition 2.1, the spectrum of
a (real) T -even matrix polynomial is symmetric with respect to the real and imag-
inary axis. Numerical algorithms respecting this spectral symmetry will in general
be more accurate than standard methods [19]. In addition, numerical methods that
ignore the special structure may often produce (physically) less meaningful results
[21]. Therefore, our focus on the development of a reliable eigensolver for T -even
polynomial eigenvalue problems is twofold: on the one hand on the application of
a structure-preserving linearization (see Theorem 2.5) and on the other hand on a
method that profitably exploits this structure. One method taking the T -even struc-
ture into account is the Even-IRA algorithm presented in [24]. It belongs to the class
of Krylov subspace methods and is a sophisticated variant of the Krylov--Schur algo-
rithm [29] customized for real T -even generalized eigenvalue problems. Other methods
for solving T -even polynomial eigenvalue problems can be found in, e.g., [2, 22].
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The Even-IRA algorithm is designed to determine a part of the spectrum of a
regular T -even matrix pencil \scrG (\lambda ) = \lambda X + Y \in \BbbR [\lambda ]m\times m close to a predefined target
in the complex plane. To preserve the Hamiltonian eigenvalue structure, a special
spectral transformation is applied to preserve the \pm matching pairs of eigenvalues.

In particular, whenever \scrG (\lambda ) = \lambda X + Y is regular and T -even, i.e., X =  - XT

and Y = Y T holds, and some shift \zeta /\in \sigma (\scrG ) is given in a region of the complex plane
where eigenvalues are to be found, then in [24] the transformation

(3.1) \scrG (\zeta ) = \zeta X + Y \mapsto \rightarrow K(\zeta ) = \scrG (\zeta ) - TX\scrG (\zeta ) - 1X \in \BbbC m\times m

is considered. Notice that a similar spectral transformation already appeared in [4,
22, 31] in the context of skew-Hamiltonian/Hamiltonian eigenvalue problems and the
symplectic Lanczos process. Whenever \scrG (\mu )x = 0 holds for some \mu \in \BbbC and x \in \BbbC m,
it is easily confirmed that K(\zeta )x = \theta x follows, where \theta = (\mu 2  - \zeta 2) - 1. Thus, any two
finite eigenvalues \mu and  - \mu of \scrG (\lambda ) are mapped to the same eigenvalue \theta \in \sigma (K(\zeta )).
Due to this fact, \pm matching pairs of eigenvalues are preserved. On the other hand,
all eigenvalues of K(\zeta ) are necessarily of even multiplicity. Notice the following two
important facts:

\bullet Whenever some eigenvalue \theta \in \sigma (K(\zeta )) has been found, it gives rise to a \pm 
matching pair of two eigenvalues of \scrG (\lambda ), namely,

(3.2) \mu =
\sqrt{} 
(1/\theta ) + \zeta 2 and \widehat \mu =  - 

\sqrt{} 
(1/\theta ) + \zeta 2.

\bullet The matrix K(\zeta ) from (3.1) will in general be complex but remains real
whenever \zeta \in \BbbR or \zeta \in \imath \BbbR . In the case \zeta = a + b\imath with nonzero real and
imaginary parts, a slightly different spectral transformation can be considered
(see [24, Rem. 2.1]) to stay in real arithmetic.

In [24] the authors suggest applying the implicitly restarted Krylov--Schur method
[29] to the matrix K(\zeta ) in (3.1) to find some, say, s \in \BbbN , eigenvalues of \scrG (\lambda ). That
is, if v1, . . . , vs is an orthonormal basis of the Krylov space

(3.3) \scrK s(K(\zeta ), x) = span\{ x,K(\zeta )x,K(\zeta )2x, . . . ,K(\zeta )s - 1x\} 

for some x \in \BbbR m (computed by the Arnoldi method; see [1]) and V = [ v1 \cdot \cdot \cdot vs ] \in 
\BbbR m\times s, in general some of the eigenvalues of K(\zeta ) of largest magnitude are well ap-
proximated by some of the s eigenvalues of V TK(\zeta )V . This process can now be
(implicitly) restarted using the Krylov--Schur restart strategy [29, sect. 3] until all s
eigenvalues of V TK(\zeta )V serve as good approximations to eigenvalues of K(\zeta ). This
approach is called the Even-IRA algorithm (details on the practical implementa-
tion of the algorithm can be found in [24, sect. 4]). Additional information on how
eigenvectors may be captured can be found in [24, p. 4074ff].

The basis of our algorithm is the Even-IRA algorithm. As this method is de-
signed for T -even matrix pencils, it cannot be used directly for T -even matrix polyomi-
als P (\lambda ) of degree > 1. To solve the PEP for P (\lambda ), we apply the Even-IRA algorithm
to the structure-preserving linearization \scrL P (\lambda ) from (2.4). The sparse block structure
of \scrL P (\lambda ) turns out to be very beneficial for the computation of matrix-vector-products
K(\zeta )x (which are necessary to build the Krylov space; see (3.3)). In fact, we show
in section 4 that K(\zeta )x can be computed in a cheap and reliable way without ever
forming K(\zeta ) and \scrL P (\zeta ) explicitly. In section 5, we will modify the Even-IRA algo-
rithm so that it is able to handle changes of the shift parameter \zeta during the Arnoldi
iteration and the restart process. This makes it possible to accelerate convergence or
to control/change the regions in the complex plane where eigenvalues are to be found.
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A RATIONAL EVEN-IRA ALGORITHM 1179

4. The efficient computation of matrix-vector-products \bfitK (\bfitzeta )\bfitx . Assume
that P (\lambda ) \in \BbbR [\lambda ]n\times n is some T -even matrix polynomial and let \scrL P (\lambda ) \in \BbbR [\lambda ]dn\times dn be
defined as in (2.4). Recall that P (\lambda ) and \scrL P (\lambda ) share the same finite eigenvalues. As
outlined in Theorem 2.5, \scrL P (\lambda ) is T -even, so the Even-IRA algorithm can be applied
to \scrL P (\lambda ) to determine a part of the finite spectrum of P (\lambda ). In consideration of large-
scale-problems the sparsity and structure of \scrL P (\lambda ) can be exploited to significantly
increase the computational speed in calculating K(\zeta )v. This effective computational
approach is explained in detail in this section (see also [12] and [28, sect. 5.2]).

Remark 4.1. As we are only considering polynomial eigenvalue problems given by
real T -even matrix polynomials, matrix-vector-multiplications K(\zeta )v will only involve
real vectors v \in \BbbR dn in all subsequent sections (even if \zeta and K(\zeta ) are complex).
However, the technique to perform matrix-vector-multiplications is valid even if v \in 
\BbbC dn, so we give a general treatment here.

To begin, assume \zeta \in \BbbC is not contained in \sigma (P ) and let v \in \BbbC dn be given.
Moreover, let \scrL P (\lambda ) = \lambda X + Y as in (2.4). Explicitly, the matrix-vector-product
K(\zeta )v can be written as

(4.1) K(\zeta )v =
\bigl( 
\scrL P (\zeta )

 - TX\scrL P (\zeta )
 - 1X

\bigr) 
v.

Actually, (4.1) can be evaluated using four consecutive matrix-vector-multiplications.
The matrix-vector-products with X, where X \in \BbbR dn\times dn, can be evaluated directly
and quickly by exploiting the sparsity of X. Moreover, as X has a clear and deter-
mined block-structure, a matrix-vector-multiplication Xv can entirely be carried out
implicitly, that is, without forming X at all, on its nonzero n\times n blocks. The matrix-
vector-products with \scrL P (\zeta )

 - 1 and \scrL P (\zeta )
 - T = \scrL P ( - \zeta ) - 1 can be realized by solving

linear systems with \scrL P (\zeta ) and \scrL P ( - \zeta ), respectively. However, the size of both matri-
ces is dn\times dn and, therefore, can be rather large. Fortunately, a linear-systems-solve
with \scrL P (\zeta ) can be traced back to solely n \times n computations involving the solution
of a linear system with P (\zeta ) \in \BbbC n\times n. This provides an economic approach for the
determination of these products since, for instance, the computational cost of an LU
decomposition for \scrL P (\zeta ) is within \scrO (d3n3) while it is only \scrO (n3) for P (\zeta ) if no spar-
sity patterns are taken into account. For sparse matrices the cost is about \scrO (d \cdot nz)
and \scrO (nz), respectively, where nz denotes the number of nonzero entries. Moreover,
the storage requirements for the LU factors for P (\zeta ) are way below those for the LU
factors of \scrL P (\lambda ).

Assume that \scrL P (\zeta )
 - 1v is to be computed, i.e., the linear system

(4.2) \scrL P (\zeta )y =

\biggl[ 
MP (\zeta ) L\ell  - 1( - \zeta )T \otimes In

L\ell  - 1(\zeta )\otimes In 0

\biggr] \biggl[ 
y1
y2

\biggr] 
=

\biggl[ 
x1

x2

\biggr] 
= x

is to be solved for a given vector x \in \BbbC dn. Let y \star be the solution of (4.2) which is
unique since \scrL P (\zeta ) is nonsingular (due to the fact that \zeta /\in \sigma (P )). Let x, y \in \BbbC dn be
partitioned as x1, y1 \in \BbbC \ell n and x2, y2 \in \BbbC (\ell  - 1)n and assume that y \star = [ (y \star 1)

T (y \star 2)
T ]T

is partitioned accordingly. The structure of \scrL P (\zeta ) reveals that (4.2) can be rewritten
as a system of two equations for the unknown vectors y1 and y2 as

MP (\zeta )y1 +
\bigl( 
L\ell  - 1( - \zeta )T \otimes In

\bigr) 
y2 = x1 and(4.3)

(L\ell  - 1(\zeta )\otimes In) y1 = x2.(4.4)

Notice that (4.4) is an underdetermined system with L\ell  - 1(\zeta ) \otimes In \in \BbbC (\ell  - 1)n\times \ell n.
Moreover, rank(L\ell  - 1(\zeta )\otimes In)) = (\ell  - 1)n holds regardless of the choice of \zeta . Therefore,

D
ow

nl
oa

de
d 

08
/0

9/
21

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1180 P. BENNER, H. FASSBENDER, AND P. SALTENBERGER

the nullspace of L\ell  - 1(\zeta )\otimes In is always n-dimensional and easily determined since\bigl( 
L\ell (\zeta )\otimes In

\bigr) \bigl( 
\Lambda \ell (\zeta )

T \otimes In
\bigr) 
= 0\ell n\times n.

Therefore we have null(L\ell (\zeta ) \otimes In) = \{ (\Lambda \ell (\zeta )
T \otimes In)r ; r \in \BbbC n\} . Consequently, any

solution y1 for (4.4) has the form y1 = \widehat y1+(\Lambda \ell (\zeta )
T \otimes In)r, where \widehat y1 \in \BbbC \ell n solves (4.4)

and r \in \BbbC n is arbitrary. In fact, once some particular solution \widehat y1 has been found,
there exists some unique r \star such that y \star 1 = \widehat y1 + (\Lambda \ell (\zeta )

T \otimes In)r
 \star \in \BbbC \ell n. With this

characterization of y \star 1 at hand, it follows from (4.3) that

(4.5) MP (\zeta )
\bigl( \widehat y1 + (\Lambda \ell (\zeta )

T \otimes In)r
 \star 
\bigr) 
+

\bigl( 
L\ell ( - \zeta )T \otimes In

\bigr) 
y \star 2 = x1

holds. Multiplying (4.5) by \Lambda \ell ( - \zeta )\otimes In from the left eliminates the second term since
(\Lambda \ell ( - \zeta )\otimes In)(L\ell ( - \zeta )T \otimes In) = 0. After some reordering we obtain from (4.5)

(4.6)
\bigl( 
\Lambda \ell ( - \zeta )\otimes In

\bigr) 
MP (\zeta )

\bigl( 
\Lambda \ell (\zeta )

T \otimes In
\bigr) \underbrace{}  \underbrace{}  

=P (\zeta )

r \star = x1  - 
\bigl( 
\Lambda \ell ( - \zeta )\otimes In

\bigr) 
MP (\zeta )\widehat y1.

Notice that the left-hand side of (4.6) simplifies to P (\zeta )r \star in accordance with Remark
2.4. In addition, as P (\zeta ) is nonsingular, r \star is the unique solution of (4.6). Thus, in
other words, for any fixed particular solution \widehat y1 of (4.4), the unique solution r \star of the
n\times n linear system

(4.7) P (\zeta )r = x1  - 
\bigl( 
\Lambda \ell ( - \zeta )\otimes In

\bigr) 
MP (\zeta )\widehat y1

determines the first part y \star 1 = \widehat y1 + (\Lambda \ell (\zeta )
T \otimes In)r

 \star \in \BbbC \ell n of the solution vector y \star .
Once y \star 1 has been found, y \star 2 \in \BbbC (\ell  - 1)n will be the unique solution of the overdetermined
system

(4.8) (L\ell  - 1( - \zeta )\otimes In) y2 = x1  - MP (\zeta )y
 \star 
1

since (4.3) and (4.4) are satisfied if and only if y1 = y \star 1 and y2 = y \star 2 . The computations
of a particular solution \widehat y1 of (4.4) and the solution y \star 2 of (4.8) can be carried out by
forward and backward substitution and both require \scrO (\ell n) flops. In particular, the
following hold:

1. A solution \widehat y1 \in \BbbC \ell n for (4.4), i.e.,
(4.9)\left[     

In  - \zeta In
In  - \zeta In

. . .
. . .

In  - \zeta In

\right]     
\left[       

y1,1
y1,2
...

y1,\ell  - 1

y1,\ell 

\right]       =

\left[     
v1,1
v1,2
...

v1,\ell  - 1

\right]     , y1,k, v1,k \in \BbbC n,

can be found by backward substitution. If \widehat y1 and v1 \in \BbbC (\ell  - 1)n are partitioned
as in (4.9) and \widehat y1,\ell = 0 is chosen, then \widehat y1,1, . . . , \widehat y1,\ell  - 1 are uniquely determined
through the recurrence relation \widehat y1,k = v1,k + \zeta \widehat y1,k+1 for k = \ell  - 1, . . . , 1.

2. The unique solution y \star 2 of (4.8), i.e.,
(4.10)\left[        

In
\zeta In In

\zeta In
. . .

. . . In
\zeta In

\right]        
\left[     

y2,1
y2,2
...

y2,\ell  - 1

\right]     = x1 - MP (\zeta )y
 \star 
1 =:

\left[       
w1

w2

...
w\ell  - 1

w\ell 

\right]       , y2,k, wk \in \BbbC n,D
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A RATIONAL EVEN-IRA ALGORITHM 1181

can be found by forward substitution. If y \star 2 is partitioned as y2 in (4.10),
then y \star 2,1 = w1 and y \star 2,2, . . . , y

 \star 
2,\ell are uniquely determined by the recurrence

y \star 2,k = wk  - \zeta y \star 2,k - 1 for k = 2, . . . , \ell .

Remark 4.2. Notice that although (4.10) is an overdetermined system for y2 \in 
\BbbC (\ell  - 1)n which usually need not have a solution, there is a unique solution y \star 2 for (4.10)
since we assumed \scrL P (\zeta )y = x to be uniquely solvable.

For the determination of matrix-vector-products \scrL P (\zeta )
 - T v, the T -even structure

of \scrL P (\zeta ) can be exploited. In particular, \scrL P (\zeta )
 - T = (\scrL P (\zeta )

T ) - 1 = \scrL P ( - \zeta ) - 1. In
order to find \scrL P ( - \zeta ) - 1v, the same approach as above can be used involving  - \zeta 
instead of \zeta . In particular, in (4.7) the matrix P ( - \zeta ) instead of P (\zeta ) will show up. If
an LU decomposition P (\zeta ) = LU has been computed to solve the linear system with
P (\zeta ) in (4.7), this factorization can be reused to solve the system with P ( - \zeta ) since
P ( - \zeta ) = P (\zeta )T = UTLT .

In conclusion, the procedure described in this section presents an efficient way to
calculate matrix-vector-products of the form (4.1). Whenever d \ll n, the complexity
of the overall method is dominated by the cost of the LU decomposition of P (\zeta ),
which is \scrO (nz) or \scrO (n3) depending on whether P (\zeta ) is sparse or not.

5. The rational Arnoldi decomposition. Let P (\lambda ) \in \BbbR [\lambda ]n\times n be some T -
even matrix polynomial and let \scrL P (\lambda ) = \lambda X + Y \in \BbbR [\lambda ]dn\times dn and

(5.1) K(\zeta ) = \scrL P (\zeta )
 - TX\scrL P (\zeta )

 - 1X = \scrL P ( - \zeta ) - 1X\scrL P (\zeta )
 - 1X, \zeta /\in \sigma (P ),

be defined for P (\lambda ) as in (2.4) and (3.1), respectively.
Recall from section 3 that K(\zeta ) as in (5.1) stays real whenever \zeta is real or purely

imaginary. We will assume for the moment that either of them holds to stay within real
arithmetic. So, let v1 \in \BbbR dn be some normalized vector and suppose that (for instance,
as part of the Even-IRA algorithm) m \in \BbbN steps of the Arnoldi process (cf. [1, Alg.
7.3]) have been performed for K(\zeta ). That is, we have an Arnoldi decomposition for
K(\zeta ) \in \BbbR dn\times dn of the form

(5.2) K(\zeta )

\Biggl[ 
Vm

\Biggr] 
=

\Biggl[ 
Vm

\Biggr] \Biggl[ 
Tm

\Biggr] 
+ tm+1,mvm+1e

T
m =

\Biggl[ 
Vm+1

\Biggr] \Biggl[ 
Tm

\Biggr] 
,

where Vm+1 = [ v1 \cdot \cdot \cdot vm+1 ] = [ Vm vm+1 ] \in \BbbR dn\times (m+1). The following statements
hold for the vectors and matrices involved in (5.2):

1. The columns v1, . . . , vm+1 \in \BbbR dn of Vm+1 form an orthonormal basis of the
Krylov space \scrK m+1(K(\zeta ), v1), where v1 is the starting vector of the Arnoldi
iteration.

2. The matrices Tm = [ti,j ]i,j \in \BbbR m\times m and Tm := Im+1,mTm+tm+1,mvm+1e
T
m \in 

\BbbR (m+1)\times m have upper-Hessenberg structure, where em denotes the mth unit
vector in \BbbR m.

The eigenvalues of Tm \in \BbbR m\times m are called Ritz values of K(\zeta ) with respect to
\scrK m+1(K(\zeta ), v1). According to the Rayleigh--Ritz principle (cf. [8, sect. 7]), these
values are used as approximations to the eigenvalues of K(\zeta ) by the Even-IRA algo-
rithm (cf. [24, pp. 4074ff]; see also section 3). Recall that the spectral transformation
\mu \mapsto \rightarrow (\mu 2  - \zeta 2) - 1 corresponding to the transformation (3.1) causes eigenvalues \mu of
\scrL P (\lambda ) close to \zeta to be mapped to eigenvalues of large magnitude. In the first place,
these will be well approximated by eigenvalues of Tm. Starting with the decomposition
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1182 P. BENNER, H. FASSBENDER, AND P. SALTENBERGER

(5.2), the Even-IRA algorithm performs several Krylov--Schur restarts (see [29]) un-
til convergence of the desired number of eigenvalues was observed. As soon as tm+1,m

in (5.2) becomes zero, K(\zeta )Vm = VmTm holds and all eigenvalues of Tm are exact
eigenvalues of K(\zeta ). Finally, the reverse transformation (3.2) reveals eigenvalues of
\scrL P (\lambda ) close to \zeta .

Now notice that K(\zeta ) in (5.1) is nonsingular if and only if X is nonsingular.
Therefore, assuming X to be nonsingular, we have

(5.3)
K(\zeta ) - 1 = X - 1\scrL P (\zeta )X

 - 1\scrL P ( - \zeta ) = X - 1
\bigl( 
\zeta X + Y

\bigr) 
X - 1

\bigl( 
 - \zeta X + Y

\bigr) 
=  - \zeta 2Idn +X - 1Y X - 1Y =

\bigl( 
X - 1Y

\bigr) 2  - \zeta 2Idn

so that K(\zeta ) = ((X - 1Y )2  - \zeta 2Idn)
 - 1. For all further considerations we let G :=

(X - 1Y ) whenever it exists so that K(\zeta ) = (G2  - \zeta 2Idn)
 - 1.

Whenever X \in \BbbR dn\times dn is nonsingular and G exists, (5.3) can be taken into
account and (5.2) may be rewritten in terms of G2 as

(5.4)

\Biggl[ 
G2

\Biggr] \Biggl[ 
Vm+1

\Biggr] \left[  Tm

\right]  =

\Biggl[ 
Vm+1

\Biggr] \left[  Hm

\right]  ,

where Hm := \zeta 2Tm + Im+1,m \in \BbbR (m+1)\times m is again of upper-Hessenberg form. A
decomposition of the form (5.4) is called a generalized rational Arnoldi decomposition
for G2 in [6, eq. (1.1)], so we adapt this terminology here. When working with
K(\zeta ) = (G2  - \zeta 2Idn)

 - 1 we will mainly consider rational decompositions as in (5.4)
instead of Arnoldi decompositions as in (5.2) from now on.

Regarding (5.4), the eigenvalues of the matrix pencil \lambda Tm  - Hm \in \BbbR [\lambda ]m\times m

(where Tm and Hm are given by the first m rows of Tm and Hm, respectively) will in
general be good approximations of the eigenvalues of G2 (see [27]). Certainly it holds
that \sigma (G2) = \sigma (G)2 = \sigma (\scrL P )

2, so the square roots +
\surd 
\theta and  - 

\surd 
\theta of eigenvalues

\theta \in \BbbC found from \lambda Tm  - Hm approximate eigenvalues of \scrL P (\lambda ) and, in turn, P (\lambda ).
It is a crucial observation regarding the rational Even-IRA algorithm presented in
section 6 that this relationship holds even if G (and hence G2) does not exist.

Now it is important to notice that, in (5.4), only Tm and Hm directly depend
on \zeta but G2 does not. In comparison to the Arnoldi decomposition (5.2)---where
K(\zeta ) appears on the left-hand side and explicitly depends on \zeta ---this enables us to
extend the decomposition (5.4) while changing the shift \zeta to some newly chosen value
\xi \in \BbbC . This is not possible for the standard Arnoldi decomposition (5.2) and cannot
be realized in the Even-IRA algorithm. In particular, instead of calculating and
orthogonalizing K(\zeta )vm+1 to extend (5.4) (as in the Arnoldi iteration), we may use
the vector K(\xi )vm+1 for some new shift \xi .

Remark 5.1. We will assume throughout this section that G \in \BbbR dn\times dn exists since
this will be helpful to illustrate the forthcoming computations. This assumption will
be dropped in the next section since the regularity of X is actually not required to
perform the rational Even-IRA algorithm outlined in section 6.

In section 5.1 we show how the rational Arnoldi decomposition (5.4) can be ex-
tended to increase the dimension of the underlying Krylov space (spanned by the
columns of Vm+1). To this end, we distinguish between the cases where either \xi \in \BbbR 
or \xi \in \imath \BbbR holds (only in these cases \xi 2 and K(\xi ) are real) and where \xi = a + b\imath is
complex with nonzero real and imaginary parts (which implies K(\xi ) is nonreal). In
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A RATIONAL EVEN-IRA ALGORITHM 1183

the second case, we may still remain in real arithmetics if the real and imaginary parts
of K(\xi )vm+1 are considered separately.2

5.1. The extension of a rational Arnoldi decomposition. Assume we are
given a decomposition as in (5.4) obtained from m steps of the Arnoldi iteration
applied to K(\zeta ) for some shift \zeta /\in \sigma (\scrL P ). Now let \xi /\in \sigma (\scrL P ) be some new shift
parameter. First assume that either \xi \in \BbbR or \xi \in \imath \BbbR holds, so K(\xi ) is a real matrix
and K(\xi )vm+1 is a real vector of size dn. The Gram--Schmidt-orthogonalization of
K(\xi )vm+1 against v1, . . . , vm+1 yields

(5.5) \widetilde vm+2 = K(\xi )vm+1  - 
\bigl[ 
v1 \cdot \cdot \cdot vm+1

\bigr] \left[   t1,m+1

...
tm+1,m+1

\right]   ,

where ti,m+1 = \langle K(\xi )vm+1, vi\rangle , i = 1, . . . ,m + 1, and vm+2 = (tm+2,m+1)
 - 1\widetilde vm+2

with tm+2,m+1 = \| \widetilde vm+2\| 2. Then (5.5) can be rearranged to K(\xi )vm+1 = Vm+2tm+1,
where Vm+2 := [Vm+1 vm+2 ] \in \BbbR dn\times (m+2) and where tm+1 = [tk,m+1]

m+2
k=1 \in \BbbR m+2.

Putting the expression K(\xi ) = (G2  - \xi 2Idn)
 - 1 from (5.3) in use we obtain

(5.6) G2Vm+2tm+1 = vm+1 + \xi 2Vm+2tm+1.

The relation established in (5.6) can now be incorporated into the decomposition (5.4)
easily by defining

(5.7) Tm+1 :=

\left[       
Tm

t1,m+1

...
tm,m+1

tm+1,m+1

0 \cdot \cdot \cdot 0 tm+2,m+1

\right]       \in \BbbR (m+2)\times (m+1)

and

(5.8) Hm+1 :=

\left[       
Hm

\xi 2t1,m+1

...
\xi 2tm,m+1

1 + \xi 2tm+1,m+1

0 \cdot \cdot \cdot 0 \xi 2tm+2,m+1

\right]       \in \BbbR (m+2)\times (m+1),

which gives a new decomposition G2Vm+2Tm+1 = Vm+2Hm+1 that has the same
structure as in (5.4).

Inspired by [3], we will work with a slightly modified form of the generalized ratio-
nal Arnoldi decomposition from (5.4) in all further discussions. This decomposition
will turn out to be adequate for the realization of the Krylov--Schur restart discussed
in section 6. To illustrate the idea, assume that v1 \in \BbbR dn with \| v1\| 2 = 1 is given and
m = 1. The computations in (5.5), (5.7), and (5.8) yield

(5.9) V2 =
\bigl[ 
v1 v2

\bigr] 
\in \BbbR dn\times 2, T 1 =

\biggl[ 
t1,1
t2,1

\biggr] 
\in \BbbR 2\times 1, H1 =

\biggl[ 
h1,1

h2,1

\biggr] 
\in \BbbR 2\times 1,

2Notice that the authors from [24] deal with complex shifts in another way by changing the
definiton of K(\zeta ) (see [24, Rem. 2.1]).
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1184 P. BENNER, H. FASSBENDER, AND P. SALTENBERGER

so that G2V2T 1 = V2H1 holds. Now there exists a Givens rotation F \in \BbbR 2\times 2 such
that the second entry in FT 1 is zero. Redefining T 1 as FT 1, V2 as V2F

T = [ v1 v2 ],
and H1 as FH1, we have computed a new equivalent decomposition G2V2T 1 = V2H1.
Now, notice that the left-hand side can also be expressed as G2V1T1, where V1 = [ v1 ]
consists only of the first column of V2 and T1 = [ t1,1 ], where t1,1 is the first entry of
T 1. In particular, T1 is now (trivially) an upper-triangular matrix.

For the further extension of the decomposition G2V1T1 = V2H1, it is appropri-
ate and feasible to keep Tk \in \BbbR k\times k, k \geq 2, in upper-triangular form (instead of
upper-Hessenberg form) throughout while the upper-Hessenberg structure of Hk is
preserved. This can be achieved by applying a special bulge-chasing after every ex-
tension step. We describe this procedure in general for a given decomposition of the
above form of size m \geq 1, i.e.,

(5.10)

\Biggl[ 
G2

\Biggr] \Biggl[ 
Vm

\Biggr] \Biggl[ 
Tm

\Biggr] 
=

\Biggl[ 
Vm+1

\Biggr] \left[  Hm

\right]  ,

where Vm+1 \in \BbbR dn\times (m+1) has orthonormal columns v1, . . . , vm+1, Tm \in \BbbR m\times m is
upper-triangular, and Hm \in \BbbR (m+1)\times m has upper-Hessenberg structure.

Let the scalars tk,m+1 \in \BbbR , k = 1, . . . ,m + 2, and the vector vm+2 \in \BbbR dn be

computed as in (5.5) and let \widehat Vm+2 := [Vm+1 vm+2 ]. The matrices in (5.7) and (5.8)
now have the special form

(5.11) \widehat Tm+1 :=

\left[       
Tm

t1,m+1

...
tm,m+1

0 \cdot \cdot \cdot 0
0 \cdot \cdot \cdot 0

tm+1,m+1

tm+2,m+1

\right]       \in \BbbR (m+2)\times (m+1)

and

(5.12) \widehat Hm+1 :=

\left[       
Hm

\xi 2t1,m+1

...
\xi 2tm,m+1

1 + \xi 2tm+1,m+1

0 \cdot \cdot \cdot 0 \xi 2tm+2,m+1

\right]       \in \BbbR (m+2)\times (m+1).

From \widehat Vm+2 and the upper-Hessenberg matrices in (5.11) and (5.12) we may now
recover the structures from (5.10), i.e., Vm+2 \in \BbbR dn\times (m+2) with orthonormal columns,
Tm+1 \in \BbbR (m+1)\times (m+1) with upper-triangular form, and Hm+1 \in \BbbR (m+2)\times (m+1) with
upper-Hessenberg structure, so that G2Vm+1Tm+1 = Vm+2Hm+1 holds. In fact, two

orthogonal matrices Q \in \BbbR (m+2)\times (m+2) and Z \in \BbbR (m+1)\times (m+1) may be found such
that Hm+1 := Q \widehat Hm+1Z \in \BbbR (m+2)\times (m+1) and

(5.13) Q \widehat Tm+1Z =:

\left[    Tm+1

0 \cdot \cdot \cdot 0

\right]    with Tm+1 \in \BbbR (m+1)\times (m+1) upper-triangular.

Finally, defining Vm+2 := \widehat Vm+2Q
T , we obtain the new decomposition

G2Vm+1Tm+1 = Vm+2Hm+1.
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A RATIONAL EVEN-IRA ALGORITHM 1185

This equation is of the same form as (5.10) except that Vm+1 has been extended by
one column---which corresponds to the extension of the underlying Krylov space by
one dimension---and that Tm+1 and Hm+1 have increased in their sizes by one. The
matrices Q and Z can be set up as a product of Givens rotations by the bulge-chasing
procedure described in Algorithm 5.1 for a real or purely imaginary shift.

Algorithm 5.1 Bulge-chasing-procedure (real/imaginary shift).

1: At first, a Givens rotation is applied to \widehat Tm+1 (from the left) on rows m+ 2 and

m + 1 to eliminate tm+2,m. Applying this transformation to \widehat Hm+1 introduces
a bulge in the position (m + 2,m). This bulge can be eliminated by applying a

Givens rotation (from the right) to \widehat Hm+1 acting on columns m and m + 1. A

bulge will now show up in the position (m+ 1,m) in \widehat Tm+1.

2: The bulge in the position (m + 1,m) in \widehat Tm+1 created in (a) can be eliminated

by a Givens rotation applied (from the left) on rows m and m+ 1 of \widehat Tm+1. This

introduces a new bulge in \widehat Hm+1 at the position (m+ 1,m - 1). The elimination
of this bulge can be achieved by applying a Givens rotation (from the right) to\widehat Hm+1 acting on the columns m  - 1 and m. In consequence, a new bulge will

appear in \widehat Tm+1 in the position (m,m - 1).
3: The elimination process described in steps 1 and 2 continues in the same manner

until the bulge in \widehat Tm+1 is chased off the top-left corner.

Next, we discuss the case where \xi \in \BbbC has nonzero real and imaginary parts.
Let us begin directly with a real rational Arnoldi decomposition as in (5.10). As
K(\xi ) \in \BbbC dn\times dn is now a complex matrix, the resulting vector K(\xi )vm+1 will also be
complex (although vm+1 is still real). To remain in real arithmetics, we decompose
K(\xi )vm+1 as Re(K(\xi )vm+1) + Im(K(\xi )vm+1)\imath into its real and imaginary part. Now
we apply the Gram--Schmidt process to both vectors one after the other. That is, for
Re(K(\xi )vm+1) we obtain, analogously to (5.5),

(5.14) \widetilde vm+2 = Re(K(\xi )vm+1) - 
\bigl[ 
v1 \cdot \cdot \cdot vm+1

\bigr] \left[   t1,m+1

...
tm+1,m+1

\right]   
with ti,m+1 = \langle Re(K(\xi )vm+1), vi\rangle and set vm+2 := (tm+2,m+1)

 - 1\widetilde vm+2 with tm+2,m+1

= \| \widetilde vm+2\| 2. Having computed vm+2, we may now orthogonalize Im(K(\xi )vm+1)
against v1, . . . , vm+2 to obtain

(5.15) \widetilde vm+3 = Im(K(\xi )vm+1) - 
\bigl[ 
v1 \cdot \cdot \cdot vm+2

\bigr] \left[   t1,m+2

...
tm+2,m+2

\right]   
with ti,m+2 = \langle Im(K(\xi )vm+1), vi\rangle . Again we define vm+3 := (tm+3,m+2)

 - 1\widetilde vm+3,

where tm+3,m+2 = \| \widetilde vm+3\| 2. Now we set \widehat Vm+3 := [Vm+1 vm+2 vm+3 ],

tm+1 :=

\left[     
t1,m+1

...
tm+2,m+1

0

\right]     \in \BbbR m+3 and tm+2 :=

\left[     
t1,m+2

...
tm+2,m+2

tm+3,m+2

\right]     \in \BbbR m+3.
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1186 P. BENNER, H. FASSBENDER, AND P. SALTENBERGER

From (5.14) and (5.15) we obtain Re(K(\xi )vm+1) = \widehat Vm+3tm+1 and Im(K(\xi )vm+1) =\widehat Vm+3tm+2, so that K(\xi )vm+1 = \widehat Vm+3(tm+1 + itm+2) follows. Putting again K(\xi ) =
(G2  - \xi 2Idn)

 - 1 from (5.3) in use we get

(5.16) G2 \widehat Vm+3

\bigl( 
tm+1 + \imath tm+2

\bigr) 
= \widehat Vm+3

\bigl( 
em+1 + \xi 2tm+1 + \imath \xi 2tm+2

\bigr) 
,

where em+1 denotes the (m+ 1)st unit vector from \BbbR m+3. Furthermore, from (5.16)
the splitting of \xi 2 as \xi 2 = \rho + \eta \imath with \rho := Re(\xi 2) and \eta := Im(\xi 2) yields

G2 \widehat Vm+3

\bigl( 
tm+1 + \imath tm+2

\bigr) 
= \widehat Vm+3

\bigl[ 
em+1 + \rho tm+1  - \eta tm+2 + \imath 

\bigl( 
\eta tm+1 + \rho tm+2

\bigr) \bigr] 
and, decomposing this once more into its real and imaginary parts, we arrive at

G2 \widehat Vm+3tm+1 = \widehat Vm+3

\bigl( 
em+1 + \rho tm+1  - \eta tm+2

\bigr) 
and(5.17)

G2 \widehat Vm+3tm+2 = \widehat Vm+3

\bigl( 
\eta tm+1 + \rho tm+2

\bigr) 
.(5.18)

The two relations (5.17) and (5.18) can now be incorporated into the decomposition
(5.10). To this end, we define

(5.19) \widehat Tm+2 =

\left[         
Tm

t1,m+1 t1,m+2

...
...

tm,m+1 tm,m+2

0 \cdot \cdot \cdot 0
0 \cdot \cdot \cdot 0
0 \cdot \cdot \cdot 0

tm+1,m+1 tm+1,m+2

tm+2,m+1 tm+2,m+2

0 tm+3,m+2

\right]         
and
(5.20)

\widehat Hm+2

\left[         
Hm

\rho t1,m+1  - \eta t1,m+2 \eta t1,m+1 + \rho t1,m+2

...
...

\rho tm,m+1  - \eta tm,m+2 \eta tm,m+1 + \rho tm,m+2

1 + \rho tm+1,m+1  - \eta tm+1,m+2 \eta tm+1,m+1 + \rho tm+1,m+2

0 \cdot \cdot \cdot 0
0 \cdot \cdot \cdot 0

\rho tm+2,m+1  - \eta tm+2,m+2 \eta tm+2,m+1 + \rho tm+2,m+2

 - \eta tm+3,m+2 \rho tm+3,m+2

\right]         
.

From \widehat Vm+3 and the matrices in (5.19) and (5.20) we may again recover the struc-
tures from (5.10), that is, G2Vm+2Tm+2 = Vm+3Hm+2, where Tm+2 \in \BbbR (m+2)\times (m+2)

is upper-triangular and Hm+2 \in \BbbR (m+3)\times (m+2) has upper-Hessenberg form. As be-
fore, a special bulge-chasing procedure is appropriate to determine two orthogonal
matrices Q \in \BbbR (m+3)\times (m+3) and Z \in \BbbR (m+2)\times (m+2) such that Hm+2 := Q \widehat Hm+2Z \in 
\BbbR (m+3)\times (m+2) and

(5.21) Q \widehat Tm+2Z =

\left[   Tm+2

0 \cdot \cdot \cdot 0

\right]   where Tm+2 \in \BbbR (m+2)\times (m+2) is upper-triangular.

The matrices Q and Z can be set up as a product of Givens rotations by Algorithm
5.2. With Vm+3 := \widehat Vm+3Q

T we obtain the desired decomposition.
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Algorithm 5.2 Bulge-chasing procedure (complex shift).

1: At first, a Givens rotation is applied to \widehat Tm+2 (from the left) on rows m+ 1 and
m+2 to eliminate tm+2,m+1. Subsequently, another Givens rotation is applied to
the resulting matrix on rows m + 2 and m + 3 to eliminate tm+3,m+2. Applying

both transformations to \widehat Hm+2 introduces a bulge in the positions (m+2,m) and

(m+3,m). We now apply two Givens rotations (from the right) to \widehat Hm+2 acting
on columns m and m + 1 to eliminate the element in position (m + 3,m) and,
subsequently, acting on columns m + 1 and m + 2 to eliminate the element in
position (m+3,m+1). Two new bulges will show up in the positions (m+1,m)

and (m + 2,m + 1) in \widehat Tm+2. The additional element in the (m + 2,m) position

of \widehat Hm+2 remains in its position and is eliminated in step 2.

2: The bulges in the positions (m+1,m) and (m+2,m+1) in \widehat Tm+2 created in step
1 can be eliminated by two Givens rotations applied (from the left) on rows m
and m+1 (to eliminate the bulge in position (m+1,m)) and on rows m+1 and

m+2 (to eliminate the bulge in position (m+2,m+1)) of \widehat Tm+2. This introduces

new additional nonzero elements in \widehat Hm+2 at the position (m + 1,m  - 1) and

(m+2,m - 1). We apply two subsequent Givens rotations (from the right) to \widehat Hm+2

acting on the columns m - 1 and m (to eliminate the element in (m+ 2,m - 1))
and on columns m and m+1 (to eliminate the element in (m+2,m)). Notice that
the (m + 2,m)-element we eliminate now was the one that remained in step 1.

Now new bulges will appear in \widehat Tm+2 in the positions (m,m - 1) and (m+ 1,m).

The additional element in the (m + 1,m  - 1) position of \widehat Hm+2 remains in its
position and is eliminated in the next step.

3: The elimination process described in steps 1 and 2 continues in the same manner
until the bulge in \widehat Tm+2 is chased off the top-left corner.

Starting with some v1 \in \BbbR dn, \| v\| 1 = 2, the previously described procedures are
appropriate to construct and extend a rational Arnoldi decomposition of the form
(5.10). In each run, a new shift parameter \xi /\in \sigma (\scrL P ) can be chosen. Per iteration,
the decomposition grows in size by one if \xi is real or purely imaginary and by two
otherwise.

Now recall that, whenever X is singular, G and, consequently, a decomposition
of the form (5.10), does not exist. Nevertheless, the vectors K(\xi )vm+1 and vm+2

can still be calculated as in (5.5) and the matrices Tm, Hm can be extended as in
(5.11) and (5.12) if \xi is real or purely imaginary. The bulge-chasing procedure from
Algorithm 5.1 applies and recovers the matrix structures from (5.10). If \xi is not real
or purely imaginary, K(\xi )vm+1 can be split into its real and imaginary parts and the
calculations in (5.14) and (5.15) can be carried out as described above. The extension
of Tm andHm works as explained in (5.19) and (5.20) and the bulge-chasing procedure
from Algorithm 5.2 recovers the upper-triangular and upper-Hessenberg structures.

In conclusion, for any m \geq 1, the matrix pencil \lambda Tm - Hm \in \BbbR m\times m can be formed
even ifG cannot. Moreover, its eigenvalues can be used to approximate the eigenvalues
in \sigma (\scrL P )

2 as before. We will permanently drop the assumption that X needs to be
nonsingular and that G2 needs to exist from now on. In other words, we explicitly
allow \scrL P (\lambda ) to have eigenvalues at infinity. Therefore, the following derivations will
mostly be dealing only with the matrices Vk, T k, and Hk as in (5.10) instead of the
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1188 P. BENNER, H. FASSBENDER, AND P. SALTENBERGER

decomposition G2VmTm = Vm+1Hm. These matrices and their modifications in the
upcoming section should always be understood in the context of a rational Arnoldi
decomposition as in (5.2) whenever such a decomposition exists. We have summarized
the method to generate (or extend) a rational Arnoldi decomposition in Algorithm
5.3.

Algorithm 5.3 Rational Arnoldi expansion.

1: Input: The linearization \scrL P (\lambda ) = \lambda X + Y \in \BbbR [\lambda ]dn\times dn for a T -even matrix
polynomial P (\lambda ) \in \BbbR [\lambda ]n\times n defined in (2.4). A matrix Vk+1 = [ v1 \cdot \cdot \cdot vk+1 ] \in 
\BbbR dn\times (k+1) with orthonormal columns, Tk \in \BbbR k\times k upper-triangular, and Hk \in 
\BbbR (k+1)\times k in upper Hessenberg form satisfying G2VkTk = Vk+1Hk if G2 exists. In
case k = 0, we set T0 = [ ] and H0 := [ ]. A number m \in \BbbN , m > k.

2: Output: Matrices Vm+1 = [ v1 \cdot \cdot \cdot vm+1 ] \in \BbbR dn\times (m+1) with orthonormal col-
umns, Tm \in \BbbR m\times m upper-triangular, and Hm \in \BbbR (m+1)\times m in upper Hessenberg
form that satisfy (5.4) in case G2 exists.

3: for j = \ell + 1, . . . ,m do
4: pick a shift \zeta j \in \BbbC 
5: compute w := K(\zeta j)vj = (\scrL P (\zeta j)

 - TX\scrL P (\zeta j)
 - 1X)vj using section 4

6: if \zeta j \in \BbbR or \zeta j \in \imath \BbbR then
7: orthogonalize w against v1, . . . , vj and obtain t1,j , . . . , tj,j \in \BbbR as in (5.5)
8: set vj+1 to obtain tj+1,j \in \BbbR 
9: form \widehat T j \in \BbbR (j+1)\times j and \widehat Hj \in \BbbR (j+1)\times j as in (5.11) and (5.12)

10: set \widehat Vj+1 = [ v1 \cdot \cdot \cdot vj+1 ]
11: apply the bulge-chasing procedure described in Algorithm 5.1 to determine
12: orthogonal matrices Q \in \BbbR (j+1)\times (j+1) and Z \in \BbbR j\times j such that
13:  \triangleleft Q \widehat T jZ is upper-triangular with zeros in its last row and

14:  \triangleleft Q \widehat HjZ =: Hj has upper-Hessenberg structure

15: define Tj to be the first j rows of Q \widehat T jZ

16: define Vj+1 := \widehat Vj+1Q
T

17: else
18: orthogonalize Re(w) against v1, . . . , vj and get t1,j , . . . , tj,j \in \BbbR as in (5.14)
19: set vj+1 to obtain tj+1,j \in \BbbR 
20: orthogonalize Im(w) against v1, . . . , vj , vj+1 and obtain t1,j+1, . . . , tj+1,j+1 \in 

\BbbR as in (5.15)
21: set vj+2 to obtain tj+2,j+1 \in \BbbR 
22: form \widehat T j+1 \in \BbbR (j+2)\times (j+1) and \widehat Hj \in \BbbR (j+2)\times (j+1) as in (5.19) and (5.20)

23: set \widehat Vj+2 = [ v1 \cdot \cdot \cdot vj+1 vj+2 ]
24: apply the bulge-chasing procedure described in Algorithm 5.2 to determine
25: orthogonal matrices Q \in \BbbR (j+2)\times (j+2) and Z \in \BbbR (j+1)\times (j+1) such that
26:  \triangleleft Q \widehat T j+1Z is upper-triangular with zeros in its last row

27:  \triangleleft Q \widehat Hj+1Z =: Hj+1 has upper-Hessenberg structure

28: define Tj+1 to be the first j + 1 rows of Q \widehat T j+1Z

29: define Vj+2 := \widehat Vj+2Q
T

30: end if
31: end for
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6. The rational EVEN-IRA algorithm. The rational Even-IRA algorithm
presented in this section is a method that unifies the Krylov--Schur restart strategy [29]
with the spectral-preserving transformation K(\zeta ) (see section 3 and [24, 22, 31]) and
the shift flexibility offered by the rational Arnoldi process [27, 6, 26]. The sparse and
structured form of the linearization \scrL P (\lambda ) (see Theorem 2.5) is exploited for evaluat-
ing matrix-vector-products with K(\zeta ) implicitly and efficiently without ever forming
K(\zeta ) at all (see section 4). Hence, the memory requirement of the method is essen-
tially that of storing the given matrix polynomial and the vectors from the current
search space. In a nutshell, this approach yields a powerful Krylov-subspace algorithm
for the computation of some eigenvalues for T -even polynomial eigenvalue problems.
The rational Even-IRA algorithm presented next consists of several phases. In the
initialization phase (section 6.1) a rational Arnoldi decomposition is constructed which
is the start and end point of each Krylov--Schur cycle. In the expansion phase (section
6.2) the size of this decomposition is increased. After the expansion, a generalized
real Schur decomposition is applied (section 6.3) to identify eigenvalues that have
converged during the current run and which are to be locked (section 6.4). To initial-
ize the algorithm's next cycle, the decomposition is truncated (section 6.5) and the
upper-triangular and upper-Hessenberg forms of the matrices are recovered (section
6.6). The next iteration then begins with the expansion phase. We now describe the
different phases in detail.

6.1. The initialization phase. Let M \in \BbbN be the number of desired eigenval-
ues for P (\lambda ) (\scrL P (\lambda ), respectively). Matrices
(6.1)\left[  VM+1

\right]  \in \BbbR dn\times (M+1),

\left[  TM

\right]  \in \BbbR M\times M , HM =

\Biggl[ 
HM

BM

\Biggr] 
\in \BbbR (M+1)\times M ,

where B = hM+1,MeTM for some scalar hM+1,M \in \BbbR , are computed by Algorithm 5.3.
Note that the columns of Vm+1 are orthonormal, TM is upper-triangular, and HM has
upper-Hessenberg form. In the case X is nonsingular, (X - 1Y )2VMTM = VM+1HM

holds. If P (\lambda ) has no eigenvalues at infinity, Algorithm 5.3 may be initialized with
V1 = [ v1 ] (arbitrary and normalized), T0 = [ ], and H0 = [ ]. In the case of the
presence of infinite eigenvalues, a different initialization should be chosen (see section
6.7).

A cycle of the rational Krylov--Schur algorithm begins and ends with matrices
of the form (6.1). Now suppose, at some stage of the algorithm, s \in \BbbN 0 eigenvalues
have already converged. Assume these had been locked so that they are located in
the top-left s\times s corner of TM and HM (of course, beginning with the algorithms first
run, s = 0).

6.2. The expansion phase. The first step of the algorithm is the expansion
phase where the above matrices are extended up to a size m > M . This is achieved
by performing m - M additional steps of Algorithm 5.3 with the input matrices from
(6.1). We call m - M the extension size for the algorithm. Now we obtain matrices

(6.2)

\left[  Vm+1

\right]  \in \BbbR dn\times (m+1),

\left[  Tm

\right]  \in \BbbR m\times m, Hm =

\Biggl[ 
Hm

Bm

\Biggr] 
\in \BbbR (m+1)\times m,

where Bm = hm+1,meTm, Tm is upper-triangular and Hm has upper-Hessenberg struc-
ture. We partition the matrices in (6.2) in accordance with the number s of locked
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eigenvalues as
(6.3)

Vm =
\bigl[ 
Vs V

\bigr] 
, Tm =

\biggl[ 
Ts T \prime 

0 T

\biggr] 
, Hm =

\biggl[ 
Hs H \prime 

0 H

\biggr] 
and Bm =

\bigl[ 
Bs B

\bigr] 
,

where Ts, Hs \in \BbbR s\times s, BT
s = [ 0 \cdot \cdot \cdot 0 ]T \in \BbbR s, and BT = [ 0 \cdot \cdot \cdot 0 hm+1,m ]T \in \BbbR k,

where we have set k := m  - s implying T,H \in \BbbR k\times k. Moreover, recall that the
eigenvalues from the matrix pair \lambda Ts  - Hs are the ones we assumed to be locked.

6.3. The decomposition and reordering phase. We may now enter the de-
composition and reordering phase of the algorithm. To this end, we first compute
a generalized real Schur decomposition of the matrix pair (T,H). For this purpose,
orthogonal matrices Q1, Z1 \in \BbbR k\times k can be determined so that QT

1 TZ1 = T  \star \in \BbbR k\times k

remains upper-triangular whileQT
1 HZ1 = H \star \in \BbbR k\times k becomes quasi upper-triangular

(with solely 1 \times 1 and 2 \times 2 blocks along its diagonal). At this point, a reordering
procedure (see, e.g., [15]) can be applied to \lambda T  \star  - H \star to move unwanted eigenval-
ues of \lambda T  \star  - H \star into the trailing part of its generalized real Schur decomposition.
That is, two additional orthogonal transformations Q2, Z2 \in \BbbR k\times k can be found, so
that unwanted eigenvalues of \lambda T  \star  - H \star move to the south-east corner of the ma-
trices T \diamond := QT

2 T
 \star Z2 \in \BbbR k\times k and H\diamond := QT

2 H
 \star Z2 \in \BbbR k\times k. Thereby, the matrices

T \diamond \in \BbbR k\times k and H\diamond \in \BbbR k\times k stay upper-triangular and quasi upper-triangular, respec-
tively. Finally, defining QT := QT

2 Q
T
1 and Z := Z1Z2, we update (6.3) as follows:

(6.4)\widehat Vm =
\bigl[ 
Vs V Q

\bigr] 
, \widehat Tm =

\biggl[ 
Ts T \prime Z
0 T \diamond 

\biggr] 
, \widehat Hm =

\biggl[ 
Hs H \prime Z
0 H\diamond 

\biggr] 
, and \widehat Bm =

\bigl[ 
Bs B\diamond \bigr] 

with B\diamond := BTZ. Notice that B\diamond will now be, in general, a full vector.

6.4. The inspection-of-convergence phase. With (6.4) the inspection-of-
convergence phase of the algorithm begins. That is, the leading components of B\diamond are
inspected for convergence and eigenvalues are locked whenever convergence has taken
place. Let H\diamond = [hi,j ]i,j , T

\diamond = [ti,j ]i,j with 1 \leq i, j \leq k and let B\diamond = [ bs+1 \cdot \cdot \cdot bm ].
Starting with r \equiv 1 we now consider the following cases:

(a) Whenever hr+1,r = 0 and | bs+r| is below a given tolerance tol, we consider
the corresponding eigenvalue hr,r/tr,r as converged. The element bs+r is set to
zero and the number r of converged eigenvalues in the current run is increased
by one.

(b) Whenever hr+1,r \not = 0 but \| [ bs+r bs+r+1 ]\| 2 is below the given tolerance tol,
we consider the pair of complex conjugate eigenvalues corresponding to the
2\times 2 matrix pencil

\lambda 

\biggl[ 
tr,r tr,r+1

0 tr+1,r+1

\biggr] 
+

\biggl[ 
hr,r hr,r+1

hr+1,r hr+1,r+1

\biggr] 
as converged. The elements bs+r and bs+r+1 are both set to zero. Finally,
the number r of converged eigenvalues in the current run is increased by two.

We repeat the locking of eigenvalues as long as (a) or (b) reveals convergence. Once

no further convergence is observed notice that \widehat Bm := [ 0 \cdot \cdot \cdot 0 bs+r+1 \cdot \cdot \cdot bm ] (where
r is now the total number of locked eigenvalues during the current run). The new
number of converged eigenvalues in total is now s \star = s+ r. If s \star \geq M (the number of
desired eigenvalues), we are done. Otherwise the matrices are truncated to prepare a
restart of the algorithm.
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Remark 6.1. Notice that a practical implementation of the rational Even-IRA
algorithm and its different phases may also include a repetition of the phases described
in sections 6.3 and 6.4. In particular, instead of preparing a restart once the above
criteria reveal no more converged eigenvalues, we may apply the reordering procedure
from [15] another time to move the first unconverged eigenvalue to the southeast
corner of the matrix. In a second check according to (a) and (b) above, we might
then detect other eigenvalues that meet the convergence conditions and can be locked.

6.5. The truncation phase. If s \star < M , the size of the matrices in (6.4) is now
decreased to sizeM\times M in the truncation phase to initialize a restart of the process. In
particular, let \widehat VM \in \BbbR dn\times M be the first M columns of \widehat Vm and \widehat VM+1 = [ \widehat VM vm+1 ],
where vm+1 denotes the last column from Vm+1 in (6.2) (note that vm+1 has not
been touched in all steps up to this point). Moreover, denote the top-left M \times M

submatrices of \widehat Tm and \widehat Hm by \widehat TM and \widehat HM , respectively, and the vector obtained
from the first M components of \widehat Bm by \widehat BM , i.e., \widehat BM = [ 0 \cdot \cdot \cdot 0 bs \star +1 \cdot \cdot \cdot bM ]. In
the form (6.2) we have\left[  \widehat VM+1

\right]  \in \BbbR dn\times (M+1),

\left[  \widehat TM

\right]  \in \BbbR M\times M , \widehat HM :=

\Biggl[ \widehat HM\widehat BM

\Biggr] 
\in \BbbR (M+1)\times M .

Notice that \widehat HM will not have Hessenberg structure at this stage of the algorithm

since \widehat BM will have more nonzero elements than just bM .

Remark 6.2. It is unfortunate to truncate the matrices as above whenever the
(M +1,M)-element in \widehat Hm is nonzero. In this case a 2\times 2 block is split which should
be avoided by decreasing or increasing M by one.

Analogously to (6.3) and (6.4) we may now partition \widehat VM , \widehat TM , and \widehat HM according
to the new number s \star of locked and converged Ritz values. This highlights the active
part of the decomposition and separates it from the locked part (which does not need
to be touched again). In particular, we partition
(6.5)\widehat VM =

\bigl[ 
Vs \star V \circ \bigr] , \widehat TM =

\biggl[ 
Ts \star T \prime \prime 

0 T \circ 

\biggr] 
, \widehat HM =

\biggl[ 
Hs \star H \prime \prime 

0 H\circ 

\biggr] 
, \widehat BM =

\bigl[ 
Bs \star B\circ \bigr] ,

where Vs \star \in \BbbR dn\times s \star , Ts \star , Hs \star \in \BbbR s \star \times s \star , and BT
s \star = [0 \cdot \cdot \cdot 0 ]T \in \BbbR s \star . Recall that

B\circ is in general a full vector with all nonzero entries. Set k \star = M  - s \star so that
T \circ , H\circ \in \BbbR k \star \times k \star 

.

6.6. The recovery phase. Our next goal is to tranform the matrices in (6.5)
back to a decomposition of the form (6.1) in the recovery phase. That is, we determine
orthogonal matrices Q,Z \in \BbbR k \star \times k \star 

such that QTT \circ Z =: T \in \BbbR k \star \times k \star 

is still upper-
triangular, QTH\circ Z =: H \in \BbbR k \star \times k \star 

remains in upper-Hessenberg form and B =
B\circ Z =: hM+1,MeTk \star for some scalar hM+1,M \in \BbbR . Then we update (6.5) to obtain
(6.6)

VM =
\bigl[ 
Vs \star V \circ Q

\bigr] 
, TM =

\biggl[ 
Ts \star T \prime \prime Z
0 T

\biggr] 
, HM =

\biggl[ 
Hs \star H \prime \prime Z
0 H

\biggr] 
, BM =

\bigl[ 
Bs \star B

\bigr] 
and with VM+1 = [VM vm+1 ], we have matrices
(6.7)\left[  VM+1

\right]  \in \BbbR dn\times (M+1),

\left[  TM

\right]  \in \BbbR M\times M , HM =

\Biggl[ 
HM

BM

\Biggr] 
\in \BbbR (M+1)\times M
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as in (6.1), where BM = hM+1,MeTM . The next cycle of the algorithm then begins
with the expansion phase as described in section 6.2. The recovery phase can be
carried out by the bulge-chasing process described in section 6.9.

The overall goal of this algorithm is to achieve BM = [ 0 \cdot \cdot \cdot 0 ] in (6.7) after
some cycles of the restarting procedure described above. As soon as this situation
takes place, the M eigenvalues of \lambda TM  - HM are exact eigenvalues of \scrL P (\lambda )

2 and, in
turn, their plus/minus square roots exact eigenvalues of P (\lambda ).

6.7. The eigenvalue infinity. A matrix polynomial P (\lambda ) might have eigen-
values at infinity (see section 2). The rational Even-IRA algorithm will eventually
detect infinite eigenvalues, i.e., in computations in real arithmetic, eigenvalues of very
large magnitude might be found. This is detrimental for the algorithm's performance
since (i) the detection of very large eigenvalues is, in this case, a wrong result, and (ii)
the convergence results after the detection of such an eigenvalue are of unsatisfying
accuracy. Therefore, it seems reasonable to a priori eliminate any possibility of con-
vergence to infinity. This will guarantee a good performance throughout and reliable
results.

Assuming P (\lambda ) =
\sum d

k=1 Pk\lambda 
k \in \BbbR [\lambda ]n\times n of degree d \geq 1 is regular, the eigenvec-

tors for the eigenvalue \mu = \infty are the nullvectors of Pd. These can be found by solving
the n\times n linear system Pdx = 0 with an appropriate method. These vectors can now
be used to initialize our algorithm so that convergence for the eigenvalue infinity has
already taken place. For this purpose, let dim(null(Pd)) = t and \{ v1, v2, . . . , vt\} \subset \BbbR n

for some orthonormal basis of null(Pd). We define

Vt+1 =

\left[     
v1 \cdot \cdot \cdot vt
0 0
...

...
0 \cdot \cdot \cdot 0

vt+1

\right]     \in \BbbR dn\times (t+1), Ht =

\Biggl[ 
It

0 \cdot \cdot \cdot 0

\Biggr] 
,

and Tt = 0t\times t \in \BbbR t\times t. The vector vt+1 \in \BbbR dn can be chosen arbitrarily so that the
columns of Vt+1 are orthonormal. From here on, we start the initialization phase
of the rational Even-IRA algorithm described in section 6 with Vt+1, Tt, and Ht

in Algorithm 5.3. Moreover, we define, right from this point on, the number s of
converged eigenvalues to be t. In other words, with this initialization, convergence
to infinity and locking has already occurred before the algorithm actually starts.
The algorithm will not reveal further eigenvalues at infinity. The number of desired
eigenvalues has to be increased from M to t+M .

6.8. The shift strategy. The appropriate choice of shifts is a delicate problem
that often depends on user-specified priorities. According to section 4, a matrix-
vector-multiplication with K(\zeta ) \in \BbbC dn\times dn essentially reduces to a system solve with
P (\zeta ) (and P (\zeta )T ). If an LU decomposition of P (\zeta ) is computed, it can be reused as
long as the shift does not change. One the other hand, every change of shift requires
the computation of a (costly) new decomposition. Hence, there is a trade-off between
the acceleration of convergence obtained by changing to a new (good) shift and the
computational cost involved with the shift change. Two general shift strategies are
given below.

(a) Assume the current run of the rational Even-IRA algorithm revealed con-
vergence and (in total) s \star eigenvalues are locked---this corresponds to the
situation (6.5). Let T \circ = [t\circ i,j ]i,j , H

\circ = [h\circ 
i,j ]i,j , B

\circ = [ bs \star +1 \cdot \cdot \cdot bM ] and

consider the case h\circ 
2,1 = 0. In particular, assuming G2 exists and regarding

D
ow

nl
oa

de
d 

08
/0

9/
21

 to
 1

93
.1

75
.5

3.
21

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A RATIONAL EVEN-IRA ALGORITHM 1193

\widehat Vs \star +1, \widehat Ts \star +1, and \widehat Hs \star +1 we have in view of (6.5)

G2 \widehat Vs \star +1
\widehat Ts \star +1 = \widehat Vs \star +1

\widehat Hs \star +1 + bs \star +1vm+1e
T
s \star +1.

In other words,

(6.8) \| G2 \widehat Vs \star +1
\widehat Ts \star +1  - \widehat Vs \star +1

\widehat Hs \star +1\| 2 = | bs \star +1| 

because \| vm+1\| 2 = 1. Therefore, the absolute value of the first entry bs \star +1

of B\circ displays the first residual which was not below the given tolerance tol
since, otherwise, the corresponding eigenvalue \xi := h\circ 

1,1/t
\circ 
1,1 of \lambda T \circ  - H\circ 

located in the top-left 1 \times 1 block would have been identified as converged.
Nevertheless, \xi may serve as a good approximation to the next eigenvalue that
is about to converge and \xi might now be chosen as the next shift parameter.
Analogously, whenever h\circ 

2,1 \not = 0, an eigenvalue of the 2\times 2 top-left corner of
\lambda T \circ +H\circ can be chosen as a new shift.

(b) The shift strategy from (a) can be modified so that the next shift parameter
is chosen as \xi = h\circ 

1,1/t
\circ 
1,1 only if the corresponding residual | bs \star +1| is above a

given tolerance. In particular, if | bs \star +1| is already very small, a change of shift
is probably not necessary since the algorithm seems to be ``on the right way""
to reveal the next convergence soon (e.g., within the next cycle). However,
| bs \star +1| being above a given tolerance might indicate that the current shift
is not heading off to reveal further convergence in the near future. Thus,
changing the shift could be an appropriate means to speed up convergence in
such a situation.

Certainly, other shift strategies beside (a) and (b) above and mixtures of both are
conceivable. In particular, if one is interested in eigenvalues in a particular region of
the complex plane, the shift should, of course, be chosen appropriately.

6.9. The recovery phase. We now consider the recovery phase of the rational
Even-IRA algorithm in detail. Therefore, reconsider the matrices obtained in (6.5).
We now show how to construct two orthogonal matrices Q,Z \in \BbbR k \star \times k \star 

such that
QTT \circ Q = T \in \BbbR k \star \times k \star 

remains upper-triangular, QTH\circ Z = H \in \BbbR k \star \times k \star 

has upper-
Hessenberg form, and B\circ Z = [ 0 \cdot \cdot \cdot 0 hM+1,M ] is a vector of zeros except for some
scalar hM+1,M \in \BbbR in the last position. The matrices Q and Z are the products of a
sequence of Givens rotations that constitute our bulge-chasing procedure. A Givens
rotation \~QT \in \BbbR 2\times 2 from the left acts on two rows i and j (with 1 \leq i, j \leq k \star ) of T \circ 

and H\circ . Each transformation \~QT needs to be applied via \~Q to the columns i and j
of V \circ , too. This is implicitly understood in all the following derivations. A Givens
rotation \~Z \in \BbbR 2\times 2 from the right acts on two columns i and j, 1 \leq i, j \leq k \star , of T \circ ,
H\circ , and B\circ . These transformations do not influence the matrix V \circ .

Now let B\circ = [ b1 \cdot \cdot \cdot bk \star ]. The bulge-chasing process proceeds as follows:

(a) We apply a Givens rotation Z1 from the right on the first two columns to
eliminate b1 using b2. This introduces a bulge in the position (3, 1) in H\circ 

and in the position (2, 1) in T \circ . A rotation QT
1 acting on rows one and two

from the left can be used to eliminate the bulge in T \circ . The bulge on the
second subdiagonal in H\circ remains in its position. Now the first element in
B\circ is zero and the analogous process can be used to eliminate the second
element in B\circ . As before, the new bulge in the position (4, 2) in H\circ (i.e., on
the second subdiagonal in H\circ ) remains it its position.

(b) The third element in B\circ can be eliminated as in (a) above and two new
elements in the positions (4, 3) in T \circ and (5, 3) in H\circ show up. As in (a), this
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bulge in H\circ is accepted for the moment. However, with the elimination of
the bulge in T \circ with a Givens rotations from the left on rows three and four
an additional bulge in H\circ will appear in the position (4, 1) (i.e., on the third
subdiagonal in H\circ ). This bulge can be eliminated by a Givens rotation from
the right on the first and second column of H\circ introducing again a bulge in
the (2, 1) position in T \circ . A rotation applied to the first two rows from the
left is used to eliminate the bulge in T \circ .

(c) The process from (b) now continues for all t > 3. That is, the elimination of
the tth entry in B\circ is achieved by a Givens rotation from the right on columns
t and t + 1. Consequently, bulges appear in (t + 2, t) in H\circ and (t + 1, t) in
T \circ . The elimination of the bulge in T \circ by a Givens rotation from the left
introduces an additional bulge (t + 1, t  - 2) in H\circ . This bulge is chased off
the top-left corner of T \circ and H\circ by applying a Givens rotation alternatingly
from left and right.

If the bulge-chasing process described in (a) to (c) is completely carried out, in the
end, T \circ is still of upper-triangular form, B\circ = [ 0 \cdot \cdot \cdot 0 hM+1,M ], and H\circ is a matrix
that now has two full subdiagonals (i.e., all entries below the second subdiagonal of
H\circ are zero). Now the transformation process can be continued and the second sub-
diagonal in H\circ can be eliminated from the lower right corner to the top-left corner.
A standard bulge-chasing (Givens rotations alternatingly from left and right) is ade-
quate to achieve this. It is important to note that no Givens rotation is required that
touches the last column of T \circ , H\circ , and B\circ . Therefore, B\circ remains as it is and we
obtain the desired form.

7. Numerical experiments. In this section, we briefly describe the results of
numerical experiments for two T -even eigenproblems to give a proof of concept for the
algorithm described in the previous section. To this end, we set up a basic implemen-
tation of the rational Even-IRA algorithm in MATLAB R2020a and compared our
results to those found with the MATLAB function polyeig. As the degree of P (\lambda ) is
even in both examples, \scrL P (\lambda ) was constructed as in (2.4) with MP (\lambda ) from Definition
2.3(b). We initialize the algorithm as explained in section 6.7. In contrast to the com-
putation of eigenvalues with polyeig, the rational Even-IRA algorithm is designed
to find only a few eigenvalues of a matrix polynomial. Therefore, a comparison of the
computational times for both algorithms seems inappropriate here.

Our first example is taken from [23]; see also butterfly in [7]. Here, the matrix

polynomial P (\lambda ) =
\sum 4

j=0 Pj\lambda 
j under consideration is of degree four. The matrix

coefficients are built from several Kronecker products as follows: we set m = 10
and n = m2 = 100. Let N denote the m \times m nilpotent Jordan matrix with ones
on the first subdiagonal and define \~P0 = (1/6)(4Im + N + NT ), \~P1 = N  - NT ,
\~P2 =  - (2Im  - N  - NT ), \~P3 = \~P1, and \~P4 =  - \~P2. Moreover, we set

Pi = ci1Im \otimes \~Pi + ci2 \~Pi \otimes Im

with positive constants cij chosen as c01 = 0.6, c02 = 1.3, c11 = 1.3, c12 = 0.1, c21 =
0.1, c22 = 1.2, c31 = c32 = c41 = c42 = 1.0 (as in [23]). Now the matrix polynomial

P (\lambda ) =
\sum 4

j=0 Pj\lambda 
j has size 100\times 100. We intend to find the 12 eigenvalues of largest

magnitude. We ran several experiments with different initial shifts where either the
shift was changed according to the procedure described in section 6.8 (where a change
was initialized if the first nonzero residual is not less than 10 - 5; see (6.8)) or the shift
was fixed at the start and not allowed to change during the iterations. An eigenvalue is
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Fig. 1. Left: 24 eigenvalues found by the rational Even-IRA algorithm (red stars) for the
example butterfly in [7]. Blue circles indicate the eigenvalues computed via polyeig. Due to the
preservation of \pm matching eigenvalue pairs, only twelve eigenvalues were required to be computed
by the rational Even-IRA algorithm. Crosses indicate the two shifts that have been used. Right:
14 eigenvalues (in the upper half plane) found by the rational Even-IRA algorithm (red stars) for
revP (\lambda ) with P (\lambda ) = \lambda 2M + \lambda G + K for a gyroscopic system (cf. [4, sect. 4.2]). Blue circles
correspond to eigenvalues of revP (\lambda ) computed via polyeig. In contrast to polyeig, the rational
Even-IRA algorithm recognizes the fact that the eigenvalues are all located on the imaginary axis.

considered as converged if its corresponding residual becomes less than 10 - 9. Within
our experiments, we observed the following typical behavior of the algorithm.

\bullet With the initial shift \zeta \in \BbbC chosen as 0.5 + 2\imath , a change of shift takes place
once and the rational Even-IRA algorithm finds the eigenvalues displayed
in Figure 1 (left plot) in 18 iterations. If no shift change is incorporated, the
algorithm takes just three more iterations.

\bullet The initial shift 0.5  - 1\imath will reveal convergence of all desired eigenvalues in
18 iterations, thereby changing the shift once. Now, if a change of shift is not
incorporated, more than 30 iterations are required to achieve full convergence
of all those eigenvalues. Thus, in general, the option for changing the shift
takes a ``bad"" initial shift to a region that more easily admits convergence.

\bullet Finally, taking 1 + 3\imath as the initial shift, the rational Even-IRA algorithm
converges in 19 iterations without initializing any change of shift at all.

In all these experiments, we observe an accordance in both the real and imaginary
parts of the computed values to those found by the MATLAB function polyeig of at
least the first ten decimal places.

Remark 7.1. Recall that the spectral transformation of \scrL P (\zeta ) = \zeta X + Y to

K(\zeta ) = \scrL P (\zeta )
 - TX\scrL P (\zeta )

 - 1X

preserves \pm matching pairs of eigenvalues (+\mu , - \mu ) as both are mapped to the same
eigenvalue \theta = (\mu 2 - \zeta 2) - 1 (see section 3). Therefore, each eigenvalue ofK(\zeta ) has even
multiplicity. In exact arithmetic, multiple eigenvalues will not be captured (see [24,
sect. 3]) by the Arnoldi iteration. However, as round-off may eventually create them,
the authors of the Even-IRA algorithm suggest an additional X-orthogonalization of
the Krylov basis (see [24, Lem. 2.3]). Requiring that the basis of the underlying Krylov
space is X-orthogonal (that is, \langle vi, Xvj\rangle = 0 for all i \not = j) will hinder the algorithm
to find multiple copies of the same eigenvalue. The X-orthogonalization procedure
suggested in [24] cannot be directly applied here because the rational Even-IRA
algorithm as outlined in section 6 handles complex shifts differently.
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For our second example we chose the model of a rolling tire (see [10] or [4, sect.
4.2.2]. Here P (\lambda ) = \lambda 2M + \lambda G + K, where M,G,K are of size 2697 \times 2697. The
matrices M and K are symmetric whereas G is skew-symmetric. Moreover, M and
K are positive definite, which implies that P (\lambda ) has eigenvalues exclusively on the
imaginary axis (see [21, sect. 1]). Those vary in magnitude from about 103 to 5 \cdot 105.
Here we intend to find the eigenvalues of smallest magnitude. To this end, we consider
revP (\lambda ) = \lambda 2K + \lambda G + M since the eigenvalues of revP (\lambda ) of largest magnitude
correspond via their reciprocals to the eigenvalues of P (\lambda ) of smallest magnitude. We
have applied the rational Even-IRA to revP (\lambda ) with the same parameters as in the
previous example, an initial shift of 10 - 2\imath and the shift strategy from section 6.8 to find
14 eigenvalues of revP (\lambda ) of largest magnitude. The eigenvalues of revP (\lambda ) computed
with the rational Even-IRA algorithm and polyeig are displayed in Figure 1 (right
plot). Eight restarts have been performed. The imaginary parts of the eigenvalues
found by the MATLAB function polyeig and those values on the imaginary axis
found by the rational Even-IRA algorithm coincide to at least ten significant digits.
Clearly, in contrast to polyeig, the rational Even-IRA algorithm anticipates the
fact that all eigenvalues are located on the imaginary axis.

Remark 7.2. The shift strategy explained in section 6.8 does not perform opti-
mally for finding the eigenvalues of P (\lambda ) with smallest magnitude directly, i.e., when
P (\lambda ) instead of revP (\lambda ) is used. The shift often increases during the algorithm's run
and tends to find eigenvalues of larger magnitudes. Thus, according to our experi-
ments, the basic shift strategy from section 6.8 is not appropriate in this situation
and a more sophisticated strategy has to be used.

In conclusion, the overall success of our algorithm depends in large amounts on
the chosen shift strategy. The method described in section 6.8 works well if one is
interested in accelerating the convergence. However, if certain areas of the complex
plane are to be ``scanned"" for eigenvalues, a more subtle shift-technique is needed.
This is not further discussed here.

8. Conclusions. In this work, we have presented a method to compute parts
of the spectrum of a T -even matrix polynomial. We developed our algorithm on the
basis of the Even-IRA algorithm from [24] which is a method for computing a few
eigenvalues of a T -even (i.e., symmetric/skew-symmetric) matrix pencil and the ideas
developed in [3] on the rational SHIRA algorithm. Given a T -even matrix polynomial,
we introduced a special linearization \scrL P (\lambda ) for P (\lambda ) to preserve its T -even struc-
ture. We showed that the specific block-structure and sparsity of \scrL P (\lambda ) = \lambda X + Y
enables us to solve systems \scrL P (\zeta )x = y in an efficient way. We applied this tech-
nique to accelerate the computation of matrix-vector-products for the matrix K(\zeta ) =
\scrL P (\zeta )

 - TX\scrL P (\zeta )
 - 1X to build the underlying Krylov space. An eigenvalue \theta of K(\zeta )

gives rise to a \pm matching pair of eigenvalues +
\sqrt{} 

(1/\theta ) + \zeta 2 and  - 
\sqrt{} 
(1/\theta ) + \zeta 2 of

\scrL P (\lambda ). As suggested in [24], we used this spectral transformation (i.e., the matrix
K(\zeta )) and the implicitly restarted Krylov--Schur algorithm to find eigenvalues ofK(\zeta ).
Moreover, we modified the Even-IRA algorithm and turned it into a rational method
that is able to handle changes of the shift parameter during the iteration.

A question for future work that is naturally related to our algorithm is the exis-
tence of a compact representation of the Krylov basis similar to the one developed
in [30] for other types of linearizations (which are not of the same form as \scrL P (\lambda )).
This would be an appropriate means to decrease the cost for storing the Krylov basis
vectors.
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