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In 2018, central and northern parts of Europe experienced heat and drought
conditions over many months from spring to autumn, strongly affecting
both natural ecosystems and crops. Besides their impact on nature and
society, events like this can be used to study the impact of climate variations
on the terrestrial carbon cycle, which is an important determinant of the
future climate trajectory. Here, variations in the regional net ecosystem
exchange (NEE) of CO2 between terrestrial ecosystems and the atmosphere
were quantified from measurements of atmospheric CO2 mole fractions.
Over Europe, several observational records have been maintained since at
least 1999, giving us the opportunity to assess the 2018 anomaly in the con-
text of at least two decades of variations, including the strong climate anomaly
in 2003. In addition to an atmospheric inversion with temporally explicitly
estimated anomalies, we use an inversion based on empirical statistical
relations between anomalies in the local NEE and anomalies in local climate
conditions. For our analysis period 1999–2018, we find that higher-than-
usual NEE in hot and dry summers may tend to arise in Central Europe
from enhanced ecosystem respiration due to the elevated temperatures,
and in Southern Europe from reduced photosynthesis due to the reduced
water availability. Despite concerns in the literature, the level of agreement
between regression-based NEE anomalies and temporally explicitly esti-
mated anomalies indicates that the atmospheric CO2 measurements from
the relatively dense European station network do provide information
about the year-to-year variations of Europe’s carbon sources and sinks, at
least in summer.

This article is part of the theme issue ‘Impacts of the 2018 severe drought
and heatwave in Europe: from site to continental scale’.
1. Introduction
The year 2018 saw anomalous heat and drought conditions especially in central
and northern parts of Europe over an unprecedented period of time. [1].
Climate anomalies such as these affect the functioning of terrestrial ecosystems,
thus causing anomalies in the net ecosystem exchange (NEE) of CO2 with the
atmosphere through enhancement or suppression of photosynthesis, auto-
trophic and heterotrophic respiration, biomass burning and mortality [2].
NEE is understood here as the entire CO2 exchange between land ecosystems
and the atmosphere, including fires. As hot conditions are predicted to
become more frequent in the future decades owing to climate change [3],
they will likely lead to decadal trends in NEE, which can feed back to the cli-
mate trends. A quantitative understanding of the climate effects on NEE is
therefore necessary for realistic climate prediction.
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Figure 1. Aggregation regions for time-series plots (colours), and the locations of the atmospheric measurement stations used in some or all inversions (black
triangles).
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Though Europe only accounts for a relatively small part of
global NEE, it enjoys one of the densest networks of ecosystem
and atmospheric trace gas measurement (including many
stations harmonizedwithin the IntegratedCarbonObservation
System (ICOS)), providing a basis for studying the processes
underlying climate–carbon cycle coupling in mid-latitude eco-
systems. To this end, climate anomalies like that in 2018 can be
employed as ‘natural experiments’. Away to do that is to quan-
tify NEE anomalies and to relate them quantitatively to the
underlying climate anomalies. Spatially resolved variations
in NEE can be estimated from atmospheric CO2 data by inver-
sion of atmospheric transport ([4–8] and many others]). By
combining such an atmospheric transport inversion with
regression terms expressing interannual NEE anomalies in
terms of air temperature anomalies scaled by adjustable
NEE-T sensitivity factors, the link between temperature (T)
and NEE can directly be estimated [9]. Temperature acts as a
proxy of climate variations here, representing both direct temp-
erature effects and effects of co-varying climate variables such
as water availability and incoming radiation. The regression
turned out to be meaningful because the NEE-T sensitivities
inferred from this ‘NEE-T inversion’ were found to be consist-
ent with NEE-T regression coefficients calculated from eddy
covariance data [9]. Moreover, though all year-to-year NEE
variations from the NEE-T inversion originate from tempera-
ture variations by construction, they capture a large fraction
of the large-scale interannualNEE variations as seen by a ‘stan-
dard inversion’ having explicit interannual degrees of freedom,
both for tropical and northern extratropical NEE [9].

In this contribution to the special issue on the 2018
European heat and drought wave, we compare the NEE
response in summer 2018 with summer anomalies during the
previous 20 years, in particular, the strong one in 2003 [10].
We use NEE estimates from the Jena CarboScope atmospheric
inversion (update of [11]). Though this is a global inversion
with a resolution of fluxes and atmospheric transport
considerably coarser than in the regional inversions presented
by Thompson et al. [12], it estimates the NEE history over a
longer time frame. The analysis is mostly done for NEE at
the spatial scale of European subregions (figure 1) similar to
the regions used by the EUROCOM project [13]. Extending
theNEE-T inversion [9] outlined above, we introduce an exper-
imental ‘NEE-T-W inversion’ that takes the effect of water
availability (W) explicitly into account, in addition to tempera-
ture. Based on this, we discuss the sensitivity of European
summer NEE to heat and drought. We further discuss the
limits of inversion-based estimates of year-to-year variations
in summer NEE on the spatial scale of the European
subregions.
2. Methods
(a) The standard inversion
We estimated spatio-temporal variations of NEE from long-term
atmospheric CO2 measurements, using a global inversion
of atmospheric transport (Jena CarboScope, 8–9], see http://
www.BGC-Jena.mpg.de/CarboScope/). We used two of the cur-
rent CarboScope products (v.4.3) based on differently large sets
of atmospheric stations (table 1): the run s99oc_v4.3 uses 50
stations covering all the 1999–2018 analysis period (table 2),
thus avoiding spurious year-to-year NEE variations that can
arise from starting or ending observational records; the run
s10oc_v4.3 uses a larger set of 70 stations, including several
additional European ones for better resolving detailed signals,
however only covering 2010–2018.

All inversions used in this paper only optimize land CO2

fluxes, while fossil fuel emissions and ocean CO2 fluxes are pre-
scribed [9]. Atmospheric transport is simulated by the TM3
model [24] on a spatial resolution of 5° longitude and ca 4° lati-
tude, driven by NCEP reanalysis meteorological fields [25]. The
flux fields and all sets of degrees of freedom are numerically
resolved on the same spatial resolution.

http://www.BGC-Jena.mpg.de/CarboScope/
http://www.BGC-Jena.mpg.de/CarboScope/


Table 1. Inversion runs used in this study.

kind of
inversion specific feature (if any)

no. atm. stations
(globally) (in/around Europe)

period of
validity CarboScope run ID

base cases of this study

standard 50 9 1999–2018 s99oc_v4.3

standard 70 22 2010–2018 s10oc_v4.3

NEE-T 95 28 1957–2018 sEXT10ocNEET_v4.3

NEE-T-W 95 28 1957–2018 sEXT10ocNEETW_v4.3

test cases around base standard inversion s99oc_v4.3

standard half a priori uncertainty 50 9 1999–2018 s99oc_tight_v4.3

standard double a priori uncertainty 50 9 1999–2018 s99oc_loose_v4.3

standard shorter spatial correlations 50 9 1999–2018 s99oc_short_v4.3

standard shorter temporal correlations 50 9 1999–2018 s99oc_fast_v4.3

test cases around base NEE-T-W inversion sEXT10ocNEETW_v4.3

NEE-T-W 50 9 1957–2018 s99ocNEETW_v4.3

NEE-T-W 70 22 1957–2018 s10ocNEETW_v4.3

NEE-T-W half a priori uncertainty 95 28 1957–2018 sEXT10ocNEETW_tight_v4.3

NEE-T-W double a priori uncertainty 95 28 1957–2018 sEXT10ocNEETW_loose_v4.3

NEE-T-W longer spatial correlationsa 95 28 1957–2018 sEXT10ocNEETW_long_v4.3

NEE-T-W additional explanatory 95 28 1957–2018 sEXT10ocNEETWTTWW_v4.3

variablesb: ΔT2, SPEI062

NEE-T-W additional explanatory 95 28 1957–2018 sEXT10ocNEETWTTWWTW_v4.3

variablesb: ΔT2, SPEI062,

ΔT · SPEI06
aLonger spatial correlations in the regression terms.
bIn addition to the explanatory variables ΔT (temperature anomaly) and SPEI06 present in all NEE-T-W inversions. The regression terms of all explanatory
variables are normalized identically (see §2c)
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(b) The NEE-T inversion
While the ‘standard inversion’ of §2a directly estimates the inter-
annual variations of NEE from the atmospheric CO2 signals, the
NEE-T inversion instead effectively performs a linear regression of
interannual NEE anomalies against interannual anomalies of air
temperature (see [9] for details). This is done by using spatially and
seasonally explicit regression coefficients as adjustable degrees of
freedom. These coefficients (gNEE-T) are identical in each year
(during the ‘period of validity’, here 1957–2018), but are allowed to
vary smoothly both seasonally (with a correlation length of about
three weeks) and spatially (with correlation lengths of about
1600 km in the longitude direction and 800 km in the latitude direc-
tion). The gNEE-T degrees of freedom have prior values of zero, and a
priori uncertainties scaled such that the a priori uncertainty of the
global July integral of the regression term (averaged over all Julys
of the ‘period of validity’) is identical to the corresponding uncer-
tainty of the explicit interannual term of the standard inversion
(July is an arbitrary choice, in linewith the normalizationwith respect
to the flux at the middle of the final year used in CarboScope so far).

Formally, the estimated gNEE-T represent the local and
season-specific sensitivities of NEE to interannual variations in
temperature, but include the sensitivities to other climate variables
covarying with temperature. The NEE-T inversion is considerably
more strongly regularized than the standard inversion, because the
regression term involving only 13 temporal degrees of freedom
(Fourier modes) per land pixel replaces the explicit interannual
term of the standard inversion having 1320 temporal degrees of
freedom (Fourier modes) per land pixel.
The NEE-T inversion is constrained by an ‘extended’ set of
stations (table 2), including ones not covering all the analysis
period. This is possible in the NEE-T inversion since the regression
uses the same degrees of freedom repeatedly each year and thus is
not very sensitive to changes in the station network (see [9, §2.2]).
Using an extended station set potentially provides higher spatial res-
olution than the standard inversion. The specific NEE-T inversion
run presented here uses the set ‘sEXT10’ of 95 stations, including
all of the set ‘s10’ used in one of the standard inversions (table 2).

While the updated NEE-T inversion (the current CarboScope
product sEXTocNEET_v4.3) includes a relaxation termnot yet pres-
ent in Rödenbeck et al. [9], we again dropped this relaxation term in
the NEE-T inversion runs used in this paper, because it would have
complicated the analysis of the amplitudes of the two regression
terms in the NEE-T-W inversion described below, while its
influence on the European NEE variations is small anyway.

(c) The NEE-T-W inversion
In order to address the respective roles of heat and drought, this
study introduces an experimental NEE-T-W inversion as a
multivariate extension of the NEE-T inversion. In addition to the
regression term against temperature, the NEE-T-W inversion
also contains a regression term against water availability, here
represented by the six-monthly accumulated Standardized Precipi-
tation Evapotranspiration Index (SPEI06, update of [26], accessed
from spei.csic.es/map/maps.html on 4 October 2019). SPEI06
represents the climatic water balance (precipitation minus
evapotranspiration) accumulated over the past six months. In the



Table 2. Atmospheric measurement stations in Europe and surrounding oceans (the inversions use further stations around the world).

station
code institutiona

record
typeb

available regular
data periodc

used for:

s99 s10 sEXT10

CMN CNR-ISAC n 1979.4–present yes yes yes

IZO AEMET h 1984.5–present yes yes yes

SSL UBA n 1988.0–present yes yes yes

MHD NOAA f 1991.5–present yes yes yes

SIS CSIRO, BGC f 1992.9–present yes yes yes

HUN NOAA f 1993.2–present yes

HUN115 HMSd d 1994.8–present yes yes

ZEP NOAA f 1994.2–present yes yes yes

AZR NOAA f 1995.0–present yes yes yes

WIS NOAA f 1996.0–present yes yes yes

KAS AGHd n 1996.6–present yes yes

PAL FMI, NOAA d, f 1998.5–present yes yes yes

CBW207 TNOd d 2000.3–present yes yes

SUM NOAA f 2003.5–present yes yes

JFJ EMPA, BGC n, f 2005.0–present yes yes

BIK300 BGC d, f 2005.9–present yes yes

HPB NOAA f 2006.3–present yes yes

LUT CIO-RUGd d 2006.4–present yes yes

LMP NOAA f 2006.8–present yes yes

WAO UEAd d 2007.9–present yes yes

PRS RSEd n 2008.0–present yes yes

BIR NILUd d 2009.7–present yes yes

BIS LSCEd d 2009.8–present yes yes

CIB NOAA f 2009.4–present yes

STM NOAA f 1981.3–2009.9 yes

WES UBA d with longer gaps yes

ICE NOAA f with longer gaps yes

NGL UBA d 1994.0–2013.9 yes

TER MGO f 1999.1–2017.8 yes
aAEMET, Izaña Atmospheric Research Center, Meteorological State Agency of Spain [14]; AGH, University of Science and Technology, Poland; BGC, Max Planck Institute
for Biogeochemistry, Germany [15]; CIO-RUG, Centre for Isotope Research, Rijksuniversiteit Groningen, The Netherlands; CNR-ISAC, Italian Air Force Meteorological
Service, Institute of Atmospheric Sciences and Climate [16]; CSIRO, Commonwealth Scientific and Industrial Research Organisation, Australia [17]; EMPA, Swiss Federal
Laboratories for Materials Science and Technology; FMI, Finnish Meteorological Institute [18]; HMS, Hungarian Meteorological Service [19]; LSCE, Laboratoire des
Sciences du Climat et de l’Environnement, France [20]; MGO, Voeikov Main Geophysical Observatory, Russian Federation (http://voeikovmgo.ru/index.php?lang=en);
NILU, Norwegian Institute for Air Research; NOAA, National Oceanic and Atmospheric Administration/Earth System Research Laboratory, USA [21]; RSE, Ricerca sul
Sistema Energetico, Italy; TNO, Netherlands Organisation for Applied Scientific Research; UBA, Umweltbundesamt, Germany [22]; UEA, University of East Anglia, UK.
bd, in situ, day-time selected; f, flask; h, in situ, all hours; n, in situ, night-time selected.
cThe number following the dot in the dates (e.g. in 1979.4) gives the decimal fraction of the year.
dData taken from the compilation prepared by the Drought 2018 Team [23].
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version used here, evapotranspiration has been calculated by
the Thornthwaite equation [27]. The SPEI06 time series has been
standardized assuming a log-logistic probability density function.

The water availability term has the same structure as the
temperature term, involving independent sensitivity coefficients
(gNEE�W) with an a priori correlation structure identical to
that of gNEE-T. Owing to the uncertainty scaling described in
§2b, temperature and water availability have the same weight
in the NEE-T-W inversion, at least at global scale in summer.
3. Results
(a) Which years saw anomalous summer NEE in

Europe during 1999–2018?
In Western Europe, the summer of 2018 is estimated to have
seen the second largest positive NEE anomaly after the
summer of 2003 (figure 2), both by the standard inversion
with explicit intrannual degrees of freedom (blue) and

http://voeikovmgo.ru/index.php?lang=en
http://voeikovmgo.ru/index.php?lang=en
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the NEE-T-W inversion relating NEE anomalies to climate
anomalies (magenta). In contrast to the 2018 anomaly, the
2003 anomaly also occurs in Southern Europe.

In Central Europe, the standard inversion sees the 2018
anomaly about as large or even larger than that in 2003,
while another anomaly of similar size is detected for 2002,
as well as further positive and negative excursions of smaller
size. The NEE-T-W inversion sees the summers of 2003 and
2018 as similarly anomalous to the standard inversion, but
disagrees on all the smaller excursions.

In Northern Europe, a similar level of agreement between
the standard and NEE-T-W inversions is found, though the
largest summer anomaly is detected by all inversions in
2002. For 2018, only the standard inversion with the larger
station set (green) and the NEE-T inversion see an appreci-
able anomaly here.

Going on to Eastern Europe, the rank of 2018 further
declines. The largest anomaly here is estimated by the NEE-
T-W inversion for the ‘fire summer’ of 2010. This anomaly is
not seen in the standard inversion s99oc_v4.3 (with longer
period but fewer stations, blue), but the additional stations
used by s10oc_v4.3 (green)—in particular, Eastern European
stations such as BIK and KAS (table 2)—reveal an anomaly
in the summer of 2010 even without the help of the climate
data. Conversely, the anomaly in 2002 extends into Eastern
Europe in the standard inversion, while the NEE-T-W inver-
sion does not put any anomaly in that summer. Qualitative
agreement between the two types of inversion is seen for
2007 and 2015–2018, where the quantitative agreement again
substantially improves from using more stations (green
versus blue). Note that the larger flux amplitude in Eastern
Europe is only due to its larger area, while the per-area
fluxes of all the regions are quite comparable.
(b) How were the strongest summer NEE anomalies
distributed spatially?

The time-series view is corroborated by the spatial patterns of
the most pronounced summer NEE anomalies (figure 3).
For example, standard and NEE-T-W inversions (left two
columns) agree quite well on where the respective centres
of the 2003 and 2018 anomalies are located, with the
centre of the 2018 flux anomaly (bottom row) more to
the northeast of that of the 2003 flux anomaly (2nd row of
maps from top). In 2015, both inversions estimate anoma-
lously high uptake in northern Russia (figure 3); west of
that, both inversions only estimate smaller anomalies (almost
no anomaly in the standard inversion and a slight release
anomaly in the NEE-T-W inversion). For 2010, both inversions
agree on a mainly neutral flux in Western and Central Europe
(figure 3). The NEE-T-W inversion predicts a strong dipole of
outgassing in Russia further south and uptake further north,
which is again averaged into a more widespread but weaker
outgassing by the standard inversion.

By construction, the NEE-T-W inversion gives NEE
anomaly patterns closely related to the temperature anomaly
or SPEI06 patterns (right columns). In general, these NEE
anomaly patterns are more structured than those of the stan-
dard inversion, especially in the eastern part of Europe were
atmospheric CO2 data coverage is lower (figure 1).

(c) How are the interannual summer NEE anomalies
related to climate anomalies?

Figure 4 gives the estimated sensitivity gNEE-T of NEE to inter-
annual temperature variations. Reflecting that gNEE-T can
vary spatially and with season, we plotted its averages over
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the European subregions as time series over a climatological
year. Importantly, in the univariate NEE-T inversion
(orange), gNEE-T represents an ‘interannual climate sensitivity’
involving both direct temperature effects on NEE and effects
from covarying climate variables, while in the multivariate
NEE-T-W inversion (magenta) part of the covarying effects
are moved to the SPEI06-dependent term. Nevertheless,
gNEE-T is similar between the NEE-T and NEE-T-W inver-
sions, with the general pattern of negative sensitivity in
spring and positive sensitivity in summer (as in [9]). In
Southern and Southeast Europe, the ‘multivariate’ gNEE-T is
slightly lower than the ‘univariate’ one in late summer,
while in all the rest of Europe, the multivariate gNEE-T is
slightly higher in early summer. Corresponding to this ten-
dency, we find a compensating positive sensitivity gNEE�W

against interannual variations of SPEI06 (which is roughly
anti-correlated with temperature) in the more northern
parts of Europe in early summer, and negative gNEE�W in
the more southern parts in late summer (figure 5).

The respective magnitudes of the corresponding tempera-
ture-related or SPEI06-related NEE variations are shown as
hatched bars in figure 6. The estimated relative amplitudes
of summer NEE variations are distinctly different between
the European subregions: while in Western Europe the
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temperature-related contribution (horizontally hatched) and
the SPEI06-related contribution (vertically hatched) both
have about half the amplitude of the total summer NEE vari-
ations (solid bar), Central Europe is estimated to be clearly
dominated by temperature, and Southern Europe dominated
by SPEI06. In Northern Europe, both contributions have
larger amplitudes than the total variations, which is possible
because they are strongly anti-correlated and thus partially
compensating each other. The anti-correlations indicate that
the two contributions are not independently constrained
in Northern Europe, which likely also applies to a lesser
degree to the other regions.
(d) How much signal is shared between climate-
dependent and temporally explicit NEE estimates?

Figure 7 quantifies how the NEE-T and NEE-T-W inversions
agree with the standard inversion (using the longer
standard inversion s99oc_v4.3 covering all the analysis
period), for the Western and Central Europe regions
where the highest density of measurement stations is found.
In the Taylor diagrams [28] shown, the standard inversion for-
mally takes the role of the reference, even though it cannot
necessarily be considered more authoritative (see §4b).

In summer (June–July–August, JJA, 2nd row of panels
from top), the NEE-T inversion (orange) contains the vari-
ations seen by the standard inversion with about a third of
their amplitude (horizontal position with respect to the blue
dot), but also variability uncorrelated to the standard inversion
with an amplitude of about half that of the standard inversion
result (vertical position). This results in a correlation coefficient
(represented in the Taylor diagrams in the angle coordinate) of
slightly more than 0.5 in both regions. Compared with the
NEE-T inversion, the NEE-T-W inversion (magenta) contains
a larger share of the standard inversion result (about half).
Since it also contains larger uncorrelated signals, however, its
correlation coefficient is similar.

In spring (March–April–May, MAM, top row), the situation
is quite similar to that in summer. In winter (December–
January–February, DJF, bottom row), the fractions of the
correlated and uncorrelated variations are both lower than
in summer. The NEE-T-W inversion again shares a larger frac-
tion of the variations that the standard inversion sees. In
autumn (September–October–November, SON, 2nd row
from bottom), NEE-T and NEE-T-W inversions are uncorre-
lated or even slightly anti-correlated to the standard
inversion, i.e. they do not share any signal. However,
autumn also has the smallest amplitude of variations among
all seasons anyway.
4. Discussion
(a) Which processes can explain the gNEE-T and gNEE-W

found?
In spring, the NEE-T inversion estimated the sensitivity
gNEE-T of NEE to interannual variations in temperature
(T) to be negative throughout Europe (figure 4, orange)
and also throughout all the northern extratropics (not
shown). Considering that in the univariate NEE-T analysis,
T also acts as proxy for variations in any covarying climate
variable, Rödenbeck et al. [9] gave a possible underlying
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causation that we write here as

�T )
m �GPP ) �NEE;

� radiation )
(4:1)
where�means ‘higher thanusual’,�means ‘lower thanusual’,
⇒ means ‘causes’, and ⇔ means ‘tends to coincide with’. For
better orientation, the underbars highlight the two quantities
whose correlation is being considered. NEE follows the usual
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sign convention, where lower values mean less CO2 release or
more CO2 uptake. In summer (when—in contrast to spring—
photosynthesis is not T-limited any more but water-limited),
gNEE-T has been found to be positive, which can arise from

�T ) � respiration ) �NEE, (4:2)

but also from

�T , �water availability ) �GPP ) �NEE: (4:3)

In the multivariate NEE-T-W inversion, the dependence
of NEE on water availability is—at least formally—handled
explicitly through the regression against SPEI06. For the
sensitivity gNEE-W of NEE against interannual variations in
SPEI06, we found negative values in mid-latitudes in late
summer (figure 5, lower panels). Such negative sensitivities
can arise from

� SPEI ) �GPP ) �NEE: (4:4)

Indeed, thismay replace the indirect causation of equation (4.3).
To the extent that the NEE-T-W inversion realistically separates
the respective influences of temperature and water availability
(see discussion in §4b below), the large relative amplitude of
the water-related component in Southern Europe (figure 6)
may indicate a dominance of drought-inhibited photosynthesis
according to equation (4.4), while the large relative amplitude
of the temperature-related component in Central Europe
(figure 6) tends to favour heat-stimulated ecosystem respiration
according to equation (4.2).

Note that a positive gNEE-T would also arise via changes in
vapour pressure deficit (VPD),

�T ) �VPD ) �GPP ) �NEE, (4:5)

which would represent a third possible pathway besides
equation (4.2) or equation (4.4). However, the dependence
of VPD on temperature only dominates the short-term
responses, while the regression done here is only sensitive
to relationships on about monthly and longer-term time
scales. We therefore assume that equation (4.5) is not a domi-
nant pathway.

We further note that ecosystem respiration has been
found to correlate (positively) with GPP [29]. This has the
potential to partially cancel the effect of GPP variations on
NEE variations. In cases nevertheless pointing to equation
(4.4) as the dominant process (Southern Europe), the
possibility of a partially cancelled GPP influence would
strengthen this process attribution. However, in cases where
equation (4.4) does not seem to play a dominant role (Central
Europe), we cannot exclude that important GPP variability
does exist but gets reduced owing to the opposing ecosystem
respiration variability.

In the high latitudes, we found positive gNEE-W values
in early summer (figure 5, upper panels). Even though
high-latitude GPP is not water-limited, a positive gNEE-W

can arise indirectly from radiation limitation according to

� cloud-cover ) �precipitation ) � SPEI
+

� radiation ) �GPP ) �NEE:
(4:6)

As the NEE-T-W inversion was not able to separate tempera-
ture and water-related effects in Northern Europe (§3c), we
cannot make any statements on the relative weights of the
alternative causations equations (4.2) or (4.6).
The response of NEE to climatic variations and anomalies
is very likely also related to other causations. Given their
limitations discussed below, the results of the NEE-T-W
inversion certainly cannot uniquely identify the roles of all
such contributions, but do indicate that the ones highlighted
here may be among the dominating ones.
(b) How trustworthy are the estimated summer NEE
anomalies within Europe?

On the spatial scale of European subregions, the standard
inversion (directly reflecting the signals in atmospheric CO2

data, blue) and the NEE-T or NEE-T-W inversions (deriving
all NEE variations from temperature or SPEI06 variations,
magenta) share many of the larger anomalies in summer
(§3, figure 2), although the linear correlation is only moderate
(figure 7). Though this level of agreement is weaker than that
found for annual NEE in the large-scale 90�N–25�N and
25�N–90�S latitudinal bands ([9], NEE-T inversion only), it
is notable that some agreement is still found also for the
small spatial scale of European subregions. It suggests
that the sustained atmospheric CO2 data records from a rela-
tively dense network of stations indeed contain information
about year-to-year variations of summer NEE in Europe.
This conclusion is based on the facts that

(i) the NEE-T and NEE-T-W inversions have much fewer
degrees of freedom than the standard inversion and
can only produce NEE variations already contained
in the temperature or SPEI06 fields, while

(ii) the similarities of theNEE-T andNEE-T-W inversions to
the standard inversion have been achieved by sensi-
tivities gNEE-T and gNEE-W that are meaningful
themselves, in the sense that
• they are compatible (within sizeable uncertainties)

with regressions of the fully independent eddy
covariance data (to essentially the same degree as
shown in [9]), and

• they show seasonal and large-scale spatial patterns
accessible to interpretation in terms of ecological
processes (§4a).

The conclusion that the atmospheric CO2 data do contain
interannual NEE signals is further underlined by the finding
that using more stations in the standard inversion helps to
increase its agreementwith theNEE-TandNEE-T-W inversions
(seen especially in Eastern Europe, §3a). Further support comes
from the fact that the NEE estimates from the standard inver-
sion are, when averaged over the regional scale, already
correlated with the (independent) temperature anomalies
(though of course less strongly than those of the NEE-T inver-
sion, not shown).

Analysing a regional inversion over Europe up to 57.5°N
and 22.5°E (approximately Western, Southern and Central
Europe of figure 1) and the period 2002–2007, Broquet et al.
[30, p. 9053] warned that year-to-year variations in monthly
NEE (i.e. NEE of a given month each year) may be too
small to ‘be analysed safely’, because they found their tem-
poral standard deviation (signal) to be smaller than their
a posteriori uncertainties (noise), especially for the winter
months. In some summer months, however, they also found
signal-to-noise ratios slightly above unity. The comparison
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of standard and NEE-T-W inversions discussed above adds a
new piece of evidence suggesting that the situation is some-
what more optimistic than concluded by Broquet et al. [30],
maybe also owing to our longer analysis period. Consistent
with the seasonality of signal-to-noise ratios found by Bro-
quet et al. [30], we also find the best agreement between
standard and NEE-T-W inversions in summer, and less
good in autumn and winter (figure 7).
Nevertheless, we expect the flux and sensitivity estimates to
carry substantial errors, though these are difficult to quantify.
Part of the errors is indicated by the range of results from test
runs where a priori correlation lengths, a priori uncertainty
ranges, or the set of explanatory variables have been changed
within the limits deemed reasonable (shadings around the stan-
dard andNEE-T-W inversions in figure 2). In general, the range
across these test results (noise) is smaller than the year-to-year
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variations (signal). As the set of test runs includes regressions
also using quadratic explanatory variables, our results do not
seem to be limited by nonlinearities in the NEE responses.
Note that the location of NEE anomalies estimated by the stan-
dard inversion may be sensitive to the chosen correlation
lengths, shifting features between the European subregions of
figure 1. Owing to this, NEE summed over several subregions
(e.g. the sum of Western and Central Europe, not shown) can
be much better constrained than for the regions individually.

Is the standard inversion or the NEE-T-W inversion more
realistic? Concievably, both types of inversion carry errors
that are partially complementary: the standard inversion
misses parts of the variability not seen by any station (as illus-
trated by the differences arising when more stations are
added), while the NEE-T and NEE-T-W inversions miss any
NEE variability not correlated to momentary T or SPEI06
variations (or, worse, may alias it into wrong locations). More-
over, interannual transport model errors affect the standard
inversion directly, but the NEE-T and NEE-T-W inversions
only if correlated to T or SPEI06 variations. In any case, how-
ever, the existing similarities between the standard and NEE-
T-W inversions (figures 2 and 7) discussed above suggest
that these errors are smaller than the actual NEE variability.
As also the standard inversion results are correlated to temp-
erature on the regional scale, we may assume that the more
pronounced spatial structure induced by temperature and
SPEI in the NEE-T-W inversion results is more realistic than
the more spread-out patterns in the standard inversion. The
similarities between the two types of inversion further allow
the conclusion that a sizeable part of year-to-year variations
in summer NEE can be described as a response to momentary
climate conditions.

Can the analysis of the model-data residuals provide
further insight into whether the standard inversion or the
NEE-T-W inversion is more realistic? All inversions used
here fit the individual atmospheric CO2 data closely. How-
ever, only a small fraction of the atmospheric signal even at
the European stations is actually related to the interannual
variations of European NEE, while most of the atmospheric
signal is related to the hemispheric flux seasonality, to the
El Niño-dominated global interannual flux variations, and
to atmospheric transport variability. When we try to extract
the Europe-related signals (by subtracting a global back-
ground and interannually filtering the measured and
modelled atmospheric CO2 mole fraction time series), the
standard inversion achieves a somewhat better fit to the
atmospheric CO2 data than the NEE-T or NEE-T-W inver-
sions (not shown), which however is expected because the
standard inversion has many more adjustable degrees of free-
dom available: lacking a calibration, it is difficult to draw any
more quantitative conclusions from the goodness of fit. We
further need to acknowledge that any ad hoc extraction of
Europe-related signals without explicit consideration of trans-
port is inappropriate because the flux-related signals are not
to be expected at individual locations directly but rather in
station-to-station differences, which however are related to
the fluxes in highly non-trivial ways owing to the substantial
temporal variation in transport pathways and to the atmos-
pheric mixing. Therefore, while the analysis of model-data
residuals can be useful in many other applications of inverse
methods, it does not help for atmospheric inversions, unfor-
tunately: the analysis of residuals in mole fraction space
does not provide any information beyond our comparison
of the standard and NEE-T-W inversions in terms of their
flux estimates, as discussed above. For the same reason, our
flux comparison of the standard inversion using 50 stations
with that using 70 stations is more informative than a mole
fraction comparison with the additional stations used as inde-
pendent data would be.

In almost all the anomalous years within the last 20 years,
anomalies in T and SPEI06 are almost always co-located
(figure 3, right columns). This raises the question of how the
NEE-T-W inversion would actually be able to statistically
disentangle the relative roles of heat and drought as causes of
the NEE anomalies. However, the six-monthly accumulated
SPEI06 changes more gradually than the monthly temperature
(not shown); this leads to a partial de-correlation of the two
explanatory variables in time and may allow the inversion to
differentiate between them. Though such a difference in time
scale is plausible also for the respective effects of heat and
drought on ecosystems, it remains open as to how appropriate
the time evolution of the explanatory variables in the linear
NEE-T-W inversion actually is. An inappropriate time evol-
ution has the potential to affect the magnitude and seasonal
variation of the sensitivities. While the estimated seasonal pat-
terns of the SPEI06 sensitivity gNEE-W (including their
differences between high latitudes and mid-latitudes) are eco-
logically plausible (§4a), an independent verification like that
of the temperature sensitivities gNEE-T based on eddy covari-
ance data [9] is more difficult because SPEI06 values are not
available in the FLUXNET2015 dataset.

By construction, the results of the NEE-T-W inversion
decidedly depend on the dataset used as explanatory variable
in the water availability term. The six-monthly Standardized
Precipitation Evapotranspiration Index (SPEI06, §2c) was
chosen here because (1) it is based on observations, (2) it was
found to match soil-moisture anomalies from satellite-based
datawell [31] and (3) it is available until the end of our analysis
period in 2018. Note that this SPEI dataset uses the
Thornthwaite estimation of potential evapotranspiration [27],
considered less reliable than the FAO-56 Penman–Monteith
estimation [32] used in the alternative ‘SPEIbase’ dataset;
however, the latter is currently only available until 2015.
There would have been further potential alternative choices,
including soil moisture from re-analysis fields or satellite-
based soil moisture. A systematic comparison of NEE-T-W
inversions using such alternatives is a necessary next step.

(c) How anomalous was NEE in 2018, compared with
previous anomalous years?

The summers of 2003 and 2018 show the largest NEE
anomalies within our 20-year analysis period in Western
and Central Europe (figure 2). Summed over these two
regions, the 2018 summer NEE anomaly is estimated by
our ensemble of inversions (all of table 1 except s10oc_v4.3)
to be between 42 and 75% of that in 2003. That is, the more
intense heat and drought conditions during summer in
2003 seem to outweigh possible legacy effects from the
already dry spring on the summer NEE anomaly in 2018.

While the NEE-T-W inversion agrees relatively closely to
the standard inversion for the summer 2003, it remains lower
than the standard inversion for the summer 2018 (figure 2).
This may indicate that the ecosystem response to the anoma-
lous climate was actually stronger in 2018 than in 2003, while
the NEE-T-W inversion assumes the same sensitivity each
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year. Indeed, Buras et al. [1] reported significantly larger
responses of satellite-based vegetation indices to the climatic
water balance in 2018 compared with 2003. In addition to this
possible trend in sensitivity, a general trend in the sink strength
may also affect the comparison between 2003 and 2018.
publishing.org/journal/rstb
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5. Conclusion
According to the presented estimates of net ecosystem exchange
(NEE) in Europe based on atmospheric CO2 measurements, the
heat and drought conditions in the summer of 2018 causedNEE
anomalies in most parts of Europe, especially in Western, Cen-
tral and parts of Northern Europe. Integrated spatially over
Central and Western Europe, the 2018 summer NEE response
was still only 42 to 75% of that during the heatwave of 2003.
In Eastern Europe, NEE anomalies were detected in 2003 and
2018 as well, although they were smaller in absolute size than
anomalies in 2010 and 2015.

Using NEE anomalies like that in 2018 as ‘natural exper-
iments’, we estimated the sensitivities of NEE against
variations in temperature and in water availability (here rep-
resented by the six-monthly accumulated Standardized
Precipitation Evapotranspiration Index, SPEI06). This ‘NEE-
T-W inversion’ confirms previous conclusions on the influ-
ence of temperature. To the extent that it meaningfully
separates the effects of temperature and water availability, it
additionally suggests that water availability affects NEE in
the mid-latitudes directly through inhibition of photosyn-
thesis during drought, and in high-latitude ecosystems
through its covariation with incoming radiation.

Though these inverse estimates may be affected by con-
siderable (but hard to quantify) errors particularly at the
rather small sub-European scale considered here, the
climate-based results of the NEE-T-W inversion and results
based on explicit year-to-year degrees of freedom (standard
inversion) tend to broadly agree on the domain and strength
of many of the larger NEE anomalies. Despite the complex
underlying mechanisms, this suggests that the momentary
climate conditions play a substantial role in the interannual
NEE variability.

The similarities of the standard and NEE-T-W inversion
results at least in the largest anomalies further suggest that
the relatively dense European atmospheric CO2 measure-
ments indeed provide information on year-to-year NEE
anomalies within European subregions, at least in summer.
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