
Supplementary Information 
 

Changes in Net Ecosystem Exchange over Europe During the 2018 Drought 
Based on Atmospheric Observations 

R. L. Thompson1, G. Broquet2, C. Gerbig3, T. Koch3,4, M. Lang2*, G. Monteil5, S. Munassar3, 
A. Nickless6, M. Scholze5, M. Ramonet2, U. Karstens7, E. van Schaik8, Z. Wu5 and  

C. Rödenbeck3 
1. NILU – Norsk Institutt for Luftforskning, Kjeller, Norway 

2. Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-
UVSQ, Université Paris-Saclay, Gif sur Yvette, France 

3. Max Planck Institute for Biogeochemistry, Jena, Germany 
4. Deutscher Wetterdienst, Germany 

5. Dep. of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden 
6. School of Chemistry, University of Bristol, Bristol, UK 

7. ICOS Carbon Portal, Lund University, Sweden 
8. Wageningen University and Research, Wageningen, The Netherlands 

*Now at Department of Meteorology, University of Reading, Reading, Berkshire, UK 
 
Descriptions of the inversion frameworks 

1. FLEXINVERT 
FLEXINVERT is a Bayesian inversion framework utilising the FLEXPART Lagrangian 
particle dispersion model [1,2]. FLEXPART was used in a backwards time mode to model the 
relationship between observed CO2 mole fractions and surface fluxes (the so-called source-
receptor relationship, SRR, or “footprints”) following the method of Seibert and Frank [3]. 
Simulations of virtual particles were made using ECMWF IFS wind fields for every hourly 
observation and were traced for 5 days backwards in time. The SRRs were saved globally at 
0.5°×0.5° and hourly resolution giving 120 fields for each observation. These were used to 
describe the atmospheric transport function H(x) in Eq. 1. To account for the influence of 
atmospheric transport and fluxes prior to the end of the 5-day simulations, a so-called 
background mole fraction was calculated for each observation. The background consisted of 
two parts: 1) the influence of CO2 mole fractions where the virtual particles terminated, which 
was calculated as a weighted average of 3D fields of optimized initial mole fractions from the 
CAMSv18r2 CO2 inversion [4]; and 2) the influence of CO2 fluxes along the backwards 
trajectories outside the inversion domain, which was calculated as the integral of the SRRs and 
prior fluxes outside the domain (see Ref [5]). 
FLEXINVERT optimized a state vector consisting of offsets to the prior NEE fluxes on an 
irregular spatial grid with a resolution of between 0.5°×0.5° and 4.0°×4.0° depending on the 
SRRs (see Ref [5]). The offsets were optimized for 12-hour periods (00:00-12:00 and 12:00-
00:00 local time) averaged over 10-days. Prior uncertainties were calculated for each offset as 
25% of the absolute value of the 12-hour mean flux in each grid cell. These were used to 
calculate the diagonal elements of the prior error covariance matrix (B in Eq. 1) and the off-
diagonal elements were calculated using an exponential decay model with a spatial correlation 
length of 200 km over land and 1000 km over ocean and 10 days in time. The prior error 
covariance matrix was scaled to give a total uncertainty of 0.3 PgC y-1 over the inversion 
domain. Only NEE was optimized, and the influence of fossil fuels, biomass burning, and ocean 
fluxes were modelled using prior flux estimates and the SRRs. Ocean fluxes were from the 
observation-based estimate of Rödenbeck et al. [6] using surface ocean pCO2 measurements 



and were at 5°×4° and monthly resolution. Biomass burning emissions were from the Global 
Fire Emissions Database (GFED-v4.1s) and were at 0.25°×0.25° and monthly resolution [7]. 
Observations were assimilated at hourly frequency between 12:00-16:00 local time for low 
altitude sites (<1000 masl) and 00-04:00 for mountain sites. A consistent dataset of 16 sites was 
used for each year giving approximately 24000 observations annually. Observation-space 
uncertainties were calculated as the quadratic sum of uncertainties for the measurement, the 
initial mole fractions, and the uncertainty of the fossil fuel emissions projected into the 
observation-space. For the latter component, the fossil fuel emissions were assumed to have an 
uncertainty of 25%. For the initial mole fraction uncertainty, a fixed value of 1.0 ppm was used 
based on the mean model-observation error at background sites. Total observation uncertainties 
typically varied from 1.0 to 3.0 ppb. The observation error covariance matrix (R in Eq. 1) was 
diagonal. 
The optimal state vector was found using the M1QN3 Quasi-Newton algorithm.  

2. LUMIA 
LUMIA is a regional atmospheric inversion system developed at Lund University [8]. The 
current set-up is similar to the one used in Monteil et al. [9]. NEE is optimized monthly at grid 
scale (for the standard European domain at a horizontal resolution of 0.5°×0.5°) using a 
variational inversion approach. 
The transport (forward and adjoint) of fluxes within the domain is calculated using footprints 
from the FLEXPART Lagrangian transport model [1,2]. Footprints were calculated from 
FLEXPART runs of 7 days backwards in time from each observation. The impact of 
background and historical CO2 fluxes on the observations is computed using the 2-step 
approach of Rödenbeck et al. [10]. In this approach, the global (coarse resolution) CO2 
inversion is performed with the TM5-4DVAR model [11]. FLEXPART and TM5 are both 
driven by ECMWF ERA-Interim reanalyses.  
Uncertainties on the prior NEE are set to 50% of the monthly NEE, but with a minimum value 
of 1% of the largest uncertainty (to avoid having too small uncertainties where NEE is close to 
zero because GPP and TER compensate each other). The ocean flux is based on the pCO2 
inversion of Rödenbeck et al. [6] and is not further optimized. 
Observations at each site are selected based on the “dataset_time_window_utc” flag in the 
metadata of the observation files from the EUROCOM project protocol [described in 9]. That 
corresponds, for low elevation sites, to a 11:00 to 15:00 UTC time range, and to a 23:00 to 
03:00 UTC time range for mountain sites. At sites with only flask observations, all samples 
were used. The observation uncertainties are defined as the quadratic sum of the measurement 
uncertainties, of the uncertainty of the foreground transport model (i.e. FLEXPART) and of the 
uncertainty on the background mole fractions. The measurement uncertainties are taken from 
the data files when available, and a minimum uncertainty of 0.3 ppm is enforced. Foreground 
transport model uncertainties are computed by performing two similar forward model runs, 
with TM5 and LUMIA (TM5+FLEXPART), configured such that the only difference is the 
model used to compute the transport within the EUROCOM domain. The uncertainties on the 
background mole fractions are set as the standard deviation of the vertical profile of background 
CO2 mole fractions around each observation (see Ref [8] for details about the approach). The 
combined observation-space uncertainty is typically in the order of 4 ppm.  
3. CarboScope-Regional 
CarboScope-Regional is the regional version of the Bayesian inversion framework, 
CarboScope [12] using the STILT Lagrangian particle dispersion model [13] in backwards time 



mode. Simulations of particle ensembles were made using ECMWF IFS short-term forecasted 
meteorological fields for every hourly observation and were traced for 10 days backwards in 
time. The surface layer (where the observations are sensitive to the fluxes) is defined in STILT 
as half the height of the planetary boundary layer, at any given time. The SRRs were saved for 
the domain of interest (35°-73°N, 15°W-35°E) at 0.25°×0.25° and hourly resolution, describing 
the atmospheric transport function H(x) in Eq. 1. The background concentrations are computed 
directly at each observation site by a global, coarse resolution CarboScope CO2 inversion [12], 
following the 2-step approach proposed by Rödenbeck et al. [10]. 
CarboScope-Regional optimized a state vector consisting of offsets to the prior NEE fluxes on 
a regular spatial grid with a resolution of 0.5°×0.5°. Prior uncertainties and their temporal and 
spatial correlation scales were set following Kountouris et al. [14] (inversion “nBVH”), using 
a hyperbolic spatial correlation function with a length scale of 100 km (at which the correlation 
drops to 1/e). This resulted in a domain-integrated annual total uncertainty of 0.3 PgC y-1. Only 
NEE was optimized, and the influence of fossil fuel emissions and ocean fluxes were modelled 
using prior flux estimates and the SRRs. The fossil fuel flux estimates were hourly. The ocean 
prior is based on the optimized data product from Mikaloff-Fletcher [15], which is a 
climatology with monthly and 4°×5° resolution. No prior was used for biomass burning. 
Observations were assimilated at hourly frequency between 11:00-16:00 UTC for low altitude 
sites (<1000 masl) and 23:00-04:00 UTC for mountain sites. Two inversions were included, 
which use differing numbers of sites: 1) CSR-select: using a consistent dataset of 15 sites with 
quasi-continuous coverage throughout the 2009-2018 period, and 2) CSR-all: using 46 sites 
giving maximum spatial coverage. Observation-space uncertainties were calculated as follows: 
a base representation error of 1.5 ppm was assumed for tall towers, coastal and mountain sites. 
For ground based continental sites, it was raised to 2.0 ppm, and to 4 ppm for sites in urban 
environments (applied only for Heidelberg). For sites that provide hourly observations, an error 
inflation was applied (e.g. for tall towers: 1.5 ppm ×√6 obs/day × 7 day/week = 9.7 ppm). The 
observation error covariance matrix (R in Eq. 1) was diagonal. 

4. NAME-HB 
The NAME-HB framework uses the Lagrangian particle dispersion model, NAME. This model 
provides “footprints” for each observation (see [16]). In NAME-HB, 2-hourly observation time 
steps were used. To represent each observation, 20000 particles were released, and traced 
backwards in time for 30 days, so that by the end of this period the majority of particles would 
have left the inversion domain. The instances where the particles are in the lowest 40m of the 
atmosphere were recorded and this was used to represent the sensitivity of observed mole 
fractions to surface fluxes in the inversion domain. The domain used to calculate atmospheric 
transport was originally set to constrain emissions from the United Kingdom. It covers most of 
Europe, the east coast of North and Central America, and North Africa (10.729–79.057° N and 
97.9°W–39.38°E). The meteorological analysis dataset used to drive the model is from the Met 
Office Unified Model, with a spatial resolution of 0.233°×0.352° (approximately 25 km by 25 
km over the UK). 
To account for diurnal variation in CO2 fluxes, changes in surface sensitivity on timescales 
shorter than the duration of the simulation were captured (for details see [17]). This process 
involved obtaining the footprints for 2-hourly averaged periods backwards in time for the first 
24 hours before an observation. These time-disaggregated footprints were used to replace the 
first 24 hours of integrated sensitivities. Mole fraction changes due to land biosphere fluxes 
were simulated by multiplying these footprints by biospheric flux estimates for the 
corresponding time. The contribution to changes in mole fractions from the fixed flux 
components (i.e. ocean and fossil fuel) were similarly calculated by multiplying the footprints 



with prior estimates of these fluxes. The ocean prior was based on the climatology of Takahashi 
et al. [18]. The original spatial resolution was 4°×5° (latitude by longitude), and this was 
interpolated to a monthly concentration at a spatial resolution of 0.233°×0.352°. 
The NAME-HB inversion assimilated 2-hourly observations with a data selection criterion 
based on the localness and modelled lapse rate at each site, which is a measure of atmospheric 
stability. The localness of observations was based on the ratio of the NAME footprint 
magnitude in the 25 grid cells in the immediate vicinity of the measurement site to the total for 
all grid cells in the domain. A high ratio indicates times when a significant fraction of air 
influencing the observation originates from very local sources, which may not be resolved by 
the model. The lapse rate is calculated as the slope of potential temperature with altitude. A 
high lapse rate suggests very stable conditions, which would again suggest significant local 
influence. The threshold for the lapse rate was selected somewhat subjectively to preserve as 
much data as possible, whilst retaining only points that the model was found to resolve well. 
Following the methodology used in White et al. [17] the localness threshold and lapse rate 
threshold were normalised to 500 m and a threshold value of 1.3 for the sum of these metrics 
was used. 
The uncertainty in the observation space was composed of measurement and model uncertainty 
components. The measurement uncertainty was assumed to be equal to the standard deviation 
of the measurements over the 2-hour period to give an estimate of measurement repeatability 
and a measure of the sub-model-timescale variability in the observations. The 2-hourly 
measurement uncertainty was then averaged over the month to ensure that measurements of 
high concentrations were not given less weight, as they are more likely to have greater 
variability and therefore a larger standard deviation. The monthly average measurement 
uncertainty was ~0.9 ppm. The measurement uncertainty was combined with a range of prior 
values for model uncertainty and together the observation space uncertainty is one of the hyper-
parameters optimized using a hierarchal Bayesian MCMC framework [19]. In the hierarchical 
Bayesian framework , “hyperparameters” that define the prior flux and model–data “mismatch” 
uncertainty PDFs are included in the optimization, which is performed using the Metropolis–
Hastings Markov Chain Monte Carlo algorithm. A hyper-parameter was included that describes 
the size of the inversion grid with respect to time, following the trans-dimensional inversion 
approach described in Lunt et al. [20] and White et al. [17]. 
The domain of NAME was split into eight boxes: four “background” boxes outside the 
inversion domain, and four “foreground” boxes within the inversion domain. The latter were 
further divided based on a Plant Functional Type (PFT) map (with 6 PFTs) from the JULES 
vegetation model [21]. The inversion optimizes separately the gross primary production (GPP) 
and the heterotrophic respiration (TER) (with NEE=GPP+TER). The prior estimates of GPP 
and TER over Europe were obtained from LPJ-GUESS [22]. Estimates from terrestrial regions 
outside of Europe were taken from a 2015 simulation of the ORCHIDEE model [23]. In the 
hierarchical Bayesian framework, parameters defining the distribution of scaling parameters 
for GPP and TER were optimized within each of the PFT regions. The prior mean value for the 
scaling parameter was set at 1 for each PFT, with a standard deviation of 1. Both the mean and 
standard deviation were optimized in the inversion. The flux components are optimized at a 
variable temporal resolution, with a maximum resolution of one day (for details see [17]).  
The prior estimates of the background concentrations were provided by the CAMS LMDZ 
(CAMSv18r2) CO2 inversions [4]. The original spatial resolution of the CAMS product was 
3.75°×1.85° with 39 vertical levels. This product was regridded to a spatial resolution of 
0.233°×0.352° with 20 vertical levels up to an altitude of 19 500 masl. Sensitivity of 
observations to these 3D concentration fields was determined using the time and location when 
particles in the NAME model exited the domain. The mole fractions at each domain edge (N, 



E, S, W) were scaled up or down during the inversion to account for uncertainties in the CAMS 
boundary conditions. 
5. PyVAR-CHIMERE 
PyVAR-CHIMERE is a regional atmospheric inversion system developed at the Laboratoire 
des Sciences du Climat et l’Environnement (LSCE) [Broquet:2011et; 24]. It is based on the 
regional Eulerian atmospheric chemistry-transport model CHIMERE [25], on its adjoint code, 
and on a variational data assimilation platform [26]. In this study, the PyVAR-CHIMERE 
inversions are set-up in a manner that is very close to that of Broquet et al. [27].  
A European configuration of CHIMERE is used; this configuration covers latitudes 31.5-74°N 
and longitudes 15.5°W -35°E with a 0.5°×0.5° horizontal resolution and 29 vertical layers up 
to 300 hPa. Meteorological forcing for CHIMERE is generated using the European Centre for 
Medium Range Weather Forecasting (ECMWF) operational forecasts. Initial, lateral and top 
boundary conditions for CO2 concentrations are generated from the CAMS global CO2 
inversions (v16r1 for 2009-2015 and v18r2 for 2016-2018) [4]. 
The inversion assimilates 1-hour averages of the measured CO2 mole fractions during the time 
windows 12:00-18:00 UTC for low altitude stations (below 1000 masl) and 0:00-6:00 UTC for 
high altitude stations (above 1000 masl). The inversion optimizes 6-hourly mean NEE and 
ocean fluxes at the 0.5°×0.5° resolution of CHIMERE. The prior estimate of NEE and its 
uncertainty covariance matrix are specified using the VPRM model simulations of NEE and 
respiration, respectively, following the general approach of Broquet et al. [28]. The temporal 
and spatial correlation scales for the prior uncertainty in NEE are set to ~1 month and 200 km 
(following the diagnostics of Kountouris et al. [29], with no correlation between the four 6-hour 
windows of the same day. The ocean prior is simply a flux of zero with uncertainties that have 
monthly temporal and 1000 km spatial correlations. No prior is used for biomass burning. 
The observation error covariance matrix (R in Eq. 1) is set-up to be diagonal, ignoring the 
correlations between errors for different hourly averages of the CO2 measurements (which has 
been justified by the analysis of Broquet et al. [28]. The variances for hourly data are based on 
the values from Broquet et al. [27], which vary depending on the sites and season, and which 
are derived from Radon model-data comparisons [28]. 
The cost function associated with the variational scheme is minimised using the M1QN3 Quasi-
Newton algorithm. The adjoint of CHIMERE is used to compute the gradient of the cost 
function at each iteration. To cover the whole analysis period (2009-2018), a series of 1-year 
inversions is performed. Posterior estimates of NEE at 1-hourly and 0.5°×0.5° resolution were 
generated for the full period of analysis. 
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Table 1. Atmospheric measurement sites included in the inversions 

Site code Site name Institute Latitude Longitude Altitude 
(masl) 

Sample 
Height 
(magl) 

BIK* Bialystok, Poland MPI-BGC 53.23 23.03 183 300 
BIR* Birkenes, Norway NILU 58.39 8.25 219 2.5 
BIS* Biscarosse, France LSCE 44.38 -1.23 73 47 
BRM Beromunster, Switzerland KUP 47.19 8.18 797 212 
BSD Bilsdale, UK UNIVBRIS 54.36 -1.15 380 248 

CBW* Cabauw,  
The Netherlands TNO 51.97 4.93 -1 207 

CIB Centro de Investigacion de 
la Baja Atmosfera, Spain CIBA 41.81 -4.93 845 5 

CMN* Monte Cimone, Italy CNR-ISAC 44.17 10.68 2165 12 
CRP Carnsore Point, Ireland EPA 52.18 -6.37 9 14 
DEC Delta de l’Ebre, Spain ICTA-UAB 40.74 0.79 1 10 
EEC El Estrecho, Spain ICTA-UAB 36.06 -5.66 20 20 
ERS Ersa, France LSCE 42.97 9.38 533 40 
FKL Finokalia, Greece ECPL 35.34 25.67 150 15 
GAT Gatrow, Germany DWD 53.07 11.44 70 341 
GIC Sierra de Gredos, Spain ICTA-UAB 40.35 -5.18 1436 20 
HEI* Heidelberg, Germany UHEI-IUP 49.42 8.67 116 30 

HPB Hohenpeissenberg, 
Germany DWD 47.8 11.02 934 131 

HTM Hyltemossa, Sweden CEC 56.1 13.42 115 150 
HUN* Hegyhatsal, Hungary HMS 46.95 16.65 248 115 
IPR Ispra, Italy JRC 45.81 8.64 210 100 

IZO* Izana, Tenerife, Canary 
Islands AEMET 28.31 -16.5 2373 13 

JFJ* Jungfraujoch, Switzerland EMPA 46.55 7.99 3570 10 
KAS* Kasprowy Wierch, Poland AGH 49.23 19.98 1989 5 

KRE Kresin u Pacova,  
Czech Republic CAS 49.57 15.08 534 250 

LHW Laegern-Hochwacht, 
Switzerland EMPA 47.48 8.4 840 32 

LIN Lindenberg, Germany DWD 52.17 14.12 73 98 
LMP Lampedusa, Italy ENEA 35.53 12.52 45 10 
LMU La Muela, Spain ICTA-UAB 41.59 -1.1 571 80 

LUT* Lutjewad,  
The Netherlands CIO-RUG 53.4 6.35 1 60 

MHD* Mace Head, Ireland NUI 53.33 -9.9 5 24 
MLH Malin Head, Ireland EPA 55.35 -7.33 22 47 
NOR Norunda, Sweden CEC 60.09 17.48 46 100 

OHP Observatoire de Haute 
Provence, France OSU 43.93 5.71 650 100 

OPE Observatorie Pérenne de 
l’Environnement, France ANDRA 48.56 5.5 390 120 

PAL* Pallas-Sammaltunturi, 
Finland FMI 67.97 24.12 565 5 

PDM Pic du Midi, France LSCE 42.94 0.14 2877 10 
PRS* Plateau Rosa, Italy RSE 45.93 7.7 3480 10 



PUI Puijo, Finland UEF 62.91 27.65 232 79 
PUY Puy de Dome, France LSCE 45.77 2.97 1465 10 
RGL Ridge Hill, UK UNIVBRIS 52 -2.54 204 90 
SAC Saclay, France CEA 48.72 2.14 160 100 
SMR Hyytiälä, Finland INAR 61.85 24.29 181 125 
SSL* Schauinsland, Germany UBA 47.92 7.92 1205 12 
SVB Svartberget, Sweden SLU 64.26 19.77 235 150 
TAC Tacolneston, UK UNIVBRIS 52.52 1.14 56 185 
TRN Trainou, France LSCE 47.96 2.11 131 180 
TTA Tall Tower Angus, UK UNIVBRIS 56.55 -2.99 400 222 
UTO Utö, Finland FMI 59.78 21.37 8 57 
VAC Valderejo, Spain ICTA-UAB 42.88 -3.21 1102 20 
WAO* Weybourne, UK UEA 52.95 1.12 20 10 
WES Westerland, Germany UBA 54.93 8.32 12 0 
ZEP Ny-Alesund, Norway NILU 78.91 11.89 474 15 

*Sites having quasi-continuous observations for 2009-2018 used in inversions labelled 
“select”. 

 
Table 2. Atmospheric measurement sites used for the validation 

Site 
code Site name Institute Latitude Longitude Altitude 

(masl) 
Sample 
Height 
(magl) 

BAL Baltic Sea, Poland NOAA 55.50 16.67 3 25 
BSC Black Sea, Romania NOAA 44.18 28.66 0 5 
CIB CIBA, Spain NOAA 41.81 -4.93 845 5 

HPB Hohenpeissenberg, 
Germany NOAA 47.8 11.02 985 5 

OXK Ochsenkopf, Germany NOAA 50.03 11.81 1022 163 
PDM Pic du Midi, France LSCE 42.94 0.14 2877 28 

  



Table 3. Comparison of prior and posterior calculated CO2 mole fractions at validation sites. 
Model RMSE R2 NSD* 

Prior Posterior Prior Posterior Prior Posterior 
CarboScope Regional 8.32  8.18 0.59 0.62 0.90 0.99 
LUMIA 46.05 46.57 0.30 0.26 0.65 0.66 
PyVAR-CHIMERE 9.03  7.60 0.39 0.63 0.56 0.84 
FLEXINVERT 5.87  5.89 0.67 0.68 1.01 1.02 
NAME-HB 9.63 8.97 0.51 0.55 0.88 0.84 

*NSD is Normalized Standard Deviation 

 
Table 4. Eddy covariance flux sites from the Fluxnet network 

Site code Site name IGBP code* Latitude Longitude Altitude 
BE-Bra Brasschaat MF 51.31 4.52  16 
BE-Lon Lonzee CRO 50.55 4.75  167 
CH-Cha Chamau GRA 47.21 8.41  393 
CH-Dav Davos ENF 46.82 9.86  1639 
CH-Fru Früebüel GRA 47.12 8.54  982 
CH-Lae Laegern MF 47.48 8.36  689 
CH-Oe2 Oensingen CRO 47.29 7.73 452 
CZ-BK1 Bily Kriz ENF 49.50 18.54 875 
CZ-wet Trebon WET 49.02 14.77 426 
DE-Geb Gebesee CRO 51.10 10.91 162 
DE-Gri Grillenburg GRA 50.95 13.51 385 
DE-Hai Hainich DBF 51.08 10.45 430 
DE-Kli Klingenberg CRO 50.89 13.52 478 
DE-Obe Oberbärenburg ENF 50.79 13.72 734 
DE-Tha Tharandt ENF 50.96 13.57 385 
DK-Sor Soroe DBF 55.49 11.64 40 
FI-Hyy Hyytiala ENF 61.85 24.29 181 
IT-BCi Borgo Cioffi CRO 40.52 14.96  20 
IT-Tor Torgnon GRA 45.84 7.58  2160 
NL-Loo Loobos ENF 52.17 5.74 25 
SE-Deg Degero WET 64.18 19.56 unknown 

*MF = mixed forest, CRO = cropland, GRA = grasslands, ENF = evergreen needle leaf,  
DBF = deciduous broadleaf, WET  = permanent wetlands 
 
  



Figure 1. Taylor diagrams of the comparison of prior and posterior modelled mole fractions to 
observations (using all individual data points) for sites common to all inversions (CMN, HEI, 
HUN, JFJ, KAS, LUT, MHD, PAL, SSL, WAO) for the example year 2015. Note the plots 
have different axis extents. 
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Figure 2. Histograms of the prior (blue) and posterior (red) model-observation errors for sites 
common to all inversions (CMN, HEI, HUN, JFJ, KAS, LUT, MHD, PAL, SSL, WAO) 
shown for the example year 2015. The y-axis is the probability density. 
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Figure 3. Taylor diagrams of the comparison of prior and posterior modelled mole fractions to 
validation sites (BAL, BSC, CIB, HPB, OXK, PDM) for the example year 2011. Note the 
plots have different axis extents. 
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Figure 4. Annual NEE values (PgC y-1) for the sum of the three regions for 2009-2018 shown 
for the priors (top) and the inversions (bottom). Also given are the means and standard 
deviations over all years for each prior/inversion. The colour scale is annual NEE (PgC y-1). 
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Figure 5. Meteorological and NDVI anomalies for 2018 relative to the 2009-2018 mean using 
ECMWF ERA5 reanalysis data and MODIS satellite data, respectively, a-d) 2m temperature 
for spring (March-May), summer (June-August), autumn (September-November) and for the 
duration of the drought (May-November), respectively; e-h) downward shortwave radiation; 
i-l) total precipitation; m-p) soil water volume for 0-7 cm depth and q-t) NDVI. 
 

 
  



Figure 6. Annual mean NEE anomaly for the North, Temperate and Mediterranean regions 
shown for all inversions.  
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Figure 7. Monthly mean NEE anomaly for the North, Temperate and Mediterranean regions 
shown for all inversions.  
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Figure 8. Map of eddy covariance flux sites. The regions used in the analysis are indicated by 
the colour shading. 
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Figure 9. Spring (left), summer (centre) and annual (right) NEE anomalies (μgC m-2 s-1) for 
2018 compared to the mean 2009-2018 for each inversion. 
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Figure 9. continued 
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Figure 9. continued 
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Figure 9. continued 
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