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Extreme weather increases the risk of large-scale crop failure. The mechanisms
involved are complex and intertwined, hence undermining the identification
of simple adaptation levers to help improve the resilience of agricultural
production. Based on more than 82000 yield data reported at the regional
level in 17 European countries, we assess how climate affected the yields of
nine crop species. Using machine learning models, we analyzed historical
yield data since 1901 and then focus on 2018, which has experienced a multi-
plicity and a diversity of atypical extreme climatic conditions. Machine
learning models explain up to 65% of historical yield anomalies. We find
that both extremes in temperature and precipitation are associated with nega-
tive yield anomalies, but with varying impacts in different parts of Europe.
In 2018, Northern and Eastern Europe experienced multiple and simultaneous
crop failures—among the highest observed in recent decades. These yield
losses were associated with extremely low rainfalls in combination with
high temperatures between March and August 2018. However, the higher
than usual yields recorded in Southern Europe—caused by favourable
spring rainfall conditions—nearly offset the large decrease in Northern
European crop production. Our results outline the importance of considering
single and compound climate extremes to analyse the causes of yield losses
in Europe. We found no clear upward or downward trend in the frequency
of extreme yield losses for any of the considered crops between 1990 and 2018.

This article is part of the theme issue ‘Impacts of the 2018 severe drought
and heatwave in Europe: from site to continental scale’.

1. Introduction

Interannual instability in agricultural production can threaten local and global
food security [1]. The growing frequency or intensity of extreme weather events
[2] may increase the risks of multiple simultaneous crop failure within regions
or globally [3,4]. Quantifying yield loss anomalies at large spatial scales and
understanding their climatic drivers is a prerequisite to assess vulnerabilities
and design adaptation measures to increase the resilience of food systems
[5,6]. Yet, the multiplicity of factors involved such as the nature, timing and
intensity of extreme weather conditions, crop species and management compli-
cates the prediction of yield losses [7-9]. Recent studies indicate that compound
extremes need to be considered additionally to single climate extremes [10-12].
Process-based crop models incorporate crop growth mechanisms but have
moderate ability to reproduce historical crop yield anomalies [13-15]. Statistical
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models offer alternative support for the attribution of climate
impacts on crop yields (e.g. [8,9,16]). Attribution analyses
can be performed at national scales, but spatial heterogene-
ities in yield, climate and soil conditions can be important.
It is hence expected that statistical and machine learning
models perform better when using yield and climate data
at sub-national scales. Even during recent droughts and
heat waves in Europe, it was shown that within the same
country, some regions still experienced normal or even
wetter conditions [12]. In 2018, Northern, Central and Eastern
Europe faced unusual simultaneous extreme temperature and
dry conditions from March to August, whereas several areas
in Southwestern Europe were exposed to higher rainfalls.
The multiplicity and diversity of atypical climatic conditions
in 2018 make this year a particularly interesting case to
better understand the impact of extreme climatic events on
agricultural yields in Europe.

In this study, two complementary analyses are presented:
(i) a characterization of influential climate drivers on European
crop yield anomalies at district scale based on historical time
series, and (ii) an exploration of the impacts of extreme weather
conditions in 2018 on yield anomalies. We rely on yield data
from more than 1400 sub-national geographical units called
districts, representing 17 countries, for nine major annual
crops: barley, maize, oats, oilseed rape, potatoes, triticale,
rye, sugar-beet and wheat. Past yield anomalies in the main
European production areas are compared with those that
prevailed in 2018. Then, on the basis of results from machine
learning models (random forest), we identified the critical
climatic drivers that exhibit a strong association with extreme
yield anomalies observed in different European regions in
2018. Our results provide a better understanding of the climatic
conditions that can lead to severe yield losses in Europe.

2. Material and methods

(a) Yield anomalies and climate data

Crop yield time series were collected from yield data reported at
the regional level in 17 European countries (i.e. at Nomenclature
of Territorial Units for Statistics from EUROSTAT (NUTS) 2 and
3—electronic supplementary material, figure S1). Across the 17
countries, 1435 geographical units (hereafter called districts)
were included. The length of the time series differed among
countries, with the earliest time series starting in 1901 for France
(electronic supplementary material, figure S1). Nine crops were
considered: six cereals including winter and spring types, two
tuber crops and one oilseed crop (electronic supplementary
material, figure S1). For maize, only grain maize was included in
the study. Irrigated and rainfed yields were not systematically
distinguished in the official data.

In each district, the normalized yield anomalies were estimated
empirically considering the long-term increase of yield, related to
technological improvements and possibly to rising CO, and other
environmental factors as follows:

= (Yir — Mi,r)

it (21)
M

where a;; is the normalized yield anomaly in the ith district at year
t,Y;; isthe observed yield and ; , the expected yield. The expected
yield (u;) corresponds to the long-term yield estimated by a stat-
istical fit to the historical data. We applied a locally weighted
scatterplot smoothing (loess [17]) to calculate this long-term com-
ponent of each time series at district level. For each crop and

district, normalized yield anomalies were then expressed as a per-
centile of the long-term time series. To do so, three probability
distributions were fitted (i.e. normal, Cauchy, logistic) to each
time series, with the R package fitdist [18]. The distribution with
the lowest Akaike information criterion (AIC) was chosen to calcu-
late the percentiles corresponding to each value in the time series
of normalized anomalies, including that corresponding to the
year 2018.

Percentiles of 2018 yield anomalies were then mapped at
the NUTS3 scale using the Eurostat R package [19]. When only
NUTS2 data were available, the data were processed at this spatial
scale. Extreme low (high) yields were defined as yields lower
(higher) than the 10% (90%) percentiles. Cumulative areas with
extreme low and high yields were computed year by year for
each crop at the European scale, and for four regions being
Northern, Southern, Eastern and Western Europe (see electronic
supplementary material, figure S1).

We used climate data from the ERAS5 atmospheric re-analysis
running from 1 January 2000 to 31 August 2018 [20]. The ERA5
climate variables on hourly temporal resolution at 0.25 x 0.25-
degree resolution (about 20 km) were aggregated to daily time
steps for each district. Nine climate variables were selected as
predictors of yield anomalies, as listed in electronic supplemen-
tary material, table S1. We chose to base our analysis on those
‘simple’ climatic variables as in Vogel et al. [8,9], based on the
evidence that no obvious relationship has been established
between the level of complexity of climate indicators and their
accuracy for predicting yield anomalies, including extreme ones
[21,22]. The daily values were aggregated over three periods of
two or three months, i.e. January-February (JF), March-April-
May (MAM) and June-July-August (JJA).

(b) Impact of climate on yield

We used Random Forest (RE [23]) models to predict normalized
crop yield anomalies as a function of the eight climate variables
for the three periods of the year for all available years, and then
compared the results to the anomaly predicted for the year 2018
alone. Random forest is a machine learning method, which uses
an ensemble of decision trees and can be applied to regression
and classification problems [23]. It includes several tuning par-
ameters that need to be trained from data, in particular the
number of trees, number of candidate inputs at each node, and
minimum number of data (i.e. yield anomalies) in each final
node. RF models were trained for 36 pairs of crop x region (nine
crop types times four regions) separately. For each crop x region,
RF were first trained using all available years and, then, using
only the data available in 2018, leading to two different models.
All available districts were used to train the models in both cases.
We also studied the ability of the RF models trained with all
years to predict specifically year 2018. During the training pro-
cedure, the tuning parameters of RF were optimized using a
cross-validation with a validation set including 25% of the data
(electronic supplementary material, table S2). The criterion maxi-
mized during the training procedure was the proportion of the
normalized yield variance explained (R?. RF models were
implemented using the ranger R package [24].

For each RE we ranked the individual climate input drivers
according to their relative importance for predicting normalized
yield anomalies. Variable importance values were calculated based
on a metric that captures the increase in mean squared error (MSE),
calculated from out-of-sample predictions, after randomly permut-
ing the values of the respective predictors. Variable importance
values in the RF were computed using the R vip library [25].

The functional relationships between input climate drivers
and yield anomalies were analyzed by plotting one- and two-
dimensional partial dependence graphs. A partial dependence
graph shows the marginal effect of one or two exogenous features
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(here, one or two climate inputs) on the outcome predicted by
the RE compared to averages over the values taken by the other
inputs. These graphs allow visualizing the effect of the variables
considered on the predicted normalized yield anomalies. Partial
dependence plots were derived using the pdp R package [26].
Here, we drew a partial dependence plot for the two most impor-
tant climate drivers identified for each crop and each region.
The partial dependence plots were used to show how combi-
nations of those two most important climatic drivers associate
with yield anomalies in the RF models over all considered years,
and to highlight their influence in the year 2018.

We tested the robustness of our results by analysing the
impacts of three detrending methods of the yield-time series
(locally weighted scatterplot smoothing, polynomial linear
regression and cubic splines [27]) on the outputs of our RF
models. We also assessed the effects of alternative values of the
tuning parameters of RF (electronic supplementary material,
figure S2), and of using a gradient boosting algorithm ([28];
implemented in R package xboost [29]) instead of RF. Finally, we
compared the responses provided by the partial dependence
plots to those provided by accumulated local effects (ALE;
implemented in ALEPlot package [30]), i.e. a plot showing the
effects on yield anomalies of local changes in climate inputs.

Depending on the crop species and region, RF models
explained between 0 and 65% of the variance (mean value
across crops =34%) of normalized yield anomalies all years
included, based on out-of-bag cross-validation (electronic sup-
plementary material, figure S3). The most accurate models
across regions were obtained for winter wheat (mean
R*=43%) and sugar beet (mean R?=42%—electronic sup-
plementary material, figure S3). The other crops all have
more than 25% of the yield anomalies variability explained.
The predictive quality of the RF models was relatively high
for the Northern and Western European regions (mean R?=
46% in both regions), intermediate for Eastern Europe (mean
R?=34%), and low for Southern Europe (mean R%2=15%).

No single climatic variable explained a large fraction of
yield anomalies across crop species and regions. For example,
rainfall or maximum temperature ranged between 10 and
20% of variance explained (electronic supplementary material,
figure S4). Nonetheless, similarities of influential variables
were noticeable among regions. In Northern Europe, large
negative yield anomalies were mostly associated with sub-opti-
mal temperatures in spring (mean value of Tmax_MAM less
than 11°C or greater than 16°C) or with high rainfall in
summer (P_JJA greater than 3 mm clay_1 ; figures 1 and 2).
Temperatures in January and February (Tmax_JF) played an
important role in explaining wheat yield anomalies (figure 1),
but its effects varied for other crops species. In Eastern Europe,
yield losses were also associated with high summer rainfall
(mean P_JJA greater than 5mm day_l) and with high
summer temperature (mean Tmax_JJA greater than 24°C).
Rainfall deficit in spring (mean P_MAM less than 1.5 mm) or
cold temperature in winter (mean Tmax_JF less than 0°C)
were also found to lead to low yields. In Western Europe,
low spring and summer rainfall (mean P_MAM less than
1 mm day_l; mean P_JJA less than 2 mm day_l) and high
temperatures in the second part of the crop cycles (mean
Tmax_MAM greater than 16°C; mean Tmax_JJA greater than
23°C) generally led to high negative yield anomalies. Cereal

yields in Southern Europe were generally negatively impacted [ 3 |

by low winter and spring rainfall (P_JF less than 1 mm day™";
P_MAM <~ 2.5 mm day’; figure 2) or by high temperatures
in spring (mean Tmax_MAM greater than 17°C). On the con-
trary, high temperature in winter tended to increase yields
(mean T _JF greater than 12°C in JF). The optimal summer
temperatures (Tmax_JJA) seemed to range from 26 to 32°C.

The ability of the RF models calibrated on historical periods
to predict specifically the normalized yield anomalies of 2018
varied between crops and regions (electronic supplementary
material, figure S3). The R? ranged between 0 and 80%, with
relatively higher value in Northern (mean R*=50%) and
Western Europe (mean R? =36%) but the RF had low predict-
ability for Southern Europe (mean R®=13%). In Eastern
Europe, the RF models calibrated on all years showed a large
decrease in their performance to predict 2018. A large decrease
of explained variance for the 2018 anomalies compared to all
years was also observed for other specific combinations of
crops and regions, e.g. rye in Western Europe or sugar-beet in
Southern Europe. The ability of the models to predict 2018’s
yield anomalies were higher when the RF models were trained
only with 2018 data (mean R* = 0.36 versus 0.27 for RFs trained
with all years—electronic supplementary material, figures S3
and S5). Improvements with RF trained for 2018 were particu-
larly important for Eastern Europe, but low for Southern
Europe (R? < 50% for all crops).

In 2018, Europe experienced multiple and simultaneous crop
failures, Southern Europe excepted (figure 3). Median yield
anomalies were in the lowest quartile of those observed
since around 1990 for almost all crops, but yet varied greatly
from region to region (figure 4).

Northern and Eastern Europe presented particularly nega-
tive anomalies in almost all districts, except for maize. Yield
losses were particularly severe for winter wheat and barley
with nearly 40% of Northern and Eastern Europe crop area
recording yields below the 10th percentile (figure 4). In those
two regions, nevertheless, a few positive yield anomalies
were found, but only for a very small proportion of cultivated
areas. Events of similar magnitude to 2018 had already been
observed in the recent past, e.g. during the 2003 drought and
heat wave (figure 5; electronic supplementary material,
figure S9). A comparison of individual variable importance
for RF either based on the full historical yield time series or
only on 2018, revealed that some specific climate drivers
played nonetheless a more important role in 2018 compared
to all years (figure 6; electronic supplementary material,
figure S6), but with some variations according to the region.
In Northern Europe, high Tmax_MAM and Tmax_JJA values
in combination with low summer rainfall (P_JJA) (figure 6)
contributed substantially to explain yield anomalies in 2018.
These climatic factors showed higher values than usually
observed (figure 7), and impacted a large number of crop
species (electronic supplementary material, figures S7 and
S8). Other specific combinations of climatic conditions may
also have worsened the situation in 2018, for example, below
normal winter temperatures in Finland and Sweden (figure 1).

Eastern Europe experienced—sometimes simultaneously—
various types of climate extremes (figure 7). The comparison of
the importance of variables for RF models trained with 2018 data
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Figure 1. Effects of main climatic drivers on normalized winter wheat yield anomalies for Northern (a), Eastern (b), Western () and Southern Europe (d). The
central panel for each region shows the combined effect of the two most important drivers on the normalized yield anomalies (in percent; different colour scale
between regions). Only common values of climatic variables experienced by the crops are coloured (Finland experienced unusual combinations of P_JJA and
Tmax_JF in 2018). Individual effects of the two drivers are presented at the left and bottom margins of each panel. The density curves at the top and the
right of the central plot depict the distribution of the variables. The mean values observed in 2018 over all districts for a country are indicated by the country

initials in the white boxes. (Online version in colour.)

with those trained with historical data showed that Tmax_JF
and P_MAM had a particularly strong influence on the 2018
yield anomalies in that region. The fact that these conditions
are rare in the whole time series may explain the poor predictive
quality of the RF calibrated on historical data to yields in 2018
events (electronic supplementary material, figures S3 and S5).
P_MAM (along with P_JJA) showed values being among the
lowest observed in recent years, while Tmax MAM and
Tmax_JJA had values above average (figure 7).

Western Europe experienced for most areas lower yields
than expected for oilseed rape, rye, triticale and potatoes
(figures 3 and 4). Triticale and maize showed large area with
either extremely high or low yields. Positive and negative
yield anomalies were also found for substantial proportions of
barley and wheat growing areas, revealing that contrasting cli-
matic conditions prevailed in different parts of Western
Europe for these crops in 2018 (figures 3 and 4). For example,
France experienced low wheat yields in the Southern and Wes-
tern part of the country, but higher yields than expected in the
Northern part. Overall, in Western Europe, yield in 2018 were
not among the lowest observed since 1990. In terms of the
extent of cultivated areas affected by negative anomalies, 2018

ranked fifth after 1992, 1998, 2007 and 2003 (figure 5; electronic
supplementary material, figure S9). Western Europe showed
larger impacts of temperature in the second part of the growing
season (MAM and JJA) in 2018 compared to all years. Tempera-
ture showed higher values in the second part of the 2018 crop
cycle than usually observed and were associated with lower
rainfall (figure 7). Figure 1 shows that a compounding of cli-
matic extremes worsens the individual effect of each variable.

Southern Europe experienced a high within-country
variability of yield anomalies for several crops, particularly
maize in Spain (figure 3). Only a small proportion of total
cultivated areas in this region showed extreme yield losses,
in particular for sugar-beet and rapeseed (figure 3), while
more than 25% of the area in wheat, triticale, oats or rye
showed highly positive yield anomalies (above the 90th per-
centile of distributions since about 1990; figures 3 and 4). Our
results showed that in 2018, yields in Southern Europe bene-
fited on average from wet spring conditions (P_MAM) with
exceptional cumulated precipitation for all the countries in
Southern Europe (figure 7).

Despite the fact that 2018 was characterized by extreme
yields losses and gains, when investigating whether the
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Figure 2. Estimated impacts of main climate drivers on cereal (i.e. barley, oats, triticale, rye, wheat) yield anomalies in four European regions: Northern Europe (a),
Eastern Europe (b), Western Europe (c) and Southern Europe (d). Grey curves correspond to the effects of each cereal crop estimated independently by random
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drivers in 2018 for each country within each region. (Online version in colour.)

frequency of extreme yield values (i.e. yield volatility) chan-
ged or not in recent decades, we found no clear upward or
downward trend for any of the considered crops between
1990 and 2018 (figure 5). The years 2003, 2006, 2007 but
also 1992, 1994 and 2000 showed a high proportion of culti-
vated area with extreme yield losses for various crops
species (figure 5; electronic supplementary material, figure
S10). Note that in 2010 there was extreme drought in
summer over West Russia but our dataset do not cover this
region. A similar result was found when aggregating all
crops in each of the four regions separately (electronic
supplementary material, figure S9).

4. Discussion

(a) Extreme climate conditions for both dryness in
Northern and Eastern Europe and wetness in
Southern Europe

Only nine extreme summer conditions comparable with 2018
were identified from proxy-based seasonal paleoclimate recon-
structions: five in the sixteenth century, three in the twentieth
century, and one in 2003 [12]. Combining with spring climate
anomalies, no contemporaneous similar event was reported in
Eastern Europe. In 2018, Northern and Eastern Europe suffered

from the coincidence of (i) dry spring conditions from late April,
(ii) exceptionally high and persistent spring temperatures along
with sunny conditions, and (iii) an abnormally dry and hot
summer (figure 7; [12]). These climate extremes occurred
during a key period of the growing season. Weather conditions
in 2018 did become more favourable after mid-August, but
these improvements were generally too small or occurred too
late in crop cycles to significantly mitigate yield negative
anomalies. This compounding of extreme conditions in 2018
led to one of the highest negative relative yield anomalies at
the scale of Eastern and Northern Europe, across a large array
of crop species (figure 3).

Heat episodes observed over the Northern Hemisphere in
2018 were likely amplified by human-induced climate change
[8,9,31]. Climate change has increased the frequency (how
often events occur), intensity (how high a temperature/
how dry a drought) and the duration (how long they last) of
extreme events [2]. Future climate projections reveal that
these events could become the norm as early as approximately
2050 in central and Northern Europe [12,32,33]. Increased varia-
bility of climate, and occurrence of more frequent extreme
climatic events, e.g. drought events, could offset or increase
estimated mean impacts of climate change on agricultural pro-
duction [34,35]. Climate change is projected to contribute to a
longer growing season in Nordic countries, possibly resulting
to increased crop yields [36,37]. Our study shows that large
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scale yield losses are not to be excluded in that region in the
event of severe drought, that could strongly impact the
long-term productive and economic efficiency of agriculture.
Considerable uncertainty and knowledge gaps remain to
assess the impacts and adaptation of Nordic and Eastern
agriculture to climate change [38].

Our analysis also points out that 2018 was a contrasted
year at the European scale, because Southern Europe experi-
enced positive anomalies for the majority of the crop species
considered in this study (figure 3). We demonstrated that
these high yields are partially explained by favourable
spring conditions, with one of the two wettest springs since
1950 in Southern Europe. Wet conditions in the spring were
combined with one of the wettest summers in the last seventy
years (figure 7; [20]). These anomalous weather conditions—
notably in March—were linked to a persistent negative North
Atlantic Oscillation pattern (NAO; [39]).

Higher yields in Southern Europe compensated for the
massive production loss in Eastern and Northern Europe. As

a result, Europe-wide cereal production dropped only by 8%
compared to the 5-year average [40]. Relying on a complete
production compensation through market forces between
European countries or at global scale may not be a viable cli-
mate change adaptation option. Climate extremes in a key
producing country can induce global price spikes and
modify trade patterns with effects going beyond the year of
occurrence [41], and self-propagating trade disruptions [42].
For example, the lower 2018 production in Europe resulted in
spiking cereal prices with an extra €50 per ton for wheat
(base: €170 in May 2018) and an added €60 per ton for barley
(August prices [40]). Extreme climatic episodes of 2018 were
also associated with above-normal temperatures in North
America and the Caspian Sea region [43]. These global climate
modes influence a substantial proportion of crop production
variance, e.g. approximately 14% of winter wheat in Europe
for the NAO [44]. The probability of synchronous crop yield
anomalies in various regions of the world would increase
with climate change, e.g. 26% and 28% higher risks,
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10 years. (Online version in colour.)

respectively, for maize and wheat for a global warming of 1.5 °
C compared to 2°C [3].

(b) Climate variables explain a substantial part of the
yield variability in Europe

The set of uni-scalar climate variables included in the RF
models calibrated on historical yield data explained 34% of
the variability of yield anomalies on average, up to 65% in
some crops and European regions (electronic supplementary
material, figure S3). The proportion of explained variance was
lower in some specific combinations of crops and regions.
Previous studies modelling national or sub-national yields
based on climatic variables reported a similar level of explained
variance. Lobell & Field [45] explained about 30% of
year-to-year variations at the global scale (results without
cross-validation), similarly Ray et al. [46] showed that
about one-third of the variability in yields was explained by
climate variation worldwide (results obtained without cross-
validation). Using mean values and extremes events, Vogel

et al. [8,9] explained up to 50% of the variability for various
crop at continental scale (based on an out-of-bag cross vali-
dation). Based on climatic variables but also soil properties
and management, the machine learning (random forest,
XGBoost) algorithm used by Shahhosseini et al. [47] explained
between 35 and 56% of variation of maize yields simulated by
a crop model in the US. In our study, the unexplained part of
yield variability may be due to a number of non-climatic factors,
such as crop management (e.g. availability and use of inputs,
soil management), pest and diseases, political and social context
(e.g. [8,9,46]). The lower fraction of the yield anomalies variance
explained for Southern European countries (mean R?=15%)
in our study may be partly due to a lower or more hetero-
geneous level of data quality. Note the non-distinction
between irrigated and rain-fed crops in our data from available
statistics despite the fact that most of the European irrigated
areas are located in Southern Europe [48]. The shorter yield
time series and the lower number of districts included in our
study for Southern Europe (only 10% of the total number of
yields data in our database) may also explain the reduced RF
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predictive ability in this region (electronic supplementary
material, figure S1). More generally, despite the efforts in the
various European countries to use homogeneous methods
and provide high-quality data, a certain degree of subjectivity
is associated with these regional statistics, and could thus
increase the amount of unexplained yield variation.

Global improvements of the predictive quality of our
models are possibly reachable using other climatic variables,
or other temporal aggregations. More complex climate inputs
are sometimes used in yield forecasting studies. Drought indi-
ces, e.g. the Standardized Precipitation Evapotranspiration
Index, have sometimes been shown to perform better (e.g.
[49]) than simpler indices. Yet, there is no consensus on a posi-
tive relationship between the level of complexity of an indicator
and their accuracy, e.g. to predict extreme wheat and maize
yield losses [21] or for drought [22]. Similarly, some studies
suggested that the use of higher temporal resolution (i.e. at
monthly or infra-monthly climate inputs, or depending

precisely on the crop cycle) could improve the predictive qual-
ity of the models in such types of analyses [50,51]. Yet, crops
reach the physiological stage at which they are sensitive, for
example, to temperature stress, at different times of the year,
which depend on the crops, geographical areas and sowing
dates, and are sometimes difficult to estimate precisely on a
large scale. Furthermore, Ben-Ari ef al. [21] did not find any
added value in considering climate aggregation based on pre-
cise estimation of the crop phase (i.e. vegetative and
reproductive) compared to monthly, bi- or tri-monthly aggre-
gation. Similarly, Sharif et al. [52] did not find any
advantages to considering fortnightly rather than monthly
aggregated climate variables to predict yields. We estimated
the impatcs of climate on yield anomalies in four European
regions (based on pairs of climate and yield data for each district
and year available). Local geographical disparities could have
hampered a precise estimation of the parameters of the RF.
The relatively low share of explained variation in Eastern
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Europe (mean R* =34%, across all crops) could also stem from
local specific climatic conditions. Hungary, with its Pannonian
climate, could experience significantly different climatic
conditions than its neighbouring countries (e.g. in 2018, figure 7).

RF models calibrated from all years suitably predicted 2018
yield anomalies in Northern and Western Europe (electronic
supplementary material, figure S3 and figure S5), suggesting
that this combination of key climate events had already been
observed—even at lower intensity. The unforeseen compound
climate event observed in Eastern Europe in 2018 has probably
impaired the ability of models to correctly estimate yield
anomalies in 2018. The estimated effects of main climatic dri-
vers on yield largely changed in this part of Europe for RF
calibrated on historical time series (figure 6) or only on 2018
(electronic supplementary material, figure S11).

(c) Low yields are often caused by climatic anomalies,
in single and compound actions

We identified the most influential climate drivers (and their
thresholds) impacting yields over time over Europe. Among
the tested climate variables, we found that temperature- and
precipitation-related predictors have higher importance than
soil moisture (0-7 cm). In each region, most of the estimated cli-
mate driver effects on yield anomalies were robust across the
same types of crop (figure 2; electronic supplementary material,
figure S7 and S8). Effects were also robust to the type of machine
learning algorithm and parameter tuning and the type of yield
time series detrending methods (electronic supplementary
material, figure S2).

High maximum temperature (24°C) had a particularly
negative impact on yields in Eastern and Western Europe
(figure 2). The strong association between temperature, par-
ticularly high temperatures, and yields is consistent with
previous research at the national [1,53] or global [8,9,54]
scales. The impact of high temperatures on production is
caused by individual or a combination of above average
temperature for an extended period, and heat shock charac-
terized by very high maximum temperature. These stresses
could reduce flower fertility, limit grain number and
weight, for example by limiting the duration of the grain
filing period [55]. Critical thresholds of temperature depend
on phrenological stages and are sometimes inconsistent
between studies (e.g. number of days with a temperature
over 25°C: [56,57]; 30°C: [50]). Instead of using a fixed
threshold of temperature, Ben-Ari ef al. [21] established a
continuous relationship between temperature and the prob-
ability of extreme yield losses. In Northern Europe, no
negative impacts of high temperature were observed, poss-
ibly because maximum temperature values averaged over
JJA rarely exceed 25°C. In Southern Europe, high temperature
did not negatively impact yields (figure 2). The use of tolerant
cultivars could explain this high crop performance under
heat [58].

Frost (T° < 0°C) showed large impacts in Western Europe
and Eastern Europe (figure 2). Frost could affect seedling sur-
vival, and cause leaf or bud damage by the formation of ice
crystals in plant tissues [55]. Impacts in Northern Europe
could be limited by the use of tolerant cultivars (some geno-
types are tolerant to a temperature of —20°C, [59]) and cold
acclimation [60].

We also found that rainfall scarcity (less than 2.5 mm
day™! in MAM for Eastern, Western and Southern Europe)

or excess (greater than 4 mmday ™' in Northern, Eastern [ 10 |

and Western Europe) largely negatively impacted crop
yields over the full period considered (figure 2). Abnor-
mally low rainfall along with high temperatures can
increase drought severity and are often significantly corre-
lated [61,62]. The negative impact of the co-occurrence of
such stresses have already been highlighted for cereals
crops (e.g. [51,63] for barley crops in Western Europe). On
the contrary, the impacts of excessive rainfall on crop pro-
duction, as shown by our analysis of historical data
(figure 2) in Eastern and Northern Europe, seem to be far
less studied [64]. High rainfall could reduce production
through, for example, damage from oxygen deficit as a con-
sequence of soil waterlogging after heavy rain [65,66];
bending of the stem [67]; or erosion, loss of soil nutriment
and plant anchorage failure. Li et al. [68] and Huang et al.
[69] demonstrated that excessive rainfall can adversely
affect maize yields in the USA in proportions similar to
drought. These impacts may
more frequent in the future given the expected increase in
the frequency of extreme precipitation events [70].

Finally, our study showed that yield anomalies are also
explained by compounds of climate variables occurring
throughout crop cycles, e.g. temperature in January—Febru-
ary and rainfall in March-April-May for wheat in most of
the European regions (figure 7). This inter-dependence of
climatic factors to explain yield losses have already been
highlighted in various studies (e.g. [51] on historical data
for barley in France, [10] for wheat in 2016 in France; [71]
for maize at a global scale). Variation in climate modes
can partly explain the co-occurrence of climate variables
unfavourable to yields [72]. For example, comparing recent
major droughts in Europe, similar preceding rainfall deficits
and strong feedbacks between air temperature and soil
water anomalies were observed preceding the 2003, 2010
and 2018 droughts [73-76]. Yet, the area under droughts
and factors aggravating the effect of the drought are distinct:
severe soil drying caused by preceding rainfall deficits and
high evaporative demand prior to summer in 2003, and
high evapotranspiration linked to extreme warm and
sunny conditions in spring in 2018 [76]. The resulting
impacts on ecosystems differed for these three events
(figure 5; electronic supplementary material, figures S9
and S10; [76]). The proportions of areas with very low
yields were higher in 2003 compared to 2018, notably for tri-
ticale, oilseed rape, sugar beet and wheat (electronic
supplementary material, figure S9, 510), yet both droughts
seemed to have impacted particularly Northern and Eastern
Europe (all crops included; figure 5). As in 2018, both high
temperature and low rainfall seemed to be responsible for
the yield losses [77].

Globally, regarding the impacts of the 2018 specific cli-
mate conditions, the key findings of our study are that: (i)
climate variables explained a large part of yield anomalies
in that year (i.e. mean R*=50%), (ii) the relative importance
of climatic variables were different from those usually
observed in the four European regions, (iii) these variables
differed across regions and (iv) corresponded to extreme
values. Northern European crop yields have been more
strongly impacted by JJA conditions, Eastern and Southern
European yields by MAM precipitation patterns and Western
crop yields by maximum temperature over the spring and
summer (MAM and JJA).

extreme become
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5. Conclusion

In 2018, Northern and Eastern Europe experienced above
normal yield losses which can be explained by compounds of
climate extremes occurring at different periods of the crop
growing cycle. These regions suffered from a major heatwave
in spring and summer. The higher than usual yields recorded
in Southern Europe—caused by favourably wet spring con-
ditions—did offset these losses hence preventing a large
decrease in crop production at the European scale. Our results
show that, in most situations, simple climate variables can
explain a large fraction of the variability of yield anomalies,
with a few exceptions, especially in Southern Europe. Our
results outline the importance of considering regionally specific
single and compound climate extremes to analyse the causes of
yield loss in Europe.

Data accessibility. Our study is based on public data. We have not gen-
erated any new data: all climate data are publicly available
(https://www.ecmwf.int/en/forecasts/datasets/reanalysisdata-

sets/era5) and can be easily accessed. All yield data arise from
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