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Abstract

The third observing run of Advanced LIGO and Advanced Virgo took place between 2019 April and 2020 March
and resulted in dozens of gravitational-wave candidates, many of which are now published as confident detections.
A crucial requirement of the third observing run was the rapid identification and public reporting of compact binary
mergers, which enabled massive follow-up observation campaigns with electromagnetic and neutrino
observatories. PyCBC Live is a low-latency search for compact binary mergers based on frequency-domain
matched filtering, which was used during the second and third observing runs, together with other low-latency
analyses, to generate these rapid alerts from the data acquired by LIGO and Virgo. This paper describes and
evaluates the improvements made to PyCBC Live after the second observing run, which defined its operation and
performance during the third observing run.

Unified Astronomy Thesaurus concepts: Relativistic binary stars (1386); Compact objects (288); Gravitational
wave astronomy (675); Astronomy data analysis (1858); High energy astrophysics (739)

1. Introduction

The Advanced LIGO and Advanced Virgo gravitational-wave
(GW) observatories conducted their first two observing runs, O1
and O2, between 2015 and 2017 (Aasi et al. 2015; Acernese et al.
2015; Abbott et al. 2018). From these two runs, over a dozen
confident observations of binary black hole (BBH) mergers and
one binary neutron star (BNS) merger were made (Abbott et al.
2017a, 2019a; Nitz et al. 2019a, 2019b, 2020b; Venumadhav
et al. 2019, 2020; Zackay et al. 2019a). The BNS merger,
GW170817, was observed within a minute of the data being
recorded, associated with a gamma-ray burst (Abbott et al.
2017b), and subsequently followed up by a large number of
observatories spanning the whole electromagnetic (EM) spectrum
(Abbott et al. 2017c). Without the real-time identification and
localization of GW170817 as a merging pair of neutron stars,
these observations would not have been possible.

The third observing run of Advanced LIGO and Advanced
Virgo, O3, began in 2019 April and ended in 2020 March. Thanks
to hardware improvements in the detectors, the ranges for compact
binary mergers were expected to increase by 6%–85% with
respect to O2, depending on the source type and detector, with the
largest improvement expected for Virgo (Abbott et al. 2018). The
sensitive volume of the run was then predicted to be 3.3× 106

Mpc3 yr for BNS mergers and 3.4× 108 Mpc3 yr for BBH
mergers. With this unprecedented sensitivity, we expected to
observe up to ≈40 BBH mergers and ≈10 BNS mergers and

potentially make the first observation of a neutron star–black hole
(NSBH)merger. Indeed, dozens of candidates from O3 have been
uploaded to GraceDB9 and announced on the Gamma-ray
Coordinates Network10 (GCN). Four such candidates have
been published as notable compact binary mergers so far
(Abbott et al. 2020a, 2020b, 2020c, 2020d). Many more
confident detections from the first half of O3 have also been
presented in the GWTC-2 (Abbott et al. 2021a) and 3-OGC
(Nitz et al. 2021) catalogs. Observing run O3 was the first in
which three observatories operated for the full duration of the
run, increasing the observing duty cycle of the network,
reducing the uncertainty in the sky location of observed events,
and therefore maximizing the chance of making a multi-
messenger observation (Abbott et al. 2018). Rapid processing
of data from all three observatories was therefore a crucial
requirement.
PyCBC Live, first introduced by Nitz et al. (2018), is one of

several search codes analyzing the data in real time to observe
compact binary mergers, other analyses being GstLAL (Messick
et al. 2017; Sachdev et al. 2019), MBTA (Adams et al. 2016;
Aubin et al. 2021), SPIIR (Hooper et al. 2012; Chu 2017; Chu
et al. 2020), and the generic-transient search cWB (Klimenko
et al. 2016). Having multiple analyses provides for redundancy in
terms of both the possibility that one of the analyses fails for any
reason and the independent methodology that each of these
analyses applies to identify compact binary mergers. PyCBC Live
is based on the more general PyCBC software package (Nitz et al.
2020a) and uses a precalculated bank of compact binary merger
waveform models combined with matched filtering in the
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frequency domain (Allen et al. 2012; Babak et al. 2013). PyCBC
Live has been instrumental in many of the GW observations to
date, both in O2 (Abbott et al. 2017a, 2017d, 2017e, 2017f) and in
O3 (Abbott et al. 2020a, 2020b, 2020d).

In this paper, we describe the improvements that have been
made to PyCBC Live in preparation for, and during, O3.
Specifically, we discuss the new techniques that (i) enabled the
simultaneous and symmetric analysis of data from three
observatories and the reliable assessment of the statistical
significance of observed candidates, (ii) improvements in the
handling of instrumental transients, (iii) an updated technique
to detect signals in data from a single detector, and (iv) a
method to rapidly infer the nature of the compact objects
involved in a candidate merger. We then evaluate the effect of
these improvements in terms of search sensitivity by simulating
compact binary signals in Gaussian data at the design
sensitivity of advanced GW detectors, as well as in real O3
data from Advanced LIGO and Advanced Virgo. We also
evaluate the accuracy of the source classification method and
the effect of these improvements on the latency of the produced
candidates using O2 data.

2. New Methods for the Third Observing Run

This section describes the new methodology that was used
or developed in PyCBC Live during O3. Each subsection
describes changes to a specific aspect of the analysis, and the
subsections are ordered so as to follow the data flow through
the pipeline as much as possible.

2.1. Search Space and Template Bank

Although it is an improvement to the configuration of
PyCBC Live rather than the code itself, we begin by describing
the search space and template bank adopted during O3, as a
reference for future work.

The bank covers the same mass, spin, and waveform duration
space as that proposed by Dal Canton & Harry (2017) and
previously adopted during O2. The same waveform models are
also employed: TaylorF2 (Buonanno et al. 2009; Bohé et al.
2013) for BNS and low-mass NSBH templates and a reduced-
order frequency-domain version of SEOBNRv4 (Pürrer 2014;
Bohé et al. 2017) for BBH and heavy NSBH templates.

However, the O3 bank utilizes a template placement method
based on an optimized hybrid geometric-random approach
(Roy et al. 2017, 2018, 2019) that is more efficient than the
“manual” combination of geometric and stochastic methods
used for the O2 bank (Dal Canton & Harry 2017) in the sense
that the obtained bank is ∼25% smaller and can be produced
much faster. As a result, the O3 bank is only 13% larger than
the O2 bank, despite the increased sensitivity of the detectors.

2.2. Improved Rejection of Instrumental Transients

Loud instrumental transients in GW data (glitches) that last
much less than a second can corrupt the results of transient
searches on a timescale much longer than the glitch itself (Dal
Canton et al. 2014). In particular, due to the relatively long-lasting
impulse response of the various filters involved in the signal-to-
noise ratio (S/N) calculation, loud glitches can cause the S/N
time series for a given template to cross the trigger-generation
threshold many times over several seconds. The resulting high-
S/N triggers then dominate over quieter triggers from the
underlying stationary noise and possible astrophysical signals,

effectively blinding the search for the entire duration of the
impulse response of the filters. In early O3, this issue appeared
prominently in the results of PyCBC Live as occasional gaps in
the production of triggers from a given detector, lasting from a
few seconds to several tens of seconds, depending on the glitch.
A simple and widely used solution to this problem, called

gating, consists of windowing out the GW strain data for a short
window centered on the glitch prior to matched filtering (Abbott
et al. 2016; Usman et al. 2016; Sachdev et al. 2019). PyCBC
offline searches already implement this method by detecting
glitches as loud excursions in the whitened strain and then
multiplying the data with the complement of a Tukey window
centered on the glitch time. We adopted the same algorithm in
PyCBC Live during O3. We used a threshold of 50σ on the
absolute value of the whitened strain time series as a glitch
detector. Each detected glitch was gated with a symmetric
complemented Tukey window configured to have 0.5 s of central
zeros and 0.25 s of smooth taper on both sides. This approach
significantly reduced the impact of high-S/N non-Gaussian
transient noise with no visible impact on the latency of the
analysis. The chosen gating duration is justified because many
high-S/N glitches tend to be shorter than 1 s (Davis et al. 2021),
and significantly longer gates might cause more damage to
downstream stages of the analysis than the glitch itself. A fixed
duration also removes the need to estimate the duration of the
glitch, which is nontrivial due to the impulse response of the
whitening filter, often longer than the glitch itself. Nevertheless, a
fast gating procedure that more accurately identifies the time–
frequency extent of a glitch could be beneficial in the future.
Another improvement inherited from PyCBC’s offline

search during O3 was the inclusion of the high-frequency
sine-Gaussian discriminator in the ranking of single-detector
triggers. The discriminator, described in Nitz (2018), exploits
the fact that most compact binary mergers induce a negligible
amount of signal power at frequencies higher than the
ringdown of the dominant quadrupole mode. By measuring
the excess power at the time of peak signal amplitude and at
various frequencies above the ringdown, a χ2 statistic is
constructed and used to reweight the single-detector trigger
ranking statistic. The discriminator is most effective at
preventing glitches from triggering high-mass templates with
final frequencies of ≈100 Hz or less; hence, it increases the
search sensitivity to high-mass black hole mergers. We adopted
the same implementation of the discriminator used by PyCBC’s
offline search with a negligible impact on PyCBC Live’s
latency.

2.3. Inclusion of Virgo in the Coincident Search

Advanced Virgo began operating in conjunction with the
LIGO observatories in the last few months of O2, when its
sensitivity was typically one-fourth to one-third that of the LIGO
instruments. Despite the smaller sensitivity, the inclusion of
Virgo markedly improved the localization of important candi-
dates, such as GW170817 (Abbott et al. 2017a). However,
Virgo’s contribution to the overall network sensitivity was
limited, as quantified by its integrated BNS observed time
volume of 4× 103 Mpc3 yr compared to 5× 105 Mpc3 yr for
LIGO-Hanford.11 Hence, in order to produce candidate events,
the PyCBC Live analysis introduced in Nitz et al. (2018)

11 See https://www.virgo-gw.eu/O2.html and https://www.gw-openscience.
org/detector_status/O2.
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relied on a simple coincident detection between the two LIGO
observatories only. Additional detectors were analyzed by
PyCBC Live for the purpose of improving the rapid spatial
localization, but they did not contribute to the significance of
candidates, and they could not produce candidates in
coincidence with one of the LIGO detectors.

However, as the relative sensitivities of the instruments
within the global GW network become comparable, each
instrument’s contribution to the overall sensitivity also
increased. In the coming years, the Virgo observatory may
approach 60%–80% of the LIGO detector sensitivities, limited
primarily by its shorter arm length (Abbott et al. 2018). In
addition, new instruments will be joining the global network:
KAGRA (Somiya 2012; Aso et al. 2013; Akutsu et al. 2021),
which conducted its first observing period shortly after the end
of O3, and LIGO-India,12 scheduled to begin operation in the
mid-2020s (Abbott et al. 2018). The higher network sensitivity
comes about from two sources: (1) improvement in overall
network uptime due to overlap between instrument live time
and (2) improvement in detection confidence (reduction of the
false-alarm rate) from additional detectors. Hence, in order to
start exploiting the benefits of a larger and more symmetric
network, the PyCBC Live analysis has been modified for the
O3 run.

In its O3 configuration, PyCBC Live correlates the full bank
of template waveforms with data from all operating detectors.
Then, for each detector pair, we independently perform the
same double-coincident analysis used for LIGO-Hanford and
LIGO-Livingston during O2.13 When a pair of detectors
labeled A and B observe a coincident candidate, a false-alarm
rate AB is computed using a time-shifted analysis of these two
detectors’ data, as done in O2. The AB estimate is local, using
only the last 5 hr of data, and therefore tracks possible slow
changes in the properties of the detector noise. At times when
A and B are the only operating detectors, any candidate events
are submitted directly to GraceDB with a false-alarm rate AB,
the analysis being effectively identical to O2. However, if
additional detectors are observing at the time of the candidate
(C, D,K), a combined false-alarm rate is computed as follows.

First, we correct the double-coincident false-alarm rate to
include the trials factor associated with the choice between
possible detector pairs,

= 
N

2
, 1AB

tf
AB⎛

⎝
⎞
⎠

( )

where N is the number of detectors that can generate double
coincidences at the time of the candidate. If multiple instrument
pairs generate coincident candidates from the same transient,
we select the candidate having the lowest false-alarm rate. If
tied, we select the candidate with the largest ranking statistic
value. Then, using the template of the selected candidate, we
calculate the S/N time series for the remaining detectors, which
we call follow-up detectors, and then use this time series to
obtain a p-value for each follow-up detector. Assuming a plane
GW traveling at the speed of light and using the arrival times
estimated at detectors A and B, an on-source time interval of

possible arrival times is determined at each follow-up detector.
The maximum S/N within the on-source interval is identified.
Next, 150 s of data immediately before the on-source window,
called off-source data, are segmented into Noff intervals of the
same duration as the on-source data (Figure 1). The maximum
S/N in each off-source interval is calculated, and the number
Moff of off-source intervals having an S/N larger than the on-
source S/N is used to compute the p-value,

=
+
+

p
M

N

1

1
, 2C

off,C

off
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where C labels the follow-up detector(s). This is the probability
of producing an S/N as large as the one observed under the
assumption that detector Cʼs data contain only noise. Such a p-
value is produced for each follow-up detector (pC, pD,K). In
addition, we obtain the p-value for the original double-
coincident candidate as

= - - p T1 exp , 3AB live AB
tf[ ] ( )

where Tlive= 4.38 hr (0.005 yr) is a fiducial live time used to
convert false-alarm rates to p-values. Its value is close to the
amount of single-detector data stored for background computa-
tion and also close to the minimum inverse false-alarm rate
required for uploading a candidate to GraceDB. The two-
detector p-value pAB is then combined with the follow-up
detector p-value pC using an adaptation of Fisher’s method
(Fisher 1970),

= -p p p2, ln 4CABC AB( ( )) ( )
= -p p p p1 ln , 5C CAB AB[ ( )] ( )

where  ,(· ·) is the regularized gamma function. (For more than
one follow-up detector, our algorithm performs this combina-
tion iteratively.) Next, we convert back to a false-alarm rate,

= - -- T pln 1 . 6ABC live
1

ABC( ) ( )

For the final significance, we additionally select the minimum
of the original two-detector and multidetector false-alarm rates,

=  2 min , , 7AB
tf

ABC{ } ( )

where the trials factor of 2 accounts for this additional choice.
This procedure produces a self-consistent rate of false alarms
under the null hypothesis and assuming the time invariance of
the noise for the collected background. The latter assumption
may be violated if one or more detectors rapidly change to a
new operating state; hence, the desire is to use as short a
background collection time as possible to track these changes.
We now apply the above equations to two limiting examples

to illustrate the possible results in practice. We first consider the
case of a nearby source and three detectors with similar
sensitivities. The source produces a very loud coincidence in
detectors A and B, as well as a very high S/N in detector C,
where, by “very loud,” we mean that the S/N is higher than
any background it is compared to. In this case, we obtain the
lower bound >- 100 yrAB

1( ) , determined by the amount of
data chosen to estimate the double-coincident background.
Assuming an on-source window of 40 ms for detector C, we
also have the upper bound pC 2.7× 10−4. Then, using the
above formalism, we obtain -  3500 yr1 . Consider now a
similar situation, but the sensitivity of detector C is so low that

12 See https://dcc.ligo.org/ligo-M1100296/public.
13 Note that the ranking of double-coincident triggers in each detector pair
depends on the pair, since it involves the distribution of expected relative signal
phases, times, and amplitudes appropriate for the two detectors (Nitz et al.
2017).
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the signal is completely undetectable in its data, leading to
pC≈ 0.5. This results in the bound -  17 yr1 , weaker than
the original bound on AB due to the combined effect of the
trials factors and a detector with low sensitivity. Nevertheless,
the limit is still well below the threshold required for a public
alert and for considering the candidate worthy of additional
astronomical observations. In these examples, we emphasized
that the resulting false-alarm rates are to be understood as upper
limits, as they are limited by the amount of data chosen to
estimate the background, not the S/N of the candidate. The
limits can be lowered by using more data, but this comes at the
risk of increasing our sensitivity to sudden changes in the noise
properties of the detectors.

Note that the on-source S/N in the follow-up detectors is not
required to cross any threshold. Hence, this method naturally
allows even weak signals in the follow-up detectors to increase
the significance of the original coincident candidates. However,
a potential limitation of the method is represented by the
implicit assumption that all detector pairs are equally likely to
produce an initial double coincidence in response to a signal.
This leads to the trials factor in Equation (1) potentially being
very large; for a network of three detectors, such as during O3,

the total trials factor can be as high as 6. As additional
observatories join the network, the trials factor will grow
rapidly, and this method may not offer a sensitivity close to
optimal. One way to reduce the trials factor would be to use the
local sensitivity of each instrument to predict the instrument
pair(s) most likely to produce a detection and only consider
those pair(s) in the calculation of the combined false-alarm rate.
An alternative strategy for a heterogeneous network could be
modifying Equation (1) to weight each detector pair in a way
that accounts for different sensitivities. Finally, the iterative
application of Fisher’s method described above could be
replaced by a single application of the method to all available
p-values. Although the two approaches produce p-values well
within a factor of 2 in the case of two follow-up detectors (i.e.,
a LIGO–Virgo–KAGRA network), a single combination may
lead to a higher sensitivity in the case of a five-detector
network.

2.4. Identification of Signals in a Single Detector

During an observation run, there will undoubtedly be times
during which a detector cannot operate or is affected by severe

Figure 1. Visualization of the process used by PyCBC Live to generate a three-detector coincident candidate. In this example, the LIGO-Hanford and LIGO-
Livingston S/N time series (red and blue curves) have two nearby peaks above the trigger-generation threshold (dashed horizontal line). The coincident peaks then
produce a Hanford–Livingston coincident candidate. The window of possible signal arrival times at Virgo (on-source region; dark gray in the bottom right panel) is
calculated using the Hanford and Livingston triggers, as indicated by the horizontal arrows. The Virgo S/N time series is calculated (violet curve) and searched for its
maximum within the on-source region. Once the maximum is identified, its statistical significance is determined by comparing it to the maxima occurring in the off-
source intervals (vertical stripes of alternating color in the top and bottom left panels).
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nonstationary or transient noise. Moreover, all detectors are
blind to signals coming from certain positions in the sky, and
these positions are detector-dependent. Therefore, a nonnegli-
gible fraction of signals are unable to produce coincident
triggers in two or more detectors (Callister et al. 2017; Nitz
et al. 2020b). By chance, two events that were very promising
targets for EM follow-up observation were first identified as
single-detector triggers: GW170817, initially seen as a single-
detector trigger in LIGO-Hanford due to a large glitch affecting
LIGO-Livingston (Abbott et al. 2017a), and GW190425,
observed by LIGO-Livingston and Virgo but too weak to be
detectable in Virgo (Abbott et al. 2020a). In cases like these,
we have a single-detector trigger and no coincidence. We
cannot rely on the usual robust time-slide approach to establish
the false-alarm rate of the trigger, and an alternate method is
required. We note and caution that formally, the false-alarm
rate can only be assigned with confidence to be less than once
per live time for single-detector candidates. Beyond this point,
extrapolation is used in order to generate low-latency alerts. If
the detector noise changes in unexpected ways, the extrapola-
tion may become invalid, and the rate of false positives for
single-detector candidates may no longer match an extrapolated
false-alarm rate.

During O2, PyCBC Live relied on a simple algorithm to
identify single-detector candidates based on a predetermined
ranking statistic threshold and a set of signal-consistency cuts,
which were chosen based on early detector data. The algorithm
was only active when a single detector was observing. We
improve on this method by implementing a complete ranking
statistic and procedure for extrapolating the false-alarm rate.
We further increase the coverage of our single-detector search
by allowing it to operate during times when multiple detectors
are observing, as the relative sensitivities of two detectors may
imply that a signal can only be seen in one of them.

Our single-detector trigger ranking statistic is the usual
reweighted S/N (Usman et al. 2016),

r
r c c

r c
=

+ >-


1 2 if 1

if 1,
8r

p p
r

r

2 2 1 2

2

⎧
⎨
⎩

ˆ
[( ( ) ) ]

( )

where ρ is the matched-filter S/N, cr
2 is the time–frequency

discriminator described by Allen (2005), and p is an index set
to the usual value of 6. Note that the same r̂, calculated for
each detector and complemented by other terms, also defines
the ranking statistic of coincident triggers.

As we do not have a coincident trigger to corroborate the
evidence of a signal, we must apply strict cuts in order to
remove triggers that are likely to be glitches. Therefore, we
remove any trigger with r < 9ˆ or c > 2r

2 , which comes at the
cost of possibly removing some signals that are not particularly
well matched by the templates. We further restrict the
calculation to triggers coming from a template describing a
system with a nonnegligible mass remaining outside of the final
black hole. By doing so, we ignore many of the templates that
match best to common types of glitches in the LIGO detectors,
as well as focus on the templates corresponding to sources that
are most interesting for potential generation of EM counterpart
emission. Applying the remnant mass equation from Foucart
et al. (2018) to all templates in our bank, we find that this mass
is negligible for templates with durations shorter than ∼7 s.
Therefore, we prevent triggers associated with shorter tem-
plates from generating single-detector candidates.

The probability distribution of r̂ for triggers associated with
detector noise is expected to follow a falling exponential, as
described in Davies et al. (2020),

r
a a r r r r

r r
=

- - >
p noise

exp if

0 if ,
9th th

th

⎧
⎨⎩

( ˆ∣ )
[ ( ˆ ˆ )] ˆ ˆ

ˆ ˆ ( )

where rthˆ is a threshold on the reweighted S/N, and α is the fit
coefficient. Given the selection cuts defined above, we find
empirically that this model describes the detector noise
very well.
For each detector, we fit Equation (9) to the triggers from a

day’s worth of data and record the fit coefficient, combining
these over a longer period of time. Then, during PyCBC Live’s
operation, we can use this coefficient to estimate the false-
alarm rate for each single-detector trigger that passes the
selection cuts described above. In general, this fit could be
performed separately for each template, but we instead choose
to perform the fitting in five bins that are spaced logarithmically
in template duration. This choice allows us to group many
templates that behave similarly in the presence of noise and
hence increase the number of triggers available for the fit.
Noise in ground-based GW detectors is affected by slowly

varying environmental processes, like weather, and by
commissioning activities that change the detector properties
over time. Therefore, the statistical properties of the noise are
time-dependent, and the fit coefficients for each bin will also
vary over time. To account for this variation, we combine the
daily fit values in one of two ways. The maximum-likelihood
choice of α is proportional to the inverse of the mean r̂ for each
template (Davies et al. 2020), so we can take the mean of α−1

over the different days, weighted by the number of triggers
from each day in order to combine these fits. Alternatively, we
could take a low percentile of the α distribution over different
days. This would lead to a much more conservative estimate of
the false-alarm rate. In our case, we use the fifth percentile
value and call this the conservative fit coefficient. This
conservative choice would be used for issuing alerts during
future observing runs, as it would reduce the number of false
alarms compared to the use of the mean coefficient.
We see the variation and combination of the trigger fit

coefficient in Figure 2, where the fit coefficient in each template
duration bin is plotted for each day of 2017 July, along with the
mean and conservative combinations.
To calculate the expected rate of louder triggers, as well as

the trigger distribution of Equation (9), we must estimate the
overall rate of triggers. This is done by simply counting the
triggers that pass the specified thresholds in the daily fits, and
for the mean fit, this is simply an addition of the daily trigger
counts. For the conservative fit choice, we choose the 95th
percentile daily trigger count and multiply by the number of
days over which the fit smoothing is performed.
Using the originally recorded trigger from LIGO-Hanford

and the conservative fit values calculated from the O2 data
from 2017 July, we estimate the single-detector trigger false-
alarm rate in LIGO-Hanford of GW170817 to be one per
 109( ) yr. If we choose the mean fit combination, then the
estimated false-alarm rate would be one per 1011( ) yr.

2.5. Source Classification

Source classification between the different possible types of
coalescing compact binary is an important element in generating
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follow-up alerts for EM or other counterpart signals. For the O3
run, four astrophysical source types, BNS, BBH, NSBH,
and MassGap, were considered (LIGO Scientific & Virgo
Collaborations 2019). The desired classification designated
every object with a mass below 3Me as a neutron star, every
object with mass above 5Me as a black hole, and every object
between these two thresholds as a MassGap object; any binary
containing one or more MassGap components was then

considered as MassGap. Accurate classification in low latency
is a considerable challenge; in general, for lower-mass binaries,
only the chirp mass

=
+


m m

m m
101 2

3 5

1 2
1 5

( )
( )

( )

can be precisely measured, while the mass ratio has a large
uncertainty. In addition, search pipelines typically report only a
point estimate of redshifted component masses, and these
template masses may be subject to systematic biases relative to
the true source-frame component masses (see, e.g., Biscoveanu
et al. 2019). During O3, astrophysical source classification for
PyCBC Live candidates was performed by the LIGO/Virgo
rapid-alert infrastructure using a “hard cuts” method, which
assigns Boolean weights (either 1 or 0) to the different source
types based on component mass cuts applied to the reported
search template. The fact that this method neglects uncertain-
ties in component masses and does not account for any
systematic error in mass recovery suggests the potential for
improvement (compare Kapadia et al. 2020).
A new approach developed during the later part of the O3

run, which will be described in detail in Villa-Ortega et al.
(2022, in preparation), uses the chirp mass recovered by the
search pipeline as input and implicitly assumes a uniform
density of candidate signals over the plane of component
masses m1, m2. These source-frame masses are constrained to
the interval 1Me<m< 45Me, where the lower bound is the
lower limit on the template bank mass space described in
Section 2.1, and the upper bound is chosen based on BBH
population studies up to the first half of the third observing run,
O3a (Abbott et al. 2019b, 2021b). Constraining the chirp mass
to be within a confidence interval around a point estimate
derived from the search template determines an allowed region
in the m1–m2 plane; we then estimate the probability that a
candidate belongs to each source category to be directly
proportional to the area of the allowed region satisfying the
criteria for the given category.14 The output of the method for a
given event is a list of probabilities P P P P, , ,BNS NSBH MG BBH{ }
summing to unity.
To compute these areas, we require accurate estimates of the

candidate chirp mass in the source frame; thus, we apply a
correction for the bias caused by the cosmological redshift. For
this correction, we use estimates of the luminosity distance and
its uncertainty derived from the effective distances (Allen et al.
2012) of the trigger(s) comprising the event,

=D Dconst min , 11L eff˜ · ( ) ( )

s r= -D const , 12D
p

L coincL˜ ˜ · · ( )

where Dmin eff( ) is the minimum effective distance over all
triggers obtained for a given coincident or single-detector
event, and the constants of proportionality and power-law
exponent p may be derived from a fit to previously obtained
three-dimensional localizations produced by the BAYESTAR
pipeline (Singer & Price 2016) for PyCBC Live events.
Although in most cases, the uncertainty in the source chirp
mass is expected to be dominated by the redshift (distance)

Figure 2. Fit coefficients α calculated daily for triggers from a month of O2
LIGO-Hanford data that meet the r̂, cr

2, and template duration cuts as described
in the text. One plot is given for each template duration bin, and longer
templates generally have fewer triggers at high r̂, so the fit coefficients are
larger. The dashed and dotted lines show the mean and conservative
combinations of the fit coefficients used to estimate the false-alarm rates of
future single-detector candidates, and the black lines are for comparison to the
fit values if they were not separated into different duration bins.

14 Systems with chirp masses outside the considered limits are assumed to be
BNSs if they lie below the minimum value and BBHs if they are above the
maximum.
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uncertainty, we combine this with a nominal, small uncertainty
of 1% in the detector-frame chirp mass relative to the value
recovered by the search pipeline.

Our approach may be compared to the “ellipsoid-based”
method outlined in Chatterjee et al. (2020). The ellipsoidal
error region considered there accounts for expected uncertain-
ties in the recovered masses and spins in the limit of Gaussian
detector noise and high S/N (though without attempting to
correct for the source redshift). It was also noted there that the
actual recovery of parameters other than by search pipelines
was subject to significantly larger systematic error, motivating
an alternative machine learning–based method. Our approach is
simpler in that we effectively consider the uncertainties in such
parameters to be infinitely large; we leave improvements to this
approximation to future work.

2.6. Search for Maximum-S/N Template

The rapid spatial localization of GW alerts performed by
BAYESTAR (Singer & Price 2016) relies on the knowledge of
the template that maximizes the likelihood assuming stationary
Gaussian noise (or, equivalently, the template that maximizes the
network matched-filter S/N) for a given candidate. The template
is usually taken directly from the candidate produced by the low-
latency search. However, when a search like PyCBC Live
generates a candidate in response to an astrophysical signal, it
includes both astrophysical priors and the presence of nonsta-
tionary and non-Gaussian noise features in the significance of the
candidate. Hence, the template immediately associated with a
candidate will not necessarily maximize the network S/N under
the assumption of stationary Gaussian noise. The sparseness of
the template bank will generally also drive the reported template
parameters away from the maximum S/N. This could, in
principle, introduce biases in the rapid spatial localization and
more generally affect any low-latency result that uses the mass
and/or spin parameters of the search template, such as the source
classification we described above in Section 2.5. See Biscoveanu
et al. (2019) and Chatterjee et al. (2020) for investigations of
such possible biases.

In order to remove some of the sources of these biases, we
developed a follow-up process that starts after PyCBC Live
reports a candidate to GraceDB. The process reanalyzes a short
amount of strain data around the candidate and uses differential
evolution (Storn & Price 1997) to find the template parameters
that maximize the network S/N. The maximization explores
the mass and spin parameter space in a continuous fashion,
regardless of the placement of the search templates. Once the
optimization converges or a predefined time-out of 400 s is
reached (whichever comes first), a new candidate is uploaded
to GraceDB using the best template found by the optimization.
The new candidate can then be used to generate new spatial
localization and source classification results, free of potential
biases from the initially reported template.

3. Evaluating the Improved Search Technique

In this section, we evaluate the impact and performance of
the techniques described in Section 2 using both simulated and
real data.

3.1. Sensitivity in Simulated Data

We first characterize the search sensitivity by simulating a
population of astrophysical signals, adding the signals to a

portion of simulated Gaussian noise, analyzing the data with
PyCBC Live, and counting how many signals are recovered at
a given false-alarm rate. The noise models correspond to the
final design sensitivities of Advanced LIGO and Advanced
Virgo (Abbott et al. 2018). We focus on evaluating the
significance calculations described in Sections 2.3 and 2.4. To
this end, we compare the sensitivity of the search under
different network configurations, HL, HLV, H, L, and V, where
H, L, and V indicate, respectively, LIGO-Hanford, LIGO-
Livingston, and Virgo. In the HL and HLV configurations, all
observatories are assumed to be observing at the same time.
We construct a population of BNS signals with component

masses distributed uniformly between 1.35 and 1.45Me. Spins
are assumed to be aligned with the orbital angular momenta,
and spin magnitudes are distributed uniformly between zero
and 0.05. The signals are simulated using a waveform model
based on post-Newtonian theory. The sources have isotropic
orientation and sky location. In order to increase the number of
detected signals, we distribute the sources uniformly in chirp
distance (Allen et al. 2012) up to a maximum value. When
computing the sensitive volume, we then weight each source
such that the effective population has a uniform spatial
distribution, as described in Usman et al. (2016).
The result of the simulation is shown in Figure 3 in terms of

sensitivity distance, as well as relative search volume between
the HLV and HL configurations. We can see that adding Virgo
to the LIGO network increases the detection rate of BNS
systems by a few tens of percent under ideal noise conditions.
The single-detector distances are approximately half of what is
achieved by a multidetector network.

3.2. Sensitivity in Real Data

Here we repeat a similar test as presented in Section 3.1, with
the difference that we consider broader ranges of masses and
spins (therefore effectively including BBH and NSBH
systems), and we add their signals to real data from the third
observing run of Advanced LIGO and Advanced Virgo, as
opposed to simulated stationary Gaussian detector noise. We
use ∼8 days of O3 data starting from 2019 May 4 13:15:32
UTC. In the simulated binaries, neutron stars have masses
distributed uniformly between 1 and 3Me and spin magnitudes
distributed uniformly between zero and 0.05. Black holes have
masses distributed uniformly between 3 and 100Me and spin
magnitudes distributed uniformly between zero and 0.985.
Spins are aligned with the orbital angular momenta in all cases.
The BNS signals are simulated using a post-Newtonian
waveform model, while the NSBH and BBH signals use the
SEOBNRv4_opt inspiral–merger–ringdown model (Devine
et al. 2016; Bohé et al. 2017).
The resulting sensitivity for BNS mergers is shown in

Figure 4. We can see that the improvement in the detection rate
is around 10% at the false-alarm rate thresholds relevant for
public alerts. This estimate is consistent with the earlier
estimate from simulated data at design sensitivities. The NSBH
and BBH mergers, albeit arguably less interesting for rapid
alerts, show similar relative improvements at the same false-
alarm rate threshold and are not shown here.

3.3. Redetection of GW170814 and GW170817

PyCBC Live in the O3 configuration detects GW170814 in
O2 data as a coincidence between the two LIGO detectors, with
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a LIGO–Virgo network S/N of≈15. With the method described
in Section 2.3 and using 5 hr of look-back background, the
candidate is assigned a false-alarm rate of one in ≈200 yr.

The case of GW170817 is more interesting because of the
glitch affecting the LIGO-Livingston data seconds before merger
(Abbott et al. 2017a). Although the glitch is automatically gated
by PyCBC Live, the surrounding data are still flagged as affected
by a glitch by the low-latency data-quality flags, preventing a
LIGO double coincidence from taking place. In addition, the
small Virgo S/N also prevents a double coincidence between
LIGO-Hanford and Virgo. Nevertheless, using the method
described in Section 2.4, GW170817 is reported as a LIGO-
Hanford single-detector candidate with a false-alarm rate of one
in ≈109 yr.

PyCBC Live can also be configured to ignore data-quality
flags. Under this configuration, GW170817 is instead detected as
a LIGO double coincidence and assigned a false-alarm rate
lower than one in ≈17 yr by the method of Section 2.3. The
much higher value with respect to the single-detector candidate
is due to the upper limit on the double-coincident false-alarm

rate imposed by the duration of the look-back background (one
in 100 yr), combined with a trials factor of 6 caused by having
three observing detectors at the time of the candidate. The
absence of a detectable signal in Virgo produces a relatively
large follow-up p-value (see Equation (2)), which cannot
overcome the penalty of the trials factor. In fact, this situation
matches our second numerical example in Section 2.3. Hence,
when comparing these GW170817 false-alarm rates, one has to
bear in mind that the LIGO-Hanford–only rate is an extrapola-
tion from months of data, while the Hanford–Livingston–Virgo
rate is an upper limit based on just 5 hr of data.
In both configurations, however, GW170817 is reported with

a false-alarm rate well beyond what is required to issue a public
alert on the GCN and consider the candidate worthy of follow-
up observations.

3.4. Latency

We measure the latency of the analysis by repeatedly
replaying a week of O2 data and analyzing them with PyCBC
Live, thus simulating an actual observing run with a realistic
computing configuration. The test amounts to a total wall-clock

Figure 3. Sensitivity of PyCBC Live with the O3 configuration for a
population of simulated BNS signals added to simulated Gaussian noise at
design sensitivity. The HL configuration corresponds to a detector network
formed by LIGO-Hanford and LIGO-Livingston only. The HLV configuration
includes Virgo. The top panel shows the relative search volume of the HLV
and HL configurations. The bottom panel shows sensitivity distances for the
multidetector coincidence in the HL and HLV configurations (solid lines) and
the single-detector triggering (dashed lines). The shaded bands represent the 1σ
uncertainties from the Monte Carlo sampling.

Figure 4. Comparison of PyCBC Live’s sensitivity to BNS mergers using an
O2-like (HL) and the final O3 (HLV) search configurations. The simulated
signals are added to real data from Advanced LIGO and Advanced Virgo’s
third run. The shaded bands represent the 1σ uncertainties from the Monte
Carlo sampling.
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time of approximately 50 days. For each candidate uploaded to
GraceDB, we calculate the latency as the difference between
the upload time recorded by GraceDB and the merger time
estimated by PyCBC Live. This quantity includes the
processing time in PyCBC Live, as well as the latency due to
the generation and distribution of the replayed O2 data. We
expect the former to be the dominant contribution.

The cumulative latency distribution is shown in Figure 5.
Most candidates are available in GraceDB within a few tens of
seconds after coalescence, as expected. The tail extending to
≈100 s is due to occasional and temporary issues with the
computing infrastructure running the test, typically starvation
of the available computational resources or interruptions of
network connections. A similar tail is also found in a typical
production analysis.

3.5. Astrophysical Classification

In order to test the chirp mass–based classification of
Section 2.5, we used the same population of simulated signals
described in Section 3.2, with an additional constraint. Given
the 1Me<m< 45Me limits imposed on the component
masses, the results for the asymmetric high-mass NSBH
systems outside these limits are not representative of the
accuracy of the method; here we restrict the black hole
components of simulated NSBH events to be below 50Me. For
each simulation recovered by the search, we find the estimated
source probabilities P P P P, , ,BNS NSBH MG BBH{ }. We then con-
sider the figures of merit shown in Figure 6.

The first figure of merit is the distribution of probabilities for
correct classification, plotted for each category as determined
by the true source masses. The great majority of BNS and BBH
simulations are assigned high or very high correct class
probabilities, as expected given the positions of the target
classes in the m1–m2 plane. No NSBH simulations are assigned
very high probabilities of NSBH origin, since their contours of
constant chirp mass always overlap other source target regions
to some extent, but the majority are assigned PNSBH> 0.5. In
contrast, the majority of MassGap simulations are assigned

PMG 0.5; again, this is expected due to the narrow extent of
the MassGap region and its very high overlap with other source
target regions.
The second figure of merit is the correctness of the highest

estimated probability for each simulation, i.e., the most likely
source category as assigned by our method. Comparing this
highest probability to the true (target) classification determined
by the simulated source masses, we construct the confusion
matrix shown in the right panel of Figure 6. Simulations of all
source types except MassGap are assigned the most likely
classifications that are correct in a large majority of cases;
MassGap simulations are, however, preferentially assigned as
most likely to be NSBHs. Given the very high uncertainties on
the rates and masses of actual NSBH and MassGap sources
(e.g., Abbott et al. 2020c), this bias can be argued to be
acceptable and will also yield a conservative outcome, as the
method will err on the side of recommending EM follow-up for
signals consistent with an NSBH origin even if the true source
class is MassGap.

4. Discussion

We described how the PyCBC Live analysis was improved
with respect to the O2 configuration between the end of O2 and
the end of O3. The most significant changes are the inclusion of
more than two detectors in the significance calculation, which
allowed Virgo to play a prominent role in the generation of O3
candidates, and the ability to assign significances based on data
from a single detector. The single-detector significance
calculation and source classification methods were not used
during O3 due to its premature end, but they are ready to be
utilized in future runs. We evaluated these improvements in
multiple ways: first, by recovering simulated signals added into
ideal detector noise; then, by recovering simulated signals
added into real O3 data; and finally, by reanalyzing a segment
of O2 data containing the GW170814 and GW170817 events
and discussing how these events are detected by the new
analysis. The improvements we introduced do not impact the
latency.
During O3, 56 alerts were issued on the GCN without

retraction. PyCBC Live contributed to 34 of them. Only one of
the 24 retracted alerts was produced by PyCBC Live.
The next observing run will include a brand new detector,

KAGRA. Unless Virgo and KAGRA reach a sensitivity
comparable to LIGO, the resulting larger detector network
will probably warrant further development of the multidetector
significance calculation in order to limit the impact of trials
factors, as discussed earlier.
In preparation for the next observing run, we plan to

investigate further improvements in the handling of instru-
mental transients. In particular, the inpainting method presented
by Zackay et al. (2019b) could potentially broaden the
applicability of gating to a wider class of glitches, if it is
compatible with the latency requirements of PyCBC Live. We
also plan to study the impact of applying data-quality flags to
the online analysis and characterize the effect of the S/N
maximization implemented during O3.
Our proposed rapid source classification method could also

be extended to consider template parameters other than the
chirp mass, although these are subject to higher statistical and
systematic errors (e.g., Biscoveanu et al. 2019). A possible
implementation using a larger set of triggers associated with a

Figure 5. Cumulative distribution of PyCBC Live’s latency for a period of
replayed O2 data analyzed using the O3 configuration. The latency is defined
here as the time elapsed between the estimated coalescence time of a candidate
and the time of creation of the corresponding GraceDB event. The shaded
region is the range of expected latency due to PyCBC Live alone, as described
in Nitz et al. (2018).
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given astrophysical event to quantify parameter errors was
shown in Stachie et al. (2021).

Finally, as the latency of the entire LIGO–Virgo public-alert
system keeps being reduced, further development is also under-
way to reduce the latency of PyCBC Live. In particular, the so-
called “early-warning” detection of BNS mergers (Cannon et al.
2012; Sachdev et al. 2020; Magee et al. 2021) has been
implemented in PyCBC Live as well (Nitz et al. 2020c) and will
be optimized and characterized in a future study.
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