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The Hippocampus Maps Concept Space, Not Feature Space
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The hippocampal formation encodes maps of space and a key question in neuroscience is whether its spatial coding principles
also provide a universal metric for the organization of nonspatial, conceptual information. Previous work demonstrated direc-
tional coding during navigation through a continuous stimulus feature space as well as mapping of distances in a feature
space that was relevant for concept learning. Here we provide the first unambiguous evidence for a hippocampal representa-
tion of the actual concept space, by showing that the hippocampal distance signal selectively reflects the mapping of specifi-
cally conceptually relevant rather than of all feature dimensions. During fMRI scanning of 32 human participants
(21 females), we presented everyday objects, which had beforehand been associated with specific values on three continuous
feature dimensions. Crucially, only two dimensions were relevant to prior concept learning. We find that hippocampal
responses to the objects reflect their relative distances in a space defined along conceptually relevant dimensions compared
with distances in a space defined along all feature dimensions. These findings suggest that the hippocampus supports knowl-
edge acquisition by dynamically encoding information in a space spanned along dimensions that are relevant in relation to
define concepts.
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Significance Statement

How are neural representations of conceptual knowledge organized, such that humans are able to infer never experienced
relations or categorize new exemplars? Map-like representations as supported by the hippocampal formation to encode physi-
cal space during navigation have been suggested as a suitable format. Here we provide the first evidence for a hippocampal
representation of a conceptual space compared with a general feature-based space.

Introduction
The role of the hippocampus in concept learning is subject to
debate (Knowlton and Squire, 1993; Zaki, 2004; Kumaran, 2012).
Concepts are organizing structures that define how contents are
related to each other and can be used to transfer meaning to
novel input (Smith and Medin, 1981; Kemp, 2012). Their for-
mation thus inherently depends on generalization over, and

integration of experiences. Thus, a role of the hippocampus in
generalization seemed considerable because of its roles in bind-
ing elements into spatial and episodic context (Davachi et al.,
2003; Davachi, 2006; Ranganath, 2010; Komorowski et al., 2013)
as well as integration of information over episodes (Davis et al.,
2012; Collin et al., 2015; Milivojevic and Doeller, 2013;
Milivojevic et al., 2015; Schlichting et al., 2015; beyond the epi-
sodic and spatial domain: Mack et al., 2016; Theves et al., 2019).
Specifically, previous studies reported an involvement of the hip-
pocampus in categorization (Nomura et al., 2007; Zeithamova et
al., 2008; Davis et al., 2012; Mack et al., 2013; Seger et al., 2015;
Kim et al., 2018). How specific this involvement is with regard to
the conceptual aspect of the task and how the hippocampus, as
opposed to other brain regions, supports the acquisition of con-
ceptual knowledge remained unclear. A recent proposal is that
map-like organization of new information by the hippocampal–
entorhinal system similar to mental representations of space
(O’Keefe and Dostrovsky, 1971; Hafting et al., 2005; Morgan et al.,
2011; Howard et al., 2014; Horner et al., 2016), might be specifically
suited to explain inference of not directly experienced relations (c.f.
inferring shortcuts during navigation) (Behrens et al., 2018), as well
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as the transfer of meaning to novel information via localization of
new input in the conceptual map. However, spatial coding prin-
ciples have yet never been unambiguously linked to concept
learning. So far, evidence for spatial coding in nonspatial
domains has been limited to nonspatial feature dimensions with-
out a direct link to conceptual relevance: Electrophysiological
recordings in rodents demonstrated the involvement of place
and grid cells in coding sound frequency during an auditory dis-
crimination task (Aronov et al., 2017), and human fMRI studies
showed both a directional, grid cell-like signal in entorhinal cor-
tex during active navigation through a stimulus feature space
(Constantinescu et al., 2016), as well as a hippocampal represen-
tation of distances in multidimensional feature space that was
relevant to concept learning (Theves et al., 2019). Specifically, in
the latter study, participants acquired a concept of two stimulus
categories, which was defined in two-dimensional space along
the feature dimensions of the stimuli, via a categorization task.
Hippocampal representations of distances in concept space were
measured via responses to passively viewed objects that had
before been associated with specific stimuli (i.e., positions in con-
cept space). As the associated stimuli only included features that
defined the space of the concept, the important question remained
whether the hippocampus maps the objects according to all fea-
ture dimensions of their associated stimuli (feature space map-
ping) or specifically for the purpose of concept learning (concept
space mapping). Here we aim to distinguish between these two
accounts by orthogonally manipulating conceptual and feature-
based relationships between objects during learning. In sum, we
show that the hippocampal responses to objects reflect the two-
dimensional distances between objects that emerge from their
positions in concept space, compared with distances that emerge
in a space including an integration of the conceptually irrelevant
feature dimension.

Materials and Methods
Experimental design and subject details
Thirty-two healthy students (mean age: 236 3 years; 21 females) from
the Radboud University campus participated in this study. All partici-
pants were right handed and had normal or corrected-to-normal vision.
All participants gave written informed consent and were financially
compensated for participation. The study was approved by the local
ethics committee (CMOArnhem-Nijmegen, The Netherlands).

Design
In a learning phase, participants acquired a novel concept of two abstract
stimulus categories which was defined within a two-dimensional space
along two of three stimulus feature dimensions with the diagonal
through the two-dimensional space serving as category boundary (Fig.
1). The third stimulus feature was irrelevant to categorization and did
thus not contribute to the concept space. Participants further learned to
associate six everyday objects with six specific abstract stimuli. Here,
associated abstract stimuli had to be memorized precisely in all three fea-
ture dimensions. Now critically, before and immediately after the learn-
ing phase, the everyday objects were presented in the MRI scanner to
test whether hippocampal responses to the objects correspond specifi-
cally to their two-dimensional conceptual distances rather than to their
three-dimensional distances emerging in the full feature space. To distin-
guish between concept- and feature-based mapping, objects were posi-
tioned such that their two- and three-dimensional distance relations
were uncorrelated (Pearson’s r=0.1).

Stimuli
The experiment involved the following two sets of stimuli: everyday
objects (generated with the video game Sims; www.thesims3.com) and

abstract stimuli (generated via MATLAB 2014a; Fig. 1B, associations).
The abstract stimuli varied along the following three stimulus feature
dimensions: opacity, frequency of dots, and frequency of stripes. On
each dimension, abstract stimuli could vary along 10 steps, resulting
in a total stimulus space of 1000 feature combinations. Step sizes on
each of the three feature dimensions were evaluated psychophysically
before the experiment to assure comparable discriminability of all
three dimensions.

Procedures
The study took place on 1 d. A learning phase in which the conceptual
context of six objects was acquired over the course of four tasks (details
below), was preceded and followed by object-viewing blocks (OVB) in
the scanner (Fig. 1). During the OVB, participants performed a target–
object detection task (orthogonal to any conceptual content) to assure
attention to the stimuli.

Object viewing block
Images of seven objects, of which six where used in the learning phase
and one served as a catch-object, were presented in a pseudorandomized
sequence with a stimulus duration of 1 s and interstimulus intervals of
3.5, 5, and 6.5 s (33.3% each). Participants were instructed to indicate for
each object whether it is a trampoline (i.e., a catch object) or not, using a
button box (buttons counterbalanced across participants). The task
included 246 trials (236 for participant 10) with a catch trial rate of 12%.
Each object was presented equally often.

The learning phase comprised four tasks in the following order: asso-
ciative learning, 3D reconstruction, categorization, and navigating con-
cept space, all before the post-learning OVB. The post-learning OVB
was followed by a final 3D recall test (Fig. 1).

Associative learning
Associations between the six objects presented in the OVB and specific
abstract stimuli had to be learned in alternating encoding and test blocks.
The assignment of objects to abstract stimuli was randomized across
participants, such that measuring hippocampal responses to the objects
during scanning enabled us to read out their conceptual distances rather
than visual or semantic similarities. In the encoding blocks, objects were
presented next to their corresponding abstract stimulus and participants
were instructed to memorize the presented pairs. Participants were told
that they will need to memorize the associations in all their features
throughout the entire experiment. The presentation order of the six pairs
was pseudorandomized with each object/stimulus being equally often
presented on the left/right position of the screen. Pairs were presented
for 2 s on the screen and each pair was shown three times per encoding
block. Each encoding block was followed by a test block in which the
object is presented in the center of the screen along with the six abstract
stimuli displayed (in a randomized order) below the object. Every associ-
ation was tested once in blocks 1–6 and twice from block 7 onward in a
randomized order. Participants selected the abstract stimulus associated
with the presented object via key press (1–6) and received feedback
(500ms) on whether the choice was correct. Participants underwent at
least eight encoding and test blocks (i.e., 60 test trials), and beyond that
were trained until exceeding 90% accuracy over all previous test trials.
An upper limit of 168 test trials was set because of the limited time
between the prescheduled fMRI sessions.

3D reconstruction
Encoding and recognition of associations was followed by a free recall.
Participants were instructed to precisely recall the abstract stimulus asso-
ciated with a presented object, and subsequently adjust a start stimulus
in all three feature dimensions until it matches the associated stimulus.
A trial could only be completed by adjusting all three dimensions cor-
rectly. Each of the six abstract stimuli had to be reconstructed once.
Dimensions were upregulated and downregulated using six adjacent
keys.
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Categorization
Participants were instructed to categorize abstract stimuli (see Stimuli)
into two categories (A and B symbols), based on the relation of the opac-
ity and dot frequency of a stimulus, whereas stripe frequency was unpre-
dictive of category membership. Categories were, unbeknown to the
participant, delineated via the diagonal (Fig. 1, dashed line) through a
two-dimensional space spanned by the two relevant feature dimensions
(2D concept space). As training stimuli, we selected for each participant
a subset of 720 stimuli from the total stimulus space (1000 possible 3D
feature combinations), including all possible off-diagonal combinations
of opacity and dot frequency with randomly selected stripe frequency
values. Stimuli were presented in a randomized sequence. In each trial,
one abstract stimulus was presented in the center of the screen, and its
category had to be selected via key press. Participants were given a maxi-
mum of 6 s to respond, and each response was followed by feedback
(500ms). Categorization training included at least 300 trials and after-
ward stopped when accuracy exceeded 85% across all previous trials or

the maximal number of 720 trials (set because of time constraints
between fMRI sessions) was reached. Instructions did not include any
indications of a spatial rule.

We did not define an absolute performance criterion for “associative
learning” and “categorization” since we expected high across-subject
variance in both tasks (based on previous and pilot work), and time was
constrained given the learning phase taking place in between two pre-
scheduled fMRI sessions. We also did not opt for a fixed number of trials
to avoid unnecessary training in one task when a participant would have
needed more trials to achieve high performance in the other task.
Instead, with the present combination of trial limit and performance cri-
terion, we intended to optimize the division of training time between
these two tasks on an individual-subject level. Importantly, the term “cri-
terion” does not refer to the exclusion criterion (this instead was based
on the actual chance level (16.6% in associative learning, 50% in
categorization).

Figure 1. Experimental design. A, Learning (for details, see B) was framed by OVBs inside the scanner to measure emerging neural representations (for details, see C). A final 3D recall test
probed memory across feature dimensions (for details, see D). B, Between OVBs, the following four learning tasks were completed (order: left to right): (1) participants learned six associations
between objects and three-dimensional stimuli via encoding and test blocks, and (2) freely recalled them by reconstructing the 3D stimulus associated with a given object until correct; (3) sub-
sequently, they acquired the concept of two stimulus categories via feedback-based categorization along the diagonal in two-dimensional concept space; and (4) navigating concept space
required the 2D reconstruction (third dimension randomized) of an object-associated stimulus of a certain category. C, In the OVBs, the six objects plus an additional catch object were presented
pseudorandomly with a stimulus duration of 1 s and interstimulus intervals of 3.5, 5, and 6.5 s while participants performed a catch object detection task. D, During postexperimental assess-
ment of memory across feature dimensions, participants had to reconstruct the 3D stimulus associated with a given object and confirm their choice.
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Navigating 2D concept space
In each trial, an abstract stimulus (selected from the total pool of 1000
possible 3D combinations) was presented and participants were
instructed to “collect” an object of a certain category (i.e., “Collect an A-
object”) by editing the two feature dimensions that were relevant for
category membership (using four adjacent keys). Thus, they had to com-
bine their knowledge of the specific object–stimulus pairs with categori-
cal rule knowledge. A trial was completed when they navigated to one of
the object “locations” that met the category-specific ratio of opacity and
dot frequency and the collected object appeared together with its associ-
ated 3D stimulus on the screen. The third, conceptually irrelevant
dimension had not to be adjusted by the participants. Instead, it was
randomized across trials and remained constant within a trial. Once a
participant correctly adjusted opacity and dot frequency to one of the
required object locations, also the third feature switched to the respective
value, serving as a reminder of the 3D associations relevant in subse-
quent tasks. There were 30 different start positions: 15 in category A, 15
in category B. Targets (Collect A-object or Collect B-object) were
assigned pseudorandomly to the start positions, such that in half of the
trials participants had to change the category field, while in the other
half they did not. The task comprised 60 trials. Participants were
instructed to collect each of the six objects at least seven times. The ra-
tionale behind the task was to familiarize participants with the concep-
tual context of the objects. Importantly, no distance relationships
between the objects were introduced through this process, because par-
ticipants did not navigate between the locations of the objects but started
from random positions in the feature space.

3D recall test (subsequent to postlearning OVB)
We wanted to assure, that adjusting only the conceptually relevant
dimensions during navigation did not result in a better memory of these
two over the third feature of the six object-associated stimuli. Thus, on
being cued by an object, participants had to adjust the three features of a
start stimulus to match the stimulus associated with the object and even-
tually confirm their choice to enter the next trial. Each abstract stimulus
had to be constructed four times. This allowed us to compare error rates
in recall accuracy of the three feature dimensions. One participant did
not conduct this task.

All tasks were conducted using Presentation 16.4 (NBS), except the
3D reconstruction, Navigation, and 3D recall tasks, which were pro-
grammed using Anaconda 2.7 (Python).

MRI methods
All images were acquired using a 3T PrismaFit MR scanner equipped
with a 32-channel head coil (Siemens). A 4D multiband sequence
(84 slices; multislice mode; interleaved; voxel size, 2 mm isotropic;
TR= 1500ms; TE= 28ms; flip angle = 65°, acceleration factor PE= 2;
FOV=210 mm) was used for functional image acquisition. In addition,
a structural T1 sequence (MPRAGE, 1 mm isotropic; TE= 3.03ms;
TR= 2300ms; flip angle = 8°; FOV=256� 256� 192 mm) was acquired.
Separate magnitude and phase images were acquired to create a gradient
field map (multiband sequence with voxel size of 3.5� 3.5� 2.0 mm;
TR= 1020ms; TE= 10ms; flip angle = 45°).

Preprocessing of functional images was performed with FSL 5.0.9.
Motion correction and high-pass filtering at 100 s was applied to the
functional datasets. The following exclusion criteria for excessive motion
were applied: mean absolute displacement .2 mm; or peak in absolute
displacement .4 mm; mean 6 SD of absolute displacement of the ana-
lyzed sample: 0.4276 0.205 mm (before) and 0.4386 0.199 mm (after).
The FSL brain extraction toolbox was used to create a skull-stripped
structural image. The structural scans were downsampled to 2 mm
(matching the functional image resolution) and segmented into gray
matter, white matter (WM), and CSF. Spatial smoothing (Gaussian) was
performed at 3 mm. Mean intensity values at each time point were
extracted for WM and used as nuisance regressors in the general linear
model (GLM) analyses (see below). Structural images were registered to
the MNI template. For each functional dataset (pre-learning, post-
learning), the preprocessed mean image was registered to the individual

structural scan and the MNI template. The coregistration parameters of
the mean functional image were applied to all functional volumes.

Statistical analyses
fMRI data analysis: first level GLMs
All GLMs (GLM 1–2) included regressors accounting for catch trials and
button presses as well as six motion parameters as covariates.

2D versus 3D:Distances between objects in the two-dimensional con-
cept and three-dimensional feature space were modeled in the same
GLM (GLM 1), using a stimulus onset regressor indicating the onset and
duration of an object on the screen and two regressors being parametri-
cally weighted by the two-dimensional and three-dimensional distances
between an object to the preceding object, respectively. Distances
between objects in either space were calculated given the feature-based
coordinates of the associated stimuli on the respectively relevant dimen-
sions. Smaller distances were expected to result in lower signals, reflect-
ing fMRI adaptation. We calculated the contrast between the two- and
three-dimensional distance regressors (2D vs 3D contrast).

2D versus 2D(irrelevant) dimensionality control: If a potential differ-
ence in the 2D versus 3D contrast (GLM 1) would be merely because of
a difference in dimensionality (i.e., a coding preference of the hippocam-
pus for two dimensions) rather than because of a difference in concep-
tual relevance, two-dimensional distances in concept space (2Dxy)
should not explain the hippocampal signal better than two-dimensional
distances derived from a combination with the conceptually irrelevant z-
axis (2Dxz, 2Dyz). Thus, we ran a GLM (GLM 2) with all three two-
dimensional distance predictions as regressors (2Dxy, 2Dxz, 2Dyz) and
contrasted the 2Dxy regressor against both alternative 2D regressors
(2Dxz, 2Dyz). Resulting b -maps were transformed to MNI space to
extract the average b value of each ROI for subsequent analysis.

fMRI data analysis: group-level analyses
First-level contrasts of the b estimates of the distance regressors were
each averaged across all voxels within an ROI for each participant, and
the distribution of these values was tested for significance (at a= 5%)
using one-sample permutation t tests (Groppe, 2010) in which 1000 ran-
dom permutations were computed to estimate the distribution of the
null hypothesis. Correction for multiple comparisons for the number of
spatial models tested [main analysis (GLM1): models 2D, 3D; post hoc
dimensionality control analysis (GLM 2): models 2Dxy, 2Dxz, 2Dyz]
were performed using the t-max method (Blair and Karniski, 1993).
Because of clear directed predictions on the relations between fMRI ad-
aptation and distance (e.g., decreasing distance was supposed to be
reflected in a higher fMRI adaptation, following the study by Theves et
al., 2019), one-sided tests were applied. To test for effects on the whole-
brain level, individual contrasts of the 2D versus 3D comparison were
subjected to the second-level analysis. Cluster extend-based thresholding
(z= 3.1, p=0.05) was performed to correct for multiple comparisons.

ROI definition
For the hippocampal ROI mask, we thresholded probability maps from
the Harvard-Oxford structural cortical atlas of the hippocampus at 50%
probability.

Results
Behavior
Object detection task (fMRI session)
The six objects that were associated with abstract stimuli during
learning plus an additional catch object were presented multiple
times in a randomized sequence that was identical between the
prelearning block and the postlearning block. Participants indi-
cated via button press whether or not a presented object was the
catch object. The task was performed with high accuracy (per-
centage of correct responses: pre-learning (mean 6 SD):
98.286 3016%; post-learning: 98,0186 1991%), indicating that
participants paid attention to the objects.

Theves et al. · The Hippocampus Maps Conceptual Space J. Neurosci., September 16, 2020 • 40(38):7318–7325 • 7321



Learning tasks
Associative learning. Associations between objects and

abstract stimuli were studied in alternating encoding and test
blocks. Participants performed between 60 and, maximally, 168
test trials (mean 6 SD: 137.3136 40.689 trials), and within that
range training was terminated on reaching accurate performance
in 90% of all previous trials (see rationale for criterion in
Procedures). The average final accuracy level was 87.315 6
7.993% across all participants. Fifteen participants who did not
fully reach the criterion within the trial limit were just short of
90% accuracy in the final trial (82.5376 9.710%). Thus, all par-
ticipants exceeded chance level (i.e., 16.6%) by far.

3D reconstruction. The six object-to-abstract stimulus associ-
ations were each recalled once in a 3D reconstruction task, in
which on an object cue, the associated stimulus had to be recon-
structed by adjusting all three feature dimensions to the correct
value. Each trial ended on correct completion. An ANOVA com-
paring deviation of “different coordinates visited” from “required
steps” across dimensions (F=11.8, p, 0.0001; post hoc paired t
tests: x vs y: p= 0.013, t(31) = 2.739; x vs z: p= 0.001, t(31) = 4.391;
y vs z: p=0.115, t(31) = 1.608) shows that editing dimension z
was accomplished with fewer unnecessary edits compared with
dimension x and equally well relative to dimension y, indicating
that the later conceptually irrelevant dimension z was initially
encoded. The ultimate knowledge of all three dimensions at the
end of learning and critical time of scanning is, however, appro-
priately captured by the final 3D recall test.

Categorization. Participants learned to categorize abstract
stimuli within at least 300, but maximally 720 feedback-based tri-
als (542.9066 205.428 trials). Within this range, training stopped
when 85% of all previous trials had been classified correctly.
Across all participants, the average accuracy was 82.8926 4.639.
Sixteen participants narrowly missed 85% accuracy in their final
trial (79.1586 3.488%). Thus, all participants performed consid-
erably above chance-level (i.e., 50%).

Navigating 2D concept space. Categorical knowledge as well
as knowledge about the six object associations had to be com-
bined in a subsequent “navigation in concept space.” Here each
trial required collecting an object of a certain category by adjust-
ing the two conceptually relevant feature dimensions until a cate-
gory-specific object location was reached. All objects were on
average collected at least seven times.

3D recall test (postscanning). Subsequent to the final scanning
session, recall accuracy of all three dimensions of the abstract
stimuli was tested in a 3D reconstruction task that required par-
ticipants to confirm their adjustments as soon as they considered
them correct. Recall errors [deviation of reconstructed value
from actual coordinate; opacity (10): 0.4406 0.472; frequency
dots (y): 0.4276 0.474; frequency stripes (z): 0.7016 0.725;
n= 31] did not differ across dimensions (F(2,92) = 2.44,
p=0.0932; n= 31; post hoc pairwise tests between relevant and
irrelevant dimensions: x vs z: t(30) = �1.710, p = 0.109; y vs
z: t(30) =�1.792, p= 0.091).

fMRI
Hippocampal signal reflects distances in a 2D concept space, not
in a 3D feature space
We hypothesized that the hippocampus supports the formation
of conceptual knowledge by organizing novel information in a
space defined along conceptually relevant dimensions. Following
the study by Theves et al. (2019), we expected distances between
objects in an abstract space defined along stimulus feature
dimensions to be reflected in fMRI adaptation in which the

distance to the preceding object would scale with the strength of
the hippocampal response (smaller distances relate to higher
similarity of the neural response pattern and thus in higher adap-
tation). The representation of feature-based distances reported in
the study by Theves et al. (2019) was shown to be specific to the
hippocampus (no effects in whole brain or in ROI analyses on
control regions: lateral occipital cortex, postcentral gyrus, ento-
rhinal cortex). Here, we aim to further examine this hippocampal
distance effect by probing whether hippocampal responses to the
objects are explained specifically by distances between objects in
a concept space (defined only along the two conceptually rele-
vant stimulus feature dimensions) or by distance predictions
derived from a space defined along all three stimulus dimensions
in feature space. We found that hippocampal adaptation signifi-
cantly scaled with distances between objects in the two-dimen-
sional concept space, but not with distances derived from the full
three-dimensional feature space (2D: t(31) = 3.090, p= 0.003; 3D:
t(31) = �1.434, p=0.916; corrected for multiple comparisons; see
Materials and Methods). The two-dimensional conceptual dis-
tances also explain the hippocampal response significantly better
than the three-dimensional feature-based distances (contrast 2D
vs 3D: t(31) = 3.163, p=0.001; Fig. 2B). We did not observe signif-
icant 2D versus 3D effects in other brain regions (whole-brain
cluster-extend-based thresholding, z= 3.1, p=0.05).

The 2D concept versus 3D feature space contrast does not reflect
differences in dimensionality
If the better fit of the hippocampal response by the two-dimen-
sional (vs the three-dimensional) distances would merely reflect
a difference in dimensionality (i.e., a coding preference of the
hippocampus for two dimensions) rather than a difference in
conceptual relevance between both spaces, two-dimensional dis-
tances in concept space (xy) should not explain the hippocampal
signal better than two-dimensional distance predictions derived
from a combination with the conceptually irrelevant feature
dimension [i.e., the opacity–dot frequency (xz) plane or stripe
frequency–dot frequency (yz) plane]. Thus, we constructed a
GLM with 2Dxy (concept space), 2Dxz, and 2Dyz as regressors.
Only the 2D distance in concept space, but none of the alterna-
tive 2D models integrating z, predicts the hippocampal signal
[2D(xy): t(31) = 2.678, p= 0.010; 2D(xz): t(31) = 0.268, p= 0.497;
2D(yz): t(31) =1.569, p=0.847; corrected for multiple compari-
sons]. The 2Dxy (concept space) also reveals a significantly
stronger adaptation than the 2D controls (2Dxy vs 2Dxz: t(31) =
2.439 p = 0.015; 2Dxy vs 2Dyz: t(31) = 2.786, p= 0.004; corrected
for multiple comparisons; Fig. 2C).

Discussion
For the first time, we demonstrate a direct link between concept
learning and hippocampal representations of abstract spaces
defined by nonspatial dimensions. While the hippocampus had
before been shown to encode distances in a multidimensional
feature space as a result of concept learning (Theves et al., 2019),
we here intended to discriminate whether this representation
reflects the complete feature space or specifically the space
embedding the concept. In our design, object relationships could
be described in a two-dimensional concept space defined along
only conceptually relevant stimulus dimensions and in a three-
dimensional feature space defined along all stimulus dimensions.
We found that hippocampal representations of objects encoun-
tered during prior concept learning reflected their concept- and
not their feature-based distances. This effect could not be attrib-
uted to the difference in dimensionality between concept and
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feature space predictions and a potential coding preference of
the hippocampus for two dimensions, as the two-dimensional
distances in concept space also explained the hippocampal signal
significantly better than alternative two-dimensional distances
derived from combinations with the conceptually irrelevant fea-
ture dimension. Thus, the hippocampal signal reflects only a rep-
resentation of distances in a space spanned by the dimensions
that were relevant in relation to each other to define the concept,
while the mnemonically, but not conceptually, relevant third
dimension was not integrated in a multidimensional representa-
tion. In sum, we show that the hippocampus organizes new in-
formation in a map-like representation in support of concept
learning.

First, this suggests that during concept learning, the hippo-
campus actively organizes new information in a multidimen-
sional space according to conceptually relevant dimensions, and
not according to any perceptually present information. The
notion that hippocampal spatial codes might not involve inci-
dental sensory information is also in accordance with recent
investigations in rodents (Aronov et al., 2017). In the context of

the current study, it should further be noted that the better fit of
concept- over feature-based distances to the hippocampal signal
also speaks against the distance representation being a secondary
effect, reflecting the similarity of the sensory input to the hippo-
campus during potential pattern completion to the associated
three-dimensional stimuli.

The present effect further distinguishes between conceptual
and general task relevance: all three feature dimensions are task
relevant with respect to the mnemonic component of the learn-
ing phase. Specifically, concept learning (i.e., categorization)
requires setting two feature dimensions in relation to each other,
making a map-like representation that integrates both dimen-
sions advantageous. Thus, regarding the question of whether
spatial codes in the hippocampus are domain general, it is con-
ceivable that the hippocampus organizes information along
arbitrary dimensions (spatial or abstract) into map-like represen-
tations as long as the dimensions are relevant in relation to each
other (Eichenbaum, 2004; navigation in or representation of 2D
spaces; Constantinescu et al., 2016; Bao et al., 2019; Theves et al.,
2019). Regarding the role of the hippocampus in concept

Figure 2. Hippocampal distance code for concept space revealed by fMRI adaptation. A, Schematic of two-dimensional object positions and distances between objects in concept space (left)
and three-dimensional object positions and distances between objects in feature space (right). B, Average of contrast of parameter estimates (cope) of the 2D versus 3D distance adaptation
regressors in all hippocampal voxels. Hippocampal adaptation decreases with increasing two-dimensional conceptual distance between successively presented objects significantly more than
with three-dimensional feature-based distance between objects. C, Control for complexity difference between two- and three-dimensional representation: two-dimensional distances from con-
ceptual space (xy) were compared with two-dimensional distances derived from a combination of the conceptually relevant x-axis (left) and y-axis (right) with the irrelevant z-axis. If the better
fit of 2D(xy) distances versus 3D distances (B) reflects a preference of the hippocampus for 2D codes, 2D(xy) should not fit better than 2D(xz) or 2D(yz). Bars reflect the mean. Central marks of
the boxes indicate the median, the bottom and top edges of the boxes indicate the 25th and 75th percentiles, whiskers extend to extreme data points not considered outliers; outliers are plot-
ted as red crosses. Asterisk (*) indicates significance at p, 0.05.
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learning in particular, hippocampal spatial codes can be consid-
ered a candidate mechanism that is specifically suited to address
the typically relational nature of conceptual knowledge (i.e.,
knowing which features and relations between them distinguish
different categories).

Despite evidence for three-dimensional spatial coding in the
hippocampus (Yartsev and Ulanovsky, 2013; Kim et al., 2017;
Porter et al., 2018; Wohlgemuth et al., 2018), it is currently
unknown whether the hippocampus would map a 3D concept
space if three dimensions were conceptually relevant. Accordingly,
one might speculate on whether a potential hippocampal prefer-
ence for two dimensions favors the 2D over the 3D model.
Critically, if this would be the only reason for the better fit of the
two-dimensional distances to the hippocampal signal, while there
are no differences regarding the integration of feature dimensions
in a combined representation, we would expect the two-dimen-
sional distances derived from combinations with the conceptually
irrelevant dimension to be encoded in the same way as the two-
dimensional conceptual distances and thus to likewise fit the hip-
pocampal response. We ruled out this alternative by showing that
two-dimensional distances in concept space (2Dxy) explain hippo-
campal responses significantly better than two-dimensional dis-
tance predictions that were derived by combinations with the
irrelevant dimension [opacity–stripe frequency plane (2Dxz) or
dot frequency–stripe frequency plane (2Dyz)].

Further, we ensured that the better fit of the two-dimensional
conceptual distances cannot be attributed to weak memory of
the conceptually irrelevant dimension. It should be noted that
initial encoding of 3D associations took place before the con-
ceptual relevance of two dimensions was introduced via the
categorization task and should thus not be affected by this
manipulation. To test memory as a result of all learning tasks at
the time of scanning, participants were required to reconstruct
the stimuli in all three feature dimensions after the postlearning
fMRI session. Importantly, this 3D recall test revealed very high
recall performance in all three dimensions (i.e., the average error
below 1 step) and no difference in recall error across dimensions,
ensuring that the third dimension was well encoded, even to
degrees that are statistically equal to the conceptual dimensions.
Although, differences between dimensions were not significant,
the recall error for the conceptually irrelevant dimension was
marginally higher. We consider this marginal difference unlikely
to account for our pattern of results: the order of distance rela-
tions across object pairs in 3D (or alternatively 2Dxz/yz) feature
space, would not be reversed by slight metric deviations on
dimension z, leaving the respective feature-based distances a rela-
tively appropriate prediction. Thus, if the only difference between
the two conceptually relevant dimensions (x, y) and the third
dimension would be a slight difference in memory precision,
2Dxy distances should at most fit the hippocampal signal mar-
ginally better than distances in 3D (or alternatively, 2Dxz/yz); but
one of these alternative models should have some explanatory
power for the hippocampal signal on its own. Instead, we demon-
strate that none of these alternative distance regressors that
entails an integration of dimension z can explain the hippocam-
pal signal. Together, these results show that only the two dimen-
sions that were relevant in relation (i.e., defining a concept) were
integrated in a combined map-like representation, while the
mnemonically, but not conceptually, relevant dimension was
not. This suggests that the hippocampus can carve out (and rep-
resent) conceptual information from the totality of features, de-
spite encoding specific exemplars in all detail.

As such, the present results help to elucidate the role of the
hippocampus in concept learning. Previous studies suggested a
role of the hippocampus in categorization (Nomura et al., 2007;
Zeithamova et al., 2008; Davis et al., 2012; Mack et al., 2013;

Seger et al., 2015; Kim et al., 2018). How specific this involve-
ment is with regard to the conceptual aspect of the task and how
the hippocampus, as opposed to other brain regions, supports
the acquisition of conceptual knowledge remained unclear. A
recent proposal is that the spatial coding properties of the hippo-
campus and entorhinal cortex might be specifically suited to cre-
ate representations that enable processes critical for the flexible
use of knowledge such as inference and transfer (Behrens et al.,
2018). The first experimental evidence demonstrated spatial cod-
ing principles in other cognitive domains (Tavares et al., 2015;
Constantinescu et al., 2016; Aronov et al., 2017; Nau et al., 2018;
Staudigl et al., 2018; Bao et al., 2019; Theves et al., 2019), and
here we now link a spatial format of representation directly to
concept learning. It has been proposed (Behrens et al., 2018) that
while entorhinal grid cells might encode the structure of an envi-
ronment (Constantinescu et al., 2016), the hippocampus encodes
conjunctions of specific elements to this structure. This proposal
would be congruent with the present finding (see also Theves et
al., 2019) with the hippocampal representation reflecting the
binding of specific objects in their conceptual context. It should
be noted that the present results are not in contrast to the vast
body of literature demonstrating cortically distributed represen-
tations of concepts embedded in long-term semantic knowledge
(Martin, 2007, 2016; Binder and Desai, 2011; Ralph et al., 2017),
but propose a spatial code for the formation of concepts in the
hippocampus. Thus, while semantic information might ulti-
mately be stored in neocortex, the hippocampus seems to crit-
ically support its acquisition (Kumaran, 2012; Elward and
Vargha-Khadem, 2018). For instance, although patients with de-
velopmental amnesia because of hippocampal atrophy can show
semantic memory comparable to that in control participants in
everyday life (Vargha-Khadem et al., 1997; potentially compen-
sated by direct cortical incorporation of new information into
existing representations over time), the learning of completely
new material (assumed to be critically supported by fast hippo-
campal processing of trial-unique stimuli) was shown to be ame-
liorated (Elward and Vargha-Khadem, 2018). Accordingly, a
hippocampal organization of new information into a map-like
format might support the acquisition of concepts, when fast
extraction of critical relations or structures and commonalities
across events is required. The present results suggest a role of the
hippocampus in the formation of cognitive spaces spanned by
relationally relevant feature dimensions, which provide sufficient
flexibility for inferential processes or transfer, and from which
more abstracted information (i.e., dichotomic category member-
ship responses classically observed in PFC rather than hippocam-
pus; Freedman et al., 2001, 2003; Wallis and Miller, 2003; Seger
and Miller, 2010; Meyers et al., 2008; Roy et al., 2014) can be
derived and coded by other brain regions. Accordingly, the pres-
ent hippocampal representation reflects feature-based distances
in a space spanned by conceptually relevant dimensions, without
being driven by coarse category membership (post hoc analyses
including category membership to the GLM reported above
revealed that the 2D feature-based distance regressor remains
significant (t(31) = 1.983; p=0.0185), while category membership
cannot explain the hippocampal signal (t(31) = �0.132,
p= 0.552). Instead, congruent with the conceptual nature of the
present feature-based representation, post hoc analyses reveal
that hippocampal responses to objects scales with the 2D dis-
tance of the objects to the category boundary (t(31) = 1.704;
p= 0.044; inter-object distance was included as a regressor and
remained significant: t(31) = 2.928, p = 0.0015). As categories had
been delineated via the diagonal through the two-dimensional
feature space, information about the boundary emerges only
from an integrated representation of conceptually relevant fea-
ture dimensions and can thus be considered further support for
the spatial format of the representation.

In sum, by demonstrating that the hippocampus encodes dis-
tances between points in a concept space, as opposed to a full
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feature space, the present study provides critical evidence that
hippocampal coding principles provide a suitable format to rep-
resent conceptual knowledge.
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