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Abstract

CrossMark

The angular distribution of O Is photoelectrons emitted from uniaxially oriented methanol is
studied experimentally and theoretically. We employed circularly polarized photons of an
energy of hv = 550 eV for our investigations. We measured the three-dimensional
photoelectron angular distributions of methanol, with the CH;—OH axis oriented in the
polarization plane, by means of cold target recoil ion momentum spectroscopy. The
experimental results are interpreted by single active electron calculations performed with the
single center method. A comparative theoretical study of the respective molecular-frame
angular distributions of O 1s photoelectrons of CO, performed for the same photoelectron
kinetic energy and for a set of different internuclear distances, allows for disentangling the role
of internuclear distance and the hydrogen atoms of methanol as compared to carbon monoxide.
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1. Introduction

In the emission of photoelectrons from molecules, the
photoelectron’s angular emission distribution in the body-
fixed frame of the molecule is an exquisitely sensitive probe
of molecular shape resonances [1-6], molecular structure
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[2, 7—-11], localization of core holes [12—-16], electron corre-
lation [3, 17-22], multi-electron processes [17, 23-26], initial
electronic state [27-29], nuclear dynamics [30, 31], and allows
to probe Auger decay [32-34]. Such electron angular dis-
tributions in the molecular frame of reference are typically
termed MFPADs (molecular-frame photoelectron angular dis-
tributions). From a more intuitive point of view, the MFPAD
arises as the outgoing photoelectron wave is multiply scattered
by the molecular potential. The observed distributions depend
strongly on the electron energy (i.e. the electron wavelength)
and the exact shape of the molecular potential [35, 36].

© 2020 The Author(s). Published by IOP Publishing Ltd Printed in the UK


https://doi.org/10.1088/1361-6455/aba3d3
https://orcid.org/0000-0003-2519-5564
https://orcid.org/0000-0002-5041-2404
https://orcid.org/0000-0002-8748-6677
https://orcid.org/0000-0002-3728-4268
https://orcid.org/0000-0002-0891-9180
https://orcid.org/0000-0001-9797-6648
mailto:trinter@atom.uni-frankfurt.de
mailto:demekhin@physik.uni-kassel.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6455/aba3d3&domain=pdf&date_stamp=2020-8-13
https://doi.org/10.1088/1361-6455/aba3d3
https://creativecommons.org/licenses/by/4.0/

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 194002

L Kaiser et al

In order to access the body-fixed molecular frame, the spa-
tial orientation of the molecule needs to be known. In the gas
phase, there are two main routes to address this experimental
problem. Firstly, the molecules can be aligned actively. The
field of active alignment can be partitioned further into several
subsets. One approach utilizes the strong field of a laser to
adiabatically align the molecule due to its polarizability. In
other sets of experiments, an impulsive alignment is achieved
as a defined rotation of the molecule is induced by short laser
pulses. In that case, an alignment of the molecule occurs
periodically after fixed time intervals, and revivals of the
alignment are observable even for long times after the initial
laser pulse (i.e. the alignment reoccurs, see e.g. [37, 38]).
Both approaches of ‘adiabatic’ and ‘dynamic’ alignment are
well reviewed, for example by Stapelfeldt and Seideman [39].
Furthermore, DC fields from multi-pole electric structures
acting on molecular beams (see e.g. [40]) have been used as
well, to actively align molecules. Experiments achieving an
alignment by investigating molecular adsorbates on surfaces
(see e.g. [41]) are also reported in the literature. The second
chosen route, which is routinely employed in synchrotron-
related studies, consists of an a posteriori measurement of the
molecular orientation, and thus does not consist of an active
spatial alignment of the molecule. In order for this approach
to be applicable, the molecule needs to dissociate during
the ionization process. If the dissociation occurs rapidly, the
emission direction of the ionic fragments corresponds (e.g. for
a diatomic molecule) to the direction of the molecular bond at
the instant of the ionization (an assumption which is known as
the so-called ‘axial recoil approximation’ [42]). This approach
is typically employed in cases, where several charges are
created after the primary ionization by Auger decay and is
also the basis for Coulomb explosion imaging [43, 44].

It is the latter approach, i.e. the extraction of molecular ori-
entation from measured data, which we chose for the exper-
imental part of our present study where we make use of the
power of MFPADs to probe molecular structure. For the the-
oretical part, we investigate by calculations, which we bench-
mark against our experiment on methanol, how variations in
the molecular structure—such as bond length changes and
addition of hydrogen atoms—influence the MFPADs. The
photoelectron is released locally through core-level photoion-
ization, and we observe the interference and scattering pat-
tern of the emitted photoelectron wave. Due to the positive
charges of the nuclei and the density distribution of electrons
in a molecule, the photoelectron wave can be preferentially
emitted (focused) in the direction of their neighboring atoms
(for example, in diatomic molecules the photoelectron tends
to an emission towards the other atom) or scattered by them
[35]. These effects depend on the energy of the photoelectrons,
on the respective internuclear separations, and on the nuclear
charges. For instance, the MFPADs of C 1s photoelectrons
of methane directly illustrate the three-dimensional molecular
structure [8, 9]. In diatomic molecules, the internuclear dis-
tance has been mapped by such photoelectron interference in
single-photon ionization [9, 10, 45] or strong-field ionization
[11]. In summary, the emitted photoelectron wave illuminates
the molecular potential from within [2].

Our present choice for studying MFPADs relates to the
smallest alcohol, methanol (CH3;OH). Methanol is used not
only as a solvent, but it is also used in fuels and in direct-
methanol fuel cells, and can have potential future applications
in energy storage. Methanol has also been observed in space in
relation to certain star-forming regions [46]. Although many
coincidence experiments on methanol have been performed
using strong-field ionization [47-53], ion impact ionization
[54], VUV [55] and EUV [56] photoionization, only a lim-
ited number of soft x-ray coincidence studies on methanol
exist [57-59]. In the present work, we examine the MFPADs
of O 1s photoelectrons approximately 8.5 eV above the oxy-
gen K-threshold. Although the orientation of molecules in the
gas phase is random, we are able to post-select cases where
the molecular CH;—OH axis is oriented within the polariza-
tion plane (i.e., the plane normal to the Poynting vector) of
the circularly polarized photons, using the relative momenta of
the fragment ions. In contrast to linear polarization, circularly
polarized light (CPL) does not introduce a preferable direc-
tion of emission in the polarization plane, but rather imprints a
sense of its rotation on the emitted photoelectron wave. There-
fore, using circular polarization has an advantage to sense
the molecular structure itself. In the industrially relevant pro-
cess of catalytic hydrogenation to produce methanol, carbon
monoxide is the precursor. The structures of CO and CH;OH
have their central C—O bond in common and differ only in the
attached hydrogen atoms and in the C—O bond length. The
similarity between these molecules motivated us to perform
an extended theoretical study of the respective MFPAD of CO
to compare the methanol data with.

2. Methods

The experiments were carried out at the soft x-ray beamline
P04 of the synchrotron PETRA III (DESY, Hamburg, Ger-
many) [60] in 40-bunch timing mode (bunch spacing 192 ns),
using circularly polarized photons of 550 eV photon energy
generated by its 5 m long APPLE-2 undulator. We used the per-
manently installed COLTRIMS (cold target recoil ion momen-
tum spectroscopy) reaction microscope [61-63] for our stud-
ies. The methanol molecules were provided as a supersonic gas
jet, which passed two skimmers (300 pm diameter) and was
crossed with the photon beam at right angle. The methanol
reservoir was heated to 316 K (vapor pressure of approxi-
mately 400 mbar), and by also heating up the gas line to
319 K and the gas nozzle of 100 pm diameter to 328 K
(vapor pressure of approximately 680 mbar), we achieved
suitable conditions at the supersonic expansion of the vapor.
The COLTRIMS spectrometer employed consisted of an ion
arm of 7 cm length and an electron arm of 15 cm length.
Both were equipped with a micro-channel plate detector
(active area of 80 mm diameter) with hexagonal delay-line
position readout [64, 65]. For the ion detection, a funnel
micro-channel plate [66] was used to achieve high coincidence
detection efficiency. Electrons and ions were guided by homo-
geneous electric (21.9 V cm™!) and magnetic fields (6.3 G)
onto the two time- and position-sensitive detectors. These
fields were selected such that 47 collection solid angle for
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electrons and ions has been achieved for electrons up to
30 eV kinetic energy and molecular fragmentation with a
kinetic energy release up to 20 eV. From the times-of-flight
and the positions-of-impact, the three-dimensional momentum
vectors of all charged fragments of the photoreaction were
retrieved. In addition, the time-of-flight measurement allowed
identifying different breakup channels. We focus on the case
of O Is-photoionization followed by Auger decay here, and a
fragmentation of the molecule into CH; 7/OH™. These frag-
ments were detected in coincidence with the O 1s photoelec-
trons of 8.5 eV kinetic energy. The corresponding events were
selected by gating on the time-of-flight coincidence of the
two photoions and the photoelectron and on the photoelectron
kinetic energy.

For CPL and within the electric dipole approximation, the
MFPAD of a fixed-in-space (i.e. spatially aligned) molecule
is given by the following differential photoionization cross
section:
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here, £1 stand for the positive and negative helicity of the CPL;
D stands for the Wigner rotation matrix, which depends on the
three molecular-orientation Euler angles{«, 3, v}; ¥ stands for
the spherical harmonics; and 0, ¢ are the photoelectron emis-
sion angles in the molecular frame of reference. The electron
dynamics of the photoionization process are imprinted on the
MFPAD in equation (1) through the dipole transition ampli-
tudes Ay, for the emission of the partial photoelectron contin-
uum waves |e¢m) [67] with given energy and angular momen-
tum quantum numbers via the absorption of a photon of polar-
ization k. In our modeling, those amplitudes were computed by
using the stationary single center (SC) method [68, 69], which
provides an accurate theoretical description of the angle-
resolved photoemission spectra of molecules [70-84]. The
calculations were performed in the frozen-core Hartree—Fock
approximation at the equilibrium internuclear geometry for
methanol and at different internuclear separations for carbon
monoxide. The SC expansions of the occupied and continuum
orbitals with respect to the central point between the C and O
atoms were restricted to the partial harmonics with ¢, |m| < 49
and ¢, |m| < 29, respectively. Because of the axial symmetry of
the CPL, the orientation angle y, which describes the rotation
around the light propagation direction (the laboratory z-axis),
is irrelevant. In order to put the molecular z’-axis (chosen along
the C—O bond) in the polarization plane (the laboratory xy-
plane), the orientation angle 3 is set to 90°. Finally, since only
the C—O bond of methanol was fixed in space in the exper-
iment, the computed MFPADs have been integrated over the
orientation angle «, which describes the rotation around the
molecular 7-axis, and the emission angle ' must be reset
accordingly.

o_:l:l
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3. Results and discussion

We start our discussion with the theoretical results obtained
for carbon monoxide. To confirm the reliability of the
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Figure 1. Predicted angular emission distributions of O 1s
photoelectrons of CO, computed for CPL with negative helicity and
a photoelectron kinetic energy of 8.5 eV at different internuclear
distances, as indicated in each panel. The light propagates out of the
page plane (the polarization plane), and the photoelectrons are
emitted within this plane. The molecule is oriented to lie within the
polarization plane with the oxygen ion pointing to the right, as
indicated at the bottom. The internuclear distances in panels (c) and
(e) correspond to the equilibrium distances of CO and CH30H,
respectively.

present theoretical approach, we firstly reproduced available
experimental MFPADs of O 1s photoelectrons from reference
[25] (see figure 15 inreference [25]), which were measured for
linearly polarized light and somewhat different kinetic energy
of 11.7 eV. The agreement is excellent (not shown here for
brevity). In the next step, MFPADs of O 1s photoelectrons of
CO were computed for left-handed CPL and a kinetic energy
of 8.5 eV (as in the present experiment for methanol). The cal-
culations have been performed for different internuclear sepa-
rations, from somewhat smaller than the equilibrium internu-
clear distance of carbon monoxide (Rc—o = 2.132 a.u. [85])
to somewhat larger than that of methanol (Rcu,—on = 2.696
a.u. [86]). The results are summarized in figure 1. As one can
see from this figure, the lobe, which points towards the C™
ion, develops dramatically with the increase of the internuclear
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Figure 2. Comparison of the MFPADs of O 1s photoelectrons of
CO and CH30H, computed for CPL with negative helicity and
photoelectron kinetic energy of 8.5 eV at the equilibrium
internuclear distance Rc—o = Rcpy—on = 2.696 a.u. of CH3;0H.
The MFPAD of CO is the same as in figure 1(e). The light
propagates out of the page plane (the polarization plane), and the
photoelectrons are emitted within this plane. The molecules are
oriented in the polarization plane with the O" or OH™ ions pointing
to the right, as indicated at the bottom.

distance. At Rc_o = 1.8 a.u. in figure 1(a), it is some-
what suppressed, and for larger distance of Rc_o = 2.0 a.u.
in figure 1(b), becomes strongly enhanced. The computed
MFPAD shows its well-known form at the equilibrium inter-
nuclear distance Rc_o = 2.132 a.u. of CO in figure 1(c) (red
curve). Further on, in figures 1(d)—(f), the main lobe contin-
uously shrinks with the increase of the internuclear distance
across the equilibrium distance Rc_o = 2.696 a.u. of CH;0H
(blue curve in figure 1(e)). Not surprisingly increasing the
bond length at fixed photoelectron wavelength results in a sim-
ilar trend as decreasing the photoelectron wavelength at a given
bond length [17, 87].

In the next step, we inspected the MFPADs of carbon
monoxide using the equilibrium distance Rc.o = 2.696
au. of CH;OH. Starting from this model system, we
then built the methanol molecule by introducing one by
one additional hydrogen atoms, first on the oxygen site,
and then on the carbon site. For brevity, we compare in
figure 2 the final result for the complete methanol molecule
with all four hydrogen atoms to that computed for CO
using an internuclear distance of Rc_o = 2.696 a.u. The
full account of calculations can be found in figure Sl
of the supplemental material, which can be found online
at https://stacks.iop.org/JPB/53/194002/mmedia. We observe
that introducing hydrogen atoms systematically increases the
main lobe pointing towards the carbon site in the computed
MFPAD, as compared to the MFPAD of CO at this internu-
clear distance (depicted in figure 1(e)). Figure 2 illustrates
the strong impact of the hydrogen atoms on the computed

90°

O 1s MFPAD of CH,OH

for CPL@&e=8.5eV

150° 30°

180° 0°

210° 330°

270°

Figure 3. Comparison of the measured (solid circles with error
bars) and computed (red curve) two-dimensional MFPADs of O 1s
photoelectrons of methanol, obtained for CPL with negative helicity
and photoelectron kinetic energy of 8.5 eV. The light propagates out
of the page plane (the polarization plane). The MFPADs include all
photoelectrons, which fall in the opening angle of +12°, and the
molecular CH3—OH axis is oriented within the opening angle of
=+15°, both around the polarization plane. The OH™ ion points to
the right, as indicated at the bottom.

MFPAD. In particular, they recover the main lobe pointing
towards the CH; ™ ion, as compared to the MFPAD of CO from
figure 1(e) (shown here for reference by the blue dashed curve),
to the form of the MFPAD of CO from figure 1(c) obtained
for its equilibrium internuclear distance Rc—o = 2.132 a.u.
Detailed interpretation of this effect requires an accurate anal-
ysis of multiple-scattering effects of photoelectron waves in
the ionic potential of methanol, which is a cumbersome task.
However, we suggest that the focusing effect plays a domi-
nant role in this case. In particular, photoelectron waves emit-
ted in the direction of the carbon atom experience a large
uncompensated positive charge of its nucleus, which works
as a lens and focuses photoelectron waves in this direction.
In methanol, the positive charge of each additional proton of
the methyl group (CHj3) introduces its own focusing, enhanc-
ing thereby the effect of the carbon nucleus alone in CO. The
CPL additionally imprints its rotational sense on the photo-
electron waves, causing thereby a slight clockwise rotation of
the emission distribution along the rotation of the electric field
vector.

The measured results for methanol are compared to our
theoretical findings in figures 3 and 4. Figure 3 illustrates
an excellent agreement between the computed and measured
dipole-plane MFPADs of methanol (note that the depicted data
accounts for opening angles of £12° and +15° around the
polarization plane, respectively, for the photoelectron and the
CH;—OH axis, as in the experiment). A similarly excellent
agreement between the modeling and the experiment is also
evident from figure 4. It compares the full three-dimensional
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Figure 4. Comparison of the measured ((a) and (b)) and computed
((c) and (d)) three-dimensional MFPADs of O 1s photoelectrons of
methanol, obtained for CPL with negative helicity and photoelectron
kinetic energy of 8.5 eV. In panels (b) and (d), the light propagates
out of the page plane (the polarization plane), and the molecule is
oriented horizontally with the OH™ ion pointing to the right. The
data include the CH3/OH™ breakups (molecular axis orientations),
which fall in the opening angle of +15° around the polarization
plane. Panels (a) and (c) show the same three-dimensional MFPADs
in a color-map representation as functions of the polar and azimuthal
angles. In this representation, the light propagation direction points
from cos (6) = —1tocos (6) = 1.

MFPADs of methanol in two representations: via a color-map
as a function of the spherical angles (panels (a) and (c¢) in
the left column) and as three-dimensional figures where the
angular variation of the photoelectron yield is encoded in the
distance of the surface from the origin (panels (b) and (d) in
the right column).

4. Conclusions

We investigated angular distributions of O 1s photoelectrons
emitted from uniaxially oriented methanol molecules. The
molecular CH3—OH axis has been fixed in the polarization
plane of the circularly polarized ionizing radiation. The exper-
imental angular distributions have been recorded using the
COLTRIMS technique at the synchrotron radiation facility
PETRA III (DESY). The measured three-dimensional photo-
electron momentum distributions of methanol are in a very
good agreement with those computed by the SC method and
code. In order to understand the findings in more detail,
we calculated O 1s photoelectrons of carbon monoxide at
the same photoelectron kinetic energy. These two molecules
have the following main differences: firstly, the C—O bond
of methanol is about 25% longer than that of CO. Enlarg-
ing this distance results in a considerable suppression of the
main lobe pointing towards the carbon atom in the computed
MFPAD of CO. Secondly, methanol has four additional hydro-
gen atoms as compared to CO. The additional protons of the
methyl group seem to enlarge the focusing effect of the car-
bon nucleus and recover thereby the corresponding main lobe
in the computed distribution to its experimentally observed
form.
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