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Abstract

Comprehensive linear stability studies of resistive modes are presented for Wendelstein
7-X-type stellarator equilibria with electron cyclotron current drive (ECCD). The external
co-current drive leads to an increase of the rotational transform and the formation of one
or two + = 1 rational flux surfaces. Using the 3D linear stability CASTOR3D code, low
n*-type resistive modes (n*=1,2...,8 with n* being the dominant toroidal Fourier harmonic
contributing to the mode) are investigated. We studied the dependence of their growth
rates on plasma resistivity, parallel viscosity, and shape of the rotational transform profile
(especially various distances between two (=1 flux surfaces). Similarly to tokamak config-
urations, single and double tearing modes, and internal resistive kink modes are found. In
addition, modes oscillating between two n*-types of the same mode family are observed.
The frequencies of those modes are in the range of ~10-260 Hz. Equilibria with either a
large distance between the =1 flux surfaces, or a single (=1 surface are most unstable with
respect to n*=1 resistive kink modes. The latter finding fits to the experimental observa-
tion of sawtooth-like oscillations followed by a thermal quench in W7-X discharges with
ECCD.
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1 Introduction

The Wendelstein 7-X stellarator (W7-X) started successful operation in 2015 [1, 2]. Electron
cyclotron resonance heating (ECRH) [3] is an integral part of its start-up and operation phases.
ECRH is used for steady-state heating, and it allows also for co- and counter electron-cyclotron
current drive (ECCD). Particularly, experiments with strong central co-ECCD show sawtooth
like oscillations followed by a sudden decrease of the central electron temperature [2, 4]. While
a finite bootstrap current almost completely balances the current driven by counter-ECCD, both
currents sum up in case of co-ECCD. W7-X was optimized with respect to almost current-free
plasmas (small boostrap current), and magnetic fields characterized by monotonic, low-shear
rotational transform profiles (¢-profiles) slightly below or above ¢ = 1, but without low-order
rational values inside the plasma [5]. The above mentioned experiments have been performed

to investigate the effect of additional current drive.

Numerous linear (e.g. MARS [6]), CarMa [7], MISHKA-F [8], etc.) and non-linear stability
codes (e.g. JOREK [9], M3D-CI1 [10], XTOR [11], etc.) are available to investigate the stabil-
ity of axisymmetric equilibria taking into account important physical effects such as resistivity,
viscosity, diamagnetic drift, etc.. However, for 3D plasma configurations the situation is differ-
ent. There are a few ideal linear stability codes, such as CAS3D [12], or TERPSICHORE [13],
but the CASTOR3D code is the only 3D linear resistive code available. Usually, the 3D linear
stability CAS3D code based on the energy principle is used to investigate the ideal stability
properties of W7-X equilibria. For example, these studies showed that the so-called low-iota
case with 5/6 islands outside the plasma is unstable with respect to free-boundary perturbations
even at low plasma beta (< 8 >= 0.9%) [14]. However, no ideal modes could be found for the
W7-X discharges with current-drive mentioned above, whether with the CAS3D code [15] nor
the CASTOR3D code. This is not surprising because ideal modes, such as ideal kink or "in-
fernal” modes (low-shear kink modes) require a high plasma beta to become unstable [16, 17].
The considered W7-X discharges are low-3 plasmas with a volume averaged plasma beta of
< B >= 0.26%. Therefore, the CASTOR3D code is used to investigate the stability of these

discharges with respect to resistive modes.



The CASTOR3D code is based on the full MHD equations and allows to study the stability
properties of 3D equilibria, taking into account plasma resistivity and parallel viscosity. Start-
ing with a realistic current-free W7-X-type equilibrium, a set of equilibria with small toroidal
currents simulating central co-ECCD is designed by slight changes of the originally monotonic
t-profile. The considered ¢-profiles are non-monotonic and have various distances between the
two (=1 rational flux surfaces. The stability properties of these equilibria with respect to low
n*-type resistive modes (n*=1,2,...,8 with n* being the dominant toroidal Fourier harmonic
contributing to the mode [18]) are studied, assuming different values of plasma resistivity and
viscosity. Similarly to tokamak configurations, single and double tearing modes, and internal
resistive kink modes are found. In addition, modes oscillating between two n*-types of the
same mode family are observed. Their frequencies are in the range of ~10-260 Hz. Especially,
the finding of n*=1 resistive kink modes fits to the experimental observation of sawtooth-like
oscillations followed by a thermal quench [2, 4]. Our studies show that these kink modes are
the most unstable modes of equilibria with either a large distance between the (=1 flux surfaces,

or a single (=1 surface.

The paper is organized as follows. The properties of the underlying W7-X type equilibrium and
the modifcations of its rotational transform profile are described in section 2. Resistive stability
studies are subject of section 3. There, the stability properties of the three mode families [12]
of the five-periodic W7-X stellarator equilibria are discussed in detail in subsections 3.1 - 3.3.
A summary of the results and conclusions are presented in section 4. Finally, some numerical

details are discussed in the appendix.

2 Plasma equilibria

The following studies are based on a realistic W7-X-type equilibrium!. This current-free equi-
librum has a volume-averaged plasma beta of < S >= 0.26%, and a plasma pressure of
po = 16.3 kPa at the magnetic axis. Cross-sections of its flux surfaces are presented at three
toroidal angles (¢ = 0°,18° and 36°) in figure 1. The monotonic rotational transform profile
and the normalized pressure profile of this equilibrium are shown in figures 2(a)-(b). There,
also the assumed particle density profile, and the resulting temperature profile are illustrated.

For the stability studies we use a particle density of n, = 0.25 - 102 m~3 at the magnetic axis.

'W7-X discharge 20171207.006 [4]
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Figure 1: Cross-sections of the W7-X equilibrium at the toroidal angles ¢ =0, 18 and 36°.
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Figure 2: (a) Rotational transform profile, and (b) normalized profiles of pressure, particle

density and temperature as functions of the square root of the normalized toroidal flux, s.

In order to simulate non-monotonic rotational transform profiles that may be created in co-
ECCD experiments [2, 4], the monotonic ¢-profile is modified by adding an analytical function
as described in the appendix. By varying the parameters of this function, two sets of non-
monotonic profiles are produced. Figures 3(a)-(b) show a representative selection of these pro-
files. They have one or two ¢ = 1 flux surfaces. The radial position of the maximum ¢-value
has been kept fixed for the first set of profiles (figure 3(a)), while this position has been shifted
towards the magnetic axis for the second set (figure 3(b)). Besides the modified profiles, also
the initial monotonic ¢-profile is shown in figures 3(a)-(b). In contrast to tokamak profiles, this
profile increases from the plasma centre towards the plasma boundary, because in a stellarator,

such as W7-X, the toroidal and the poloidal fields are produced by external coils only. Further-



more, all profiles are very flat. Note, here and in the following the radial coordinate s denotes

the square root of the normalized toroidal flux.
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Figure 3: Various -profiles with (a) fixed, and (b) shifted maximum positions, and (c,d) their

corresponding toroidal current profiles, I;,,.

Using the VMEC equilibrium code [19], central co-ECCD is simulated by computing fixed-
boundary equilibria for the modified rotational transform profiles. Plasma boundary, pressure
profile, and total toroidal flux are kept fixed for all equilibria. The resulting toroidal current
profiles, I;,,., are shown in figures 3(c)-(d).

3 Resistive stability studies

For the first time, comprehensive linear stability studies of resistive modes are presented for W7-

X-type stellarator equilibria. The growth rates of low n*-type modes are computed for various
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resistivities, parallel ion viscosities, and ¢-profiles with different distances bewteen the (=1 flux
surfaces. The normalized resistivity profile, % (n, being the resistivity at the magnetic axis),
is calculated from the normalized electron temperature profile using the Spitzer formula. Since
the assumed profiles shown in figure 2(b) are zero at the plasma boundary (for ion and electron
temperatures the same normalized profiles are assumed), the Spitzer resistivity would go to
infinity. To avoid this singularity a small value of 0.1 is added to the normalized temperature
profile. In the plasma centre the resulting modified resistivity profile is a good approximation
to the Spitzer profile, but it has a numerically manageable finite value at the plasma boundary

as shown in figure 4.

The resistive layer width of a tearing mode shrinks with decreasing resistivity. That is, a small
resistivity requires a high numerical resolution in radial direction (see appendix). Therefore,
the computations have been limited to 1, > 1 - 10~8 Qm, which corresponds to a Lundquist
number [20] of S = (ppava)/n = 5.33 - 10® (up=permeability, ¢=0.55 m minor radius, and
vq = 7.7-10° 2 Alfvén velocity). Electron temperatures of several keV have been observed
in W7-X discharges with ECCD [4]. Due to the Spitzer formula, such high temperatures would
imply smaller resistivities (e.g. 7,=3 keV corresponds to 77, = 5 - 10~°Qkm). However, besides
the numerical limits also the range of validity of the applied single-fluid magnetohydrodynamic
model is restricted with respect to the resistivity. If the ion sound Larmour radius, p;, is compa-
rable or even larger than the resistive layer width, two-fluid effects become important [21]. For
the considered cases, ion sound Larmour radius and resistive layer width become comparable

for resistivities in the order of 7, < 107® Qm (see appendix).
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I Figure 4: Normalized Spitzer resistivity
profile (blue, solid line) corresponding to
the normalized temperature profile shown in
Fig. 2b, and modified profile (red, dashed

line) used for the stability calculations.
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Figure 5: Plasma geometry of the W7-X
0 equilibrium with the colours indicating the
magnetic field strength at the plasma bound-
ary (2.1 (dark blue) < B < 2.9 T (yellow)).
216°

288°

The Wendelstein 7-X stellarator has five field periods (/N,=5). Figure 5 shows the plasma ge-
ometry of the W7-X-type equilibrium described in the previous section. The colours indicate
the magnetic field strength at the plasma boundary. Viewing from above, the toroidal angle of
¢ = 0° corresponds to the so-called bean-shaped cross-section of the first period, while the
triangular cross-section is located at ¢ = 36° (see figure 1). As explained in detail in [12], the

fivefold symmetry of the equilibrium implies the existence of three mode families:
mode family 0: n=0,5,10,15,20,25,...

mode family 1: n=1,4,6,9,11,14,...

mode family 2: n=2,3,7,8,12,13,...

That is, only toroidal harmonics which belong to the same mode family yield non-vanishing
coupling terms. This partial decoupling of the toroidal harmonics allows us to study the sta-
bility properties of each mode family separately. The poloidal and toroidal Fourier spectra
used for the following calculations are listed in the appendix. We restrict our considerations
to low-n* modes with 1 < n* < 8. While only a single toroidal harmonic contributes to a
mode of an axisymmetric equilibrium (these modes are characterized by n, e.g. n=1 mode),
several n-harmonics couple together and contribute to the Fourier spectrum of the perturbation
in case of 3D equilibria. Therefore, we choose the dominant (most contributing) n-harmonic of

a perturbation Fourier spectrum , which we name n*, to characterize a stellarator mode [18].

3.1 Mode family 0

At first, we investigate the stability properties of W7-X-type equilibria with external current

drive for mode family 0. Using a small, but numerically not too demanding resistivity of 7, =
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1-1077" Qm, and no viscosity, the growth rate of the n*=5 double tearing mode (DTM) is
computed as function of the distance between the two (=1 flux surfaces, As (for the used ¢-
profiles see figure 3(a)). As illustrated in figure 6, the growth rate shows a similar dependence
on As, as it is already well known for tokamaks [22]. It increases with growing distance up to a
maximum value, and then it decreases. However, because of the 3D geometry, the eigenvalues

of the two orthogonal solutions of each mode may be different.
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The sine- and cosine-type characters of the two orthogonal solutions are illustrated in figure 7.
The CASTOR3D codes uses complex, exp(27i(mu+nv)), and conjugate-complex exponential
functions, exp(—2mi(mu + nv)), for the Fourier representation of the perturbed quantities,
with « and v being the poloidal and toroidal coordinates [23, 18], respectively. Due to the
stellarator symmetry of W7-X, these exponential functions combine to pure sine- and cosine-
type functions, if the growth rates of the orthogonal solutions are different. Since the modes
of mode family O match the five periods of W7-X, the differences are quite distinctive for the
n*=5 double tearing modes, especially for small distances, As. Figures 7(a) and 7(b) show the
Fourier spectra of the real part of the radial velocity perturbation for the cosine- and sine-type
n*=5 modes, respectively. The radial distance of the (=1 flux surfaces amounts to As=0.078.
Because of the 3D geometry also the n=0,10,15,... harmonics contribute to the modes. The
Fourier spectra are characteristic of asymmetrically coupled tearing modes, as illustrated in the
sketch (figure 7(c) (middle)). There, the X- and O-points of the coupled islands face each other.
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Figure 7: Fourier spectra of the real part of the radial velocity perturbation of (a) the cosine- and
(b) the sine-type n*=5 DTM for As=0.078. The solid and dashed lines denote the contributions
of the complex and conjugate-complex eigenfunctions, respectively. The largest contributions
are marked by their toroidal and poloidal harmonics, n/m. (c) Corresponding mode structures
at the bean-shaped cross-sections, and sketch of the island positions. The colours indicate the
radial displacement of the flux surfaces, that is, outward shift (red), inward shift (blue), and no

shift (green) with respect to the unperturbed flux surfaces (vertical dashed lines in the sketch).

In figure 7(c) (middle), the shift of flux surfaces due to the island formation is sketched. Using
the same colour code, the structure of the radial velocity perturbation is shown for the cosine-
type (figure 7(c) (left)) and the sine-type (figure 7(c) (right)) n*=5 DTMs at the bean-shaped

cross-section.

Since the CASTOR3D code solves a complex eigenvalue problem with eigenvalue \ = ~v—+iw (y

being the growth rate, and w being the oscillation frequency) also so-called overstable solutions
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are possible. Such modes grow exponentially and oscillate simultaneously [24]. Here and in
the following, overstable modes are marked by brown circles. In case of the cosine-type mode

indicated in figure 6, the mode oscillates with a frequency of v = ;> = 96 Hz between a cosine-

type n*=5 and a cosine-type n*=10 mode structure. Such kind of oscillation will be discussed

in more detail in the following section.

3.2 Mode family 1

Mode family 1 is more interesting with respect to possible sawtooth oscillations because it
includes n*=1 modes. Figure 8 shows the growth rates of n*=1,4, and 6 resistive modes as
functions of As. Values of As < 0.218 belong to the first set of ¢-profiles (figure 3(a), profiles
1-18), while larger distances belong to the second set (figure 3(b), profiles 19-21). In contrast
to modes of mode family 0, which match the five-fold periodicity of W7-X, the growth rates
of the two orthogonal solutions are mostly the same (within the numerical accuracy) for modes
of mode family 1 and 2. Therefore, only one solution is considered in the following. If the
orthogonal solutions are degenerated, the complex and conjugate-complex eigenfunctions may

not add up to pure sine- or cosine-type functions, but to any arbitrary combination, as illustrated

in figure 9.
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As shown in figure 8, two types of n*=1 modes exist. Type A is a symmetrically coupled double
tearing mode with the inner tearing mode corresponding to a resistive kink mode as illustrated
in figure 9(a). In case of symmetrically coupled double tearing modes, the O-points of the

coupled islands face each other. The symmetrically coupled n*=1 modes are less unstable than

the asymmetrically coupled ones (type B).
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n*=1 resistive kink mode (¢-profile 23 in Fig. 3b)
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Figure 9: Fourier spectra of the real part of the radial velocity perturbation (left columns) and
corresponding mode structures (right columns) of n*=1 modes for various distances between

the 1=1 flux surfaces (a)-(c), and for a rotational transform profile with a single v=1 surface (d).

Figures 9(b)-(d) illustrate the Fourier spectra and the structures of the radial velocity pertur-
bation of n*=1 resistive modes for small and large distances between the ¢+ = 1 flux surfaces
(figure 9(b) and 9(c)), and a ¢-profile with only one ¢ = 1 surface (figure 9(d)). With increasing

As, the mode structure changes from a DTM to a single resistive kink mode.

Especially, Figs 9(a) and (b) show large fluctuations at the magnetic axis. These fluctuations,
however, are not a result of the solution of the eigenvalue problem, and therefore, do not influ-
ence the eigenvalue. In fact, these fluctuations are a result of the special representation of the
perturbations which has been chosen. In order to visualize the characteristic of an n*=1 internal
kink mode (finite perturbation at the magnetic axis), we do not show the Fourier harmonics of
the eigenfunction of the radial velocity perturbation, ©7, (s), but the Fourier harmonics of the

real part of the radial perturbation, v? (s), itself. The radial perturbation is related with the

corresponding eigenfunction by

2
vi(s,v,u) = R—f)s(s,v,u)
g
R? .
= ﬁ Uy (s)exp(2mi(mu + nv)) + o), (s)exp(—2mi(mu + nv)), (1)

with u and v being the poloidal and toroidal angle-like coordinates, R being the radial, cylin-
drical coordinate, and /g being the Jacobian (for more details see [23]). The computation of
v®(s, v, u) requires a division of the eigenfunction by the Jacobian. Since both quantities, eigen-

function and Jacobian, go to zero at the magnetic axis, small numerical inaccuracies may lead to
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large fluctuations, which can be observed in some of the figures showing the Fourier spectrum

of the real part of the radial velocity perturbation.

Figure 10(a) shows the growth rates of the n*=1,4 and 6 DTMs as functions of the plasma
resistivity for As = 0.09. As in axisymmetric configurations, the growth rates obey typical
scalings [25, 22] within certain resistivity ranges. The n*=1 DTM scales with v o 1'/3 for
n < 6-1077 Qm, while the growth rates of the n*=4 and n*=6 DTMs exhibit the v o< n*/°
scaling forn < 1-107" Qm and n < 5 - 107® Qm, respectively. The growth rate of a single
resistive kink mode as function of the resistivity is presented in figure 10(b). In the considered

resistivity range, this growth rate increases with a gradient lying in between the two scalings.
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Figure 10: (a) Growth rates of the n*=1,4 and 6 DTMs as tunctions of n, for As = 0.09. (b)
Growth rate of the n*=1 resistive kink mode as function of 1, for a .-profile with only one (=1
surface (profile 23, figure 3(b)). In both cases no viscosity is taken into account. The black

dashed lines indicate the scalings v o n>/® and v o< n'/3.

Within all three mode families overstable modes are observed (see figures 6, 8, 10(a), 12, 13,
16(a), and 17). Such oscillating solutions are found for tokamak equilibria, when the growth
rates of differently coupled tearing modes of equal n-type coalesces (e.g. for a certain resistivity
range [24]). They are called “overstable” in order to express the fact that the direction of the
restoring force is opposite to the displacement. However, the restoring force is too big and so
the resulting motion overshoots and results again in an instability [26]. In 3D configurations
overstable modes are also possible, when the growth rates of two different n*-type modes of the
same mode family become equal. For example, as shown in figure 10(a), the growth rate of the
n*=1-type B mode coincides with the growth rate of the n*=6 mode for 77, = 3 - 10~% Qm, and

with the growth rate of the n*=4 mode for n, = 2 - 10~® Qm. In both cases, the solution of the
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eigenvalue problem yields four solutions with equal growth rates (real part of the eigenvalue),
and pairs of oscillation frequencies (imaginary part of the eigenvalue) with equal amount, but
opposite signs. All four solutions correspond to modes oscillating between two n*-types. As
representative example, the oscillation between the n*=1 and the n*=4 DTM mode structures is

illustrated in figure 11.

The first and second columns of figure 11 show the mode structures at the five triangular cross-
sections at time ¢ = 0 (first column) and ¢ = ZiT (second column), with 7" = 27” being the
oscillation period. The third column depicts the mode structure at the same triangular cross-
section (p = 36°) for 1/4th of the oscillation cycle. At ¢ = 0 the mode structure corresponds to
a 4/4 asymmetrically coupled DTM with weak 1/1 resistive kink part in the plasma centre. At
t = }lT , however, the mode structure is dominated by a 1/1 double tearing mode. The oscillation
between the n*=4 and the n*=1 mode structures is visualized in the third column. There, the
mode structure changes step by step from an n*=4 to an n*=1 double tearing mode within 1/4th

of the oscillation period.
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Figure 11: Oscillation between an n*=4 and an n*=1 double tearing mode structure. Growth
rate and oscillation frequency amount to y=4130 % and w=207 % for n,=2 - 1078 Om, As =

0.09, and no viscosity.
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Figure 12 shows the growth rates of the n*=1 and the n*=4 DTMs as functions of the parallel
ion viscosity, 1. The parallel viscosity has a negligible effect on both growth rates for i < 1-
1073 kg m~'s~!. For larger viscosity the growth rates quickly decrease. A very rough estimate

1s~! for the considered low-43, collisionless

of y =~ /fﬂvfhpa/ku yields a value of 0.24 kg m™
equilibria. Here we used x| = /@, wave vector k| = 1/Ry (Ro=5.5 m being the major radius
of W7-X), density p, = 8 - 1078 kg m~3, and ion thermal velocity v!" = 3.1 - 10° m s~!. The

latter corresponds to an ion temperature of 7; = 1 keV.

3.3 Mode family 2

In this section we study the stability properties of mode family 2. Figure 13 shows the growth
rates of the n*=2,3,7 and 8 DTMs as functions of the distance between the (=1 flux surfaces.
While the n*=7 and n*=8 modes are only unstable for small As, the growth rates of the n*=2
and n*=3 modes decrease for larger distances, but remain unstable. Again, overstable modes
appear, when the growth rates of two n*-types become equal. The frequencies of the n*=2 <«

n*=3 and the n*=3 <> n*=8 oscillations are in the frequency range of 80-260 Hz.
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Figure 14: Fourier harmonics and mode structure of the radial velocity perturbation of an n*=2
DTM (As=0.218).
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Figure 15: Fourier harmonics and mode structure of the radial velocity perturbation of an n*=2

single tearing mode (.-profile 23, figure 3(b)).

Fourier spectra and mode structures of the radial velocity perturbation of an n*=2 double tearing

(As=0.218) and a single tearing mode (¢:-profile 23, figure 3(b)) are presented in figures 14 and

15, respectively. Particularly, n/m=2/2, 3/3 and 7/8 harmonics contribute to the n*=2 DTM,

while n/m=2/2, 3/3, 8/8, and 12/11 harmonics couple mainly to the n*=2 single tearing mode.

17



Because of the very flat rotational transform profile, the radial perturbation of the single TM

extends up to the plasma centre.
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Figures 16: Growth rates of the n*=2 and 3 DTMs as functions of the plasma resistivity, 1,,
for As = 0.090 (a), and As = 0.218 (b). The brown circles mark overstable modes, while the
black dashed lines indicate the scalings v o< n*/°, and v o< /3.

Figures 16(a)-(b) show the growth rates of the n*=2 and 3 DTMs as functions of the plasma
resistivity for As=0.09 (a), and As=0.218 (b). In case of the small As, the growth rates follow

the v oc 1*/® scaling for 7, < 3 -107% Qm, and the v o< n'/? scaling for n, > 1- 1077 Om.

The modes become overstable forn, < 1- 1077 Om. That is, these modes oscillate between the

n*=2 and n*=3 mode structures in a frequency range of 85-150 Hz. In case of the large As only

the n* = 3 DTM follows the v o 7%/° scaling in a small resistivity range of 5 - 1078 < 7, <

5-1077 Qm.
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Figure 17: Growth rate and angular fre-
quency of an overstable DTM as function
of y forn, = 1-1077 Qm, and As=0.09.
The mode oscillates between the n*=2 and
n*=3 mode structures in a frequency range
of 10 < v < 160 Hz.



Figure 17 depicts growth rate and angular frequency of an n*=2 <> n*=3 oscillating mode
as function of the parallel viscosity, 1. While the growth rate decreases quickly for p >
1-107% kg m~'s™', the angular frequency is almost unchanged for yy < 1-107* kg m~'s™".

For larger 4, it also decreases.

4 Summary and conclusions

Comprehensive linear stability studies of resistive MHD modes were performed for W7-X-type
equilibria with external current drive. For this purpose, sets of non-monotonic rotational trans-
form profiles with one or two (=1 flux surfaces were designed to simulate central co-ECCD.
Stability studies were made for the corresponding equilibria using the 3D linear stability CAS-
TOR3D code. The stability properties of all three mode families of these five-periodic equi-
libria were investigated in dependence of plasma resistivity, parallel ion viscosity, and distance
between the (=1 flux surfaces. Single and double tearing modes, resistive kink modes, and
overstable DTMs, but no ideal kink modes could be found for these low-/ equilibria. The over-
stable DTMs are exponentially growing modes with a mode structure oscillating between two
n*-types. Overstable modes occur for these 3D equilibria, when the growth rates of two dif-
ferent n*-type modes of the same mode family are equal. The computed frequencies are in the
range of ~10-260 Hz. These frequencies are well below the experimentally observed precursor
oscillations which have been observed before the thermal quench and which are in kHz range
[27]. Scans of the growth rates with respect to viscosity showed a stabilizing effect of the par-

1

allel ion viscosity for sy 2 1-107% kg m~'s™'. The growth rates of all investigated mode types

rise with increasing resistivity. Depending on resistivity range, distance between the (=1 flux

3/5

surfaces, and n*-type, some of the DTMs show a v o 7%/® or v o< n'/3 scaling. The dependence

of the scaling behaviour taking viscosity into account was not investigated.

10000

Figure 18: Growth rates of the n*=1,2,...,8
DTMs as function of As forn, = 1-10~7 QOm
taking no viscosity into account.
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Figure 18 summarizes results obtained for the n*=1,2,...,8 DTMs. The n*-number of the most
unstable resistive mode decreases with growing distance between the (=1 flux surfaces. While
the n*=6 DTM is the most unstable mode for As=0.078, it is the n*=1 mode for As > 0.17.
The latter is also the most unstable mode for equilibria with only one (=1 flux surface. With
increasing As the character of the n*=1 mode changes gradually from a DTM to a single TM

or resistive kink mode, as shown in figure 9.

Sawtooth-like oscillations followed by a rapid decrease of the electron temperature were ob-
served in W7-X discharges with ECCD [4]. The temporal evolution of the current density
during co-ECCD led to an increase of the distance between the (=1 flux surfaces and, finally,
to (-profiles with only one (=1 flux surface [2]. The CASTOR3D code is a linear code and,
therefore, it can not describe sawtooth oscillations. However, it describes the 3D geometry of
Wendelstein 7-X correctly, and it shows that the n*=1 resistive kink mode is the most unstable
mode for either a large distance between the (=1 flux surfaces, or a single (=1 surface. Further-
more, non-linear resistive stability studies performed with the two-fluid TM1 code yielded two
types of temperature crashes [28]. Assuming large aspect ratio (the Wendelstein 7-X aspect ra-
tio is large enough) and circular cross-sections, but the same iota-profiles as the here considered
Wendelstein 7-X type equilibria, partial and full temperature crashes were obtained depending
on the distance between the (=1 surfaces and the maximum ¢-value. Last but not least, there is
experimental evidence [27] that n=1 perturbations are involved in the observed sawtooth-like
oscillations followed by a thermal quench in W7-X. In fact, 3D non-linear stability studies are
required for a self-consistent description of sawtooth events in stellarators. However, the combi-
nation of the numerical results of 3D linear stability studies, and two-fluid, resistive, non-linear
computations performed for simplified geometry supports together with experimental observa-
tions the picture of low-n resistive modes causing sawtooth oscillations followed by a thermal

crash.

In a tokamak device a thermal quench is the first step of a disruption [20]. It causes an increase
of the plasma resistivity followed by the ohmic dissipation of the plasma current. The fast
decay of the huge plasma current of a tokamak releases a large amount of magnetic energy and
leads to a complete breakdown of the magnetic confinement. In almost current-free stellarators,
such as W7-X, confining nested flux surfaces are almost completely generated by currents in
external coils. There, a thermal quench does not cause a loss of huge amount of magnetic
energy, a breakdown of the confining magnetic field, or a severe damage of the device. That is,
a discruption does not occur. One should also keep in mind that such thermal quenches are not
typical for the stellarator Wendelstein 7-X, they are a consequence of the specific modifications

of the ¢-profile by external current drive.
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Appendix: Numerical details

(a) Rotational transform profiles

Adding to the monotonic rotational transform profile of the current-free equilibrium, ¢o(.S), an

L(S) = 1(S) + a exp (— (S ;2“1)2> , )

two sets of (-profiles are created by varying the parameters ag, a; and a,. Here, equation (2)

analytical function

is formulated as function of the normalized toroidal flux, .S, because the VMEC equilibrium
code [19] uses S as radial coordinate. Varying the parameters a, and ay within the ranges
0.139 < ag <£0.23 and 0.06 < ay < 0.09 while keeping a; = 0.10 fixed, the first set of profiles
(1-18) is obtained. In case of the second set (19-23) the parameter ay = 0.23 is kept fixed, while
the parameters a; and a, are varied in the ranges 0.09 < a; < 0.06, and 0.090 < ay < 0.180.

(b) Radial grid

The eigenfunctions used in the CASTOR3D code are represented by Fourier series in poloidal
and toroidal direction, and finite elements in radial direction [23]. Figure 19(a) shows the
growth rates of n*=1,4 and 6 double tearing modes as functions of As for 7, = 1-10~7 Qm. The
computations have been performed for an equidistant (100 grid points), and a non-equidistant
radial grid (105 grid points). In case of the non-equidistant grid, the grid points are accumulated
around the (=1 flux surfaces. The minimum grid size amounts to 0.0005, and it increases up to
0.0133 with growing distance from these surfaces as illustrated in figures 19(b)-(d). There, the
Fourier spectra of the real part of the radial velocity perturbation are shown for the n*=4 mode

with the red full circles indicating the locations of the radial grid points.
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equidistant grid, n, = 1- 1077 Qm,
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Figure 19: (a) Growth rates of the n*=1,4, and 6 resistive modes as tunctions of As forn, =
1 - 1077 Qm and no viscosity. Computations performed with the equidistant radial grid are
marked by stars, while the solid lines denote the results obtained with the non-equidistant grid.
(b)-(d) Fourier spectra of the real part of the radial velocity perturbation of the n*=4 mode for
As = 0.09. The red full circles represent the locations of the radial grid points. The pairs of
vertical dashed lines illustrate the width of the normalized ion sound Larmor radius, ps/a.

While in case of the non-equidistant grid the growth rates as function of As form smooth curves
(solid lines in figure 19(a)), the values scatter around these curves for the equidistant grid (stars
in figure 19(a)). This indicates that the grid points of the equidistant grid are not sufficient
to describe the eigenfunctions accurately around the + = 1 flux surfaces, because the distance
between the grid points is already comparable to the resistive layer width of the mode. The non-
equidistant grid, however, works well even for smaller resistivities as shown in figures 19(c) and

(d).

As already discussed in section 3, two-fluid effects become important if the ion sound Larmour

radius, ps, becomes comparable or larger than the resistive layer width. Assuming an electron
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temperature of 7,=3 keV, the normalized radius amounts to ps/a ~ 0.007 for Deuteron ions
and a = 0.5 being the minor radius of W7-X. As indicated by the pairs of vertical dashed lines
in figures 19(b) and (c), p, becomes comparable to the resistive layer width for 7, < 3-107%Qm
in case of the considered n*=4-type DTM. This is of course a rough estimate only.

(¢) Fourier spectra of the perturbations

The Fourier spectra of the perturbations used for the linear stability studies are listed in table
1(a)-(c). Summarizing all harmonics of a mode family, in total 91, 92 and 90 Fourier har-
monics are used for the mode families 0,1 and 2. The number of m’s has been increased with
growing n, because the higher the n, the more rational values of this kind are included in the
t-profiles. These harmonics are sufficient to obtain well converged results for the considered

low-n* modes.

Table 1a: mode family 0 Table 1b: mode family 1 Table 1c¢: mode family 2
n m-interval n m-interval n m-interval
0 0<m<10 1 —4<m<6 2 —3<m<7
5 -1<m<11 4 —2<m<10 3 —-3<m<9
10 3<m<17 6 —-1<m<13 7 0<m<14
15 8 <m <22 9 1<m<17 8 1<m<15
20 10 <m <28 11 3<m<19 12 4<m<20
25 16 <m < 34 14 5<m <23 13 4<m<22
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