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An adequate confinement of α-particles is fundamental for the operation of future fusion

powered reactors. An even more critical situation arises for stellarator devices, whose

complex magnetic geometry can substantially increase α-particle losses. A traditional ap-

proach to transport evaluation is based on a diffusive paradigm, however, a growing body

of literature presents a considerable amount of examples and arguments towards the valid-

ity of non-diffusive transport models for fusion plasmas, particularly in cases of turbulent

driven transport [ R. Sánchez and D.E. Newman, Plasma Phys. Control. Fusion 57 123002

(2015)]. Likewise, a recent study of collisionless α-particle transport in quasi-toroidally

symmetric stellarators [A. Gogoleva et al., Nucl. Fusion 60 056009 (2020)] puts the dif-

fusive framework into question. In search of a better transport model, we numerically

characterized and quantified the underlying nature of transport of the resulting α-particle

trajectories by employing a whole set of tools, imported from fractional transport the-

ory. The study was carried out for a set of five configurations to establish the relation

between the level of magnetic field toroidal symmetry and the fractional transport coeffi-

cients, i.e. the Hurst H, the spatial α and the temporal β exponents, each being a merit of

non-diffusive transport. The results indicate that the α-particle ripple-enhanced transport

is non-Gaussian and non-Markovian. Moreover, as the degree of quasi-toroidal symmetry

increases, it becomes strongly subdiffusive. Although, the validity of the fractional model

itself becomes doubtful in the limiting high and low symmetry cases.
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I. INTRODUCTION

There is still no fully satisfactory explanation of the experimental particle and energy transport

across the magnetic field in fusion devices. The cost of an economically viable thermonuclear fu-

sion powered reactor is largely determined by this radial transport that has, so far, been estimated

and extrapolated using semi-empirical methods based on traditional diffusive-like models. How-

ever, it is still unclear whether these models are sufficiently complete and adequate to describe

radial transport in all reactor-relevant regimes. These are pressing issues for the radial transport of

α-particles, whose confinement is essential for the overall plasma performance. This transport has

been assumed diffusive in the literature1–7, which allowed to create transport models able to fit the

relevant experimental data 8. However, the diffusion paradigm rests on the assumption that trans-

port dynamics is Gaussian and Markovian thus it fails to adequately describe systems with correla-

tions, memory and spatial effects9. In fact, turbulent transport has been shown to be superdiffusive

when it is close to marginal state and for weak mean/zonal flows; this effect was considered on the

example of the gradient-induced instabilities10–13 and dissipative trapped-electron modes (DTEM)

instabilities14–16. On the contrary, turbulence induced transport across flows with sufficient shear

tends to be subdiffusive; as it was demonstrated on some instances of the ion temperature-gradient

modes (ITG)17–21 or shear Alfvén, drift tearing and ballooning modes22,23. In the particular case of

quasi-poloidally symmetric stellarator geometries, turbulent transport associated with supercriti-

cal ITG turbulence becomes subdiffusive21 as the degree of quasi-poloidal symmetry increases

triggering the effect of sheared flows. Also, a number of experimental and numerical studies at

TORPEX24–28 has demonstrated that suprathermal ion transport changes from being subdiffusive

to superdiffusive depending on the ion energy and turbulent fluctuation amplitudes. Furthermore,

while large intermittent and persistent E×B drifts lead to superdiffusion their suppression results

in subdiffusion.

On the other hand, it was found29 that the α-particle transport for realistic ITG and TEM turbu-

lent regimes is diffusive and becomes significant only at energies ∼ 100 keV. A recent work30

shows clear indications of the non-diffusive nature of 3.5 MeV α-particle neoclassical trans-

port; i.e. when transport originates from the averaged radial drifts due to the non-uniform three-

dimensional magnetic field and not from the collisions dynamics, which is low enough to be ne-

glected. This transport is of special relevance for stellarator geometries, whose non-axisymmetric

character strongly impacts particle dynamics. In fact, the confinement of α-particles is one of the
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most critical points in the design of a viable stellarator fusion reactor7,31–34.

The aim of this work is to examine the collisionless α-particles neoclassical transport30 by

means of fractional transport theory adapting the techniques used in characterizing the non-

diffusive dynamics of turbulent transport 9. Of particular interest is the effect of the level of

quasi-toroidal symmetry on the fractional transport coefficients. To this end, five configurations

stepwise breaking the symmetry were considered: from a perfectly symmetric ITER tokamak

model to four stellarator configurations with different levels of quasi-toroidal symmetry. Frac-

tional transport coefficients were estimated applying Lagrangian and Eulerian techniques to a set

of trapped α-particle trajectories corresponding to the largest fraction of losses obtained with the

Monte Carlo orbit following code MOCA30,35–37. The set comprises only the confined part of

these particle trajectories, i.e. before the particles are lost, to avoid contaminating the statistics

with the effect of ripple at the outer radial positions, which leads to convective (ballistic) behavior.

The remainder of the paper is organized as follows. Section II presents the basic approximations

used, the magnetic configurations considered and the numerical tools applied. The techniques of

fractional transport theory and their application are described in Section III. A summary of the

results is given in Section IV. The final Section V briefly discusses the validity of a non-diffusive

approach in building an effective model of ripple-enhanced α-particle transport.

II. APPROXIMATIONS, MAGNETIC CONFIGURATIONS AND NUMERICAL

METHODS

This section summarizes the main approximations used, introduces the magnetic configura-

tions under study and the equations of motion of α-particles together with some details about the

numerical neoclassical code MOCA.

The three approximations applied here are the small gyroradius ordering, neglecting the electric

field and neglecting the α-particle collisions. Along with these approximations, throughout all

simulations particles are considered monoenergetic and all perturbations (e.g. Alfvén, drift tearing,

ballooning, ..., modes) are neglected. The spatial and temporal drift orderings are justified (except

perhaps in the pedestal region) because of the ratio between, on the one hand, the large spatial

scale lengths of field corrugations L ∼ 1 m and orbit widths L ∼ 0.5 m in reactor conditions with

the α-particle Larmor radius ρα ∼ 0.05 m, and, on the other hand, the slow circulating τ ∼ 5µs,

bouncing τ ∼ 20µs, collisional slowing-down τslow ∼ 1s and scattering τscatt ∼ 5s times compared
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with the cyclotron times. The orbit widths, circulating and bouncing times were obtained in Ref.30,

while the slowing-down and scattering times correspond to typical reactor conditions, i.e. n ∼ 1

and 5 ×1020 m−3 as T ∼ 25 and 15 keV for tokamaks and stellarators respectively. The reason

for ignoring electric field effects is the huge difference between the α-particle speed vα ≈ 1.3×

107 m/s and the E×B drift speed, or either the unrealistic electric fields required to make them

comparable. Finally, to focus only on the relation between the symmetry level of the magnetic

configuration and α-particle dynamics, collisions will be neglected.

In this work, the magnetic configurations considered are based on an ideal ripple-less toka-

mak with ITER38 parameters, B∼ 5.3 T, a = 2.67 m, R = 6.2 m and V ∼ 900 m3 (approximately

corresponding to a Q ≈ 10 and Ip = 15 MA scenario) and a quasi-toroidally symmetric (QTS)

stellarator loosely based on a vacuum NCSX39,40 project configuration and having the same nom-

inal field and volume as ITER but a different size a = 2.15 m, R = 9.8 m. The structure of the

magnetic field for these two configurations was obtained using the 3D ideal Variational Magne-

tohydrodynamic Equation solver Code VMEC41 and thus excludes the existence of both islands

and stochastic regions. Since the orbit following code MOCA works in Boozer coordinates, the

two VMEC equilibria are decomposed in Boozer42 magnetic flux coordinates using 1050 modes

to guarantee a precise description of the equilibria. Notice, however, that the accurate calculation

of particle trajectories, just depending on the magnetic field magnitude, requires much less modes

than those needed to capture its three dimensional shape. Moreover, particle orbits depend on

spatial scales larger than those needed for stability calculations (ballooning, peeling-ballooning,

...) where a precise representation of small scales is necessary to localize unfavorable regions on

the flux surfaces.

Based on the neoclassical community experience37, to accurately describe the long mean free

path collisionality regime, similar in requirements to our analysis of collisionless α-particles,

it is sufficient to consider only the Boozer normalized harmonics larger than a threshold δ =

10−3− 10−4, even for stellarators as complex as TJ-II35. To be on the safe side, the smallest

threshold δ = 10−4 was used to obtain the ITER and QTS72 magnetic field configurations which

have seven and 72 modes respectively. Though this number of modes is insufficient to capture the

smallest spatial scales of the original equilibrium, and cannot be used to perform any stability cal-

culations, it is adequate to describe the original VMEC equilibrium magnetic field and provides the

two references for our work: an ideal axisymmetric tokamak and a realistic quasi-toroidally sym-

metric stellarator. Nevertheless, to be sure that the configuration QTS72 was sufficiently close to
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the original QTS equilibrium, all the procedures described in this work were applied to a magnetic

field configuration obtained with δ = 10−5 and having 197 modes, giving results almost identical,

within the error bars, to that of QTS72. Since both, the full QTS and QTS72 magnetic field con-

figurations are relatively far from being axisymmetric, see Figure 1, the strategy followed to study

the effect of approaching quasi-toroidal symmetry was to use the original Boozer decomposition

of the QTS equilibrium and increase stepwise the threshold put on the normalized harmonics from

δ = 10−4 of QTS72 to 1/180, 1/150 and 10−2 to obtain magnetic configurations with 6, 5 and

4 modes respectively, see Figure 1. This process guarantees that the ripples introduced by these

modes are included based on their importance to the original QTS equilibrium. QTS4 contains the

following four Bm,n modes: B0,0, B1,0, B2,0 and B2,1, ordered in decreasing absolute value. QTS5

adds to those harmonics the mode B1,−1 and QTS6 includes also B3,2. The modes Bmn with n 6= 0

are the responsible of breaking the toroidal-symmetry. The five magnetic configurations consid-

ered in this work, namely ITER, QTS4, QTS5, QTS6 and QTS72 are the same used in Ref30 and

though none of them are exact solutions of the original QTS VMEC equilibrium, they share the

same dominant modes (by construction), have the same basic field structure and results in mag-

netic configurations with increasing degree of quasi-toroidal symmetry σqt , shown in Figure 1 and

defined as:

σqt(ψ) =
∑

M
m=1 |Bm0(ψ)|

∑
N
n=1 |B0n(ψ)|+∑

M
m=1 ∑

N
n=−N |Bmn(ψ)|

(1)

In the small gyroradius approximation, the motion of collisionless α-particles in the aforemen-

tioned magnetic configurations is described by the next two equations. One for the guiding center

position rg

ṙg = pv
B
B
+

mv2

2qB3 (1+ p2)B×∇B (2)

and another for the pitch p = v‖/v (it should not be confused with the usual definition for the

canonical momentum P)

ṗ =− v
2B2 (1− p2)B ·∇B (3)

where the dot implies derivative with respect to time, v and q are the speed and charge of the

particle and B and B are the magnetic field and its magnitude. Notice that no equation is required

for the evolution of the particle speed since electric field and collisional effects are neglected.
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FIG. 1. Quasi-toroidal symmetry ratio σqt for the four quasi-toroidal stellarators as a function of radial

coordinate r/a.

These two equations reduce to a set of four coupled ordinary differential equations depending on

the field strength B(ψ,θ ,ϕ) and it derivatives with respect to the radial ψ , poloidal θ and toroidal

ϕ spatial Boozer coordinates. For every magnetic configuration, the transport was modeled by an

ensemble of α-particles, whose trajectories are simulated integrating this system of ODEs with the

Monte Carlo code MOCA. A parallel FORTRAN code working in Boozer coordinates that uses

a three-dimensional grid Nψ ×Nθ ×Nϕ ≡ 100× 360× 360 per machine period to pre-store and

interpolate the magnetic field magnitude and its derivatives using the Bulirsh-Stoer algorithm43 to

integrate particle trajectories.

In all simulations presented, α-particles are initialized at the half-radius r/a = 0.5 with a fixed

energy of 3.5 MeV. They are distributed uniformly in pitch and randomly in poloidal angle for

ITER (65536 particles) and in poloidal and toroidal angles for the stellarator cases (262144 par-

ticles each). The random distribution used for the poloidal and toroidal angles has been chosen

to be inversely proportional to the Jacobian, 1/J(ψ,θ ,ϕ) = (B(ψ,θ ,ϕ)/B0)
2, of the coordinate

transformation to keep a uniform density on the flux surface in real space, thus initializing more

particles in regions of higher magnetic field. The time step used, ∆t ≈ 10−8 s, was the result of a
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trade-off between the orbit following code integration accuracy (measured with the relative change

in particle energy during their lifetimes, which was kept below ∼ 10−5%) and the total simulation

time, which was chosen to ensure that no new regimes appear in the cumulative loss fraction of

particles for any configuration, see Figure 2. The actual value used, t = 10 s was the result of

a rather long simulation performed for QTS4 (the one with the expected longer saturation time)

and suffices to guarantee that the plateau was fully achieved for QTS72 and QTS6 and fairly indi-

cated for QTS5 and QTS4. All results were checked to be independent of the number of particles

considered and the grid size and grid interpolation scheme applied to define the 3D magnetic field.
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FIG. 2. Loss fraction of α-particles over time for the four quasi-toroidal stellarators. Vertical lines indicate

the exit-time range of the particles considered for the fractional transport analysis, whose number and

percentage among trapped particles are given for each configuration, the first (left) vertical lines correspond

to the simulation time of the selected α-particles.

In all five configurations, particle trajectories can be broadly classified into two groups as those

that keep or change their initial pitch sign, called passing and trapped respectively. Notice that the
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latter naming convention differs from the one commonly associated with the parallel dynamics in

neoclassical theory44–46. In the quarter million particles used for the simulations, these two types

of trajectories can be further subdivided into finer kinds of executed orbits1: passing, stagnation,

potato, ripple trapped, bananas, ... and combinations between them since particles can change their

orbits from one type to another during their lifetimes, even without considering collisions. Before

trying to characterize α-particle transport, it is necessary to classify the fractions of the different

types of particle trajectories and followed orbits since their confinement varies. For example, the

average radial drift of collisionless passing and stagnation orbits is negligible compared to that of

banana or ripple trapped orbits, mixing them in a unique analysis could contaminate the statistics

and mask the transport dynamics of interest.

Firstly, we have calculated the cumulative fraction of loss particles, see Figure 2. For ripple-

less ITER not even a single particle is lost during the simulation, which is also an efficient test to

demonstrate the fairly low numerical diffusion of MOCA. For the four QTS configurations, the

trend shows that the decrease in symmetry level leads to larger losses. This can be explained by the

fact that confinement relies on ensemble average radial drifts. For a toroidally symmetric configu-

ration, like ripple-less ITER, the radial average automatically cancels, but as soon as symmetry is

broken, as for the other four configurations considered, the radial average rapidly increases. The

different slopes in Figure 2 indicate that the particle escaping rates vary, contributing in different

ways to the transport.

Secondly, particle orbits are classified in two basic types: trapped and passing, depending on

whether they change, or not, the sign of their pitch respectively. We found that not a single passing

particle was lost for any configuration. While the fraction of trapped particles in ITER is ∼ 30%

and all are perfectly confined, in the QTS configurations it is∼ 20% and the lost fraction increases

as the level of quasi-symmetry decreases. A study was done for the five configurations with a

newly developed numerical procedure that classifies and characterizes particle orbits, based on the

analysis of reflection points and the poloidal angle at which they cross (or not) the equatorial plane

between consecutive reflection points. The analysis of all trapped particle trajectories in the five

configurations shows that more than a 90% of their orbits are either bananas or ripple trapped. As

an example, Figure 3 presents two trapped α-particle trajectories with adjacent initial conditions,

where one escapes following solely banana orbits and the other eventually transitions its orbit to

the ripple trapped. No further attempt was made to distinguish the other 10% of orbit types. More

in detail, two limiting cases are found, on the one hand, ITER with 97% of bananas and zero ripple
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trapped orbits, and, on the other hand, QTS72 with 54% bananas and 35% ripple trapped orbits.

The procedure also allows to estimate the width and center of banana orbits, see Ref.30 for details

and other orbit examples.
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FIG. 3. Left: poloidal projection of two trapped α-particle trajectories with adjacent initial conditions

in Boozer coordinates for the QTS72 configuration from their initialization at r/a = 0.5 till their lost at

r/a = 1. Blue/dashed trajectory follows only banana orbits, red/solid trajectory follows banana orbits and

shortly after 0.2 ms becomes ripple trapped. Right: time evolution of the radial position r/a (top) and pitch

(bottom) of the same trajectories. The centers of all the banana orbits are indicated by the circles (top).

Lastly, with the aim to evaluate particle transport, it is necessary to select the kind of particles

and time scales of interest for a given configuration. With this in mind, neither passing particles

nor particles belonging to the saturation region in Figure 2 contribute to transport and, therefore,

will be ignored together with the prompt losses, who’s established convective behavior would only

mask the results. To characterize the relevant transport parameters, the region with the steepest

slope in the loss fraction is chosen; i.e. the range belonging to the largest fraction of particle losses.

The analysis of Section III will be performed on the trajectories of all trapped particles which are

lost in the interval marked with vertical black lines in Figure 2. The number of particles considered

in each QTS configuration and their percentage among trapped particles are also indicated in the

figure. Despite the fact that collisionless α-particles in ITER lack any kind of transport, a set

consisting of ∼ 20,000 trapped particles will be analyzed for testing purposes.
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III. FRACTIONAL TRANSPORT DIAGNOSTICS

In this section we will provide a brief introduction to the basics of the fractional transport

equation and to some methods to estimate its exponents by means of tracked particles. These are

the methods that will be used in the reminder of the paper to analyze the characteristics of the

transport of α-particles.

A. Fractional transport equation and transport exponents

A well-known example of the mathematical relation between some macroscopic transport equa-

tions and certain features of its microscopic transport dynamics is the classical diffusion equation,

∂n
∂ t

= D
∂ 2n
∂x2 (4)

where D is the classical diffusion coefficient. Although the validity of this equation could be

assumed ad-hoc, it can also be easily derived from stochastic or probabilistic descriptions of the

underlying microscopic transport process. For example, it can be obtained from the classical

continuous-time random walk (CTRW)47, that describes the motion of a population of walkers

that execute jumps of length ∆x after having waited at their current location for an amount of

time ∆t. The probability density distributions (pdfs) of steps, p(∆x) and waiting times, ψ(∆t)

define the CTRW. Not every CTRW results in a macroscopic diffusion equation. But in the case

of a symmetric CTRW (i.e., the jump pdf has zero mean), if both jumps and waiting-times are

uncorrelated and have a well-defined associated scale, given by the (square-root of the) variance

of step pdf, σ , and the mean of the waiting-time pdf τ . It is readily found that the motion of the

microscopic walkers is well-described by Eq. 4 for long times and distances. In fact, D ∝ σ/τ .

Mathematically speaking, these conditions translate into the need for the step-size pdf of being

within the basin of attraction of the Gaussian distribution of the same variance, as dictated by the

central limit theorem, and the waiting-time pdf to be in the basin of the exponential pdf with the

same mean48.

If the macroscopic transport exhibits features such as the presence of long temporal correlations

or an apparent lack of characteristic scales, it should then be expected that Eq. 4 provides a poor

description of the transport dynamics. It has been suggested by many authors that, in these cases,
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a more general transport equation is needed. One possibility is the fractional transport equation,

∂n
∂ t

= D1−β

t

[
K

∂ αn
∂ |x|α

]
, 0 < β < 1, 0 < α < 2, (5)

where Dγ

t represents the fractional Riemann-Liouville operator of the order γ , K is a constant and

∂ αn/∂ |x|α is the Riesz fractional derivative of the order α 49. Fractional operators are integro-

differential equations so that the temporal fractional derivative integrates over the full history of

the system, thus being able of including memory effects. Similarly, spatial fractional derivatives

integrate over the whole system domain and can capture non-local effects.

The convenience of using fractional transport equations can be justified similarly to how we

previously did for the classical diffusion equation. Starting with the usual CTRW, Eq. 5 can be ob-

tained as its long-time, long-distance limit whenever one introduces the observed lack of character-

istic scales by choosing step-size pdfs with diverging variance, (i.e., p(∆x)∼∆x−(1+α), 0<α < 2)

and waiting-time pdfs with divergent means (i.e., ψ(∆t) ∼ ∆t−(1+β ), 0 < β < 1) 50. Mathemati-

cally, this is again tantamount to choosing them from within the basin of attraction of the proper

subfamily of Lévy pdfs48 as dictated by the generalized central limit theorem.

The exponents α and β in Eq. 5 are known as fractional transport exponents. In the limit

α → 2 and β → 1, the usual classical diffusion equation is recovered. However, if α < 2, non-

local spatial effects are relevant. Similarly, if β < 1, memory effects are essential in determining

future transport. It is also common to define a third exponent, H ≡ β/α , known as the Hurst

exponent51. For the diffusive case, H = 1/2. Therefore, any equation with H > 1/2 is usually

referred to as superdiffusive, and subdiffusive if H < 1/2. These transport dynamics has very

interesting features. For instance, perturbations can spread in them very quickly (superdiffusion)

or extremely slowly (subdiffusion). In the former case, they can resemble avalanche-like transport

while in the latter, they may exhibit extreme stickiness. For that reason, they are used to model

transport in situations in which these features are known to exist50,52.

The best manner to test whether Eq. 5 provides a good model for transport in any system is to

estimate the values of the fractional transport exponents that best reproduced its observed transport

features. There are a few methods to do this, most of them based on specific features of Eq. 5 and

its propagator, P(x, t). The propagator of any differential equation is the temporal evolution of its

initial conditions. Or, in other words, the probability of finding at time t a particle at position x

if it was initially at x0. Values of the fractional exponents that best model transport in any system

can then be obtained with relative ease by comparing the propagator of Eq. 5 with some numerical
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reconstruction of the propagator in the system of interest, usually by employing tracked or tracer

particles. A review of many of these techniques can be found elsewhere 9, but we will focus on

two of them in what follows.

B. The Eulerian method
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QTS5 (d), QTS6 (e) and QTS72 (f), τb is the characteristic bouncing time. Vertical lines indicate fitting

range, i.e. the mesoscale, for the resulting Hurst exponent H.

The Eulerian method relies on exploiting some scaling properties of the propagator of Eq. 5. In
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particular, it can be shown that, for fixed time ti the propagator scales as11,53:

P(x, ti)∼ |x− x0|−(1+α), |x− x0| � K1/β tβ/α

i (6)

from where α could be found by fitting the tail of the propagator P(x, ti) to a power law in log-log

scale. The derivative of the propagator at fixed time gives the local spatial exponent:

α(x) =−

[
1+

x
P(x)

dP
dx

]
(7)

that should come out to be rather independent of x (or at least over a sufficiently long range) to be

meaningful.

To apply this method to our system of interest, one could follow a population of N tracked

particles in time, record their trajectories x j(t), j = 1, · · · ,N, and then build an approximation of

the propagator simply by building the probability density function of x j(t)− x j(0). The tail of the

resulting pdf, at sufficiently long times, should behave as Eq. 6 if the fractional transport equation

does provide a reasonable model for transport in the system.

The temporal exponent, β , can be estimated in a similar way using another scaling property of

the propagator of Eq. 5. For any fixed location, xi, that is sufficiently far from x0 the propagator

scales as11,53

P(xi, t)∼ tβ , t� K1/β xα/β

i , (8)

and,

P(xi, t)∼ t−β , t� K1/β xα/β

i . (9)

Thus, one could in principle estimate β by following in time the value of the numerical propagator,

constructed as we discussed earlier, at any fixed location.

The Hurst exponent can be estimated as the ratio H = β/α once their values are available from

the determinations previously described. But it can also be estimated directly from the numerical

propagator. Indeed, yet another property of Eq. 5 is that all finite moments of its propagator satisfy,

∫
|x− x0|µP(x, ti)dx ∝ tµH , 0 < µ < α. (10)

Since the determination of β is usually the most challenging one from a practical point of view, it

is sometimes preferable to determine H using Eq. 10, and then infer it via the relation β = αH.
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FIG. 5. Left: Propagator constructed as density function of normalized banana centers r̃b/a at the beginning

and end of the mesoscales for QTS4 (a), QTS5 (b), QTS6 (c) and QTS72 (d) in linear and logarithmic

scales. Vertical lines indicate fitting range for the exponent α . Right: Instantaneous spatial exponent and its

averaged over the mesoscale value α for QTS4 (e), QTS5 (f), QTS6 (g) and QTS72 (h).
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C. The Lagrangian method: R/S analysis

There is another way to estimate H that does not require the calculation of the numerical prop-

agator, but that can be directly inferred from the analysis of the trajectories of individual tracked

particles or, more precisely, their instantaneous velocities15. In particular, H can be obtained by

performing the so-called rescaled range analysis51 on the velocity of each particle, and then aver-

aging over as many particles as are available. The procedure for a single particle is to consider the

velocity series {Vk = xk+1−xk ,k = 1,2, . . . ,N} of each tracked particle, and calculate its rescaled

range at iteration k = τ using:

[R/S](τ) =
max

1≤k≤τ

W (k,τ)− min
1≤k≤τ

W (k,τ)

(〈V s〉τ −〈V 〉sτ)1/s
(11)

where,

W (k,τ) =
k

∑
i=1

Vi− k〈V 〉τ (12)

and 〈·〉τ represents the average up to iteration τ . The denominator is the fractional standard devia-

tion of order 0 < s < α16. If transport is indeed scale-free and governed by an equation similar to

Eq. 5, one should find that [R/S]∼ τH (with H = β/α) over a meaningful range of times15, from

which the fractional exponent H can be inferred. It is also possible to determine the instantaneous

Hurst exponent via:

H(τ) =
τ

[R/S](τ)
· d[R/S]

dτ
(τ), (13)

that should be rather independent of τ , at least over a sufficiently large range, to be meaningful.

D. On the sensitivity and validity of methods

To what extent can one trust the results of the previous analysis to estimate transport exponents?

First of all, any scaling exponent will only be meaningful if it remains valid over a sufficiently

large range of the relevant scale, usually referred to as mesoscale. It is difficult to define what

"sufficiently large" is in most cases, but we would require at least half, if not a full decade.

Secondly, the methods previously described can be proved to yield the same results only for

Eq. 5, that exhibits scale-invariance for all scales. This is not the case in any real system, that will

exhibit scale-invariance at best for a finite range of scales. In that situation, the values obtained

with the different methods may vary. In fact, the Eulerian and Lagrangian methods have different

15



sensitivities. Any method based on propagators usually is quite sensitive to finite-size effects,

particularly if the system size is not too large. Rescaled-range analysis is usually much more

robust, being rather insensitive to the presence of boundaries as well as other noise sources but

feels the presence of any periodic contamination rather strongly. It also tends to work best at

values of H ∼ 0.5, but somewhat overestimates the exponent for H < 0.3 and underestimates it for

H > 0.89. It is important to be aware of these limitations when interpreting the obtained values of

transport exponents while using the aforementioned methods.
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FIG. 6. Propagator of the banana centers for three fixed radial positions and averaged temporal exponent

β fitted over mesoscale for QTS4 (a), QTS5 (b), QTS6 (c) and QTS72 (d).

IV. RESULTS

We analyzed a set of trapped α-particles for QTS configurations, whose exit-times are marked

by the vertical lines in Figure 2, where the first (left) vertical lines correspond to the simulation

time of the selected α-particles being 0.004 s, 0.01 s, 0.07 s and 0.3 s for QTS72, QTS6, QTS5 and

QTS4, respectively, before losses occurs to avoid any biasing (particularly to avoid contaminating

16



the statistics by ripple trapped orbits, which have convective behaviour at the end of particle life-

times). For ITER we characterized all trapped particles ∼ 20,000 for half a second since they are

perfectly confined. The Lagrangian Rescale range [R/S] diagnostic described in Section III was

performed using rk+1
g − rk

g as Vk in Equation 11, which is proportional to the radial guiding center

speed ṙg. On the other hand, the Eulerian technique was performed by constructing the propagator

of the banana centers , P(r̃b/a, t), as x−x0 = r̃b/a. Here P(r̃b/a, t) is the probability density func-

tion of the normalized radial displacements of the banana orbit centers with respect to their initial

positions at time t. This is done because the dynamics of the guiding center radial transport and

the banana-centre motion are different for times shorter than the average banana orbit time, but

become identical at longer times scales. The reason is that a banana-centre barely moves during

the banana orbiting, while the guiding centre is moving back and forth in radius, as it follows

the banana. The relevant transport dynamics happen in the mesoscale range, which is well be-

yond the banana orbit time. In the calculation of the Hurst exponent, the coexistence of these two

process at different timescales does not really alter the procedure, since they appear separated at

different scaling ranges. For the calculation of the propagator, however, the two processes become

more mixed, since the propagator calculated with guiding centres will be significantly deformed

at the earlier timescales due to the back and forth motion, making more complicated the analysis

at longer timescales. This distortion can be easily removed by considering only the banana center

motion. Moreover, the displacement is computed with respect to its initial position instead from

the position at the beginning of the mesoscale range since the calculation is approximately invari-

ant under time-translations and it is difficult to specify the start of the mesoscale. The Eulerian

method was applied solely for the QTS configurations due to the lack of any radial propagation

of these orbits and the absence of stochastic tip diffusion6 in perfectly axisymmetric ITER. The

resulting transport exponents were estimated over the mesoscale range (indicated in all following

figures).

A. The Lagrangian method: R/S analysis

The [R/S] functions for the five configurations under consideration (all calculated with a fixed

parameter s = 0.3 in Eq. 11 for consistency with the Eulerian method as 0 < s < α) are shown

in the top left plot of Figure 4. The fact that the [R/S] function changes its slope in ITER five

times faster compared to the results for the four stellarators is pointing out to their quite different
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transport time scales. This can be more clearly seen in the instantaneous Hurst exponents obtained

according to Eq. 13 and also shown in Figure 4. The sharp drop from the ballistic phase with H = 1

should be related to the underlying banana orbits. Indeed, the steep plunge in H occurring at ∼ 10

µs for ITER and between 40 and 60 µs for the stellarators corresponds to the time necessary to

complete one full banana orbit, 2τb (i.e. two bouncing times), estimated according to the connec-

tion lengths of the magnetic field lines Ref.30. Moreover, the difference between these values and

the oscillations seen after the decay around &100 µs can be attributed to helically trapped orbits

with longer connection lengths and slower bouncing times.

The Hurst exponent was estimated as the average of the instantaneous H over the region where

it stabilizes, i.e. the mesoscale, bounded by the vertical lines in Figure 4. The result for ITER,

where H ∼ 0, suggests pure intermittency, being a typical characteristic of harmonic functions

and confirming that the frozen bananas in ITER lack radial displacements. The modest values of

H for the stellarators point to subdiffusion with the clear trend of increasing Hurst exponent for

decreasing level of toroidal symmetry, but always staying way below the diffusive threshold of

H = 0.5.

B. The Eulerian method

In the absence of the radial propagation of trapped particles in ITER, the Eulerian method

was applied only to the four QTS stellarators. To estimate all three fractional exponents for each

configuration, we choose the same fitting range, i.e. the mesoscale, as the one used in the [R/S] cal-

culations of the previous subsection, see Figure 4. The fractional spatial exponent α was obtained

by fitting the tail of the propagator at fixed times P(r̃b/a, ti) to a power law according to Eq. 6. The

propagator at the beginning and the end of the mesoscale is presented in the left plots of Figure 5

both in linear and logarithmic scales (in log-log scale the resulting power law fit is given by a tilted

black line in between the vertical bars). The slight radial asymmetry of the spatial propagators is

due to the inhomogeneity of the magnetic field, that makes radial displacements towards the inside

and the outside not completely symmetric. The results show an increasing variation of P(r̃b/a, ti)

with decreasing level of quasi-toroidal symmetry. The instantaneous spatial transport exponents

αinst(t) are presented in the right plots of Figure 5 and obtained by fitting to a power law the prop-

agator, P(r̃b/a, ti) ∼ r̃b/a−(1+α), from the beginning until the end of the mesoscale in the spatial

regions marked by vertical lines on the left plots. The very small difference in P(r̃b/a, ti) for QTS4
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during such long period corresponds to the the very narrow saturation range in the [R/S], see Fig-

ure 4 (c), and translates in a large dispersion of αinst(t) for this configuration. The large variation

of αinst for QTS72, varying from around 0.9 to 0.3, makes the results rather unreliable. Besides

these difficulties, there is a clear trend in reducing α from around 2.7 to 0.6 as the quasi-toroidal

symmetry decreases.

The Eulerian technique can also be used to obtain the fractional transport exponent associated

with the temporal dependence, β , by fitting the time decay of the propagator P(r̃bi/a, t) accord-

ing to Eq. 8. We choose three radial positions, r̃bi/a = 0.20, 0.25 and 0.30, corresponding to

the center of the regions used in estimating α enclosed by vertical lines on the left plots in Fig-

ure 5. The temporal exponent β was calculated by averaging the three values obtained from fitting

P(r̃bi/a, t) ∼ tβ over the mesoscale, likewise, being delimited with vertical bars in Figure 6 to-

gether with the resulting power law fit given by a tilted black line in between the bars. The values

estimated for QTS5 and QTS6 are β ∼ 0.2, while the results for QTS4 and QTS72 are significantly

larger β ∼ 0.5−0.7, however, the standard deviations for them are larger as well.
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FIG. 7. Fractional standard deviation σ and the fitted over the mesoscale (indicated by dashed lines) Hurst

exponent for the four stellarators.

Finally, it is possible to estimate the Hurst exponent from the time dependence of the fractional
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standard deviation σ using Equation 10, i.e. the finite moment of the propagator of order less

than α , according to the results depicted in Figure 6. The resulting fractional standard deviation is

presented in Figure 7 in log-log scale along with the power law fit of H over the mesoscale and is

calculated with µQT S4 = 1.5, µQT S5 = µQT S6 = 0.5 and µQT S72 = 0.2 each satisfying µ < α . As it

was found previously by an alternative [R/S] method, Hurst exponents increase as the stellarator

configuration departs from quasi-toroidal symmetry but without exceeding the diffusive limit in

H = 0.5 even for QTS72.

As a final part of our study, we also performed a rescaling of the propagator using the ob-

tained fractional coefficients to confirm its good self-similar properties. A function f (x) is called

self-similar if f (λx) = λ−γ f (x), where γ is called self-similarity exponent. In seeking for the self-

similarity signatures of the propagator, we constructed the renormalized distribution tγP(r̃b/a, t),

where as gamma we used either γ = β/α or γ = H and plotted it as a function of the scaling vari-

able (r̃b/a)/tγ for the two time instances corresponding to the beginning and end of the mesoscale,

see Figure 8 in a log-linear scale. In both cases, the distributions are far from having a Gaussian

shape. However, the pdfs begin to resemble the parabolic profile with an increasing level of quasi-

symmetry, which is also reflected by the increase of the estimated spatial exponent α that gradually

approaches the value of two. In the limiting case of low symmetry for QTS72, the results with

γ = β/α > 1 are not reliable, while the results with γ = H seem to be more trustworthy.

V. DISCUSSION AND CONCLUSIONS

The trajectories of collisionless trapped α-particles dictated by neoclassical theory for five mag-

netic configurations with different levels of toroidal symmetry have been analyzed with fractional

transport tools to determine the effective nature of radial transport. The [R/S] analysis applied

to the perfectly confined trapped particles of the purely axisymmetric ITER tokamak results in a

Hurst exponent H = 0.004±0.014 indicating ideal intermittency and the absence of radial trans-

port. For this case, the Eulerian analysis becomes not feasible. The resulting Hurst exponents

for the quasi-toroidal stellarators estimated by both the Lagrangian and the Eulerian techniques

agree within the error bars except for QTS72, see Table I. This is possibly a consequence of its

fast losses and the importance of finite size effects since propagator based estimations are quite

sensitive to them, particularly if the system size is not too large. The values clearly suggest a subd-

iffusive transport behavior that becomes more pronounced as the level of quasi-toroidal symmetry
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as a function of the similarity variable with γ = H for QTS4 (e), QTS5 (f), QTS6 (g) and QTS72 (h) in a

log-linear scale.

increases.

The values of the spatial exponent α strongly decrease with decreasing symmetry and point to
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Lagrangian Eulerian

H H α β β = H ∗α

ITER 0.004±0.014

QTS4 0.05±0.07 0.07 2.7±0.9 0.5±0.3 0.18±0.06

QTS5 0.14±0.06 0.10 1.2±0.2 0.16±0.07 0.12±0.02

QTS6 0.16±0.05 0.21 0.76±0.04 0.30±0.04 0.16±0.01

QTS72 0.17±0.02 0.38 0.6±0.2 0.7±0.2 0.24±0.06

TABLE I. Transport exponents obtained by the Lagrangian and Eulerian techniques for the five configura-

tions.

the presence of spatial correlations and the non-local nature of transport for these configurations.

One might infer that the spatial exponent α = 2.7±0.9 for QTS4 implies Gaussian statistics, but

it is rather an artifact due to small broadening caused by the reduced average drifts for its highly

quasi-toroidal symmetry. Additionally, in all cases the value of H stays well below 1/α , thus

revealing the presence of strong anti-correlations48.

The temporal exponent β deduced from the propagator analysis, see Table I, shows a large dis-

parity between QTS5/QTS6 configurations where β ∼ 0.2−0.3, and the limiting cases of high/low

symmetry in QTS4/QTS72 with β ∼ 0.5−0.7. As it was mentioned at the end of Section III B, the

more reliable technique to obtain β is by using H and α values via β = Hα . As shown in the last

column of the Table I, this technique offers values of β ∼ 0.2 for the four QTS configurations. A

reason for the large disparity between the QTS configurations estimated by the first technique (the

propagator) could be related to the radial particle drifts. In particular, the β estimation may not

be suitable for relatively slow particle drifts in QTS4 and, conversely, for fairly fast particle drifts

in QTS72. On the other hand, both techniques are in good agreement for the QTS5 and QTS6

stellarators. In any case, the values of β for all configurations stay below 1 indicating a significant

non-Markovian transport.

The difficulties encountered for QTS72 are a consequence of the fast losses due to its broken

symmetry, which leads to short trajectories and a short range for the power law fits of P(r̃b/a, t)

that can not capture the dynamics of α-particles in configuration accurately. On the other extreme

is QTS4, whose high toroidal symmetry results in a minute variation of P(r̃b/a, t) leading to a

large dispersion in the transport exponents. In between for QTS5 and QTS6, the resulting values
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of the transport coefficients appear to be quite robust and consistent, considering both the Hurst

exponents obtained by the Lagrangian and Eulerian methods and the β values estimated by the

two techniques.

The results of our collisionless α-particle simulations, within the approximations used and the

quasi-toroidally symmetric configurations examined, suggest that an increasing departure from

quasi-toroidal symmetry results in faster and larger neoclassical losses. The analysis with frac-

tional transport theory tools indicates that the transport of trapped but not prompt lost particles

is non-Gaussian, non-Markovian and strongly subdiffusive. Moreover, fractional transport coeffi-

cients describe transport as becoming more subdiffusive as the level of the quasi-toroidal symmetry

increases, which is similar to the results of Ref.21 for supercritical turbulent transport in the pres-

ence of quasi-poloidal symmetry. Although, the validity of the fractional model itself becomes

doubtful in the limiting cases of high and low symmetry.
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