
JeLLyFysh-Version1.0 - a Python application for
all-atom event-chain Monte Carlo

Philipp Höllmera,b, Liang Qina, Michael F. Faulknerc, A. C. Maggsd,
Werner Krautha,e,∗

aLaboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS,
Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France

bBethe Center for Theoretical Physics, University of Bonn, Nussallee 12, 53115 Bonn,
Germany

cH. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL,
United Kingdom

dCNRS UMR7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris,
France

eMax-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden,
Germany

Abstract

We present JeLLyFysh-Version1.0, an open-source Python application for event-
chain Monte Carlo (ECMC), an event-driven irreversible Markov-chain Monte
Carlo algorithm for classical N -body simulations in statistical mechanics, bio-
physics and electrochemistry. The application’s architecture closely mirrors the
mathematical formulation of ECMC. Local potentials, long-ranged Coulomb in-
teractions and multi-body bending potentials are covered, as well as bounding
potentials and cell systems including the cell-veto algorithm. Configuration files
illustrate a number of specific implementations for interacting atoms, dipoles,
and water molecules.

1. Introduction

Event-chain Monte Carlo (ECMC) is an irreversible continuous-time Markov-
chain algorithm [5, 28] that often equilibrates faster than its reversible counter-
parts [30, 19, 22, 23, 24]. ECMC has been successfully applied to the classic N -
body all-atom problem in statistical physics [4, 17]. The algorithm implements
the time evolution of a piecewise non-interacting, deterministic, system [6]. Each
straight-line, non-interacting leg of this time evolution terminates in an event,
defined through the event time at which it takes place and through the out-state,
the updated starting configuration for the ensuing leg. An event is chosen as the
earliest of a set of candidate events, each of which is sampled using information
contained in a so-called factor. The entire trajectory samples the equilibrium
probability distribution.

∗Corresponding author, email address: werner.krauth@ens.fr

Preprint submitted to Elsevier July 30, 2019

ar
X

iv
:1

90
7.

12
50

2v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
9

Ju
l 2

01
9

Figure 1: ECMC time evolution. At events Ea, Eb, Ec, . . . , a number of factors
({a1, a2, . . . , a5}, {b1, b2, . . . , b6}, . . .) are activated. For each leg ((Ea → Eb), (Eb → Ec),
. . .), each factor must at all times independently accept the continued non-interacting evo-
lution, and must determine a candidate event time at which this is no longer the case. The
earliest candidate event time (which determines the veto) and its out-state yield the next
event (the event Eb is triggered by a2). In JF-V1.0, after committing an event to the global
state, candidate events with certain tags are trashed (tags t 1, t 3 at Eb) or maintained active
(tags t 2, t 4 at Eb), and others are newly activated. JF introduces non-confirmed events
and also pseudo-factors, which complement the factors of ECMC, and which may also trigger
events.

ECMC departs from virtually all Monte Carlo methods in that it does not
evaluate the equilibrium probability density (or its ratios). In statistical physics,
ECMC thus computes neither the total potential (or its changes) nor the to-
tal force on individual point masses. Rather, the decision to continue on the
current leg of the non-interacting time evolution builds on a consensus which
is established through the factorized Metropolis algorithm [28]. A veto puts an
end to the consensus, triggers the event, and terminates the leg (see Fig. 1).
In the continuous problems for which ECMC has been conceived, the veto is
caused by a single factor.

The resulting event-driven ECMC algorithm is reminiscent of molecular
dynamics, and in particular of event-driven molecular dynamics [1, 2, 3], in
that there are velocity vectors (which appear as lifting variables). These ve-
locities do not correspond to the physical (Newtonian) dynamics of the sys-
tem. ECMC differs from molecular dynamics in three respects: First, ECMC
is event-driven, and it remains approximation-free, for any interaction poten-
tial [32], whereas event-driven molecular dynamics is restricted to hard-sphere
or piecewise constant potentials. (Interaction potentials in biophysical simula-
tion codes have been coarsely discretized [8] in order to fit into the event-driven
framework [36, 33, 34].) Second, in ECMC, most point masses are at rest at
any time, whereas in molecular dynamics, all point masses typically have non-
zero velocities. In ECMC, an arbitrary fixed number of (independently) active

2

point masses (with non-zero velocities) and identical velocity vectors for all of
them may be chosen. In JF-V1.0, as in most previous applications of ECMC,
only a single independent point mass is active. The ECMC dynamics is thus
very simple, yet it mixes and relaxes at a rate at least as fast as in molecu-
lar dynamics [19, 23, 24]. Third, ECMC by construction exactly samples the
Boltzmann (canonical) distribution, whereas molecular dynamics is in principle
micro-canonical, that is, energy-conserving. Molecular dynamics is thus gener-
ally coupled to a thermostat in order to yield the Boltzmann distribution. The
thermostat there also eliminates drift in physical observables due to integration
errors. ECMC is free from truncation and discretization errors.

ECMC samples the equilibrium Boltzmann distribution without being itself
in equilibrium, as it violates the detailed-balance condition. Remarkably, it es-
tablishes the aforementioned consensus and proceeds from one event to the next
with O(1) computational effort even for long-range potentials, as was demon-
strated for soft-sphere models, the Coulomb plasma [18, 19], and for the simple
point-charge with flexible water molecules (SPC/Fw) model [39, 9].

JeLLyFysh (JF) is a general-purpose Python application that implements
ECMC for a wide range of physical systems, from point masses interacting with
central potentials to composite point objects such as finite-size dipoles, water
molecules, and eventually peptides and polymers. The application’s architec-
ture closely mirrors the mathematical formulation that was presented previously
(see [9, Sect II]). The application can run on virtually any computer, but it also
allows for multiprocessing and, in the future, for parallel implementations. It
is being developed as an open-source project on GitHub. Source code may
be forked, modified, and then merged back into the project (see Section 6 for
access information and licence issues). Contributions to the application are
encouraged.

The present paper introduces the general architecture and the key fea-
tures of JF. It accompanies the first public release of the application, JeL-
LyFysh-Version1.0 (JF-V1.0). JF-V1.0 implements ECMC for homogeneous,
translation-invariant N -body systems in a regularly shaped periodic simulation
box and with interactions that can be long-ranged. In addition, the present
paper presents a cookbook that illustrates the application for simplified core ex-
amples that can be run from configuration files and validated against published
data [9]. A full-scale simulation benchmark against the Lammps application is
published elsewhere [35].

The JF application presented in this paper is intended to grow into a basis
code that will foster the development of irreversible Markov-chain algorithms
and will apply to a wide range of computational problems, from statistical
physics to field theory [13]. It may prove useful in domains that have tradi-
tionally been reserved to molecular dynamics, and in particular in the all-atom
Coulomb problem in biophysics and electrochemistry.

The content of the present paper is as follows: The remainder of Section 1
discusses the general setting of JF as it implements ECMC. Section 2 describes
its mediator-based architecture [10]. Section 3 discusses how the eponymous
events of ECMC are determined in the event handlers of JF. Section 4 presents

3

system definitions and tools, such as the user interface realized through configu-
ration files, the simulation box, the cell systems, and the interaction potentials.
Section 5, the cookbook, discusses a number of worked-out examples for pre-
viously presented systems of atoms, dipoles or water molecules with Coulomb
interactions [9]. Section 6 discusses licence issues, code availability and code
specifications. Section 7 presents an outlook on essential challenges and a pre-
view of future releases of the application.

1.1. Configurations, factors, pseudo-factors, events, event handlers

In ECMC, configurations c = {s1, . . . , si, . . . , sN} are described by continu-
ous time-dependent variables where si(t) represents the position of the ith of N
point masses (although it may also stand for the continuous angle of a spin on a
lattice [30]). JF is an event-driven implementation of ECMC, and it treats point
masses and certain collective variables (such as the barycenter of a composite
point object) on an equal footing. Rather than the time-dependent variables
si(t), its fundamental particles (Particle objects) are individually time-sliced
positions (of the point masses or composite point objects). Non-zero velocities
and time stamps are also recorded, when applicable. The full information can
be packed into units (Unit objects), that are moved around the application (see
Section 1.2).

Each configuration c has a total potential U({s1, . . . , sN}), and its equilib-
rium probability density π is given by the Boltzmann weight

π({s1, . . . , sN}) = exp [−βU({s1, . . . , sN})] , (1)

that is sampled by ECMC (see [9]). The total potential U is decomposed as

U({s1, . . . , sN}) =
∑
M∈M

UM ({si : i ∈ IM}), (2)

and the Boltzmann weight of eq. (1) is written as a product over terms that
depend on factors M , with their corresponding factor potentials UM . A factor
M = (IM , TM) consists of an index set IM and of a factor type TM , and M is
the set of factors that have a non-zero contribution to eq. (2) for some configu-
ration c. In the SPC/Fw water model, for example, one factor M with factor
type TM = Coulomb might describe all the Coulomb potentials between two
given water molecules, and the factor index set IM would contain the identifiers
(indices) of the involved four hydrogens and two oxygens (see Section 5.3).

ECMC relies on the factorized Metropolis algorithm [28], where the move
from a configuration c to another one, c′, is accepted with probability

pFact(c→ c′) =
∏
M

min [1, exp (−β∆UM)] , (3)

where ∆UM = UM (c′M) − UM (cM). Rather than to evaluate the right-hand
side of eq. (3), the product over the factors is interpreted as corresponding to a
conjunction of independent Boolean random variables

XFact(c→ c′) =
∧

M∈M
XM (cM → c′M). (4)

4

In this equation, XFact(c → c′) is “True” (the proposed Monte Carlo move is
accepted) if the independently sampled factorwise Booleans XM are all “True”.
Equivalently, the move c → c′ is accepted if it is independently accepted by
all factors. This realizes the aforementioned consensus decision (see Fig. 1).
For an infinitesimal displacement, the random variable XM of only a single
factor M can be “False”, and the factor M vetoes the consensus, creates an
event, and starts a new leg. In this process, M requires only the knowledge
of the factor in-state (based on the configuration cM , and the information on
the move), and the factor out-state (based on c′M) provides all information
on the evolution of the system after the event. The event is needed in order
to enforce the global-balance condition (see Fig. 2a). In this process, lifting
variables [7], corresponding to generalized velocities, allow one to repeat moves
of the same type (same particle, same displacement), as long as they are accepted
by consensus.1 Physical and lifting variables build the overcomplete description
of the Boltzmann distribution at the base of ECMC, and they correspond to
the global physical and global lifting states of JF, its global state.

Figure 2: Factors and pseudo-factors. (a): In-state and sampled out-state (each with two
active units) for a three-unit factorM (implementing, for example, the inter-molecular bending
potential UM of Section 4.4.5). (b): In- and out-states for a cell-boundary event handler
realizing a pseudo-factor. Times at which units are time-sliced are indicated. tout is the event
time.

JF, the computer application, is entirely formulated in terms of events, be-
yond the requirements of the implemented event-driven ECMC algorithm. The
application relies on the concept of pseudo-factors, which complement the fac-
tors in eq. (2), but are independent of potentials and without incidence on the
global-balance condition (see Fig. 2b). In JF, the sampling of configuration
space, for example, is expressed through events triggered by pseudo-factors.
Pseudo-factors also trigger events that interrupt one continuous motion (one
“event chain” [5]) and start a new one. Even the start and the end of each run
of the application are formulated as events triggered by pseudo-factors.

In ECMC, among all factors M in eq. (2), only those for which UM changes
along one leg can trigger events. In JF, these factors are identified in a separate
element of the application, the activator (see Section 2.4), and they are realized

1For concreteness, the lifting variables in this paper are referred to as “velocities”, although
they are not derived from mechanical equations of motions and their conservation laws. The
concept of lifting variables is more general [7].

5

in yet other elements, the event handlers. An event handlers may require an
in-state. It then computes the candidate event time and its out-state (from the
in-state, from the factor potential, and from random elements). The complex
operation of the activator and the event handlers is organized in JF-V1.0 with
the help of a tag activator, with tags essentially providing finer distinction than
the factor types TM . A tagger identifies a certain pool of factors, and also
singles out factors that are to be activated for each tag. The triggering of an
event associated with a given tag entails the trashing of candidate events with
certain tags, while other candidate events are maintained (see Fig. 1). Also,
new candidate events have to be computed by event handlers with given tags.
This entire process is managed by the tag activator.

1.2. Global state, internal state

In the event-driven formulation of ECMC, a point mass with identifier σ
and with zero velocity is simply represented through its position, while an active
point mass (with non-zero velocity) is represented through a time-sliced position
sσ(tσ), a time stamp σ(tσ) and a velocity vσ:

sσ(t) =

{
sσ if vσ = 0

sσ(tσ) + (t− tσ)vσ else (active point mass)
. (5)

An active point mass thus requires storing of a velocity vi and of a time stamp
tσ, in addition to the time-sliced position sσ(tσ). In JF, the global state traces
all the information in eq. (5). It is broken up into the global physical state,
for the time-sliced positions sσ, and the global lifting state, for the non-zero
velocities vσ and the time stamps tσ.

JF represents composite point objects as trees described by nodes. Leaf
nodes correspond to the individual point masses. A tree’s inner nodes may rep-
resent, for example, the barycenters of parts of a molecule, and the root node
that of the entire molecule (see Fig. 3a-b). The velocities inside a composite
point object are kept consistent, which means that the global lifting state in-
cludes non-zero velocities and time stamps of inner and root nodes. The storing
element of the global state in JF is the state handler (see Section 2.3). The
global state is not directly accessed by other elements of the application, but
branches of the tree can be extracted (copied) temporarily, together with their
unit information. Independent and induced units differentiate between those
that appear in ECMC and those that are carried along in order to assure con-
sistency (see Fig. 3).

For internal computations, the global state may be supplemented by an in-
ternal state that is kept, not in the state handler, but in the activator part
of the application (see Section 2.4). In JF-V1.0, the internal state consists in
cell-occupancy systems, which associate identifiers of composite point objects
or point masses to cells. (An identifier is a generalized particle index with, in
the case of a tree, a number of elements that correspond to the level of the
corresponding node.) In JF, cell-occupancy systems are used for book-keeping,

6

Figure 3: Tree representation of composite point objects in JF-V1.0. (a): Molecule with
functional parts. (b): Tree representation, with leaf nodes for the individual atoms and
higher-level nodes for barycenters. Nodes each have a particle (a Particle object) containing
a position vector and charge values. A unit (a Unit object), associated with a node, copies out
the particle’s identifier and its complete global-state information. (c): Internal representation
of composite point objects with separate cell systems for particle identifiers on different levels.
On the leaf level, only one kind of particles is tracked.

and also for cell-based bounding potentials. JF-V1.0 requires consistency be-
tween the time-sliced particle information and the units. This means that the
time-sliced position sσ(tσ) and the time-dependent position sσ(t) in eq. (5) be-
long to the same cell (see Fig. 2b). Several cell-occupancy systems may coexist
within the internal state (possibly on different tree-levels and with different cell
systems, see Fig. 3c and Section 5.3.4). ECMC requires time-slicing only for
units whose velocities are modified. Beyond the consistency requirements, JF-
V1.0 performs time-slicing also for unconfirmed events, that is, for triggered
events for which, after all, the out-state continues the straight-line motion of
the in-state (see Section 3.1.2).

1.3. Lifting schemes

In its lifted representation of the Boltzmann distribution, ECMC introduces
velocities for which there are many choices, that is, lifting schemes. The num-
ber of independent active units can in particular be set to any value nac > 1
and then held fixed throughout a given run. This generalizes easily from the
known nac = 1 case [12]. A simple nac-conserving lifting scheme uses a factor-
derivative table (see [9, Fig. 2]), but confirms the active out-state unit only if
the corresponding unit is not active in the in-state (its velocity is None). For
|IM | > 3, the lifting scheme (the way of determining the out-state given the
in-state) is not unique, and its choice influences the ECMC dynamics [9]. In
JF-V1.0, different lifting-scheme classes are provided in the JF lifting pack-
age. They all construct independent-unit out-state velocities for independent
units that equal the in-state velocities. This appears as the most natural choice
in spatially homogeneous systems [5].

7

1.4. Multiprocessing

In ECMC, factors are statistically independent. In JF, therefore, the event
handlers that realize these factors can be run independently on a multiprocessor
machine. With multiprocessor support enabled, candidate events are concur-
rently determined by event handlers on separate processes, using the Python
multiprocessing module. Candidate event times are then first requested in
parallel from active event handlers, and then the out-state for the selected event.
Given a sufficient number of available processors, out-states may be computed
for candidate events in advance, before they are requested (see Section 2.1).
The event handlers themselves correspond to processes that usually last for the
entire duration of one ECMC run. When not computing, event handlers are ei-
ther in idle stage waiting to compute an candidate event time or in suspended
stage waiting to compute an out-state.

Using multiple processes instead of threads circumvents the Python global
interpreter lock, but the incompressible time lag due to data exchange slows
down the multiprocessor implementation of the mediator with respect to the
single-processor implementation.

1.5. Parallelization

ECMC generalizes to more than one independent active unit, and a sequen-
tial, single-process ECMC computation remains trivially correct for arbitrary
nac (although JF-V1.0 only fully implements the nac = 1 case). The relative
independence of a small number of independent active units in a large system,
for 1 � nac � N , allows one to consider the simultaneous committing in dif-
ferent processes of npr events to the shared global state. (A conflict arises if
this disagrees with what would result by committing them in a single process.)
If npr � N , conflicts between processes disappear (for short-range interacting
systems) if nearby active units are treated in a single process (see Fig. 4a). The
parallel implementation of ECMC, for short-range interactions, is conceptually
much simpler than that of event-driven molecular dynamics [29, 14, 20], and it
may well extend to long-range interacting system.

An alternative type of parallel ECMC, domain decomposition into nac stripes,
was demonstrated for two-dimensional hard-spheres systems, and considerable
speed-up was reached [16]. Here, stripes are oriented parallel to the velocities,
with one active unit per stripe. Stripes are isolated from each other by immobile
layers of spheres [16], which however cause rejections (or reversals of one or more
components of the velocity). The stripe decomposition eliminates all scheduling
conflicts. As any domain decomposition [29], it is restricted to physical models
with short-range interactions. It is not implemented in JF-V1.0 (see Fig. 4b).

2. JF architecture

JF adopts the design pattern based on a mediator [10], which serves as the
central hub for the other elements that do not directly connect to each other.
In this way, interfaces and data exchange are particularly simple. The mediator
design maximizes modularity in view of future extensions of the application.

8

Figure 4: Parallel ECMC with local potentials (interaction range d). (a): Multiprocess version
with nac � N active units. Nearby active units avoid conflict in a single process. (b):
Domain decomposition with separated stripes. Particles in between stripes are immobile.
The separation region (of width ∆) is wider than d, so that all conflict between stripes is
avoided (see [16]).

2.1. Mediator

The mediator is doubled up into two modules (with SingleProcessMediator
and MultiProcessMediator classes). The runmethod of either class is called by
the executable run.py script of the application, and it loops over the legs of the
continuous-time evolution. The loop is interrupted when an EndOfRun exception
is raised, and a post run method is invoked. For the single-process mediator,
all the other elements are instances of classes that provide public methods. In
particular, the mediator interacts with event handlers. For the multi-process
mediator, each event handler has its own autonomous iteration loop and runs
in a separate process. It exchanges data with the mediator through a two-way
pipe. Receiving ends on both sides detect when data is available using the pipe’s
recv methods.

In JF-V1.0, the same event-handler classes are used for the single-process
and multi-process mediator classes. The multi-process mediator achieves this
through a monkey-patching technique. It dynamically adds a run in process
method to each created instance of an event handler, which then runs as an
autonomous iteration loop in a process and reacts to shared flags set by the
mediator. The multi-process mediator in addition decorates the event handler’s
send event time and send out state methods so that output is not simply
returned (as it is in the single-process mediator) but rather transmitted through
a pipe. Only the mediator accesses the event handlers, and these re-definitions
of methods and classes (which abolish the need for two versions for each event-
handler class) are certain not to produce undesired side effects.

On one leg of the continuous-time evolution, the mediator goes through nine
steps (see Fig. 5). In step 1, the active global state (that part of the global state
that appears in the global lifting state) is obtained from the state handler. (In
the tree state handler of JF-V1.0, branches of independent units are created

9

for all identifiers that appear in the lifting state.) Knowing the preceding event
handler (which initially is None) and the active global state, it then obtains from
the activator, in step 2, the event handlers to activate together with their in-
state identifiers. For this, the activator may rely on its internal state, but not on
the global state, to which it has no access. In step 3, the corresponding in-states
are extracted (that is, copied) from the state handler. In step 4, candidate event
times are requested from the appropriate event handlers and pushed into the
scheduler’s push event method. In step 5, the mediator obtains the earliest
candidate event time from the scheduler’s get succeeding event method and
and asks its event handler for the event out-state (step 6) to be committed to the
global state (step 7). The activator, in step 8, determines which candidate events
are to be trashed (in JF-V1.0: based on their tags), that is, which candidate
event times are to be eliminated from the scheduler. Also, the activator collects
the corresponding event handlers, as they become available to determine new
candidate events. In the optional final step 9, the mediator may connect (via
the input–output handler) to an output handler, depending on the preceding
event handler. A mediating method defines the arguments sent to the output
handler (for example the extracted global state), and considerable computations
may take place there.

Figure 5: JF architecture, built on the mediator design pattern. The iteration loop takes the
system from one event to the next (for example from Ea to Eb in Fig. 1). All elements of
JF interact with the mediator, but not with each other. The multi-process mediator interacts
with event handlers running on separate processes, and exchanges data via pipes.

The multi-process mediator uses a single pipe to receive the candidate event
time and the out-state from an event handler. In order to distinguish the re-
ceived object, the mediator assigns four different stages to the event handlers
(idle, event time started, suspended, out state started stages). The as-
signed stage determines which flags can be set to start the send event time or
send out state methods. It also determines the nature of the data contained
in the pipe. In the idle stage, the mediator can set the starting flag after which
the event handler will wait to receive the in-state through the pipe. This starts

10

the event time started stage during which the event handler determines the
next candidate event time and places it into the pipe. After the mediator has
recovered the data from the pipe, it places the event handler into the suspended
stage. If requested (by flags), the event handler can then either compute the
out-state (out state started stage), or else revert to the event time started
stage.

The strategy for suspending an event handler or for having it start an out-
state computation (before the request) can be adjusted to the availability of
physical processors on the multi-processor machine. However, in JF-V1.0, the
communication via pipes presents a computational bottleneck.

2.2. Event handlers

Figure 6: Basic stages of event handlers for factors and pseudo-factors (stages 1 and 3 relevant
for the multi-process mediator only). In the idle and suspended stages, the event handler is
halted (via flags controlled by the multi-process mediator), thus liberating resources for other
candidate-event-time requests. With the multi-process mediator, candidate out-states may be
computed before the out-state request arrives.

Event handlers (instances of a number of classes that inherit from the ab-
stract EventHandler class) provide the send event time and send out state
methods that return candidate events. These candidate events either become
events of a factor or pseudo-factor or they will be be trashed.2

When realizing a factor or a pseudo-factor, event handlers receive the in-
state as an argument of the send event time method. The send out state
method then takes no argument. In contrast, event handlers that realize a set of
factors or pseudo-factors request candidate event times without first specifying
the complete in-state, because the element of the set that triggers the event is
yet unknown at the event-time request (see Section 3.2.2 for examples of event
handlers that realize sets of factors). The send event time method then takes
the part of the in-state which is necessary to calculate the candidate event time.
Also, it may return supplementary arguments together with the candidate event
time, which is used by the mediator to construct the full in-state. The in-state
is then an argument of the send out state method, as it was not sent earlier.

2A candidate event time may stem from a bounding potential, and not be confirmed for
the factor potential. In JF-V1.0, unconfirmed and confirmed events are treated alike.

11

In JF-V1.0, each run requires a start-of-run event handler (an instance of
a class that inherits from the abstract StartOfRunEventHandler class), and
it cannot terminate properly without an end-of-run event handler. Section 3
discusses several event-handler classes that are provided.

2.3. State handler

The state handler (an instance of a class that inherits from the abstract
StateHandler class) is the sole separate element of JF to access the global
state. In JF-V1.0, the global physical state (all positions of point masses and
composite point objects) is contained in an instance of the TreePhysicalState
class represented as a tree consisting of nodes (each node corresponds to a Node
object). Each node contains a particle (a Particle object) which holds a time-
sliced position. In JF-V1.0, each leaf node may in addition have charges as a
Python dictionary mapping the name of the charge onto its value.

Figure 7: Inner storage of the tree state handler and example of its extract from global state
method, applied to the global state of Fig. 3b.

Each tree is specified through its root node. Root nodes can be iterated over
(in JF-V1.0, they are members of a list). Each node is connected to its parent
and its children, which can also be iterated over. In JF-V1.0, the children
are again members of a list. These lists imply unique identifiers of nodes and
their particles as tuples. The first entry of the tuple gives a node’s root node
list index, followed by the indices on lower levels down to the node itself (see
Fig. 3).

The global lifting state is stored in JF-V1.0 in a Python dictionary mapping
the implicit particle identifier onto its time stamp and its velocity vector. This
information is contained in an instance of the TreeLiftingState class. Both
the physical and lifting states are combined in the TreeStateHandler which
implements all methods of a state handler.

To communicate with other elements of the JF application (such as the event
handlers and the activator) via the mediator, the state handler combines the

12

information of the global physical and the global lifting state into units (that
is, temporary Unit objects, see Fig. 7). A given physical-state and lifting-state
information for a node in the state handler is mirrored (that is copied) to a unit
containing its implicit identifier, position, charge, velocity and time stamp. All
other elements can access, modify, and return units. This provides a common
packaging format across JF. The explicit identifier of a unit allows the program
to integrate changed units into the state handler’s global state.

In the tree state handler of JF-V1.0, the local tree structure of nodes can
be extracted into a branch of cnodes, that is, nodes containing units.3 Each
event handler only requires the global state reduced to a single factor in order
to determine candidate event times and out-states. As a design principle in JF-
V1.0, the event handlers keep the time-slicing of composite point objects and
its point masses consistent. Information sent to event handlers via the mediator
is therefore structured as branches, that is the information of a node with its
ancestors and descendants. The state handler’s extract from global state
method creates a branch for a given identifier of a particle by constructing a
temporary copy of the immutable node structure of the state handler using
cnodes. Out-states of events in the form of branches can be committed to the
global state using the insert into global state method.

The extract active global statemethod, the first of two additional meth-
ods provided by the state handler, extracts the part of the global state which
appears in the global lifting state. The tree state handler constructs the min-
imal number of branches, where each node contains an active unit, so that all
implicit identifiers appearing in the global lifting state are represented. The ac-
tivator may then determine the factors which are to be activated. The method
is also used to time-slice the entire global state (see Section 3.2.2). Second,
the extract global state method extracts the full global state. (For the tree
state handler of JF-V1.0, this corresponds to a branch for each root node.)
This method does not copy the positions and velocities.

In JF-V1.0, the global physical state is initialized via the input handler
within the input–output handler (see Section 2.6). The initial lifting state,
however, is set via the out-state of the start-of-run event handler, which is com-
mitted to the global state at the beginning of the program (see Section 3.2.2).
This means that, in JF-V1.0, the lifting state cannot be initialized from a file.

2.4. Activator

The activator, a separate element of the JF application, is an instance of a
class that inherits from the abstract Activator class. At the beginning of each
leg, the activator provides to the mediator the new event handlers which are
to be run, using the get event handlers to run method. (As required by the
mediator design pattern, no data flows directly between the activator and the

3The distinction between particles and units, as well as between nodes and cnodes stresses
that the state handler can only be accessed by the mediator, although information on the
physical and the lifting state must of course travel throughout the application.

13

event handlers, although it initially obtains their references, and subsequently
manages them.) The activator also returns associated in-state identifiers of
particles within the global state. The extracted parts of the global state of
these are needed by the event handlers to compute their candidate event time
(the identifier may be None if no information is needed). Finally, it readies
for the mediator a list of trashable candidate events at the end of each leg
in the get trashable events method, once the mediator has committed the
preceding event to the global state via the state handler.

Figure 8: Tag activator, and its complex interaction with the mediator. It readies event
handlers and in-state identifiers, provides internal-state information for an out-state request,
and identifies the trashable candidate events, as a function of the preceding event.

In JF-V1.0, the activator is an instance of the TagActivator class (that
inherits from the Activator class). The tag activator’s operations depend on
the interdependence of tags of event handlers and their events. Event handlers
receive their tag by instances of classes located in the activator and derived from
the abstract Tagger class that are called “taggers”.

A tagger centralizes common operations for identically tagged event handlers
(see Fig. 8). On initialization, the tagger receives its tag (a string-valued tag
attribute) and an event handler (that is, a single instance), of which it creates
as many identical event-handler copies as needed (using the Python deepcopy
method). Each tagger provides a yield identifiers send event timemethod
which generates in-state identifiers based on the branches containing indepen-
dent active units (this means that the taggers are implemented especially for the
TreeStateHandler, the TagActivator however is not restricted to this since
it just transmits the extracted active global state). These in-states are passed
(after extracting the part of the global state related to the identifiers from the
state handler) to the send event time method of the tagger’s event handlers.
The number of event handlers inside a tagger should meet the maximum num-
ber of events with the given tag simultaneously in the scheduler. In this paper,
event handlers (and their candidate events) are referred to by tags, although in
JF they do not have the tag attribute of their taggers.

On initialization, a tagger also receives a list of tags for event handlers
that it creates, as well as a list of tags for event handlers that need to be
trashed. The tag activator converts this information of all taggers into its in-
ternal create taggers and trash taggers dictionaries. Additionally, the tag

14

activator creates an internal dictionary mapping from an event handler onto the
corresponding tagger (event handler tagger dictionary).

A call of the get event handlers to run method is accompanied by the
event handler which created the preceding event and by the extracted active
global state. The event handler is first mapped onto its tagger. The taggers
returned by the create taggers dictionary then generate the in-states identi-
fiers, which are returned together with the corresponding event handlers (in a
dictionary). For the initial call of the get event handlers to run method no
information on the preceding event handler can be provided. This is solved by
initially returning the start-of-run event handler. Similarly the trash taggers
dictionary is used on each call of get trashable events. The corresponding
event handlers are then also liberated, meaning that the activator can return
them in the next call of the get event handlers to run method.4 For this, the
activator internally splits the pool of all event handlers of a given tag internally
into those with a scheduled candidate event and the ones that are available to
take on new candidate events.

The activator also maintains the internal state. In JF-V1.0, the internal
state consists in cell-occupancy systems. Therefore, the internal state is an
instance of a class that inherits from the CellOccupancy class, which itself
inherits from the abstract InternalState class. Taggers may refer to internal-
state information to determine the in-states of their event handlers. The cell-
occupancy system does not double up on the information available in the state
handler. It keeps track of the identifier of a particle (which may correspond
to a point mass or a composite point object), but does not store or copy the
particle itself (see Section 4.3). The mediator can access the internal state
via the get info internal state method (see Fig. 8). To acquire consistency
between the global state and the internal state (and between a particle and its
associated unit), a pseudo-factor triggers an event for each active unit tracked
by the cell-occupancy system that crosses a cell boundary (see Fig. 2b). The
internal state is updated in each call of the get event handlers to runmethod.

2.5. Scheduler

The scheduler is an instance of a class inheriting from the abstract Scheduler
class. It keeps track of the candidate events and their associated event-handler
references. Its get succeeding event method selects among the candidate
events the one with the smallest candidate event time, and it returns the ref-
erence of the corresponding event handler. Its push event method receives a
new candidate event time and event-handler reference. Its trash event method
eliminates a candidate event, based on the reference of its event handler. In JF-
V1.0, the scheduler is an instance of the HeapScheduler class. It implements
a priority queue through the Python heapq module.

4The action of the create taggers and trash traggers dictionaries can be overruled with
the concept of activated and deactivated taggers. Event handlers out of deactivated taggers
are not returned to the mediator.

15

2.6. Input–output handler

The input–output handler is an instance of the InputOutputHandler class.
The input–output handler connects the JF application to the outside world, and
it is accessible by the mediator. The input–output handler breaks up into one in-
put handler (an instance of a class that inherits from the abstract InputHandler
class) and a possibly empty list of output handlers (instances of classes that
inherit from the abstract OutputHandler class). These are accessed by the me-
diator only via the input–output handler. Output handlers can also perform
significant calculations.

The input handler enters the initial global physical state into the application.
JF-V1.0 provides an input handler that enters protein-data-bank formatted
data (.pdb files) as well as an input handler which samples a random initial
state. The initial state (constructed as a tree for the case of the tree state
handler) is returned when calling the read method of the input–output handler,
which calls the read method of the input handler.

The output handlers serve many purposes, from the output in .pdb files to
the sampling of correlation functions and other observables, to a dump of the
entire run. They obtain their arguments (for example the entire global state) via
its write method. The write method of the input–output handler receives the
desired output handler as an additional argument through the mediating meth-
ods of specific event handlers. These are triggered for example after a sampling
or an end-of-run event. The corresponding event handlers are initialized with
the name of their output handlers.

3. JF event-handler classes

Event handler classes differ in how they provide the send event time and
send out state methods. Event handlers split into those that realize factors
and sets of factors and those that realize pseudo-factors and sets of pseudo-
factors. The first are required by ECMC while the second permit JF to represent
the entire run in terms of events.

3.1. Event handlers for factors or sets of factors

Event handlers that realize a factor M , or a set of factors are implemented
in different ways depending on the analytic properties of the factor potential
UM and on the number of independent active units.

3.1.1. Invertible-potential event handlers

In JF, an invertible factor potential UM (an instance of a class that inher-
its from the abstract InvertiblePotential class) has its event rate integrated
in closed form along a straight-line trajectory (see Fig. 1). The sampled cu-
mulative event rate (U+

M in [9, eq. (45)]) provides the displacement method.
Together with the time stamp and the velocity of the active unit, this deter-
mines the candidate event time. In JF-V1.0, the two-leaf-unit event handler
(an instance of the TwoLeafUnitEventHandler class) is characterized by two

16

independent units at the leaf level. It realizes a two-particle factor with an
invertible factor potential. The in-state (an argument of the send event time
method) is stored internally, and it remains available for the subsequent call of
the send out state method. Because of the two independent units, the lifting
simply consists in these two units switching their velocities (using the internal
exchange velocity method) and keeping the velocities of all induced units

consistent.

3.1.2. Event handlers for factors with bounding potential

For a factor potential UM that is not inverted (by choice or by necessity
because it is non-invertible), the cumulative event rate U+

M is unavailable (or
not used) and so is its displacement method. Only the derivative method
is used. To realize such a factor without an inverted factor potential, an event
handler then uses the displacementmethod of an associated bounding potential
whose event rate at least equals that of UM and that is itself invertible. A non-
inverted UM may be associated with more than one bounding potential, each
corresponding to a different event handler (the molecular Coulomb factors in
Section 5.2 associate the Coulomb factor potential in the same run with different
bounding potentials). In JF-V1.0, a number of event handlers are instances of
classes that inherit from the EventHandlerWithBoundingPotential class, and
that realize factors with bounding potentials. Each of these event handlers
translates the sampled displacement of the bounding potential into a candidate
event time. On an out-state request (via the send out state method), the
event handler confirms the event with probability that is given by the ratio
of the event rates of the factor potential and the bounding potential. The
out-state consists of independent units together with their branches of induced
units. For two independent units, the lifting limits itself to the application of a
local exchange velocitymethod, which exchanges independent-unit velocities
and enforces velocities for the induced units. For more independent units, the
out-state calculation requires a lifting. For an unconfirmed event, no lifting
takes place. In JF-V1.0, confirmed and unconfirmed event have time-sliced
out-states. Inefficient treatment of unconfirmed events is the main limitation of
this version of the application.

A special case of a bounding potential is the cell-based bounding potential
which features piecewise cell-bounded event rates. The two independent units
are localized within their respective cells, and the bounding potential’s rate is
for all positions of the units larger than the factor potential event rate. In
JF-V1.0, the constant cell-bounded event rate is determined for all pairs of
cells on initialization (see Section 4.4.4). The resulting displacement may move
the independent active unit outside its cell. The proposed candidate event will
then however be preempted by a cell-boundary event and then trashed (see
Section 3.2.1).

3.1.3. Cell-veto event handlers

Cell-veto event handlers (instances of a number of classes that inherit from
the abstract CellVetoEventHandler class) realize sets of factors, rather than a

17

single factor. The factor in-states (for each element of the set) are not transmit-
ted with the candidate-event-time request. Instead, the branch of the indepen-
dent active unit is an argument of the send event time method. The sampled
factor in-state is transmitted with the out-state request. The cell-veto event
handler implements Walker’s algorithm [37] in order to sample one element in
the set of factors in O(1) operations.

Cell-veto event handlers are instantiated with an estimator (see Section 4.6).
In addition, they obtain a cell system which is read in through its initialize
method (see Section 4.2). The estimator provides upper limits for the event rate
(in the given direction of motion) for the independent active unit anywhere in
one specific cell (called “zero-cell”, see Section 4.3), and for a target unit in any
other cell, except for a list of excluded cells. These upper limits can be translated
from the zero-cell to any other active-unit cell, because of the homogeneity of
the simulation box. In JF-V1.0, the cell systems for the cell-veto event handler
can be on any level of the particles’ tree representation (see Section 5.3.4, where
a molecule-cell system tracks individual water molecules on the root level, while
a oxygen-cell system tracks only the leaf nodes corresponding to oxygens).

A Walker sampler is an instance of the Walker class in the event handler
package. It provides the total event rate (total rate), that for a homogeneous
periodic system is a constant throughout a run. On a candidate-event-time re-
quest, a cell-veto event handler computes a displacement, but no longer through
the displacement method of a factor potential or a bounding potential, but
simply as an exponential random number divided by the total event rate. (The
particularly simple send event time method of a cell-veto event handler is im-
plemented in the abstract CellVetoEventHandler class.) (see [9] for a full
description). The Walker sampler’s sample cell method samples the cell of
the target unit in O(1). It is returned, together with the candidate event time,
as an argument of the send event time method. The out-state request is ac-
companied by the branch of the independent unit in the target cell, if it exists.
Confirmation of events and, possibly, lifting are handled as in Section 3.1.2.

3.2. Event handlers for pseudo-factors or sets of pseudo-factors

The pseudo-factors of JF unify the description of the ECMC time evolution
entirely in terms of events. The distinction between event handlers that realize
pseudo-factors and those that realize sets of pseudo-factors remains crucial. In
the former, the factor in-state is known at the candidate-event-time request. It
is transmitted at this moment and kept in the memory of the event handler for
use at the out-state request. For a set of pseudo-factors, the factor in-state can
either not be specified at the candidate-event-time request, or would require
transmitting too much data (one in-state per element of the set). It is therefore
transmitted later, with the out-state-request (see Fig. 9).

3.2.1. Cell-boundary event handler

In the presence of a cell-occupancy system, JF-V1.0 preserves consistency
between the tracked particles of the global physical state and the corresponding

18

units (which must belong to the same cell). This is enforced by a cell-boundary
event handler, an instance of the CellBoundaryEventHandler class. This event
handler has a single independent unit and realizes a pseudo-factor with a single
identifier. A cell-boundary event leads to the internal state to be updated (see
Section 2.4).

On instantiation, a cell-boundary event handler receives a cell system. (Each
cell-occupancy system requires one independent cell-boundary event handler.)
A candidate-event-time request by the mediator is accompanied by the in-state
contained in a single branch and a single unit on the level tracked by the cell-
occupancy system. An out-state request is met with the cell-level-unit’s position
corresponding to the minimal position in the new cell.

3.2.2. Event handlers for sampling, end-of-chain, start-of-run, end-of-run

Sampling event handlers are instances of classes that inherit from the ab-
stract SamplingEventHandler class. Sampling event handlers are expected to
produce output (they inherit from the EventHandlerWithOutputHandler class
and are connected, on instantiation, with their own output handler which is used
in the mediating method of this event handler). Several sampling event han-
dlers may coexist in one run. Their output handler is responsible for computing
physical observable at the sampling event time (see Section 2.6). JF-V1.0 im-
plements sampling events as the time-slicing of all the active units. A sampling
event handler thus realizes a set of single-unit pseudo-factors, and the in-state
is not specified at the candidate-event-time request. In JF-V1.0, the candidate
event times of the sampling event handler are equally spaced. The out-state
request is accompanied by branches of all independent active units, which are
then all time-sliced simultaneously. Sampling candidate events are normally
trashed only by themselves and by an end-of-run event.

Figure 9: Set of pseudo-factors realized by the end-of-chain event handler. (a): Set of end-
of-chain pair pseudo-factors for four point masses coupling the final active unit of the old
chain and the beginning active unit of the new chain. (b): At the event time, the realized
pseudo-factor with the incoming active unit and the outgoing unit is known. (c): A new event
chain is started. The outgoing active unit is shown.

End-of chain event handlers are instances of classes that inherit from the
abstract EndOfChainEventHandler class. They effectively stop one event chain
and reinitialize a new one. This is often required for the entire run to be
irreducible (see [9]). The end-of-chain event handler clearly realizes a set of
pseudo-factors, rather than a single pseudo-factor (see Fig. 9a). An end-of-
chain event handler implements a method to sample a new direction of motion.

19

In addition, it implements a method to determine a new chain length (that gives
the time of the next end-of-chain event) and, finally, the identifiers of the next
independent active cnodes. For this, the end-of-chain event handler is aware of
all the possible cnode identifiers (see Section 4.2).

On an event-time request, the end-of-chain event handler returns the next
candidate event time (computed from the new chain length) and the identifier
of the next independent active cnode. The out-state request is accompanied by
the current and the succeeding independent active units and their associated
branches (see Fig. 9b). For the out-state, the event handler determines the next
direction of motion (see Fig. 9c).

A start-of-run event handler (an instance of a class that inherits from the
abstract StartOfRunEventHandler class) is the sole event handler whose pres-
ence is required. The start-of-run event is the first one to be committed to the
global state, because its candidate event time is set equal to the initial time of
the run (usually zero) and because the activator will initially only activate the
start-of-run event handler. The start-of-run event handler serves two purposes.
First, it sets the initial lifting state. Second, the activator uses the start-of-run
event handler as an entry point. Its tag (the start of run tag in the config-
uration files of Section 5) is then used to determine the events that should be
activated and created thereafter.

The end-of-run event handler (an instance of a class that inherits from the
abstract EndOfRunEventHandler class) terminates a run by raising an end-of-
run exception and thus ends the mediator loop. An end-of-run event handler
is usually connected, on instantiation, with its own output handler. In JF-
V1.0, its send event time method returns the total run-time, which transits
from the configuration file. On the send out state request, all active units are
time-sliced. The end-of-run output handler may further process the global state
which it receives via the mediating method of the end-of-run event handler.

3.3. Event handlers for rigid motion of composite point objects, mode switching

The event handlers of JF-V1.0 are generally suited for the rigid motion
of composite point objects (root mode), that is, for independent non-leaf-node
units (as implemented in Section 5.2.4). This is possible because all event han-
dlers keep the branches of independent units consistent. As the subtree-node
units of an independent-unit node move rigidly, the displacement is not irre-
ducible. Mode switching into leaf mode (with single active leaf units) then be-
comes a necessity in order to have all factors be considered during one run and
to assure the irreversibility of the implemented algorithm. In JF-V1.0, the cor-
responding event handlers are instances of the RootLeafUnitActiveSwitcher
class. On instantiation, they are specified to switch either from leaf mode to
root mode or vice versa.

These event handlers resemble the end-of-chain event handler, but only one
of them is active at any given time. They provide a method to sample the new
candidate event time based on the time stamp of the active independent unit at
the time of its activation. An out-state request from one of these event handlers
is accompanied by the entire tree of the current independent active unit of one

20

mode and met with the tree of the independent active unit on the alternate
mode.

4. JF run specifications and tools

The JF application relies on a user interface to select the physical system
that is considered, and to fully specify the algorithm used to simulate it. Inside
the application, some of these choices are made available to all modules (rather
than having to be communicated repeatedly by the mediator). The application
also relies on a number of tools that provide key features to many of its parts.

4.1. Configuration files, logging

The user interface for each run of the JF application consists in a config-
uration file that is an argument of the executable run.py script.5 It specifies
the physical and algorithmic parameters (temperature, system shape and size,
dimension, type of point masses and composite point objects, and also factors,
factor potentials, lifting schemes, total run time, sampling frequency, etc).

A configuration file is composed of sections that each correspond to a class
requiring input parameters. The [Run] section specifies the mediator and the
setting. The ensuing sections choose the parameters in the init methods of
the mediator and of the setting. Each section contains pairs of properties and
values. The property corresponds to the name of the argument in the init
method of the given class, and its value provides the argument (see Fig. 12).
The content of the configuration file is parsed by the configparser module
and passed to the JF factory (located in the base.factory module) in run.py.
Standard Python naming conventions are respected in the classes built by the
JF factory, which implies the naming conventions in the configuration file (see
Section 6.3 for details). Within the configuration file, sections can be written in
any order, but their explicit nesting is not allowed. The nestedness is however
implicit in the structure of the configuration file.

The JF application returns all output via files under the control of output
handlers. Run-time information is logged (the Python logging module is used).
Logged information can range from identification of CPUs to the initialization
information of classes, run-time information, etc. Logging output (to standard
output or to a file) can take place on a variety of levels from DEBUG to INFO to
WARNING that are controlled through arguments of run.py. An identification
hash of the run is part of the logging output. It also tags all the output files so
that input, output and log files are uniquely linked (the Python uuid module is
used).

5Configuration files follow the INI-file format and, in JF, feature the extension .ini.

21

4.2. Globally used modules

JF-V1.0 requires that all trees representing composite point objects are
identical and of height at most two. Furthermore, in the NV T physical en-
semble, the particle number, system size and temperature remain unchanged
throughout each run. After initialization, as specified in the configuration file,
these parameters are stored in the JF setting package and the modules therein,
which may be imported by all other modules, which can then autonomously con-
struct identifiers. Helper functions for periodic boundary conditions (if avail-
able) and for the sampling of random positions are also accessible.

JF-V1.0 implements hypercubic and hypercuboid setting modules. Both
settings define the inverse temperature and also the attributes of all possible
particle identifiers, which are broadcast directly by the setting package. In
contrast, the parameters of the physical system are accessed only using the
modules of the specific setting (for example the setting.hypercubic setting
module).6 The setting package and its modules are initialized by classes which
inherit from the abstract Setting class. The HypercuboidSetting class de-
fines only the hypercuboid setting, the HypercubicSetting class, however, sets
up both the hypercubic setting and the hypercuboid setting modules to-
gether with the setting package. This allows modules that are specifically
implemented for a hypercuboid setting to be used with the hypercubic setting.

Each setting can implement periodic boundaries, by inheriting from the ab-
stract PeriodicBoundaries class and by implementing its methods. Since many
modules of JF only rely on periodic boundaries but not on the specific setting,
the setting package gives also access to the initialized periodic boundary condi-
tions. Similarly, a function to create a random position is broadcast by the set-
ting package. All the configuration files in Section 5 are for a three-dimensional
cubic simulation box, that is, use the hypercubic setting with dimension = 3.

Additional useful modules are located in the JF base package. The abstract
Initializer class located in the initializer module enforces the implemen-
tation of an initialize method. This method must be called before other
public methods of the inheriting class. The strings module provides functions
to translate strings from snake to camel case and vice versa, as well as to trans-
late a package path into a directory path. Helper functions for vectors, such as
calculating the norm or the dot product, are located in the vectors module.

4.3. Cell systems and cell-occupancy systems

A cell-occupancy system is an instance of a class that inherits from the
abstract CellOccupancy class, located in the activator. Any cell-occupancy
system is associated with a cell system, itself an instance of a class that inherits
from the abstract Cells class.

In JF-V1.0, the cell system consists in a regular grid of cells that are re-
ferred to through their indices. Cells can be iterated over with the yield cells

6Attributes in the setting package are copied to the modules for convenience.

22

Figure 10: Cell methods. (a): excluded cells, successor, cell min and cell max methods
required by the abstract Cells class. Horizontal and vertical directions are indexed as 0 and
1, respectively. (b): translate and relative cell methods (illustrated by vectors) required
by the PeriodicCells class, in addition to the methods of the Cells class. Periodic boundary
conditions are required, and the two blue cells are identical. The periodic-cell system’s origin
is given by the zero cell property.

method. For a given cell, the excluded cells are accessed by the excluded cells
method, the successor cell in a suitably defined direction by the successor
method and the lower and upper bound position in each direction through the
cell min and cell max methods (see Fig. 10a). Finally, the position to cell
method returns the cell for a given position. Cell systems with periodic bound-
ary conditions are described as periodic cell systems (instances of classes that
inherit from the abstract PeriodicCells class, which itself inherits from the
Cells class). Their zero cell property corresponds to the cell located at the
origin. Their relative cell method receives a cell and a reference cell, and
establishes equivalence between the relative and the zero-cell. The inverse to
this is the translate method (see Fig. 10b).

A cell-occupancy system (which is located in the activator) associates the
identifiers of cell-based particles and of surplus particles with a cell. It also
stores active cells, that is, cells that contain an active unit (see Fig. 11). Cell-
based and surplus particles in the state handler correspond to units with zero
velocity, so that there is no real distinction between units and particles for
them. The cell-occupancy system inherits from the abstract InternalState
class and therefore provides getitem and update methods. The former
returns a particle identifier based on a cell, whereas the latter updates the
cell occupancies based on the currently active units. This keeps the internal
state consistent with the global state. Moreover the cell-occupancy may iterate
over surplus particle identifiers via the yield surplus method. The active cells
and the corresponding identifiers of the active units are generated using the
yield active cells method (see Fig. 11).

JF-V1.0 implements the SingleActiveCellOccupancy class which features
only a single active cell and which keeps the active unit identifier among its

23

Figure 11: Cell-occupancy system, an internal state of the activator, with active units ac-
counted for differently from surplus and cell-based particles. Only a fixed number of cell-based
particle identifiers are allowed per cell (here one per cell). Surplus-particle identifiers may be
iterated over from the outside of the cell-occupancy system with a yield surplus method.
In JF-V1.0, surplus particles form an internal dictionary mapping the cell onto the particle
identifier.

private attributes. The cell-based particle identifiers are stored in an internal
occupant list, and surplus-particle identifiers are stored in an internal surplus

dictionary mapping the cell indices onto the surplus-particle identifiers.
The stored cell-occupancy system can address different levels of composite

particles: one cell-occupancy system may track particles (and units) associated
to root nodes, and another one particles that go with leaf nodes. This is set
on initialization via the cell level property which equals the length of the
particle identifier tuple. The concerned cell system is itself set on initialization.
An indicator charge allows one to select specific particles on a given level for
tracking.

A single run can feature several internal states stored within the activator.
These instances may rely on different cell-occupancy systems and cell systems.
For consistency between internal states and the global state, each cell-occupancy
system requires its own cell-boundary event handler.

4.4. Inter-particle potentials and bounding potentials

In JF, potentials play a dual role, as factor potentials UM to event handlers
but also as bounding potentials for factor potentials UM . Potentials are located
in the JF potential package. They inherit from the abstract Potential class
and provide a derivative method. They may in addition inherit from the
abstract InvertiblePotential class, and must then provide a displacement
method. In JF-V1.0, derivatives and displacements are with respect to the
positive change of the active unit along one of the coordinates (indicated through
the direction). For a potential U(rij) and direction = 0, the derivative is
for example given by [∂/∂xiU(rij)].

24

4.4.1. Inverse-power-law potential, Lennard-Jones potential

The inverse-power-law potential (an instance of the InversePowerPotential
class that inherits from the abstract InvertiblePotential class) concerns the
separation vector rij = rj − ri (without periodic boundary conditions, in d-
dimensional space) between a unit j and an active unit i as

U({i,j}, inv)(rij , ci, cj) = cicjk

(
1

|rij |

)p
. (6)

Here, k and p > 0 correspond to the prefactor and power parameters set on
initialization. The charges ci and cj are entered into the methods of the potential
as parameters charge one and charge two. This allows one instance of the
InversePowerPotential class to be used for different charges. The derivative
method is straightforward, while the displacement method distinguishes the
repulsive (cicjk > 0) and the attractive (cicjk < 0) cases.

The Lennard-Jones potential (an instance of the LennardJonesPotential
class) implements the Lennard-Jones potential

U({i,j},LJ)(rij) = kLJ

[(
σ

|rij |

)12

−
(

σ

|rij |

)6
]
, (7)

where rij = rj − ri is the separation vector (without periodic boundary con-
ditions, in d-dimensional space) between a unit j and an active unit i. and where
kLJ and σ correspond to the parameters prefactor and characteristic length
set on instantiation. This Lennard-Jones potential provides a straightforward
derivative method. Its displacement method relies on an algebraic inversion.

4.4.2. Displaced-even-power-law potential

An instance of the DisplacedEvenPowerPotential class that inherits from
the abstract InvertiblePotential class, the displaced-even-power-law poten-
tial, concerns the separation vector rij = rj − ri (without periodic boundary
conditions, in d-dimensional space) between a unit j and an active unit i

U({i,j}, depp)(rij) = kdepp (|rij | − r0)
p
, (8)

where kdepp > 0, p ∈ {2, 4, 6, . . . }, and r0, respectively, are the parameters
prefactor, power, and equilibrium separation parameters set on instantia-
tion. The derivative and displacement methods are provided analytically.

4.4.3. Merged-image Coulomb potential and bounding potential

An instance of the MergedImageCoulombPotential class that inherits from
the abstract Potential class, the merged-image Coulomb potential is defined
for a separation vector rij = rj − ri (with periodic boundary conditions, in
three-dimensional space) between a unit j and an active unit i as

UC(rij , ci, cj) =
∑
n

cicj/|rij + nL|, n ∈ Z3, (9)

25

where L = (Lx, Ly, Lx) are the sides of the three-dimensional simulation box
with periodic boundary conditions. The conditionally convergent sum in eq. (9)
can be consistently defined in terms of “tin-foil” boundary conditions [21]. It
then yields an absolutely convergent sum, partly in real space and partly in
Fourier space (see [9, Sect. IIIA]),

ψ(rij , ci, cj) = cicj

[∑
n∈Z3

erfc(α|rij + nL|)
|rij + nL|

+
4π

L3

∑
q 6=(0,0,0)

e−q
2/(4α2)

q2
cos (q · rij)

 ,
(10)

with α a tuning parameter and q = 2πm/L, m ∈ Z3. JF-V1.0 provides
this class for a cubic simulation box, with parameters that are optimized to
reach machine precision for its derivative method. Summations over n and m
are taken within spherical cutoffs, namely for all |n| ≤ position cutoff and
|m| ≤ fourier cutoff except that m = (0, 0, 0). (The potential in eq. (10)
differs from the tin-foil Coulomb potential in a constant self-energy term that
does not influence the derivatives.)

The merged-image Coulomb potential is not invertible. When it serves
as a factor potential, bounding potentials provide the required displacement
method. JF-V1.0 provides a merged-image Coulomb bounding potential as an
instance of the InversePowerCoulombBoundingPotential class, with

UC,Bounding = cicjkb/|rij,0|. (11)

Here, rij,0 is the minimum separation vector, that is, the vector between ri and
the closest image of rj under the periodic boundary conditions. (The merged-
image Coulomb bounding potential thus involves no sum over periodic images.)
The constant kb is chosen as

kb = max
r∈[−L/2,L/2]3

|r|3

x

∂ψ(r)

∂x
, (12)

so that the factor-potential event rate is bounded. A constant kb & 1.5836 (the
parameter prefactor) is appropriate for a cubic simulation box. The merged-
image Coulomb bounding potential is closely related to the inverse-power-law
potential of eq. (6) with p = 1, although the restriction to the minimum sepa-
ration vector makes that the latter cannot be used directly.

4.4.4. Cell-based bounding potential

A cell-based bounding potential is an instance of a class that inherits from
the abstract InvertiblePotential class. It bounds the derivative of the factor
potential inside certain cell regions by constants. These constants can be com-
puted analytically on demand or even sampled using a separate Monte Carlo
algorithm. On initialization, a cell-based bounding potential receives an estima-
tor (see Section 4.6). Also the information about the cell system is transmitted.
Then, the cell-based bounding potential iterates over all pairs of cells (making
use of periodic boundary conditions) and determines an upper and lower bound

26

derivative for the factor units being in those cells for each possible direction
of motion using the estimator. Here, the cell-based bounding potential is not
applied to excluded cells, where the cell-bounded event rate diverges, is simply
too large, or otherwise inappropriate.

The constant-derivative bound leads to a piecewise linear invertible bound-
ing potential. The call of the displacement method is accompanied by the
direction of motion, the charge product, the sampled potential change and the
cell separation. In JF-V1.0, any cell-based bounding potential requires a cell-
boundary event handler, that detects when the displacement proposed by the
displacement method in fact takes place outside the cell for which it is com-
puted.

4.4.5. Three-body bending potential

The SPC/Fw water model of Section 5.3 includes a bending potential (an
instance of the BendingPotential class), which describes the fluctuations in
the bond angle within each molecule. For the three units i, j, and k within such
a molecule in three-dimensional space (with j being the oxygen), it is given by

U({i,j,k}, bending)(rij , rjk) =
1

2
kb

(
φ{i,j,k}(rij , rjk)− φ0

)2
. (13)

Here, φ{i,j,k}(rij , rjk) denotes the internal angle between the two hydrogen–
oxygen legs. The constants kb and φ0 are set on initialization of the potential
(see [9]). The derivativemethod is provided explicitly for this potential, which
is however not invertible.

In JF-V1.0, the associated bounding potential is constructed dynamically
by an event handler7 which dynamically constructs a piecewise linear bounding
potential. Here, the event handler speculates on a constant bounding event rate
through its position between two subsequent time-sliced positions of the active
unit: qbounding = max{q(r), q(r + v∆t)} + const where q(r) is the potential
derivative at r. The interval length |v∆t| and the constant offset are input
from the configuration file. Fine-tuning provides an efficient bounding potential
that does not under-estimate the event rate, yet limits the ratio of unconfirmed
events.

4.5. Lifting schemes

Event handlers with more than two independent units require a lifting scheme
(an instance of a class that inherits from the Lifting class). The event handler
calls a method of the lifting scheme to compute its out-state. At first, the event
handler prepares factor derivatives of relevant time-sliced units. The derivative
table (see [9, Figs 2 and 10]) is filled with unit identifiers, factor derivatives and
activity information through its insert method. Finally, the event handler calls

7instance of the FixedSeparationsEventHandlerWithPiecewiseConstantBoundingPotential
class

27

the get active identifier method that returns the identifier of the next in-
dependent active unit. The lifting scheme’s reset method deletes the derivative
table. It is called before the first derivative is inserted. JF-V1.0 implements
the ratio, inside-first and outside-first lifting schemes for a single independent
active unit (see [9, Sect. IV]).

4.6. Estimator

Estimators (instances of a class that inherits from the abstract Estimator
class) determine upper and lower bounds on the factor derivative in a single
direction between a minimum and maximum corner of a hypercuboid for the
possible separations. For this, they provide the derivative bound method.
Both upper and lower bounds are useful when the potential can have either
positive and negative charge products (as happens for example for the merged-
image Coulomb potential as a function of the two charges). In general, an
estimator compares the factor derivatives for different separations in the hyper-
cuboid to obtain the bounds. These are corrected by a prefactor and optionally
by an empirical bound, which are set on instantiation (together with the factor
potential).

JF-V1.0 provides estimators which either regard regularly or randomly sam-
pled separations within the hypercuboid. The inner-point and boundary-point
estimators vary the separation evenly within the hypercuboid or on the edge
of the hypercuboid, respectively. For these separations, the factor potential
derivatives (optionally including charges) are compared. Two more estima-
tors consider the interaction between a charged active unit and two oppositely
charged target units within a dipole. Here, the factor derivative is summed for
the two possible active-target pairs. A Monte-Carlo estimator distributes both
the separation and the dipole orientation randomly. The dipole-inner-point es-
timator varies the separations evenly but aligns the dipole orientation along the
direction of the gradient of the factor derivative. The implemented estimators
are appropriate for the cookbook examples of Section 5, where the upper and
lower bounds on the factor derivatives (and equivalently on the event rates)
must be computed for a small number of cell pairs only.

5. JF Cookbook

The configuration files8 in JF-V1.0 introduce to the key features of the ap-
plication by constructing runs for two charged point masses, for two interacting
dipoles of charges, and for two interacting water molecules (using the SPC/Fw
model). All configuration files are for a three-dimensional cubic simulation box
with periodic boundary conditions, and they reproduce published data [9].

As specified in their [Run] sections, the configuration files use a single-
process mediator (an instance of the SingleProcessMediator class), and the

8Configuration files in the src/config files/2018 JCP 149 064113 directory tree are de-
scribed in this section.

28

Figure 12: Configuration file coulomb atoms/power bounded.ini. (a): A typical init
method of a JF class. (b): Excerpts of the configuration file (some lines split for clarity).
Sections with properties and values that correspond to the argument names in the init
methods of JF classes.

29

setting package is initialized by an instance of the HypercubicSetting class
(see for example Fig. 12). All configuration files in the directory use a heap
scheduler (an instance of the HeapScheduler class), a tree state handler (in-
stance of the TreeStateHandler class), as well as an tag activator (an instance
of the TagActivator class) in order to activate event handlers, trash candidate
events and prepare in-states.

The start of run, end of run, end of chain, and sampling event handlers
(that realize common pseudo-factors) are implemented in largely analogous sec-
tions across all the configuration files, although their parent sections (that define
the corresponding taggers) provide different tag lists for trashing and activation
of event handlers. The corresponding tagger sections are presented in detail in
Section 5.1.1, and only briefly summarized thereafter.

5.1. Interacting atoms

The configuration files in the coulomb atoms directory of JF-V1.0 im-
plement the ECMC sampling of the Boltzmann distribution for two identical
charged point masses. They interact with the merged-image Coulomb pair po-
tential and are described by a Coulomb pair factor. One of the two point
masses is active, and it moves either in +x, in +y, or in +z direction. Statisti-
cally equivalent output is obtained for the merged-image Coulomb pair potential
(the factor potential) associated with the inverse-power bounding potential (Sec-
tion 5.1.1), or else with a cell-based bounding potential, either realized directly
(Section 5.1.2), or through a cell-veto event handler (Section 5.1.3). Although
the configuration files use the language of Section 1.2 for the representation of
particles, all trees and branches are trivial, and each root node is also a leaf
node.

5.1.1. Atomic factors, inverse-power Coulomb bounding potential

The configuration file coulomb atoms/power bounded.ini implements a sin-
gle Coulomb pair factor with the merged-image Coulomb factor potential that
is associated with its inverse-power Coulomb bounding potential. The same
event handler realizes this factor for any separation of the point masses. The
activator requires no internal state.

Although it would be feasible to directly implement (that is, hard-wire) all
event handlers for this simple system, the tag activator is used. All event han-
dlers are thus accessed via taggers that are listed, together with their tags, in
the [TagActivator] section (see Fig. 13 for a tree representation of the sec-
tions). The coulomb tagger is an instance of the FactorTypeMapInStateTagger
class, indicating that its event handlers require a specific in-state created from
a pattern stored in a file indicated in the [FactorTypeMaps] section. This
pattern mirrors the factor index sets and factor types for a system with two
root nodes (see eq. (2)). The entry [0, 1], Coulomb in this file indicates that,
for two point masses, a Coulomb potential would act between particles 0 and
1. From this information, the tagger’s yield identifiers send event time
method generates all the in-state identifier for any number of point masses.

30

Figure 13: Tree representation the sections in the configuration file
coulomb atoms/power bounded.ini. Only part of the tree is shown and names of event
handlers for sampling and end-of-chain are shortened. The children of the [TagActivator]
section correspond to all the declared taggers, which point towards sections for their
associated event-handler classes.

The [Coulomb] section specifies input for the coulomb tagger’s tag lists (the
creates list and the trashes list). Here, a coulomb event creates and trashes
only coulomb candidate events (see the configuration file of Section 5.3.1 for
different tag lists for the same coulomb event handlers).

The [Coulomb] section further specifies that the coulomb event handler
is an instance of the TwoLeafUnitBoundingPotentialEventHandler class and
that, for two point masses, only one coulomb event handler is needed. The
corresponding section9 specifies the factor potential to be an instance of the
MergedImageCoulombPotential class. It specifies the bounding potential as an
instance of the InversePowerCoulombBoundingPotential class. The sampling,
end of chain, start of run and end of run taggers are all instances of the
NoInStateTagger class (their event handlers require no in-state), and also pro-
vide their event handlers and their tag lists, which are then transmitted to
the tag activator. Each of these taggers’ yield identifiers send event time
methods yields the in-state identifiers needed by the taggers’ event handlers in
order to realize corresponding factors or pseudo-factors.

The configuration file’s [InputOutputHandler] section specifies the input-
output handler. It consists of the separation-output handler (an instance of
the SeparationOutputHandler class), which is connected to the sampling
event handler. In the present example, it samples the nearest-image sepa-
ration (under periodic boundary conditions) of any two point masses. The

9The [TwoLeafUnitBoundingPotentialEventHandler] section. The section name may be
replaced by an alias to respect the tree structure of the configuration file (see Section 5.2.1).

31

initial global physical state is created randomly by the random-input han-
dler (an instance of the RandomInputHandler class). The configuration file
coulomb atoms/power bounded.ini reproduces published data (see Fig. 14, 2©).

Figure 14: Cumulative histogram of the pair separation |r12| (nearest image) for two
charges in a periodic three-dimensional cubic simulation box with periodic boundary con-
ditions (βc1c2 = 2, L = 1). 1©: Reversible Markov-chain Monte Carlo (see [9, Fig. 8]) 2©:
Method of Section 5.1.1 3©: Method of Section 5.1.2 4©: Method of Section 5.1.3 , each with
standard errors for π(|r12| < 0.6).

The configuration file coulomb atoms/power bounded.ini can be modified
for N point masses. In the [RandomInputHandler] section, the number of
root nodes must then equal N . In the [Coulomb] section, the number of event
handlers must be set to at least N−1 (this instructs the Coulomb tagger to deep-
copy the required number of event handlers). Without changing the factor-type
map with respect to the N = 2 case, each event handler which will be presented
with the correct in-state corresponding to a pair of units with one of them
being the active unit. The complexity of the implemented algorithm is O(N)
per event.

5.1.2. Atomic factors, cell-based bounding potential

The configuration file coulomb atoms/cell bounded.ini implements a sin-
gle Coulomb pair factor with the merged-image Coulomb potential, just as the
configuration file of Section 5.1.1. However, a cell-occupancy internal state as-
sociates the factor potential with a cell-based bounding potential. The target
(non-active) unit may be cell-based or surplus (see Fig. 11). The target unit
may also be in an excluded nearby cell of the active cell (see Fig. 10), for which
the cell-based bounding potential cannot be used. In consequence, three tag-
gers correspond to distinct event handlers that together realize the Coulomb
pair factor. The consistency requirement of JF-V1.0 assures that particles and
units are always associated with the same cell.

Taggers and their tags are listed in the [TagActivator] section. The
coulomb cell bounding tagger, for example, appears as an instance of the
CellBoundingPotentialTagger class. The coulomb cell bounding event han-
dler then realizes the Coulomb factor unless the cell of the target particle is
excluded with respect to the active cell and unless it is a surplus particle (in

32

these cases the tagger does not generate any in-state for its event handler). Oth-
erwise, the Coulomb pair factor is realized by a coulomb surplus-tagged event
handler or by a coulomb nearby event handler. (For two units, as the active
unit is taken out of the cell-occupancy system, no surplus candidate events are
ever created.)

The cell-occupancy systems (an instance of the SingleActiveCellOccupancy
class) is also declared in the [TagActivator] section and further specified in
the [SingleActiveCellOccupancy] section. The associated cell system is de-
scribed in the [CuboidPeriodicCells] section. The internal state, set in the
[SingleActiveCellOccupancy] section, has no charge value. This indicates
that the identifiers of all particles at the cell level (here cell level = 1) are
tracked (see Section 5.3.2 for an example where this is handled differently).

The coulomb nearby tagger, an instance of the ExcludedCellsTagger class,
yields the identifiers of particles in excluded cells of the active cell, by iterating
over cells and by checking whether they contain appropriate identifiers. The
coulomb surplus tagger similarly relies on the yield surplus method of the
cell-occupancy system to generate in-states.

To keep the internal state consistent with the global state, a cell-boundary
event handler is used in the CellBoundaryTagger class (together, this builds
cell boundary candidate events). The cell-boundary tagger just yields the
active-unit identifier as the in-state used in the corresponding event handler.
The configuration file coulomb atoms/cell bounded.ini reproduces published
data (see Fig. 14, 3©).

To adapt the configuration file for N > 2 point masses (from the N = 2 case
that is provided), in the [RandomInputHandler], number of root nodes must
be set to N . The number of coulomb cell bounding, coulomb nearby, and
coulomb surplus event handlers must be increased. Surplus particles can now
exist. The number of event handlers to allow for depends on the cell system,
whose parameters must be adapted in order to limit the number of surplus
particles, and also to retain useful cell-based bounds for the Coulomb event
rates.

5.1.3. Atomic factors, cell-veto

The configuration file coulomb atoms/cell veto.ini implements a Coulomb
pair factor together with the merged-image Coulomb potential. A cell-occupancy
internal state is used. The Coulomb pair factor is then realized, among others,
by a cell-veto event handler, which associates the merged-image Coulomb po-
tential with a cell-based bounding potential.

All the Coulomb pair factors of the active particle with target particles that
are neither excluded nor surplus are taken together in a set of Coulomb factors,
and realized by a single coulomb cell veto event handler. The candidate event-
time can be calculated with the branch of the active unit as the in-state, which
is implemented in the CellVetoTagger class. (The cell-veto tagger returns the
identifier of the active unit.) The event handler returns the target cell (in which
the candidate unit is to be localized) together with the candidate event time.
The out-state request is accompanied by the branch of the target unit (if it

33

exists), and the out-state computation is in analogy with the case studied in
Section 5.1.2.

The configuration file features the coulomb cell veto tag together with the
coulomb nearby, coulomb surplus, cell boundary, sampling, end of chain,
start of run, and end of run tags. The configuration file reproduces published
data (see Fig. 14, 4©).

To adapt the configuration file for N point masses, the number of root nodes
must be set to N in the [RandomInputHandler] section. The number of event
handlers for the coulomb nearby and coulomb surplus events might have to
be increased. However, a single cell-veto event handler realizes any number of
factors with cell-based target particles whereas in Section 5.1.2 each of them
required its own event handler.

5.2. Interacting dipoles

The configuration files in the dipoles directory of JF-V1.0 implement
the ECMC sampling of the Boltzmann distribution for two identical finite-size
dipoles, for a model that was introduced previously [9]. Point masses in dif-
ferent dipoles interact via the merged-image Coulomb potential (pairs 1 − 3,
1− 4, 2− 3, 2− 4 in Fig. 15). Point masses within each dipole interact with a
short-ranged potential (pairs 1 − 2 and 3 − 4). A repulsive short-range poten-
tial between oppositely charged atoms in different dipoles counterbalances the
attractive Coulomb potential at small distances (pairs 1− 4 and 2− 3).

Each dipole is a composite point object made up of two oppositely charged
point masses. It is represented as a tree with one root node that has two children.
The number of root nodes in the system is set in the [RandomInputHandler]
section of the configuration file, where the dipoles are created randomly through
the fill root node method in the DipoleRandomNodeCreator class. In the
setting package, the input handler specifies that there are two root nodes
(number of root nodes = 2). Each of them contains two nodes (which is coded
as number of nodes per root node = 2) and the number of node levels is two
(number of node levels = 2). As this numbers are set in the setting package,
all the JF modules can autonomously construct all possible particle identifiers.

Statistically equivalent output is obtained for pair factors for all interactions
(Section 5.2.1), for dipole–dipole Coulomb factors and their factor potential
associated with a cell-based bounding potential (Section 5.2.2), for dipole–dipole
Coulomb factors with the cell-veto algorithm (Section 5.2.3), and by alternating
between concurrent moves of the entire dipoles with moves of the individual
point masses (Section 5.2.4). The latter example showcases the collective-motion
possibilities of ECMC integrated into JF. All configuration files here implement
the short-ranged potential as an instance of the DisplacedEvenPowerPotential
class with power = 2 and the repulsive short-range potential as an instance of
the InversePowerPotential class with power = 6.

5.2.1. Atomic Coulomb factors

The configuration file dipoles/atom factors.ini implements for each con-
cerned pair of point masses a Coulomb pair factor, with the merged-image

34

Figure 15: Cumulative histogram of the pair separation |r13| and |r14| (nearest image) for
two dipoles (see the inset) in a periodic three-dimensional cubic simulation box with periodic
boundary conditions (βcicj = ±1, L = 1). 1©: Reversible Markov-chain Monte Carlo (see [9,
Fig. 11]) 2©: Method of Section 5.2.1 3©: Method of Section 5.2.2 4©: Method of Section 5.2.3
5©: Method of Section 5.2.4, each with standard errors for π(|r13| < 0.22) and π(|r14| < 0.22).

Coulomb potential associated with the the inverse-power Coulomb bounding
potential. Several event handlers that are instances of the same class realize
these factors, and the number of event handlers must scale with their number.
No internal state is declared. Pair factors are implemented for each pair of point
masses that interact with a harmonic or a repulsive potential. One of the four
point masses is active at each time, and it moves either in +x, in +y, or in
+z direction. The configuration file represents composite point objects as trees
with two levels (see Section 1.2). Positions and velocities are kept consistent
on both levels, although the root-unit properties are not made use of. The tree
structure only serves to identify leaf units on the same dipole.

In the configuration file, taggers and tags are listed in the [TagActivator]
section. The coulomb, harmonic, and repulsive taggers are separate instances
of the same FactorTypeMapInStateTagger class, and the corresponding sec-
tions set up the corresponding event handlers. Both the harmonic and the
repulsive event handlers are instances of the TwoLeafUnitEventHandler class.
Aliasing nevertheless assures a tree-structured configuration file (the harmonic
tagger is for example declared with a HarmonicEventHandler class which is an
alias for the TwoLeafUnitEventHandler class). The coulomb tagger and its
event handlers are treated as in Section 5.1.1.

The sampling, start-of-run, end-of-run and end-of-chain pseudo-factors are
realized by event handlers that are set up in the same way as in all other
configuration files. However, the parent sections differ: the parent of the
[InitialChainStartOfRunEventHandler] section sets the start of run tag-
ger, which specifies that after the start of run event, new coulomb, harmonic,
repulsive, sampling end of chain, and end of run event handlers must be
activated. The tag lists thus differ from those of the [StartOfRun] section

35

in other configuration files. The configuration file dipoles/atom factors.ini
reproduces published data (see Fig. 15, 2©).

5.2.2. Molecular Coulomb factors, cell-based bounding potential

The configuration file dipoles/cell bounded.ini implements for each pair
of dipoles a Coulomb four-body factor. (The sum of the merged-image Coulomb
potentials for pairs 1− 3, 1− 4, 2− 3, 2− 4 in Fig. 15 constitutes the Coulomb
factor potential.) The event rates for such factors decay much faster with dis-
tance than for Coulomb pair factors, and the chosen lifting scheme considerably
influences the dynamics (see [9, Sect. IV]). The configuration file installs a cell-
occupancy internal state on the dipole level (rather than for the point masses).
A cell-bounded event handler then realizes a Coulomb four-body factor with its
factor potential associated with an orientation-independent cell-based bounding
potential for dipole pairs that are not in excluded cells relative to each other.
The configuration file furthermore implements pair factors for the harmonic and
the repulsive interactions. One of the four point masses is active at each time,
and it moves either in +x, in +y, or in +z direction.

The configuration file’s [TagActivator] section defines all taggers and their
corresponding tags. Among the taggers for event handlers realizing the Coulomb
four-body factor, the coulomb cell bounding tagger differs markedly from the
set-up in Section 5.1.2, as the event handler10 is for a pair of composite point ob-
jects. The lifting scheme is set to inside first lifting. The bounding poten-
tial is defined in the [CellBoundingPotential] section. A dipole Monte Carlo
estimator is used for simplicity (see Section 4.6). As it obtains an upper bound
for the event rate from random trials for each relative cell orientations, its use is
restricted to there being only a small number of cells. The coulomb nearby and
coulomb surplus taggers are for event handlers realizing the Coulomb four-
body factor when the bounding potential cannot be used. In this case, the
merged-image Coulomb potential is summed for the factor potential, but also for
the bounding potential.11 The standard sampling, end of chain, end of run,
start of run taggers as well as the ones responsible for the harmonic and re-
pulsive potentials are set up in a similar way as in Section 5.2.1.

The [TagActivator] section defines the internal state that is used by the
coulomb cell bounding, coulomb nearby, and coulomb surplus taggers. The
[SingleActiveCellOccupancy] section specifies the cell level (cell level = 1
indicates that the particle identifiers have length one, corresponding to root
nodes, rather than length two, which would correspond to the dipoles’ leaf
nodes). Positions and velocities must thus be kept consistent on both lev-
els. The cell-occupancy system requires the presence of a cell boundary event
handler, again on the level of the root nodes. This event handler is aware of

10set in the [TwoCompositeObjectCellBoundingPotentialEventHandler] section
11The tree structure of the configuration file is hidden in this case, as the JF factory (which

builds instances of classes based on its content) creates separate instances for all the descen-
dants of a section, not requiring the use of aliases.

36

the cell level, and it ensures consistency of the events triggered by the cell-
based bounding potential with the underlying cell system. The configuration
file dipoles/cell bounded.ini reproduces published data (see Fig. 15, 3©).

5.2.3. Molecular Coulomb factors, cell-veto

The configuration file dipoles/cell veto.ini implements the same fac-
tors and pseudo-factors and the same internal state as the configuration file of
Section 5.2.2. A single cell-veto event handler then realizes the set of factors
that relate to cells that are not excluded for any number of cell-based particles,
whereas in the earlier implementation, the number of cell-bounded event han-
dlers must exceed the possible number of particles in non-excluded cells of the
active cell. This is what allows to implement ECMC with a complexity of O(1)
per event.

The configuration file resembles that of Section 5.2.2. It mainly replaces the
latter file’s coulomb cell bounding event handlers with a coulomb cell veto
event handler. Slight differences reflect the fact that a cell-veto event han-
dler uses no displacement method of the bounding potential but obtains the
displacement from the total event rate (see the discussion in Section 3.1.3).
The configuration file dipoles/cell veto.ini reproduces published data (see
Fig. 15, 4©).

5.2.4. Atomic Coulomb factors, alternating root mode and leaf mode

The configuration file dipoles/dipole motion.ini implements two differ-
ent modes. In leaf mode, at each time one of the four point masses is active,
and it moves either in +x, in +y, or in +z direction (see Fig. 16a). In root
mode, at each time the point masses of one dipole moves as a rigid block, in
the same direction (see Fig. 16b). (The root mode, by itself, does not assure
irreducibility of the Markov-chain algorithm, as the orientation and shape of
any dipole molecule would remain unchanged throughout the run.)

JF-V1.0 represents the dipoles as trees, and both modes are easily imple-
mented. In leaf mode, the Coulomb factors are realized by coulomb leaf event
handlers that are instances of the same class12 as the coulomb nearby event
handlers in Sections 5.2.2 and 5.2.3. The root mode, in turn, is patterned af-
ter the simulation of two point masses (as in Section 5.1.1): all inner-dipole
potentials are constant. The inter-dipole Coulomb potentials sum up to an ef-
fective two-body potential, the factor potential of a two-body factor realized in
a Coulomb-dipole event handler. The repulsive short-range potential between
oppositely charged atoms in different dipoles also translates into a potential be-
tween the dipoles in rigid motion, and serves as a factor potential of a two-body
factor, realized in a specific event handler.

Taggers and their tags are listed in the [TagActivator] section. The
harmonic leaf, repulsive leaf (leaf-mode) taggers, as well as all those re-
lated to event handlers that realize pseudo-factors are as in Section 5.2.1. The

12Instances of the TwoCompositeObjectSummedBoundingPotentialEventHandler class

37

coulomb leaf tagger corresponds to the coulomb nearby tagger in Section 5.2.2.
The coulomb root and repulsive root taggers are analogous to those in Sec-
tion 5.1.1 for the two-atom case.

As all other operations that take place in JF, the switches between leaf mode
and root mode are also formulated as events. They are related to two pseudo-
factors and realized by a leaf to root event handler and by a root to leaf
event handler, respectively. (These two event handlers are aliases for instances of
the RootLeafUnitActiveSwitcher class.) The root to leaf and leaf to root
taggers, in addition to the create and trash lists, set up separate activate
and deactivate lists (see Section 2.4). The configuration file reproduces pub-
lished data (see Fig. 15, 5©). Of particular interest is that the tree representation
of composite point objects keeps consistency between leaf-node units and root-
node units: the event handlers return branches of cnodes for all independent
units (see Fig. 7) whose unit information can be integrated into the global state.

Figure 16: Two moves implemented in dipoles/dipole motion.ini. (a): In leaf mode, a
single independent active leaf unit has velocity v. The corresponding dipole center (the active
root unit) is induced to move at v/2. (b): In root mode, one dipole (independent active root
unit) has velocity v, and both its active leaf units have induced velocity v.

5.3. Interacting water molecules (SPC/Fw model)

The configuration files in the water directory implement the ECMC sam-
pling of the Boltzmann distribution for two water molecules, using the SPC/Fw
model that was previously studied with ECMC [9]. Molecules are represented
as composite point objects with three charged point masses, one of which is
positively charged (representing the oxygen) and the two others are negatively
charged (representing the hydrogens). Point masses in different water molecules
interact via the merged-image Coulomb potential. In addition, point masses
within each molecule interact with a three-body bending interaction, and a har-
monic oxygen–hydrogen potential. Finally, any two oxygens interact through a
Lennard-Jones potential [9].

In the tree state handler (defined in the [TreeStateHandler] section, a
child of the [SingleProcessMediator] section), water molecules are repre-
sented as trees with a root node and three children (the leaf nodes of the
tree). The total number of water molecules (that is, of root nodes) is set in the
[RandomInputHandler] section of each configuration file. The molecules are
created through the fill root node method in the WaterRandomNodeCreator
class. There are two node levels (number of node levels = 2) and three

38

nodes per root node (number of nodes per root node = 3). The charges of
a molecule are set in the [ElectricChargeValues] section (a descendant of
the [WaterRandomNodeCreator] section).

All the configuration files in the water directory of JF-V1.0 implement the
pair harmonic factors that are realized through harmonic event handlers. The
corresponding taggers are defined in the [Harmonic] sections, with the displaced
even-power potential and its parameters set in the [HarmonicEventHandler]
and [HarmonicPotential] sections. The configuration files furthermore im-
plement the taggers corresponding to the three-body bending factors in their
[Bending] sections. The bending event handler has three independent units
(attached to branches). It thus requires a lifting scheme (which is chosen in the
[BendingEventHandler] section), which is however unique (see [9, Fig. 2]). In
all these configuration files, one of the six point masses is active, and it moves
either in +x, in +y, or in +z direction (the optional rigid displacement of the
entire water molecule, could be set up as in Section 5.2.4).

Statistically equivalent output is obtained for a simple set-up featuring pair
factors for the Coulomb potential and a Lennard-Jones interaction that is in-
verted (Section 5.3.1), or for a molecular-factor Coulomb potential associated
with a power-law bounding potential and a cell-based Lennard-Jones bounding
potential (Section 5.3.2). In addition, the cell-veto algorithm for the Coulomb
potential coupled to an inverted Lennard-Jones potential (Section 5.3.3) is also
provided. Finally, cell-veto event handlers take part in the realization of complex
molecular Coulomb factors and also realize Lennard-Jones factors between oxy-
gens (Section 5.3.4). This illustrates how multiple independent cell-occupancy
systems may coexist within the same run.

Figure 17: Cumulative histogram of the oxygen–oxygen pair separation |rOO| for two SPC/Fw
water molecules in a periodic cubic simulation box. 1©: Reversible Markov-chain Monte Carlo
(see [9, Fig. 14]) 2©: Method of Section 5.3.1 3©: Method of Section 5.3.2 4©: Method of
Section 5.3.3 5©: Method of Section 5.3.4, each with standard errors for π(|rOO| < 2.9).

5.3.1. Atomic Coulomb factors, Lennard-Jones inverted

The configuration file water/coulomb power bounded lj inverted.ini im-
plements pair Lennard-Jones, harmonic and Coulomb factors. The Coulomb

39

factors are realized for any distance of the point masses by event handlers that
associate the merged-image Coulomb potential with its inverse-power Coulomb
bounding potential. The Lennard-Jones potential is inverted. This configura-
tion file needs no internal state.

In the configuration file, the [TagActivator] section lists all the taggers to-
gether with their tags, which in addition to the taggers related to pseudo-factors,
are reduced to coulomb, harmonic, bending, and lennard jones. The merged-
image Coulomb potential with its associated power-law bounding potential
(both for attractive and repulsive charge products) is specified in the [Coulomb]
section of the configuration file. The Lennard-Jones potential is invertible and
its displacement method is used rather than that of a bounding potential. The
output handler is defined in the [OxygenOxygenSeparationOutputHandler]
section, a child of the [InputOutputHandler] section. It obtains all the units,
extracts the oxygens through their unit identifier, and records the oxygen–
oxygen separation distance. This reproduces published data (see Fig. 17, 2©).

5.3.2. Molecular Coulomb factors, Lennard-Jones cell-bounded

The configuration file water/coulomb power bounded lj cell bounded.ini
for the water system corresponds to pair factors for the Lennard-Jones and the
harmonic potentials and to molecular factors for the Coulomb interaction. The
Coulomb factor potential is the sum of the merged-image Coulomb potential
for the nine relevant pairs of point masses (pairs across two molecules). It is
realized in a particular event handler,13 analogously to how this is done for the
Coulomb interaction in Sections 5.2.2 and 5.2.3. The associated bounding po-
tential (both for attractive and repulsive charge combinations) is given by the
sum over all the individual pairs. Although the Lennard-Jones interaction can
be inverted, the configuration file sets up a cell-occupancy internal state that
tracks the identifiers for the oxygens. As in previous cases, this leads to three
types of events, corresponding to the nearby, surplus, and cell-based particles,
in addition to cell-boundary events.

Taggers and their tags are listed in the [TagActivator] section. Taggers are
generally utilized as in other configuration files. The internal state is specified in
the [TagActivator] section. As set up in the [SingleActiveCellOccupancy]
section, it features a oxygen indicator charge (set in the [OxygenIndicator]
section). The oxygen-indicator charge is non-zero only for the oxygens. In con-
sequence, the oxygen cell system (defined in the [OxygenCell] section) tracks
only oxygens. This reproduces published data (see Fig. 17, 3©). Nevertheless,
this configuration file does not scale up easily with system size.

5.3.3. Molecular Coulomb cell-veto, Lennard-Jones inverted

The configuration file water/coulomb cell veto lj inverted.ini for the
water system corresponds to the same factors as in Section 5.3.2. As a prelimi-
nary step towards the treatment of all long-range interactions with the cell-veto

13an instance of the TwoCompositeObjectSummedBoundingPotentialEventHandler class.

40

algorithm, in Section 5.3.4, molecular Coulomb factors are realized here (for
non-excluded cells of the active cell) with a cell-veto event handler.

Taggers and their tags are listed in the [TagActivator] section, and they are
generally similar to those of other configuration files. In addition, the internal
state for the Coulomb system is defined in the [TagActivator] section and
further described in the [SingleActiveCellOccupancy] section. The latter
describes the cell level (which serves for the water molecules) as on the root
node level (cell level = 1), the barycenter of the leaf-node positions of each
water molecule. (Root-node and leaf-node positions are set in the random input
handler, which itself uses a water random node creator.)

The event handlers consistently update all leaf-node positions and root-
node positions from a valid initial configuration obtained in an instance of
the WaterRandomNodeCreator class. Consistency will be deteriorated over long
runs, but this is of little importance for the simple example case presented here.
The configuration file reproduces published data (see Fig. 17, 4©).

5.3.4. Molecular Coulomb cell-veto, Lennard-Jones cell-veto

The configuration file water/coulomb cell veto lj cell veto.ini offers
no new factors compared to Sections 5.3.2 and 5.3.3, but it uses, for illustra-
tion purposes, two cell-occupancy systems and two cell-veto event handlers. As
nearby and surplus particles are excluded from the cell-veto treatment, this im-
plies two sets of cell-based, nearby, and surplus event handlers in addition to two
cell-boundary event handlers. For the molecular Coulomb factors, the cell-veto
event handler receives as a factor potential the sum of pairwise merged-image
Coulomb potentials with attractive and repulsive charge combinations. Cells
track the barycenter of individual water molecules, and consistency between
root-node units and leaf-node units is of importance. Although the Lennard-
Jones potential can be inverted, the configuration file sets up a second cell-
occupancy system for the Lennard-Jones potential. The cell-occupancy system
tracks only leaf-node particles that correspond to oxygen atoms.

Taggers and their tags are listed in the [TagActivator] section. This section
is of interest as it sets up the internal state as two cell-occupancy systems, both
instances of the same SingleActiveCellOccupancy class. They require differ-
ent parameters, and are therefore presented under aliases, in the [OxygenCell]
and [MoleculeCell] sections. Each of theses cell-occupancy systems use a sep-
arate cell system instance of the same class. As the two cell systems have the
same parameters, they do not need to be aliased in the configuration file. The
configuration file reproduces published data (see Fig. 17, 5©).

6. Licence, GitHub repository, Python version

JF, the Python application described in this paper, is an open-source soft-
ware project that grants users the rights to study and execute, modify and
distribute the code. Modifications can be fed back into the project.

41

6.1. Licence information, used software

JF is made available under the GNU GPLv3 licence (for details see the JF
LICENCE file). The use of the Python MDAnalysis package [27, 11] for reading
and writing .pdb files, of the Python Dill package [25, 26] for dumping and
restarting a run of the application, and of the Python Matplotlib [15] and
NumPy [31, 38] packages for the graphical analysis of output is acknowledged.

6.2. GitHub repository

JeLLyFysh, the public repository for all the code and the documentation
of the application, is part of a public GitHub organization.14 The repository
can be forked (that is, copied to an outside user’s own public repository) and
from there studied, modified and run in the user’s local environment. Users
may contribute to the JF application via pull requests (see the JF README and
CONTRIBUTING.md files for instructions and guidelines). All communication (bug
reports, suggestions) takes place through GitHub “Issues”, that can be opened
in the repository by any user or contributor, and that are classified in GitHub
projects on JeLLyFysh.

6.3. Python version, coding conventions

JF-V1.0 is compatible with Python 3.5 (and higher) and with PyPy 7 (and
higher), a just-in-time compiling Python alternative to interpreted CPython
(see the JF documentation for details). JF code adheres to the PEP8 style
guide for Python code, except for the linewidth that is set to 120 (see the
CONTRIBUTING.md file for details).

Following the PEP8 Python naming convention, JF modules and packages
are spelled in snake case and classes in camel case (the state handler module
thus contains the StateHandler class). In configuration files, section titles are
in camel case and enclosed in square brackets (see Fig. 13).

Versioning of the JF project adopts two-to-four-field version numbers de-
fined as Milestone.Feature.AddOn.Patch. Version 1.0, as described, represents
the first development milestone which reproduces published data [9]. Patches
and bugfixes of this version will be given number 1.0.0.1, 1.0.0.2, etc. (Finer-
grained distinction between versions is obtained through the hashes of master-
branch GitHub commits.) New configuration files and required extensions are
expected to lead to versions 1.0.1. 1.0.2, etc. Version 1.1 is expected to fully
implement different dimensions and arbitrary rectangular and cuboid shapes
of the JF potential package. Versions 1.2 and 1.3 will consistently imple-
ment nac > 1 independent active particles (on a single processor) and eliminate
unnecessary time-slicing for some events triggered by pseudo-factors and for un-
confirmed events. All development from Versions 1.0 to 2.0 can be undertaken
concurrently. Fully parallel code is planned for Version 3.0. In JF development,
two-field versions (2.0, 3.0, etc) may introduce incompatible code, while three-
and four-field version numbers are intended to be backward compatible.

14The organization’s url is https://github.com/jellyfysh

42

https://github.com/jellyfysh

7. Conclusions, outlook

As presented in this paper, JF is a computer application for ECMC sim-
ulations that is hoped to become useful for researchers in different fields of
computational science. The JF-V1.0 constitutes its first development mile-
stone: built on the mediator design pattern, it systematically formulates the
entire ECMC time evolution in terms of events, from the start-of-run to the
end-of-run, including sampling, restarts (that is, end-of-chain), and the factor
events. A number of configuration files validate JF-V1.0 against published test
cases for long-range interacting systems [9].

For JF-V1.0, consistency has been the main concern, and code has not yet
been optimized. Also, the handling of exceptions remains rudimentary, although
this is not a problem for the cookbook examples of Section 5.

All the methods are written in Python. Considerable speed-up can certainly
be obtained by rewriting time-consuming parts of the application in compiled
languages, in particular of the potential package. One of the principal limita-
tions of JF-V1.0 is that pseudo-factor-related and unconfirmed events are time-
sliced, leading to superfluous trashing and re-activation of candidate events.
Optimized bounding potentials for many-particle factor potentials appear also
as a priority.

The consistent implementation of an arbitrary number nac of simultaneously
active particles is straightforward, although it has also not been implemented
fully in JF-V1.0. (As mentioned, this is planned for JF (Version 2.0)). This
will enable full parallel implementations on multiprocessor machines. Simplified
parallel implementations for one-dimensional systems and for hard-disk models
in two dimensions are currently being prototyped. The parallel computation of
candidate events (using the MultiProcessMediator class implemented in JF-
V1.0) is at present rather slow. Bringing the full power of parallelization and
of multi-process ECMC to real-world applications appears as its outstanding
challenge for JF.

Acknowledgements

P.H. acknowledges support from the Bonn-Cologne Graduate School of Phy-
sics and Astronomy honors branch and from Institut Philippe Meyer. L.Q.
and M.F.F. acknowledge hospitality at the Max-Planck-Institut für Physik kom-
plexer Systeme, Dresden, Germany. M.F.F. acknowledges financial support from
EPSRC fellowship EP/P033830/1 and hospitality at Ecole normale supérieure.
W.K. acknowledges support from the Alexander von Humboldt Foundation.

References

[1] Alder, B.J., Wainwright, T.E., 1957. Phase Transition for a Hard Sphere
System. J. Chem. Phys. 27, 1208–1209. doi:10.1063/1.1743957.

43

http://dx.doi.org/10.1063/1.1743957

[2] Alder, B.J., Wainwright, T.E., 1959. Studies in Molecular Dynamics. I.
General Method. J. Chem. Phys. 31, 459–466. doi:10.1063/1.1730376.

[3] Bannerman, M.N., Lue, L., 2010. Exact on-event expressions for discrete
potential systems. J. Chem. Phys. 133, 124506–124506. doi:10.1063/1.
3486567.

[4] Bernard, E.P., Krauth, W., 2011. Two-Step Melting in Two Dimensions:
First-Order Liquid-Hexatic Transition. Phys. Rev. Lett. 107, 155704. URL:
http://link.aps.org/doi/10.1103/PhysRevLett.107.155704, doi:10.
1103/PhysRevLett.107.155704.

[5] Bernard, E.P., Krauth, W., Wilson, D.B., 2009. Event-chain
Monte Carlo algorithms for hard-sphere systems. Phys. Rev. E
80, 056704. URL: http://link.aps.org/doi/10.1103/PhysRevE.80.

056704, doi:10.1103/PhysRevE.80.056704.

[6] Bierkens, J., Bouchard-Côté, A., Doucet, A., Duncan, A.B., Fearnhead, P.,
Roberts, G., Vollmer, S.J., 2017. Piecewise Deterministic Markov Processes
for Scalable Monte Carlo on Restricted Domains arXiv:1701.04244.

[7] Diaconis, P., Holmes, S., Neal, R.M., 2000. Analysis of a nonreversible
Markov chain sampler. Annals of Applied Probability 10, 726–752.

[8] Ding, F., Tsao, D., Nie, H., Dokholyan, N.V., 2008. Ab Initio Fold-
ing of Proteins with All-Atom Discrete Molecular Dynamics. Structure
16, 1010–1018. URL: https://doi.org/10.1016/j.str.2008.03.013,
doi:10.1016/j.str.2008.03.013.

[9] Faulkner, M.F., Qin, L., Maggs, A.C., Krauth, W., 2018. All-atom
computations with irreversible Markov chains. The Journal of Chemi-
cal Physics 149, 064113. URL: https://doi.org/10.1063/1.5036638,
doi:10.1063/1.5036638.

[10] Gamma, E., Helm, R., Johnson, R., Vlissides, J.M., 1994. Design Patterns:
Elements of Reusable Object-Oriented Software. 1 ed., Addison-Wesley
Professional.

[11] Gowers, R., Linke, M., Barnoud, J., Reddy, T., Melo, M., Seyler, S.,
Domański, J., Dotson, D., Buchoux, S., Kenney, I., Beckstein, O., 2016.
MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dy-
namics Simulations, in: Proceedings of the 15th Python in Science Confer-
ence, SciPy. URL: https://doi.org/10.25080/majora-629e541a-00e,
doi:10.25080/majora-629e541a-00e.

[12] Harland, J., Michel, M., Kampmann, T.A., Kierfeld, J., 2017. Event-
chain Monte Carlo algorithms for three- and many-particle interactions.
EPL (Europhysics Letters) 117, 30001. URL: http://stacks.iop.org/
0295-5075/117/i=3/a=30001.

44

http://dx.doi.org/10.1063/1.1730376
http://dx.doi.org/10.1063/1.3486567
http://dx.doi.org/10.1063/1.3486567
http://link.aps.org/doi/10.1103/PhysRevLett.107.155704
http://dx.doi.org/10.1103/PhysRevLett.107.155704
http://dx.doi.org/10.1103/PhysRevLett.107.155704
http://link.aps.org/doi/10.1103/PhysRevE.80.056704
http://link.aps.org/doi/10.1103/PhysRevE.80.056704
http://dx.doi.org/10.1103/PhysRevE.80.056704
http://arxiv.org/abs/1701.04244
https://doi.org/10.1016/j.str.2008.03.013
http://dx.doi.org/10.1016/j.str.2008.03.013
https://doi.org/10.1063/1.5036638
http://dx.doi.org/10.1063/1.5036638
https://doi.org/10.25080/majora-629e541a-00e
http://dx.doi.org/10.25080/majora-629e541a-00e
http://stacks.iop.org/0295-5075/117/i=3/a=30001
http://stacks.iop.org/0295-5075/117/i=3/a=30001

[13] Hasenbusch, M., Schaefer, S., 2018. Testing the event-chain
algorithm in asymptotically free models. Phys. Rev. D 98,
054502. URL: https://link.aps.org/doi/10.1103/PhysRevD.98.

054502, doi:10.1103/PhysRevD.98.054502.

[14] Herbordt, M.C., Khan, M.A., Dean, T., 2009. Parallel Discrete Event Sim-
ulation of Molecular Dynamics Through Event-Based Decomposition, in:
2009 20th IEEE International Conference on Application-specific Systems,
Architectures and Processors, IEEE. URL: https://doi.org/10.1109/
asap.2009.39, doi:10.1109/asap.2009.39.

[15] Hunter, J.D., 2007. Matplotlib: A 2D Graphics Environment. Computing
in Science & Engineering 9, 90–95. URL: https://doi.org/10.1109/

mcse.2007.55, doi:10.1109/mcse.2007.55.

[16] Kapfer, S.C., Krauth, W., 2013. Sampling from a polytope and hard-
disk Monte Carlo. Journal of Physics: Conference Series 454, 012031.
URL: http://stacks.iop.org/1742-6596/454/i=1/a=012031, doi:10.
1088/1742-6596/454/1/012031.

[17] Kapfer, S.C., Krauth, W., 2015. Two-Dimensional Melting: From Liquid-
Hexatic Coexistence to Continuous Transitions. Phys. Rev. Lett. 114,
035702. URL: http://link.aps.org/doi/10.1103/PhysRevLett.114.

035702, doi:10.1103/PhysRevLett.114.035702.

[18] Kapfer, S.C., Krauth, W., 2016. Cell-veto Monte Carlo algorithm for long-
range systems. Phys. Rev. E 94, 031302. URL: http://link.aps.org/
doi/10.1103/PhysRevE.94.031302, doi:10.1103/PhysRevE.94.031302.

[19] Kapfer, S.C., Krauth, W., 2017. Irreversible Local Markov Chains
with Rapid Convergence towards Equilibrium. Phys. Rev. Lett. 119,
240603. URL: https://link.aps.org/doi/10.1103/PhysRevLett.119.
240603, doi:10.1103/PhysRevLett.119.240603.

[20] Khan, M.A., Herbordt, M.C., 2011. Parallel discrete molecular dynamics
simulation with speculation and in-order commitment. Journal of Compu-
tational Physics 230, 6563 – 6582. URL: http://www.sciencedirect.

com/science/article/pii/S0021999111002968, doi:https://doi.org/
10.1016/j.jcp.2011.05.001.

[21] de Leeuw, S.W., Perram, J.W., Smith, E.R., 1980. Simulation
of electrostatic systems in periodic boundary conditions. II. Equiv-
alence of boundary conditions. Proc. R. Soc. A 373, 57–66.
URL: http://rspa.royalsocietypublishing.org/content/373/1752/

57, doi:10.1098/rspa.1980.0136.

[22] Lei, Z., Krauth, W., 2018a. Irreversible Markov chains in spin models:
Topological excitations. EPL 121, 10008.

45

https://link.aps.org/doi/10.1103/PhysRevD.98.054502
https://link.aps.org/doi/10.1103/PhysRevD.98.054502
http://dx.doi.org/10.1103/PhysRevD.98.054502
https://doi.org/10.1109/asap.2009.39
https://doi.org/10.1109/asap.2009.39
http://dx.doi.org/10.1109/asap.2009.39
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1109/mcse.2007.55
http://dx.doi.org/10.1109/mcse.2007.55
http://stacks.iop.org/1742-6596/454/i=1/a=012031
http://dx.doi.org/10.1088/1742-6596/454/1/012031
http://dx.doi.org/10.1088/1742-6596/454/1/012031
http://link.aps.org/doi/10.1103/PhysRevLett.114.035702
http://link.aps.org/doi/10.1103/PhysRevLett.114.035702
http://dx.doi.org/10.1103/PhysRevLett.114.035702
http://link.aps.org/doi/10.1103/PhysRevE.94.031302
http://link.aps.org/doi/10.1103/PhysRevE.94.031302
http://dx.doi.org/10.1103/PhysRevE.94.031302
https://link.aps.org/doi/10.1103/PhysRevLett.119.240603
https://link.aps.org/doi/10.1103/PhysRevLett.119.240603
http://dx.doi.org/10.1103/PhysRevLett.119.240603
http://www.sciencedirect.com/science/article/pii/S0021999111002968
http://www.sciencedirect.com/science/article/pii/S0021999111002968
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2011.05.001
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2011.05.001
http://rspa.royalsocietypublishing.org/content/373/1752/57
http://rspa.royalsocietypublishing.org/content/373/1752/57
http://dx.doi.org/10.1098/rspa.1980.0136

[23] Lei, Z., Krauth, W., 2018b. Mixing and perfect sampling in one-dimensional
particle systems. EPL 124, 20003. URL: http://stacks.iop.org/

0295-5075/124/i=2/a=20003.

[24] Lei, Z., Krauth, W., Maggs, A.C., 2019. Event-chain Monte Carlo with
factor fields. Physical Review E 99. URL: https://doi.org/10.1103/
physreve.99.043301, doi:10.1103/physreve.99.043301.

[25] McKerns, M.M., Aivazis, M.A., 2010. Pathos: a framework for het-
erogeneous computing. URL: http://trac.mystic.cacr.caltech.edu/
project/pathos.

[26] McKerns, M.M., Strand, L., Sullivan, T., Fang, A., Aivazis, M.A., 2011.
Building a Framework for Predictive Science , in: van der Walt, S., Mill-
man, J. (Eds.), Proceedings of the 10th Python in Science Conference, pp.
67 – 78.

[27] Michaud-Agrawal, N., Denning, E.J., Woolf, T.B., Beckstein, O., 2011.
MDAnalysis: A toolkit for the analysis of molecular dynamics simulations.
Journal of Computational Chemistry 32, 2319–2327. URL: https://doi.
org/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[28] Michel, M., Kapfer, S.C., Krauth, W., 2014. Generalized event-chain
Monte Carlo: Constructing rejection-free global-balance algorithms from
infinitesimal steps. J. Chem. Phys. 140, 054116. doi:10.1063/1.4863991,
arXiv:1309.7748.

[29] Miller, S., Luding, S., 2003. Event-driven molecular dynamics in parallel.
Journal of Computational Physics 193, 306–316. URL: https://doi.org/
10.1016/j.jcp.2003.08.009, doi:10.1016/j.jcp.2003.08.009.

[30] Nishikawa, Y., Michel, M., Krauth, W., Hukushima, K., 2015. Event-
chain algorithm for the Heisenberg model: Evidence for z sim 1 dynamic
scaling. Phys. Rev. E 92, 063306. doi:10.1103/PhysRevE.92.063306,
arXiv:1508.05661.

[31] Oliphant, T.E., 2006. A guide to NumPy. Trelgol Publishing USA.

[32] Peters, E.A.J.F., de With, G., 2012. Rejection-free Monte
Carlo sampling for general potentials. Phys. Rev. E 85, 026703.
URL: http://link.aps.org/doi/10.1103/PhysRevE.85.026703,
doi:10.1103/PhysRevE.85.026703.

[33] Proctor, E.A., Ding, F., Dokholyan, N.V., 2011. Discrete molec-
ular dynamics. Wiley Interdisciplinary Reviews: Computational
Molecular Science 1, 80–92. URL: https://onlinelibrary.

wiley.com/doi/abs/10.1002/wcms.4, doi:10.1002/wcms.4,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.4.

46

http://stacks.iop.org/0295-5075/124/i=2/a=20003
http://stacks.iop.org/0295-5075/124/i=2/a=20003
https://doi.org/10.1103/physreve.99.043301
https://doi.org/10.1103/physreve.99.043301
http://dx.doi.org/10.1103/physreve.99.043301
http://trac.mystic.cacr.caltech.edu/project/pathos
http://trac.mystic.cacr.caltech.edu/project/pathos
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1002/jcc.21787
http://dx.doi.org/10.1002/jcc.21787
http://dx.doi.org/10.1063/1.4863991
http://arxiv.org/abs/1309.7748
https://doi.org/10.1016/j.jcp.2003.08.009
https://doi.org/10.1016/j.jcp.2003.08.009
http://dx.doi.org/10.1016/j.jcp.2003.08.009
http://dx.doi.org/10.1103/PhysRevE.92.063306
http://arxiv.org/abs/1508.05661
http://link.aps.org/doi/10.1103/PhysRevE.85.026703
http://dx.doi.org/10.1103/PhysRevE.85.026703
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.4
https://onlinelibrary.wiley.com/doi/abs/10.1002/wcms.4
http://dx.doi.org/10.1002/wcms.4
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/wcms.4

[34] Proctor, E.A., Dokholyan, N.V., 2016. Applications of Discrete
Molecular Dynamics in biology and medicine. Current Opinion in
Structural Biology 37, 9 – 13. URL: http://www.sciencedirect.

com/science/article/pii/S0959440X15001578, doi:https://doi.org/
10.1016/j.sbi.2015.11.001. theory and simulation - Macromolcular ma-
chines.

[35] Qin, L., Höllmer, P., Maggs, A.C., Krauth, W., 2019. Benchmarking ECMC
against Lammps. Manuscript in preparation.

[36] Shirvanyants, D., Ding, F., Tsao, D., Ramachandran, S., Dokholyan, N.V.,
2012. Discrete Molecular Dynamics: An Efficient And Versatile Simulation
Method For Fine Protein Characterization. The Journal of Physical Chem-
istry B 116, 8375–8382. URL: https://doi.org/10.1021/jp2114576,
doi:10.1021/jp2114576, arXiv:https://doi.org/10.1021/jp2114576.
pMID: 22280505.

[37] Walker, A.J., 1977. An Efficient Method for Generating Discrete Random
Variables with General Distributions. ACM Trans. Math. Softw. 3, 253–
256. URL: http://doi.acm.org/10.1145/355744.355749, doi:10.1145/
355744.355749.

[38] van der Walt, S., Colbert, S.C., Varoquaux, G., 2011. The NumPy Array:
A Structure for Efficient Numerical Computation. Computing in Science &
Engineering 13, 22–30. URL: https://doi.org/10.1109/MCSE.2011.37,
doi:10.1109/MCSE.2011.37.

[39] Wu, Y., Tepper, H.L., Voth, G.A., 2006. Flexible simple point-charge
water model with improved liquid-state properties. The Journal of Chem-
ical Physics 124, 024503. URL: https://doi.org/10.1063/1.2136877,
doi:10.1063/1.2136877.

47

http://www.sciencedirect.com/science/article/pii/S0959440X15001578
http://www.sciencedirect.com/science/article/pii/S0959440X15001578
http://dx.doi.org/https://doi.org/10.1016/j.sbi.2015.11.001
http://dx.doi.org/https://doi.org/10.1016/j.sbi.2015.11.001
https://doi.org/10.1021/jp2114576
http://dx.doi.org/10.1021/jp2114576
http://arxiv.org/abs/https://doi.org/10.1021/jp2114576
http://doi.acm.org/10.1145/355744.355749
http://dx.doi.org/10.1145/355744.355749
http://dx.doi.org/10.1145/355744.355749
https://doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1063/1.2136877
http://dx.doi.org/10.1063/1.2136877

	1 Introduction
	1.1 Configurations, factors, pseudo-factors, events, event handlers
	1.2 Global state, internal state
	1.3 Lifting schemes
	1.4 Multiprocessing
	1.5 Parallelization

	2 JF architecture
	2.1 Mediator
	2.2 Event handlers
	2.3 State handler
	2.4 Activator
	2.5 Scheduler
	2.6 Input–output handler

	3 JF event-handler classes
	3.1 Event handlers for factors or sets of factors
	3.1.1 Invertible-potential event handlers
	3.1.2 Event handlers for factors with bounding potential
	3.1.3 Cell-veto event handlers

	3.2 Event handlers for pseudo-factors or sets of pseudo-factors
	3.2.1 Cell-boundary event handler
	3.2.2 Event handlers for sampling, end-of-chain, start-of-run, end-of-run

	3.3 Event handlers for rigid motion of composite point objects, mode switching

	4 JF run specifications and tools
	4.1 Configuration files, logging
	4.2 Globally used modules
	4.3 Cell systems and cell-occupancy systems
	4.4 Inter-particle potentials and bounding potentials
	4.4.1 Inverse-power-law potential, Lennard-Jones potential
	4.4.2 Displaced-even-power-law potential
	4.4.3 Merged-image Coulomb potential and bounding potential
	4.4.4 Cell-based bounding potential
	4.4.5 Three-body bending potential

	4.5 Lifting schemes
	4.6 Estimator

	5 JF Cookbook
	5.1 Interacting atoms
	5.1.1 Atomic factors, inverse-power Coulomb bounding potential
	5.1.2 Atomic factors, cell-based bounding potential
	5.1.3 Atomic factors, cell-veto

	5.2 Interacting dipoles
	5.2.1 Atomic Coulomb factors
	5.2.2 Molecular Coulomb factors, cell-based bounding potential
	5.2.3 Molecular Coulomb factors, cell-veto
	5.2.4 Atomic Coulomb factors, alternating root mode and leaf mode

	5.3 Interacting water molecules (SPC/Fw model)
	5.3.1 Atomic Coulomb factors, Lennard-Jones inverted
	5.3.2 Molecular Coulomb factors, Lennard-Jones cell-bounded
	5.3.3 Molecular Coulomb cell-veto, Lennard-Jones inverted
	5.3.4 Molecular Coulomb cell-veto, Lennard-Jones cell-veto

	6 Licence, GitHub repository, Python version
	6.1 Licence information, used software
	6.2 GitHub repository
	6.3 Python version, coding conventions

	7 Conclusions, outlook

