
https://doi.org/10.3758/s13421-022-01331-0

Diachronic semantic change in language is constrained by how people 
use and learn language

Ying Li1,2   · Cynthia S. Q. Siew3

Accepted: 20 May 2022 
© The Author(s) 2022

Abstract
While it has long been understood that the human mind evolved to learn language, recent studies have begun to ask the 
inverted question: How has language evolved under the cognitive constraints of its users and become more learnable over 
time? In this paper, we explored how the semantic change of English words is shaped by the way humans acquire and process 
language. In Study 1, we quantified the extent of semantic change over the past 200 years and found that meaning change is 
more likely for words that are acquired later in life and are more difficult to process. We argue that it is human cognition that 
constrains the semantic evolution of words, rather than the other way around, because historical meanings of words were 
not easily accessible to people living today, and therefore could not have directly influenced how they learn and process 
language. In Study 2, we went further to show that semantic change, while bringing the benefit of meeting communicative 
needs, is cognitively costly for those who were born early enough to experience the change: Semantic change between 1970 
and 2000 hindered processing speeds among middle-aged adults (ages 45–55) but not in younger adults (ages <25) in a 
semantic decision task. This hampering effect may have, in turn, curbed the rate of semantic change so that language does 
not change too fast for the human mind to catch up. Taken together, our research demonstrates that semantic change is shaped 
by processing and acquisition patterns across generations of language users.
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Introduction

Languages face the challenge of expressing an infinite range 
of ideas using a finite set of words (Chomsky, 1957). While 
one way to meet this challenge is to create new words to 

express novel meanings, a more common strategy is to 
assign new meanings to existing words (Ramiro et al., 2018). 
Previous literature has shown that the meanings of words 
change in predictable ways (Ullmann, 1962) and various 
accounts of such regularities in semantic change have been 
proposed, such as grammaticalization, subjectification, ero-
sion, and metaphorization (Lakoff, 2008; Traugott & Dasher, 
2001). In addition, there are case studies that documented 
how and when individual words changed their meaning 
(e.g., Lehrer, 1985). For instance, the original meaning of 
the word broadcast in agriculture was to cast or sow seeds 
widely, but with the advent of communication technologies 
(such as the radio), broadcast (since the early 20th century) 
refers to the spreading or transmitting of a message.

What factors make some words change their meanings 
to a greater extent than others? Our approach to this ques-
tion follows a Darwinian view that considers language as a 
complex adaptive system that evolves under the selection 
pressure of human cognitive constraints over generations of 
language users (Beckner et al., 2009; Christiansen & Chater, 
2008; Darwin, 1871). One important cognitive constraint 

Portions of this work was presented at the 2019 Annual Meeting 
of the Society for Computation in Psychology (SCiP). We thank 
Ziyong Lin for her constructive feedback.

 *	 Ying Li 
	 liying@psych.ac.cn

 *	 Cynthia S. Q. Siew 
	 cynthia@nus.edu.sg

1	 CAS Key Laboratory of Behavioral Science, Institute 
of Psychology, Chinese Academy of Sciences, 16,  Lincui 
Road, 100101 Beijing, China

2	 Present Address: Center for Adaptive Rationality, Max 
Planck Institute for Human Development, Lentzeallee 94, 
14195 Berlin, Germany

3	 Department of Psychology, National University of Singapore, 
9 Arts Link, 117570 Singapore, Singapore

/ Published online: 29 June 2022

Memory & Cognition (2022) 50:1284–1298

1 3

http://orcid.org/0000-0003-0678-9535
http://crossmark.crossref.org/dialog/?doi=10.3758/s13421-022-01331-0&domain=pdf


that may have shaped language evolution is general learning 
and processing biases derived from cognitive limitations. 
One of the advantages of such a view of language evolution 
is that apart from explaining how human language emerges, 
it also provides a theoretical foundation to explore hypoth-
eses of how human languages change after their emergence, 
which is the scope of the current study.

Evidence supporting the relation between how lan-
guage is acquired and processed and how language 
evolved has been accumulating, involving laboratory-
based experiments of artificial languages (Kirby et al., 
2008), computational simulations (Kirby, 2001; Mona-
ghan et al., 2011; Steels, 2011), and more recently, analy-
sis of natural language corpora (Hills & Adelman, 2015; 
Monaghan, 2014). Moreover, it is worth pointing out that 
cognitive constraints do not have to be very strong to 
shape language evolution. Even weak individual-level 
biases in language behaviors can be scaled up to popula-
tion-level linguistic phenomena via cultural transmission 
(e.g., Scott-Phillips & Kirby, 2010) or social structure 
(e.g., Linguistic niche hypothesis; Lupyan & Dale, 2010).

However, to date, most studies demonstrating the relation 
of language evolution to language acquisition and processing 
have focused on evolution of the lexical form (e.g., Mona-
ghan, 2014; Pagel et al., 2007). Less evidence exists for how 
the evolution of semantics, or the meanings of words, is 
related to language acquisition and processing. Fortunately, 
the availability of large-scale diachronic language corpora, 
along with computational tools for quantifying diachronic 
change in word embeddings over time (e.g., Dubossarsky 
et al., 2016; Hamilton et al., 2016; Li et al., 2019) have ena-
bled us to address this particular gap in the literature.

Semantic change could be viewed as the result of com-
peting selective forces that arise from learners (Chris-
tiansen & Chater, 2008), as well as listeners and speakers 
(Zipf, 2016) who are using language within a fast-changing 
social and technological landscape (Jones, 2016). The rap-
idly changing information landscape (Eppler & Mengis, 
2004; Varian & Lyman, 2000), particularly with the advent 
of new and emerging technologies and increased cultural 
contact and interaction, is likely to have placed increasing 
demands on language users to express new meanings. Even 
though inventing new lexical forms for every new meaning 
is probably favorable for the listener (because each lexical 
form would unambiguously signal a unique meaning), such 
an approach will make the size of the lexicon excessively 
large and consequently difficult for all language users to 
learn, produce, and process. Therefore, new meanings are 
often expressed by existing lexical forms (Ramiro et al., 
2018).

This leads to the question of which words are more likely 
to host new meanings? Previous studies have addressed 

this question by identifying linguistic features (e.g., word 
frequency, syntactic class, polysemy, prototypicality) that 
make a word more susceptible to semantic change than others 
(Dubossarsky et al., 2016; Hamilton et al., 2016; Pagel et al., 
2013). Another approach to the same question is to consider 
the cognitive pressures that generations of language users 
impose on language evolution. Early acquisition and ease 
of processing may directly act as preservers against seman-
tic change. Psycholinguistic research has shown that early-
acquired words are used more frequently (Balota et al., 2007; 
Pexman et al., 2017), retrieved more quickly and accurately 
(Juhasz, 2005), and tend to be more resistant to the onset 
of aging (Hodgson & Ellis, 1998) and to acquired cogni-
tive impairment (Bradley et al., 2006). Hence, early-acquired 
words should be less vulnerable to change due to the cogni-
tive prioritization that early-acquired words are afforded.

Other than early acquisition, we speculate that ease of 
processing also “protects” words from semantic change. It 
takes longer for people to process (that is, derive meaning 
from words) for words with many distinct meanings (homo-
nyms) than words with few or related meanings in semantic 
tasks (Hino et al., 2006; Rodd et al., 2002); the latter set 
of words may be easier to process because of the stronger 
association between the lexical form and meaning such that 
the lexical form is a reliable signal of its overall meaning. 
Such words would be less suitable for hosting new meanings 
since the cost to re-associate such lexical forms with a new 
meaning would be  high, ultimately decreasing learnability 
of new form-meaning mappings. On the other hand, words 
that are difficult to process are likely to have less well-estab-
lished form-meaning associations (i.e., the word form is a 
weaker signal of meaning), reducing the cost of updating 
the meanings of these words. Moreover, reassociating with 
new meanings provides opportunities for the lexical form 
to evolve toward the direction of evolutionary success, par-
ticularly if the new meaning becomes frequently used in the 
current environment.

Overview of current study

The present study first explores whether early acquisition 
and ease of processing lead to higher rates of semantic 
change. In Study 1, the age at which words are acquired 
and semantic processing speed were tested as predictors of 
the rate of semantic change over the past 2 centuries. We 
hypothesize that words that are acquired later in life and 
are more difficult to process changed their semantics to a 
greater extent (H1.1, H1.2; Fig. 1). In Study 1, note that we 
did not examine the inverse causal relation where semantic 
change since 1800 led to difficulty in learning and process-
ing in modern times. This is because the historical meanings, 
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especially those existed long before people today were born, 
were not readily accessible to people living today, and there-
fore should have little direct influence on how people today 
learn and process language1 (see Appendix section 1).

After testing hypotheses of the cognitive factors that 
drive semantic change, in the second study we turned to 
a related question: the cognitive cost of semantic change. 
We reasoned that there should be a “sweet spot” in the rate 
of semantic change: fast enough to meet the ever-changing 
demand for expressing new meanings, but not too fast for 
the human mind to catch up. After all, a highly unstable lan-
guage whereby the meanings of all words are changing con-
stantly is unlikely to be learnable by humans, and unlikely 
to result in effective communication. Therefore, we expect 
that semantic change of words, if and only if it has occurred 
during one’s lifetime, would hamper semantic processing. 
Leveraging on existing mega study databases and comple-
mented with new data from psycholinguistic experiments, 
we examined how the rate of semantic change between 
1970 and 2000, which is only personally experienced by 
middle-aged adults (ages 45–55) but not by younger adults 
(ages 18–25), affected the semantic processing of older and 
younger participants. Based on previous research show-
ing that slower processing speeds among middle-aged 
adults could be attributed to interference and information 

accumulation in long-term memory (Ramscar et al., 2017; 
Qiu & Johns, 2020), we reasoned that exposure to inconsist-
ent semantic meanings of a word over one’s lifespan may 
inadvertently activate deprecated meanings and therefore 
slow down processing speeds due to this interference effect. 
We hypothesize that higher rate of semantic change has a 
stronger effect in slowing down the speed of semantic pro-
cessing for middle-aged adults than younger adults. (H2.1; 
Fig. 1)

Lastly, we investigated whether lexical recognition per-
formance in a visual lexical decision task (tell whether a 
string of letters is a word or nonword) is related to semantic 
change. Since such tasks tend to show strong effects of 
familiarity to the word form (Balota & Chumbley, 1984) 
rather than measuring specific aspects of a word’s seman-
tic representation (but see Pexman et  al., 2002, for an 
example showing semantic effects in word recognition), 
we expected that rate of semantic change is not related to 
performance in the lexical decision task in both studies 
(H1.3, H2.2; Fig. 1)

Our specific hypotheses are as follows (see Fig. 1):
Study 1:

H1.1 Words acquired later in life experience greater 
semantic change than words acquired earlier in life.
H1.2. Words that are processed slower in the semantic 
decision task experience greater semantic change than 
words that are more quickly processed.
H1.3. Performance on a visual lexical decision task is not 
related to semantic change of words.

Study 2:

H2.1. Semantic change of words, when personally expe-
rienced within one’s life span, slows down semantic pro-
cessing. Specifically, semantic change of words slows 
semantic processing of middle-aged adults more than for 
younger adults.

Semantic Change (1800-2000)
Age of Acquisition Semantic

Processing
Lexical

Recognition
Semantic Change (within Lifetime)

H 1.1

H 1.2
H 1.3

H 2.1

H 2.2

Fig. 1   Graphical representation of causal relationships examined in Study 1 (in blue) and in Study 2 (in orange). Dotted arrows represent causal 
relationships that were hypothesized to not exist. (Color figure online)

1  Although it is true that people living today may know that a word 
had a different meaning hundreds of years ago by reading books writ-
ten in the past, we argue that obsolete meanings are not easily acces-
sible to people today. We tested this assumption using data from a 
free-association task (De Deyne et al., 2019) where participants were 
required to generate three words that first came to their mind when 
they were presented with a target word. These cue–response patterns 
represented the mental structure of concepts. By investigating the free 
associates of a list of selected words that have drastically changed 
their meaning during the 19th century (e.g., broadcast, car, awesome; 
see complete list of selected words in Appendix Table  1.1 and vis-
ualization of their semantic shift in Appendix Fig.  1.1), we did not 
find associations that directly referred to their obsolete meanings (see 
Appendix Table 1.2 for lists of associates for each selected word).
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H2.2. Performance on a visual lexical decision task is 
not related to semantic change of words (a second test of 
H1.3 using a different dataset).

Methods and materials

Quantifying rate of semantic change

Taking a Firthian approach (Firth, 1957), we assumed that 
the meaning of a word can be reliably inferred from the lin-
guistic contexts in which the word has been used in. There-
fore, the semantic shift of a word between two time points 
in history can be captured by comparing the extent to which 
its context has changed. Therefore, our approach captures 
(but does not distinguish) the shift in two kinds of meanings: 
denotation (meaning that can be looked up in dictionary) and 
connotation (associations evoked by words in the mind of 
readers). For example, although the denotative meaning of 
woman (adult female human being) remained the same over 
the past 200 years, our approach to word meaning would 
suggest that the meaning of women has changed because its 
connotation, reflecting the rising socioeconomic status of 
women, has become increasingly associated with charac-
teristics traditionally perceived to only belong to men (Garg 
et al., 2018).

Historical corpora

We used the English Google Ngram Corpus (Michel et al., 
2011) to extract contextual information of words for each year 
from 1800 to 2000. To ensure that our findings are not an arti-
fact of a specific corpus, we validate our findings on the Cor-
pus of Historical American English (COHA; Davies, 2012).

The Google Ngram Corpus represents around 6% of all 
books published over the past several hundred years, which 
contain approximately 155 billion words (Michel et al., 
2011). On the one hand, it has proved fruitful in capturing 
cultural shifts such as evolution of grammar, adoption of 
technology (Michel et al., 2011), and national well-being 
(Hills et al., 2019); on the other hand, it has been criticized 
to contain corpus artifacts due to its shifting sampling par-
adigm (e.g., a surging proportion of academic articles as 
observed in Pechenick et al., 2015). In contrast, the COHA 
corpus is much smaller in size (400 million words from the 
1810s to the 2000s). The COHA is carefully selected to be 
genre-balanced over each decade, which has its advantages 
and disadvantages. On the one hand, it alleviates concerns 
that insights gained from the corpus are driven by chang-
ing compositions of genres. On the other hand, it may fail 
to reflect the reality that public preferences for genres do 
change over history. Although it is difficult to argue whether 

COHA is a better corpus for analyzing language change than 
the Google Ngram Corpus or vice versa, consistency in the 
findings from both corpora would lend convergent validity 
to the results.

Embedding algorithm

The meaning of words can be quantified through the use 
of distributional semantics, in which words are represented 
by numeric vectors (often referred to as word embeddings) 
in accordance with their co-occurrence relationships (Bul-
linaria & Levy, 2007). Hamilton et al. (2016) trained word 
embeddings from both Google Ngram Corpus and COHA 
using three algorithms: Positive Pointwise Mutual Infor-
mation (PPMI), Singular Value Decomposition (SVD) and 
word2vec. They evaluated the three algorithms in terms of 
their performance in detecting a set of independently attested 
semantic shifts. They found that SVD performs consistently 
well on both Google Ngram Corpus and COHA while PPMI 
and word2vec performed poorly on at least one of the two 
corpora (Appendix Table 2.1). Therefore, in this study, we 
used SVD to quantify rate of semantic change.2

One potential weakness of SVD is that large semantic 
change may be an artifact of change in frequency: Because 
the contexts in which low frequency words appear in may 
be less representative, estimates of their semantics could 
be unreliable. However, when analyzing Hamilton et al.’s 
(2016) word embeddings trained using SVD, we found that 
the correlation between the rate of semantic change and 
change of frequency is actually quite small (r = −.05, p < 
.001 for Google Ngram Corpus; r = .31, p < .001 for COHA; 
for full details, see Appendix Table 2.3).

We obtained diachronic word embeddings trained on the 
Google Ngram Corpus from Li et al. (2019), and diachronic 
word embeddings trained on the COHA from Hamilton et al. 
(2016). Both word embeddings were trained using SVD, 
which were constructed based on the following steps. First, 
a co-occurrence matrix was constructed to record the number 
of times any two words co-occurred within fixed-size sliding 
windows of text. Second, vectors containing the number of 
times a given word co-occurred with all other words were 
directly obtained from the co-occurrence matrix described 
above. Third, they computed the PPMI for each pair of words 
and then constructed a PPMI matrix with entries given by

(1)PPMI
(

vi, vj
)

= max

(

0, log

(

P
(

vi, vj
)

P
(

vi
)

× P
(

vj
)

))

,

2  We present a correlation table of semantic stability as quantified 
using various methods (SVD and word2vec) and corpora (Google 
Ngram Corpus and COHA) in Appendix Table 2.2 for readers’ refer-
ence.
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where vi, vj represents a pair of words from the cor-
pus. p(vi,vj) corresponds to the empirical probabilities of 
word co-occurrences within a fixed-size sliding window of 
original text. As compared to co-occurrence counts, PPMI 
penalizes high-frequency words (i.e., of, the, and) that were 
used in a wide range of contexts and favors word pairs that 
frequently appeared together but not with others (i.e., Hong 
and Kong). Forcing PPMI values to be above zero ensures 
that they remain finite, and this has been shown to improve 
results (Bullinaria & Levy, 2007). Finally, dimensionality of 
word embeddings was reduced to 300 using singular value 
decomposition (SVD). This dimensionality reduction acts as 
a form of regularization and allows us to compare word simi-
larities by computing the cosine similarity of word embed-
dings. This approach has been effectively demonstrated in 
several studies (Hamilton et al., 2016; Li et al., 2019; Sagi 
et al., 2011; Xu & Kemp, 2015).

With diachronic word embeddings, the semantic stability 
(i.e., the inverse of the rate of semantic change) of a given 
word can be quantified as

where w(T)

i
 refers to the word embedding of word wi in year T. 

The historical embedding is aligned to its modern embedding 
using orthogonal Procrustes (Hamilton et al., 2016; Schöne-
mann, 1966). Semantic similarity ranges from 0 to 1. For exam-
ple, the semantic similarity of happy between year 1800 and 
2000 is 0.73, much higher as compared to words that had under-
gone greater semantic change, such as gay (0.36), and car (0.41).

Figure 2 (left) shows the distribution of semantic similarity 
between 1800 and 2000 for 50,000 English words trained on 
the Google Ngram Corpus. The negatively skewed distribution 
suggests that the majority of words were used in similar con-
texts at both time points. Figure 2 (right) shows the semantic 

(2)SemanticStabilityT1,T2
(

wi

)

= cosdist

(

w
(T1)

i
,w

(T2)

i

)

,

stability of a few words as examples. Each line represents the 
semantic similarity between its historical meaning (across 
years 1800–1990) and its contemporary meaning (year 2000) 
of the corresponding word. The average semantic stability of 
the entire database is plotted in grey as a benchmark. Figure 2 
(right) suggests that the word happy is relatively stable in its 
semantics over the past 2 centuries. In contrast, gay, car, and 
broadcast3 all changed their meanings drastically. The turning 
points suggest that the semantics of gay changed (from “joy” 
to “homosexuality”) roughly in the 1950s, whereas the seman-
tic change of broadcast (from “spread of seed” to “spread of 
information”) took place earlier in the 1920s, and semantics 
of car (from “wheeled horse-drawn vehicle” to “automobile”) 
changed gradually over the entire 19th century.

Study 1

Method

In Study 1, we tested hypotheses H1.1, H1.2 and H1.3. The 
materials we used in both studies are summarized in Table 1. 
To test H1.1 (Words acquired earlier in life are more likely to 
be semantically stable), we used Age of Acquisition ratings 
(AoA) collected by Kuperman et al. (2012). In their study, 
participants were asked to report the age (in years) at which 
they thought they had learned the word.4 This self-report 

Fig. 2   Both figures were produced based on the Google Ngram Cor-
pus. Left: Distribution of semantic similarities between 1800 and 
2000. Right: Semantic stability of selected words. Each line repre-
sents the semantic similarity between the historical meaning (across 

years 1800–1990) and the contemporary meaning (year 2000) of the 
corresponding word. The grey line represents the average seman-
tic similarity across all words in the Macroscope database (Li et al., 
2019). (Color figure online)

3  Broadcast was shown from 1840 because its frequency was too low 
before 1840 to train a stable semantic representation.
4  In Kuperman et al. (2012), participants were told to use the follow-
ing definition when providing AoA ratings for when a given word 
was learned— “we mean the age at which you would have understood 
that word if somebody had used it in front of you, EVEN IF YOU 
DID NOT use, read, or write it at the time.”
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measure of age of acquisition has been validated on a more 
naturalistic measure based on vocabulary assessment among 
pupils (Pearson r = .76; Brysbaert & Biemiller, 2017). To test 
H1.2 (words processed faster in a semantic decision task are 
more likely to be semantically stable), we used data from the 
Calgary Semantic Decision Project (Pexman et al., 2017). 
In the semantic decision task, participants had to decide, as 
quickly as possible, whether a word was abstract or concrete. 
A total of 321 participants provided abstract-concrete deci-
sions to 10,000 English words. To test H1.3 (lexical recog-
nition speed is less strongly related to semantic change of 
words as compared to semantic processing speed), we used 
visual lexical decision data from the English Lexicon Project 
(Balota et al., 2007). In contrast to the semantic decision 
task that requires participants to retrieve the semantic mean-
ing of words, the lexical decision task requires participants 
to decide, as quickly as possible, whether a string of letters 
formed a word or a nonword. This dataset contained mean 
reaction time and accuracy rates for 40,481 words and 40,481 
nonwords collected from 444 participants.

For each corpus, we investigated how semantic change 
was related to AoA, semantic processing, and lexical rec-
ognition in three regression models where semantic stabil-
ity was regressed on AoA, response time of either lexical 
decision task or semantic decision task, and other  lexical-
semantic variables such as log frequency, length, emotion-
ality, arousal, and concreteness that are known to correlate 
with lexical retrieval (see Table 2). Response time was com-
puted for each word by averaging response times across all 
participants. All predictors were scaled and mean-centered.

Semantic similarity was computed using the cosine 
similarity between word embeddings of 18005 and 2000. 

We chose year 1800 to be the historical point at which the 
contemporary meaning was compared against in order to 
provide sufficient information with respect to the historical 
dynamics of words. More importantly, it also means that 
AoA and performance in semantic decision task and lexical 
decision task should be less likely influenced by the rate 
of semantic change since 1800 because how people today 
learn and process language should not be directly influenced 
by a semantic history that they have never experienced. In 
addition, we conducted a sensitivity analysis to test if our 
result is robust to the choice of the historical reference point 
(see Fig. 3).

Age of acquisition was included in the models that 
explained the variance of response time of lexical recogni-
tion and semantic processing because it has been previously 
found to be a strong predictor (Morrison & Ellis, 1995). 
Since we quantified semantic change between year 1800 and 
2000, we also included frequency of words at both the start 
and end years of semantic change in the regression analy-
sis. Frequency was retrieved from the Google Ngram Book 
Corpus (Michel et al., 2011). Length of word was computed 
by counting the number of letters in a word. Emotionality 
was computed by taking the absolute value of the differ-
ence between the word’s valence and average valence in the 
dataset so that the most negative and the most positive words 
have the largest scores on emotionality. Valence, arousal, and 
concreteness norms were obtained from Hollis et al. (2017).

Lastly, considering that previous research has found 
that polysemous words experience higher rates of semantic 
change, we included polysemy as a covariate in our regres-
sion model. Following Hamilton et al. (2016), we quanti-
fied polysemy of a word as the clustering coefficient of its 
network space. We constructed an empirical co-occurrence 
network for the 50,000 words in the database where words 
are connected if they co-occur more than one would expect 
by chance (PPMI > 0; PPMI defined in Equation 1). A word 

Table 1   Information about the datasets used to test our hypotheses

Both the number of words in the dataset and the number of words used in the analysis (in parentheses, Google Ngram Corpus/COHA) are 
reported. Only the words that had values for all linguistic properties in the regression model were analyzed.

Data Hypothesis Participants Age Number of words

Study 1 Age of Acquisition ratings
(Kuperman et al., 2012)

H1.1 1,729
MTurk workers

15–82 30,121
(8,133/2,845)

The Calgary Semantic Decision Project
(Pexman et al., 2017)

H1.2 321
college students

Mean: 21.2
SD: 5.8

10,000
(4,847/2,064)

The English Lexicon Project
(Balota et al., 2007)

H1.3 816
college students

Mean: 22.8
SD: 5.8

40,481
(2,786/887)

Study 2 Newly collected data on semantic decision task H2.1 237 recruited from Prolific Two age groups:
Group 1: 18–25
Group 2: 45–55

180

The English Crowdsourcing Project
(Mandera et al., 2019)

H2.2 584,284 online volunteers Mean: 35.5
SD: 14.7

62,000

5  For rate of semantic change trained on COHA data, the historical 
point was 1820. This is because COHA data started at 1810 and its 
data size at 1810 was too small to train a stable model.
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with a larger clustering coefficient means that its semantic 
neighborhood is more densely connected, and thus it has a 
low polysemy score. On the other hand, polysemous words 
have low clustering coefficients since they tend to appear in 
disjointed or unrelated contexts (i.e., less densely connected 
semantic neighborhood).

Results

We first examined multicollinearity for all models. Multi-
collinearity can be assessed by the variance inflation factor 

(VIF), which measures how much the variance of a regres-
sion coefficient is inflated due to multicollinearity in the 
model. We computed VIF for each independent variable. 
The smallest possible VIF value is 1, suggesting complete 
absence of multicollinearity. As a rule of thumb, a VIF value 
that exceeds 5 indicates a problematic amount of collinearity 
(James et al., 2013). We found that all independent variables 
in all models had a VIF value smaller than 5 (see Appendix 
Figure 3.4, Fig. 3.5 for correlation tables of all variables).

The regression analysis showed that AoA and semantic 
processing speed remained strong predictors of semantic 

Fig. 3   Sensitivity analysis for models that predicted rate of semantic 
change as inferred from the Google Ngram Corpus (top panel) and 
the COHA (bottom panel). The x-axis represents the historical year of 
comparison when computing semantic stability. The y-axes are p val-

ues and regression coefficients from the regression analyses. The red 
dotted lines represent significance threshold of 0.05 for the p values 
and 0 for regression coefficient. (Color figure online)
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stability even with the inclusion of control variables. The 
results are consistent across semantic stability inferred from 
different corpora (Table 2). It supports our hypothesis that 
words acquired later in life experienced greater semantic 
change (H1.1) and that words whose semantics were pro-
cessed more slowly also experienced greater semantic 
change (H1.2). In contrast, reaction speed in the lexical deci-
sion task was a significant predictor when the Google Ngram 
Corpus was used to quantify rate of semantic change, but not 
a significant predictor when the COHA was used (H1.3).

Sensitivity analysis

Before proceeding, it is important to examine whether and 
how the choice of the year of comparison might alter our 
results. Given that there is no nonarbitrary way to select 
the most appropriate year of comparison, we recomputed 
semantic stability by varying the year of comparison from 
1800 to 1990. For each choice of the year of comparison, 
we performed the same regression analysis as in Table 2 
to investigate how the relation between semantic stability 
and language acquisition (age of acquisition) and between 
semantic stability and processing (semantic processing and 
lexical decision) might vary as a function of the historical 
year selected when computing semantic stability. Overall, 
the rate of semantic change as quantified from the two cor-
pora showed convergent results (Fig. 3): Age of acquisition 
and speed of semantic processing are significant predic-
tors of semantic change across all choices of the historical 
year of comparison. In contrast, we found that the relation 
between lexical recognition speed and semantic change was 
highly unstable.

We also performed a sensitivity analysis on how accuracy 
rates for the semantic decision and lexical decision tasks 
might vary as a function of the choice of the year of com-
parison (Appendix Fig. 3.1). The results do not completely 
align with reaction speed. For the Google Ngram Corpus, 
higher accuracy in both lexical decision and semantic deci-
sion task predicted greater semantic stability. However, for 
the COHA, higher accuracy in semantic decision task only 
predicted greater semantic stability when reference year 
was before 1880. As compared with reaction time, accuracy 

rate is a less informative cue to the efficiency of lexical and 
semantic processing because these tasks are very easy to 
native speakers and consequently variance in accuracy rates 
is very small (median of accuracy rate is 95% for lexical 
decision task and 90% for semantic processing task).

Study 2

In Study 1, we quantified semantic similarity by compar-
ing a word’s meaning in year 1800 to its meaning in year 
2000. This allowed us to focus on semantic change that were  
not directly experienced by people today. However, when 
semantic change occurs during one’s lifetime, it may make 
it harder to process the meaning of words because updat-
ing words with new meaning could be cognitively costly 
(Maciejewski et al., 2020).

To answer the question of  whether semantic change 
comes with a cognitive cost, we studied whether semanti-
cally unstable words, when compared to semantically stable 
words, are harder  for middle-aged adults to process, but not 
younger adults. We were unable to do this using the data in 
Study 1 because the English Lexicon Project and the Calgary 
Semantic Decision Project recruited participants from an 
undergraduate student population. Therefore, in Study 2 we 
use lexical recognition data from the English Crowdsourc-
ing Project (Mandera et al., 2019) that included participants 
from a wide range of ages (M = 35, SD = 17). Since there is 
no existing database that includes the performance of both 
younger and middle-aged adults on the semantic decision 
task, we conducted an experiment to obtain this data our-
selves. The research was conducted with ethics review board 
approval from the Max Planck Institute for Human Devel-
opment. We provide our data online (https://​osf.​io/​gw8vj/).

Method

We computed semantic stability of words between 1970 
and 2000 using Equation  2. We recruited middle-aged 
adults between the ages 45 and 55 (born between 1965 and 
1975) and younger adults aged between 18 and 25 (born 
between 1995 and 2002) so that only middle-aged adults 

Semantic change during this period is only
experienced by the older (NOT younger) adults

Mid-aged Adults

1970 2000

1965 1975
Younger Adults

1995 2002

Fig. 4   Timeline display of the range of birth year for middle-aged adults and younger adults, and the window during which semantic stability is 
quantified. (Color figure online)
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personally experienced the semantic change between 1970 
and 2000 (see Fig. 4 for illustration). If semantic change dur-
ing one's lifetime hampers semantic processing, we should 
find that semantic change slows down  semantic process-
ing speed only for middle-aged adults but not for younger 
adults (H2.1). The semantic change after year 2000 has been 
experienced by both younger and older adults, and therefore 
should not influence the two groups differently.

Following a standard procedure of semantic decision task 
as described in Pexman et al. (2017), we asked participants 
to respond, as quickly as possible, whether a word is con-
crete or abstract. The word stimuli consist of 100 concrete 
words and 100 abstract words from Brysbaert et al.’s (2014) 
concreteness ratings for a comprehensive list of English 
words. For both concrete and abstract groups, 50% of words 
are semantically stable and 50% are semantically unstable. 
Semantically stable words were selected from words with 
stability1970,2000 (w) > 0.8, whereas semantically unstable 
words were selected from words with stability1970,2000 (w) 
< 0.65 (refer to the computation of stability in Equation 2). 
The words were carefully selected to ensure no significant 
differences in concreteness, frequency, valence, and age of 
acquisition between semantically stable words and unstable 
words, and no significant differences in semantic stability, 
frequency, valence, and age of acquisition between concrete 
words and abstract words (see Appendix Table 4.1 for more 
details). As in Study 1, we included these factors as covari-
ates in the regression models.

We recruited 237 native speakers of English (120 
between 18 and 25 years old; 117 between 45 and 55 years 
old) from Prolific, a crowdsourced data collection platform 
for psychological research. Each participant responded 
to each of the 200 words that appeared on the computer 
screen in random order and decided whether the word was 
“concrete” or “abstract” by clicking ‘Z’ on the keyboard to 
indicate abstract or ‘M’ to indicate concrete. The response 
time was recorded. A randomly selected list of 20 words 
(10 abstract and 10 concrete) from the stimuli list were used 
as practice trials for participants to familiarize themselves 
with the task. We excluded words used in the practice trials 
from the analysis. The final number of words included in 
the analysis was 180.

Since Study 2 explores the effect of semantic change 
throughout the lifetime on word processing and recognition, 
we regressed semantic stability on semantic processing reac-
tion times and lexical recognition reaction times together 
with other related variables including log frequency, length, 
emotionality, arousal, valence, and concreteness. To explore 
whether middle-aged adults were more sensitive to semantic 
stability, we also included the participant’s age in the regres-
sion model. Unlike Study 1, in which reaction time was 
aggregated by words (i.e., reaction time of a word was the 
mean of all participants’ responses), in Study 2, we analyzed 

the unaggregated, trial-level data using linear mixed effects 
models. We included both participant and word as random 
intercept effects. The participant random effect controls for 
an individual’s idiosyncratic factors underlying responses to 
all words by the same participant. The word random effect 
controls for the common factors driving response time from 
all participants to the same word. In the mixed effect model 
that predicted lexical recognition, we only included the word 
random effect and not the participant random effect because 
the average number of people who responded to the same 
word was too low (i.e., less than 5 responses per word).

Results

Using two different datasets from the semantic decision task 
and lexical decision task , our trial-level regression analysis 
in Study 2 mirrored our finding in Study 1 (see Table 3, 
Model 1 and Model 2). Specifically, semantic stability has 
a significant main effect on semantic processing, such that 
an increase of one standard deviation of semantic stability 
leads to a reduction of 20.8 milliseconds in semantic deci-
sion RTs (b = −20.8), t(171) = −3.19, p = .002. In contrast, 
there is no significant main effect of semantic stability on 
lexical decision performance (b = −2.42), t(5296) = −1.23, 
p = .218).

Next, we tested Hypothesis 2.1 regarding whether seman-
tic change slows down processing speed for middle-aged 
adults but not for younger adults. First, for each participant, 
we computed the mean of reaction time of semantically sta-
ble words and of semantically unstable words. On average, 
it took middle-aged adults 1,003 milliseconds to process 
meaning of a semantically stable word, and 46 additional 
milliseconds (SD = 56.8) to process a semantically unstable 
word. In contrast, younger adults on average took 972 mil-
liseconds to process a semantically stable word, and only 12 
additional milliseconds (SD = 60.6) to process a semanti-
cally unstable word. The additional processing time peo-
ple spent on processing semantically unstable words (than 
on semantically stable words) is an indicator of cognitive 
cost imposed by semantic change (Fig. 5a). Consistent with  
hypothesis H2.1, we found that  this cognitive cost is larger 
for middle-aged adults than for younger adults, t(234) = 
−4.48, p < .001.

Moreover, using a regression model with three-way 
interaction effect among semantic stability, age group, and 
concreteness (Table 3, Model 3), we confirmed that the 
above difference in cognitive cost between middle-aged and 
younger adults is robust even when other psycholinguistic 
features are statistically controlled for. We found a signifi-
cant interaction effect between semantic stability and age 
(b = −18.93), t(42,086) = −5.17, p < .001. A simple slope 
analysis (Fig. 5b) shows that middle-aged adults, but not 
younger adults, responded more slowly to words that were 
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Table 3   Summary of linear mixed effects models analyzed in Study 2

Age is coded as a categorical variable (Younger adults = 0, Middle-aged adults = 1) in the semantic decision task (Models 2 & 3) while it is a 
continuous variable in lexical decision task (Model 1). All continuous predictors are standardized.

Lexical Recognition RT Semantic Processing RT

Model 1 Model 2 Model 3

Predictors Estimates p Estimates p Estimates p

(Intercept) 915.79 <0.001 977.62 <0.001 977.61 <0.001
Log Frequency (Year 2000) -63.55 <0.001 3.50 0.609 3.71 0.590
Word Length 28.14 <0.001 -21.36 0.002 -21.36 0.002
Age of Acquisition (AOA) 79.17 <0.001 10.53 0.105 10.48 0.107
Emotionality -3.50 0.075 -11.20 0.108 -11.47 0.102
Valence -6.49 0.001 -15.69 0.018 -15.83 0.017
Arousal -28.87 <0.001 1.27 0.855 1.45 0.835
Concreteness -7.59 0.001 -46.65 <0.001 -38.29 <0.001
Age (Continuous) 1.86 <0.001
Age (Middle-aged Adults = TRUE) 48.69 0.043 48.93 0.042
Semantic Stability btw 1970-2000 -2.48 0.218 -20.80 0.001 -11.46 0.091
Middle-aged:Semantic Stability -18.93 <0.001
Middle-aged:Concreteness -16.70 <0.001
Concreteness:Semantic Stability 0.38 0.956
Middle-aged:Concreteness:Semantic Stability -6.59 0.083
Random Effects
σ2 327530.75 142385.96 142216.83
τ00 17564.11 Word 33545.40 id 33545.82 id

6465.37 Word 6500.28 Word

ICC 0.05 0.22 0.22
N 5385 Word 237 id 237 id

180 Word 180 Word

Observations 3267383 42505 42505
Marginal R2 / Conditional R2 0.056/0.104 0.018/0.233 0.019/0.235
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Fig. 5   a Additional processing time spent on semantically unstable 
words (compared with semantically stable words). b Simple slopes 
depicting the two-way interaction effect between semantic stability 

and participant age. c Simple slopes depicting the three-way interac-
tion effect between semantic stability, participant age, and concrete-
ness in semantic decision. (Color figure online)
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semantically unstable (Middle-aged adults: b = −30.7, SE 
= 6.7, t = −4.57, p < .001; Younger adults: b = −11.7, SE 
= 6.7, t = −1.74, p = .08).

Lastly, we explored whether this semantic-change-
imposed processing disadvantage among middle-aged adults 
was driven by concrete words or abstract words. In a simple 
slope analysis exploring the three-way interaction between 
age, concreteness, and semantic stability (Fig. 5c), we found 
that among middle-aged adults the slope between semantic 
stability and reaction time was steeper for concrete words (b 
= −38.8, SE = 9.4, t = −4.14, p < .001) than abstract words 
(b = −22.7, SE = 9.4, t = −2.42, p = .02), suggesting that 
semantic change imposes greater cognitive cost on concrete 
words than on abstract words.

Discussion

The present study examined how the semantics of English 
words evolved under the constraints of human cognition. We 
first found that cognitive constraints in language acquisition 
and processing shaped the evolution of a word’s semantics: 
words acquired later in life or that are more difficult to pro-
cess in a semantic decision task are under greater selection 
pressure to change their meanings. Semantic change is an 
effective strategy for language to meet the everchanging 
communicative need to express new meanings. However, 
it is likely to come with a cognitive cost because seman-
tic change is the process of reestablishing the association 
between meaning and lexical form in the mind of language 
speakers. We tested this idea in Study 2 and found support-
ing evidence for it: Semantic change of words, if and only 
if the change has occurred during one’s lifetime, makes it 
harder to process the meaning of words.

Using contemporary data on how people process and 
learn words, our analysis in Study 1 found an association 
between semantic change and cognitive constraints. It is 
important to note that since semantic stability in Study 1 
was quantified by comparing the contexts of words between 
year 1800 and year 2000, the historical semantic change of 
words is largely obscure to most participants who took part 
in the data collection as they were typically young, college-
aged adults recruited from psychology research subject 
pools. In other words, participants should only be famil-
iar with the modern meanings of words, and it is unlikely 
for one’s learning history and language performance to be 
directly influenced by a semantic history that they do not 
have easy access to. This line of reasoning precludes the 
conclusion that long-term, historical changes in the mean-
ing of words have strong, direct, measurable effects on the 
learnability and processing of words. We suggest that it is 
more plausible to conclude that it is the cognitive constraints 
associated with learning and using words (as approximated 
by modern day behavioral measures of age of acquisition 

and processing performance) that largely shaped the extent 
of semantic change among words. Specifically, words that 
are acquired later in life and are more difficult to process in 
the semantic decision task went through greater semantic 
change over history.

In Study 1, we showed how cognitive constraints in word 
learning and processing make some words more likely to 
change their meanings than others. This result introduced 
a related question: whether semantic change comes with a 
cognitive cost—that is, an increased difficulty in process-
ing word meanings because one has to update the mapping 
between lexical form and meaning. To answer this question, 
we deliberately designed Study 2 to tease apart the influence 
of historical semantic change and semantic change within 
one’s lifespan. This was done by yoking lifespan semantic 
change to year 1970 so that  semantic change could only be 
directly experienced by middle-aged adults but not younger 
adults in our study. The results of Study 2 indicated that 
people were indeed sensitive to changes in a word’s seman-
tics that occurred within their lifetimes. Middle-aged adults, 
but not younger adults, were slower at processing words 
that changed their semantics during their lifetime. This sug-
gests that higher rates of semantic change can be costly to 
cognitive processing. This may be because updating words 
with new meanings can be cognitively costly (Maciejewski 
et al., 2020), or alternatively, due to interference effects in 
memory when multiple, potentially competing, meanings 
become activated for a single lexical form (Qiu & Johns, 
2020; Ramscar et al., 2017).

Language evolution tends to take the path of least resist-
ance (Zipf, 2016); within the present context of semantic 
change, words tend to change their semantics in a manner 
that minimizes cognitive effort involved in associating the 
existing word with a new meaning. Ramiro et al. (2018) 
provided supporting evidence to this claim by modeling the 
temporal order in which new senses of individual words 
emerged over time. Given the set of meanings a word has 
developed over its semantic history, the authors found that 
the new meaning that was more likely to emerge next tended 
to be the meaning with the highest semantic similarity with 
the existing word sense. They argue that such an evolution 
path is the most cognitively efficient path because it mini-
mizes the cognitive effort required to associate new mean-
ings with the word.

Our study complements Ramiro et  al.’s findings by 
answering a related question: Which words are more likely 
to be used to express new meanings than others? The fact 
that semantic change is more likely to occur among words 
learned later in life and processed slower may reflect 
minimization of cognitive effort when new meanings are 
incorporated into the lexicon. As mentioned in the Intro-
duction, highly semantically stable words are less suit-
able candidates for hosting new meanings since the cost to 
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reassociate such lexical forms with new meanings would 
be relatively high. On the other hand, it is less costly to 
update the meanings of words that are relatively more dif-
ficult to learn and process as they are likely to have less 
well-established form–meaning associations. Hence, one 
potential way of reducing the overall cost of restructuring 
and updating the lexicon could be to preferentially assign 
new meanings to lexical forms that are more difficult to 
learn and process. Although assigning new meanings to 
words that are difficult to learn and process could increase 
the cognitive effort required to then learn and process 
these words in the short-term (as the results of Study 2 
indicate), we emphasize that language evolution involves 
trade-offs and suggest that this approach ultimately leads 
to greater long-term benefits such as maintaining the 
semantics of the core lexicon while enabling languages 
to be flexible enough to adapt to the emergence of new 
meanings.

In the present study, we focused our analysis on words 
that remained in use from 1800 to 2000; otherwise, the com-
putation of semantic stability between 1800 and 2000 would 
not be possible. That necessarily implies that words that 
“died” during this period were excluded from the analysis. 
We speculate that many of these dead words were difficult 
to learn and process and did not manage to reassociate them-
selves with new meanings that could have allowed them to 
survive into the present day. One potential follow-up is to 
investigate how these dead words differ from the remaining 
words in terms of learnability, which can be approximated 
using modern day estimates of the concreteness of words 
(following Hollis et al., 2017).

As a final point, it is worth highlighting that quantitative 
research on semantic change in language evolution is usually 
done with the goal of identifying laws and patterns in histor-
ical corpora (Hamilton et al., 2016; Xu & Kemp, 2015). Our 
approach is different as we aimed to highlight how semantic 
change could be understood from the perspective of the role 
of human cognition in language usage, by connecting quan-
titative patterns of diachronic semantic change to large-scale 
databases of behavioral measures related to the processing 
and learning of language. Overall, the present paper provides 
evidence that semantic evolution of words is related to how 
early in life the word is acquired and its ease of process-
ing in a semantic decision task. Our results highlight the 
importance of investigating language evolution with close 
consideration of the cognitive capabilities and constraints 
of language users.
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