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Abstract. We study the structure of the commensurator of a virtually abelian

subgroup H in G, where G acts properly on a CAT(0) space X. When X is
a Hadamard manifold and H is semisimple, we show that the commensurator

of H coincides with the normalizer of a finite index subgroup of H. When

X is a CAT(0) cube complex or a thick Euclidean building and the action of
G is cellular, we show that the commensurator of H is an ascending union of

normalizers of finite index subgroups of H. We explore several special cases

where the results can be strengthened and we discuss a few examples showing
the necessity of various assumptions. Finally, we present some applications to

the constructions of classifying spaces with virtually abelian stabilizers.

1. Introduction

Background and motivation. We say that two subgroups H1, H2 of a group
G are commensurable if H1 ∩ H2 has finite index in both H1 and H2. The com-
mensurator of H in G, denoted by NG[H], is a subgroup consisting of all elements
g ∈ G such that gHg−1 and H are commensurable. In this article we would like to
understand NG[H] when H is virtually abelian and G acts properly on a CAT(0)
space X.

One motivation for studying such commensurators comes from the connection
between some of their properties and the topology of classifying spaces of G with
respect to families of virtually abelian subgroups [LW12].

Another motivation comes from CAT(0) geometry. For CAT(0) groups, the
normalizers of their abelian subgroups are well-understood and they play a funda-
mental role in the theory of CAT(0) groups [BH99]. However, the commensurators
of abelian subgroups are much more mysterious and they contain subtle information
of the action which is not seen by the normalizers.

The commensurator NG[H] ≤ G contains normalizers of finite index subgroups
of H. It is therefore natural to ask how far the commensurator is from being a
normalizer. In general NG[H] may not be finitely generated for a CAT(0) group G;
such an example can be found in Wise’s work on irreducible lattices acting on
product of trees [Wis96], we refer to Proposition 9.1 for an explanation. On the
other hand, the normalizer of H is always finitely generated [BH99]. Thus we ask
about finitely generated subgroups of the commensurator instead. This leads to the
following, which is a generalization of Lück’s Condition (C) for cyclic subgroups
[Lüc09].
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2 J. HUANG AND T. PRYTU LA

Definition 1.1 (Condition (C)). We say that a virtually abelian subgroup H of G
satisfies Condition (C) if every finitely generated subgroup K ≤ NG[H] normalizes
some finite index subgroup of H. A group G satisfies Condition (C) if each of its
finitely generated virtually abelian subgroup satisfies Condition (C).

If Condition (C) holds for H, then NG[H] is an ascending union of normalizers
of finite index subgroups of H. Note that if NG[H] does not have pathologies of
type I (not being finitely generated) and type II (not satisfying Condition (C)),
then NG[H] is equal to the normalizer of a finite index subgroup of H.

Recently, Leary and Minasyan gave an example of a CAT(0) group which does
not satisfy Condition (C) [LM18], so both types of pathologies can occur for CAT(0)
groups. However, there are many natural classes of CAT(0) groups where such
pathologies can be eliminated due to certain geometric or combinatorial structure
of these groups, which we will discuss below. We will also indicate several re-
sults for general CAT(0) groups, including an application to Bredon cohomological
dimension for virtually abelian stabilizers.

Structure of the commensurators. A group G acts geometrically on a metric
space X if it acts isometrically, properly and cocompactly. A subgroup H ≤ G is
semisimple if each element of H is a semisimple isometry of X.

Recall that a Hadamard manifold is a complete, simply connected smooth man-
ifold with non-positive sectional curvature. For groups acting geometrically on
Hadamard manifolds, none of the above pathologies occurs. Actually, a slightly
more general result holds.

Theorem 1.2 (Theorem 4.2). Suppose G acts properly on a Hadamard manifold
X by isometries. Let H ≤ G be a semisimple finitely generated virtually abelian
subgroup. Then NG[H] is equal to the normalizer of a finite index subgroup of H.
In particular, if the action Gy X is geometric then NG[H] is finitely generated.

This theorem fails if we relax the assumption of ‘Hadamard manifold’ to ‘com-
plete CAT(0) manifold without boundary’, see Corollary 8.3. We remark that
Theorem 1.2 gives obstructions to (virtually) embed a group into a fundamental
group of a non-positively curved smooth closed manifold.

For singular CAT(0) spaces the structure of commensurators is generally compli-
cated, even if the space admits a piecewise Euclidean structure. However, certain
types of piecewise Euclidean structures give rise to rigidity of commensurators.

Theorem 1.3 (Theorem 5.5 and Proposition 6.1). Suppose G acts properly on a
CAT(0) space X. Let H ≤ G be a finitely generated virtually abelian subgroup.
Suppose one of the following is satisfied.

(1) X is a finite dimensional CAT(0) cube complex and G acts on X by cubical
automorphisms.

(2) X = X1 ×X2 × · · · ×Xn such that each Xi is either a nonflat irreducible
symmetric space of noncompact type or an irreducible thick Euclidean Tits
building with cocompact affine Weyl group, and H is semisimple.

Then any finitely generated subgroup of NG[H] normalizes a finite index subgroup
of H.

Note that the conclusion is slightly weaker than in Theorem 1.2. In both cases
of Theorem 1.3, there are examples of NG[H] being not finitely generated, even
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if the action of G on X is cocompact. Moreover, one cannot remove the ‘finitely
generated’ assumption from the last sentence of Theorem 1.3, that is, the commen-
surator NG[H] may not normalize any finite index subgroup H ′ ≤ H, as shown in
Proposition 9.1. However, such assumption can be removed when the action of G
on a cube complex is virtually special, see Corollary 5.10.

We now look at more general CAT(0) spaces. A finitely generated virtually
abelian subgroup is highest, if it does not have a finite index free abelian subgroup
that lies in a free abelian subgroup of higher rank.

Proposition 1.4 (Proposition 3.10). Let G be a group acting geometrically on a
CAT(0) space and suppose H is a highest virtually abelian subgroup of G. Then
NG[H] contains H as a finite index subgroup. In particular NG[H] is finitely gen-
erated and it normalizes a finite index subgroup of H.

The assumption of being highest cannot be removed [LM18]. Also note that
a highest abelian subgroup might not be ‘highest’ in a geometric sense. More
precisely, there is an example by Rattaggi and Robertson [RR05] of a highest abelian
subgroup H in a CAT(0) group G such that H acts cocompactly on a flat F ⊂ X
with F being contained in a higher dimensional flat, see Proposition 9.3.

We also observe that for CAT(0) groups, the examples by Leary and Minasyan
[LM18] are the only obstructions to Condition (C), see Proposition 8.4.

Applications to the classifying spaces for families of subgroups. Given a
group G and a family of subgroups F , the classifying space of G for the family
F , denoted by EFG, is the universal G–CW–complex with stabilizers in F . Clas-
sifying spaces for families appear in Baum-Connes and Farrell-Jones isomorphism
conjectures in K–theory and they can be used to compute Bredon cohomology of G
[Lüc05]. Therefore it is desirable to construct simple models for EFG and in par-
ticular to bound its dimension. The minimal dimension of EFG is called geometric
dimension of G for the family F , and is denoted by gdFG. There is an algebraic
counterpart of geometric dimension called Bredon cohomological dimension and it
is denoted by cdFG. These two dimensions are related by Eilenberg-Ganea-type
inequality

cdFG ≤ gdFG ≤ max{3, cdFG}.
The standard by now method to construct a classifying space EFG or to bound
cdFG is a construction due to Lück and Weiermann [LW12]. One may say that
the key point of that construction is the study of NG[H] for subgroups H ∈ F
and construction of classifying spaces for this group for certain families (simpler
than F).

In vast majority of constructions, the following approach has been used: one
first proves Condition (C) for G and then approximates NG[H] by normalizers of
subgroups Hi commensurable with H. Then one constructs respective classifying
spaces for normalizers, as they are usually much simpler groups, and finally one
reconstructs classifying space for NG[H] from classifying spaces for NG(Hi) for
subgroups Hi.

Now let Fr be a family of subgroups of G which consists of all finitely generated
virtually abelian subgroups of rank at most r. Following the above procedure, the
second author obtained a bound on the cdFr

G for G acting properly by semisimple
isometries on a proper finite dimensional CAT(0) space, assuming that G satisfies
Condition (C) [Pry18, Theorem 1.1].
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However, by studying the action of NG[H] more carefully, now we can remove
Condition (C) from the assumptions of [Pry18, Theorem 1.1].

Theorem 1.5 (Theorem 7.5). Let G be a group acting properly by semisimple
isometries on a complete proper CAT(0) space of topological dimension n. Then
for any 0 6 r 6 n we have cdFrG ≤ n+ r + 1.

Let us point out that Theorem 1.5 gives a partial answer to a question by Lafont
[Laf08], concerning constructions of classifying spaces for the family of virtually
abelian subgroups.

Comments on the proof. Suppose G acts properly on a CAT(0) space X and
suppose H ≤ G is a semisimple finitely generated virtually abelian subgroup. Let
F ⊂ X be an H–invariant flat such that H y F is cocompact. Then NG[H]
preserves the parallel set PF = F×F⊥ and its product structure (Lemma 3.2). This
gives rise to two factor actions NG[H] y F and NG[H] y F⊥. Theorem 1.3 and
Proposition 1.4 come from analyzing the regularity ofNG[H] y F ; and Theorem 1.2
and Theorem 1.5 come from analyzing the regularity of NG[H] y F⊥.

Organization of the paper. In Section 2 we give background on Condition (C).
In Section 3 we collect several preparatory observations for later sections. Sec-
tions 4, 5, 6, 7 and 8 are essentially independent from one another. In Sections 4, 5
and 6 we handle the cases of Hadamard manifolds, cube complexes and Euclidean
buildings respectively. Section 7 is about applications to Bredon cohomological
dimension. In Section 8 we discuss the relation between Condition (C) and the ex-
amples by Leary and Minasyan. More examples of possible pathological behavior
of commensurators are given in Section 9.

Acknowledgments. J. H. thanks the Max Planck Institute for Mathematics where
part of the work was completed. J. H. thanks J. Lafont, T. Nguyen and T. T.
Nguyen-Phan for helpful discussions.

T. P. thanks the Fields Institute for Research in Mathematical Sciences where
part of the work was completed. T. P. was supported by EPSRC First Grant
EP/N033787/1. T. P. thanks G. Margulis and J. Schwermer for helpful discussions.

Both authors thank I. Leary and A. Minasyan for valuable discussions and com-
ments improving the paper.

2. Background on Condition (C)

We refer to the Introduction for definitions of a commensurator and Condition (C).
Throughout, we will be using the following simple observation.

Lemma 2.1. Let G be a group and let H1, H2 be two finitely generated virtually
abelian subgroups which are commensurable. Then H1 satisfies Condition (C) if
and only if H2 satisfies Condition (C).

If Condition (C) holds for all finitely generated virtually abelian subgroups of
rank equal to (respectively, at most) r then we denote it by (C)r (respectively,
(C)≤r). Condition (C)1 essentially boils down to showing that for any infinite
order element h ∈ G, whenever

ghkg−1 = hl
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for some g ∈ G and k, l 6= 0, then k = ±l. This can be easily shown if one can
assign to every such h a ‘norm’ which satisfies ‖hn‖ = |n| · ‖h‖ and is invariant
under conjugation. In several classes of non-positively curved groups such norm is
given by (different variants of) translation length, and so condition (C)1 is satisfied
by CAT(0) groups, δ–hyperbolic groups, systolic groups and biautomatic groups.
A simple example of a group which does not satisfy (C)1 is the Baumslag-Solitar
group BS(1, n), for n > 1.

When passing to higher rank abelian subgroups, the translation length alone is
insufficient. In this case elements of NG[H] may also ‘rotate’ various subgroups of
H, and in fact this condition is not always satisfied by non-positively curved groups.
To the best of our knowledge the only general method of showing Condition (C)
is [CKRW17, Corollary 9], which states that H satisfies Condition (C) if H is
weakly separable in G. Let us point out that this result does not require H to
be virtually abelian. On the other hand, combining this result with the fact that
virtually abelian subgroups of linear groups are separable implies Condition (C)
for any linear group (see [Pry18] for a short account of the proof). This applies
to, among others, Coxeter groups, graph products of finite groups, or fundamental
groups of special cube complexes. One easily finds examples of groups G where H
satisfies Condition (C) but H is not weakly separable in G.

3. General CAT(0) case

3.1. Finitely generated subgroups of commensurators. Let X be a CAT(0)
space and let G be a group acting properly on X. A subgroup H of G is semisimple
if each element of H acts as a semisimple isometry.

Let H ≤ G be a semisimple free abelian group of rank n and let Min(H) denote
the minimal set of H. It is a standard fact that Min(H) splits as En × Y where
Y is a CAT(0) space, moreover, H acts freely and cocompactly by translations on
the En–factor and acts as the identity on the Y –factor. Let F be a flat of form
En × {y} for y ∈ Y . Then H stabilizes F . Let PF = F × F⊥ be the parallel set
of F .

We will need the following theorem.

Theorem 3.1. Let NG(H) denote the normalizer of H in G and let ZG(H) denote
the centralizer of H in G. Then:

(i) The index [NG(H) : ZG(H)] is finite. In particular, if a subgroup Γ ≤ G
normalizes H then Γ has a finite index subgroup which centralizes H.

(ii) The normalizer NG(H) preserves Min(H) ∼= En × Y and its product struc-
ture. If the action of G on X is in addition cocompact then ZG(H) acts
geometrically on Min(H) (and thus by (i) the same holds for NG(H)).

Proof. (i) and the first assertion of (ii) is proven in [BH99, Theorem II.7.1]. In the
original statement, the G–action is required to be faithful, but this condition is not
necessary. The second assertion of (ii) can be proven in a similar way to [Rua01,
Theorem 3.2]. �

We now begin studying the action of NG[H] on the parallel set PF .

Lemma 3.2. The set PF is invariant under NG[H]. Moreover, for each element
α ∈ NG[H], the action of α on PF splits as a product of an isometry of F and an
isometry of F⊥.
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Proof. Let α ∈ NG[H]. To prove both assertions of the lemma, it is enough to show
that for any point y ∈ F⊥, flats F ×{y} and α(F ×{y}) are parallel. Indeed, in this
case flat α(F × {y}) is clearly contained in PF , and thus it is of form F × {y′} for
some y′ ∈ F⊥. Then [BH99, Proposition 5.3(3)] implies that α splits as a product.

Consider an H–invariant flat F × {y0} ⊂ PF . The flats F × {y} and F × {y0}
are parallel, and thus so are flats α(F ×{y}) and α(F ×{y0}). Since parallelism is
an equivalence relation, to show that F ×{y} and α(F ×{y}) are parallel it suffices
to show that F ×{y0} and α(F ×{y0}) are parallel. Since F ×{y0} is H–invariant
we get that α(F ×{y0}) is αHα−1–invariant. The intersection H ′ = H ∩αHα−1 is
semisimple and is of finite index in both H and αHα−1. Note that both α(F×{y0})
and α(F × {y0}) are H ′–invariant. Therefore they are parallel. �

Definition 3.3. By Lemma 3.2, we have a well-defined homomorphism

φ : NG[H]→ Isom(F )

by considering the action on the F–factor of PF . Note that each element of Isom(F )
acts on the Tits boundary ∂TF of F , which induces a homomorphism Isom(F )→
O(n,R) where n = dimF . Let Φ be the composition NG[H]→ Isom(F )→ O(n,R).

The following observation is also of independent interest.

Lemma 3.4. We view H as a subgroup of Isom(F ). Then the image of φ (see
Definition 3.3) is contained in the commensurator of H in Isom(F ).

Proof. Let g ∈ NG[H]. Then φ(g) is a composition F
g→ gF

p→ F where p is the
parallelism map. Since g ∈ NG[H], there exists a finite index subgroup L ≤ gHg−1

such that L ≤ H. Let L′ ≤ H be the finite index subgroup such that gL′g−1 = L
and let α : L′ → L be the isomorphism induced by conjugation by g. Then the

map F
g→ gF is equivariant with respect to L′ y F , L y gF and α : L′ → L.

The map p : gF → F is equivariant with respect to the action of L on both gF
and F . Thus φ(g) is equivariant with respect to L′ y F , L y F and α : L′ → L.
Thus φ(g)L′(φ(g))−1 = L when viewed as subgroups of Isom(F ). Since L′ and L
are finite index subgroups of H, the lemma follows. �

Proposition 3.5. Suppose G acts properly on a CAT(0) space X. Let H ≤ G
be a semisimple free abelian subgroup of finite rank. Let K ≤ NG[H] be a finitely
generated subgroup. Then K normalizes a finite index subgroup of H if and only if
Φ(K) is finite.

Proof. First suppose that K normalizes a finite index subgroup H ′ of H. Then by
Theorem 3.1.(i) there exists a finite index subgroup K ′ ≤ K which centralizes H ′.
We will show that Φ(K ′) = {e}. This clearly implies that Φ(K) is finite.

Let g ∈ K ′ be arbitrary. Since g centralizes H ′, proceeding as in the proof
of Lemma 3.4, we get that φ(g) is an H ′–equivariant isometry of F . Since φ(g)
commutes with linearly independent translations whose axes span F (consider gen-
erators of H ′), it is not hard to see that it has to be a translation itself. Thus
its restriction to the boundary ∂TF is trivial. Since g was arbitrary, we get that
Φ(K ′) = {e}.

Now suppose the image Φ(K) is finite. Thus there is a finite index subgroup
K ′ ≤ K for which Φ(K ′) = {e}. This means that for any g ∈ K ′ the isometry
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φ(g) ∈ Isom(F ) is a translation. Thus for any g ∈ K ′ and h ∈ H, we have

(3.6) φ(h) = φ(g)φ(h)(φ(g))−1 = φ(ghg−1),

where the first equality follows from the fact that by definition φ(h) is also a trans-
lation, hence it commutes with φ(g).

Since K ′ ≤ NG[H], for any g ∈ K ′ the intersection Hg = H ∩ gHg−1 is a finite
index subgroup of H. Take an element h ∈ Hg. Thus we have h ∈ H and also
h = gh′g−1 for some h′ ∈ H. By (3.6) we get φ(h′) = φ(gh′g−1) = φ(h). Since
h, h′ ∈ H and φ|H is an embedding we obtain h′ = h. Therefore g centralizes Hg.

Let g1, . . . , gn be a set of generators of K ′. Every gi centralizes Hgi and thus K
centralizes the intersection H ′ =

⋂
gi
Hgi , which is a finite index subgroup of H.

Now the following elementary lemma completes the proof. �

Lemma 3.7. Let H ≤ K ′ ≤ K ≤ NG[H] and suppose that H is central in K ′

and that index [K : K ′] is finite. Then there exists a finite index subgroup H ′ ≤ H
which is normal in K.

Proof. Let e = s1, s2, . . . , sn ∈ K be representatives of left cosets of K ′ in K. Define

H ′ =
⋂
i

siHs
−1
i .

Since K ≤ NG[H], clearly H ′ has finite index in H. It is straightforward to check
that H ′ is normal in K. �

Remark 3.8. If F⊥ has bounded diameter, then NG[H] acts on F × F⊥ cocom-
pactly, as H ≤ NG[H] and H acts cocompactly on F ×{c0} and thus on F ×F⊥. It
follows that NG[H] contains H as a finite index subgroup. Then NG[H] is clearly
finitely generated, and it normalizes a finite index subgroup of H.

3.2. The highest virtual abelian subgroups. A virtually abelian subgroupH ≤
G is called highest if it is not virtually contained in a virtually abelian subgroup
H ′ ≤ G of higher rank. In this section we show that the commensurator of a
highest virtually abelian subgroup always behaves nicely. We need the following
well-known lemma. We give a proof for the sake of completeness.

Lemma 3.9. Let G be a group acting geometrically on a CAT(0) space X and
suppose H is a highest abelian subgroup of G. Then the normalizer NG(H) contains
H as a finite index subgroup.

Proof. Since G acts geometrically on X, by Theorem 3.1.(ii) the normalizer NG(H)
acts geometrically on the minimal set Min(H) ∼= En×Y . Since the action preserves
the splitting and H acts on Y trivially, it follows that NG(H)/H acts geometrically
on the CAT(0) space Y (see [BH99, Section II.7]). Now suppose [NG(H) : H] is
infinite. In this case NG(H)/H is an infinite CAT(0) group and therefore it contains
an element of infinite order g [Swe99, Theorem 11]. Let g̃ ∈ NG(H) be any preimage
of g. Since by Theorem 3.1.(i) the index [NG(H) : ZG(H)] is finite we get that some
power g̃n commutes with H, thus contradicting the fact that H is highest. �

Proposition 3.10. Let G be a group acting geometrically on a CAT(0) space and
suppose H is a highest virtually abelian subgroup of G. Then NG[H] contains H as
a finite index subgroup. In particular NG[H] is finitely generated, and it normalizes
a finite index subgroup of H.
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Proof. Without loss of generality we can assume thatH is abelian. Let Φ: NG[H]→
O(n,R) be the map given in Definition 3.3. By Proposition 3.5 any finitely gener-
ated subgroup L ≤ ker(Φ) normalizes some finite index subgroup of H. Therefore
ker(Φ) can be written as an ascending union

⋃
i Li such that Li normalizes some

finite index subgroup Hi ≤ H. We can assume that every Li contains H (replace
L with 〈L,H〉). Since any Hi is highest, it follows from Lemma 3.9 that NG(Hi)
is a finite extension of Hi, and thus Li is a virtually abelian group of rank rk(H)
since Hi ≤ H ≤ Li ≤ NG(Hi). We obtain that ker(Φ) is an ascending union of
finitely generated virtually abelian groups of rank rk(H). By the Ascending Chain
Theorem [BH99, Theorem II.7.5] this ascending union stabilizes after finitely many
terms. Thus ker(Φ) is a finitely generated virtually abelian group or rank rk(H).

Since the index [ker(Φ): H] is finite, we can find a finite index characteristic
subgroup H ′ of ker(Φ) with H ′ ≤ H. Now since H ′ is characteristic in ker(Φ) and
ker(Φ) is normal in NG[H], it follows that H ′ is normal in NG[H]. By Lemma 3.9
the index [NG[H] : H ′] is finite and thus [NG[H] : H] is finite as well. �

We remark that Proposition 3.10 is not a consequence of Remark 3.8, see Propo-
sition 9.3.

Corollary 3.11. Let G be a group that either

(1) acts properly by semisimple isometries on a 2–dimensional CAT(0) space,
or

(2) acts geometrically on a CAT(0) space and contains no subgroup isomorphic
to Zn for n > 2.

Then Condition (C) holds for G.

Proof. Since G does not contain free abelian subgroups of rank higher than 2,
Condition (C) is equivalent to Condition (C)≤2. Since G acts properly by semisim-

ple isometries on a CAT(0) space, Condition (C)≤1 holds for G (see Section 2). Let

H be a rank 2 free abelian subgroup of G. In the first case Condition (C) for H
is satisfied by Remark 3.8. In the second case one observes that H is the highest
abelian subgroup and thus Condition (C) for H follows from Proposition 3.10. �

3.3. Core of F⊥. Let G,H and PF = F ×F⊥ be as in Section 3.1. In this section
we look at the action NG[H] on PF more closely. By Lemma 3.2, there is a factor
action ρ : NG[H] y F⊥. For each x ∈ F⊥, let Stabρ(x) be the stabilizer of x with
respect to the action ρ.

Definition 3.12. We define the core of F⊥, denoted C, to be the subset of F⊥

made of points whose stabilizer (with respect to ρ) is commensurable to H.

Lemma 3.13. The core C ⊂ F⊥ is non-empty, convex and NG[H]–invariant.

Proof. Clearly C is non-empty. Note that Stabρ(gx) = gStabρ(x)g−1 for any g ∈
NG[H], thus C is NG[H]–invariant. To see that C is convex, choose c1, c2 ∈ C
and let c0 ∈ C be a point in the geodesic segment c1c2. For 0 ≤ i ≤ 2, let
Hi = Stabρ(ci), and let H ′0 = H1∩H2. Clearly H ′0 ≤ H0 and H ′0 is commensurable
to H. Since H ′0 acts cocompactly on F × {c0} and H0 acts properly on F × {c0},
H ′0 is of finite index in H0. Thus H0 is commensurable to H and so c0 ∈ C. �

Note that in general C is not complete or closed in F⊥.
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Lemma 3.14. Assume that C is a proper metric space. Then the action NG[H] y
C has discrete orbits.

Proof. Suppose the contrary, that there exists y0 ∈ C such that for any ε > 0 there
are infinitely many distinct elements (gi)i∈N such that d(giy0, y0) < ε. Embed
C ↪→ F × C ⊂ PF by y 7→ (x0, y) for some chosen x0 ∈ F and consider the action
of NG[H] on F × C. We will suppress from writing φ and ρ and simply write
g(x, y) = (gx, gy) for this action. We need the following claim.

Claim. There exists a constant R > 0 such that for any gi ∈ NG[H], given any
two points (a, giy0), (b, giy0) ∈ F × {giy0} there exists hi ∈ Stab(F × {giy0}) such
that

d(hi(a, giy0), (b, giy0)) ≤ R.

To see the claim, first observe that since y0 ∈ C, the stabilizer Stab(F×{y0}) acts
cocompactly on F×{y0} and therefore such constant R exists for F×{y0}. Since for
any gi we have Stab(F ×{giy0}) = giStab(F ×{y0})g−1

i and the Stab(F ×{giy0})–
action on F ×{giy0} is conjugate to the Stab(F ×{y0}) on F ×{y0} it follows that
constant R works for F × {giy0} as well.

We proceed with the proof of the lemma. By the assumption we have infinitely
many distinct points (gix0, giy0) ∈ F ×B(y0, ε). By the claim there exist elements
hi ∈ Stab(F × {giy0}) such that

d(hi(gix0, giy0), (x0, giy0)) ≤ R.

Therefore infinitely many points (hi(gix0, giy0))i∈N are contained in the compact
subset B(x0, R)×B(y0, ε) ⊂ F ×C. These points are distinct because their second
coordinates are distinct. Consequently, all the elements (higi)i∈N are distinct, which
contradicts the properness of the action NG[H] on F × C. �

4. The smooth manifolds case

In this section we show that commensurators of abelian subgroups are well-
behaved for groups acting on Hadamard manifolds.

Let M be a Riemannian manifold without boundary and let C ⊂M be a totally
convex subset, i.e., for any pair of points x, y ∈ C and any Riemannian geodesic ω
connecting x and y, we have ω ⊂ C.

Let k be the largest integer such that the collection {Nα} of smoothly embedded
k–manifolds of M which are contained in C is non-empty. Let N = ∪αNα. The
following result is well-known (see e.g. [CE08, pp. 139 - 141]).

Lemma 4.1. The subset N is a totally geodesic, connected, smoothly embedded
submanifold of M such that N ⊂ C ⊂ N̄ , where N̄ is the closure of N in M .

If C is a point, then N = C is also a point.

Theorem 4.2. Suppose G acts properly on a Hadamard manifold X by isometries.
Let H ≤ G be a semisimple finitely generated virtually abelian subgroup. Then
NG[H] is equal to the normalizer of a finite index subgroup of H. In particular, if
the action Gy X is geometric then NG[H] is finitely generated.

Recall that isometries of Riemannian manifolds as metric spaces are actually
diffeomorphisms and preserve the Riemannian tensor.
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Proof. Without loss of generality we can assume that H is free abelian. Let F be
a flat in the minimal set of H where H acts cocompactly. Let PF = F ×F⊥ be the
parallel set of F . As in Section 3.3, let ρ : NG[H] y F⊥ be the factor action and
let C ⊂ F⊥ be the core.

Choose a basepoint y ∈ F . Then F⊥ (respectively C) can be realized as a
convex subset {y} × F⊥ (respectively {y} × C) of X. Let p : PF → {y} × F⊥ be
the projection map. Let N = ∪αNα ⊂ C be as in Lemma 4.1. Since N is totally
geodesic, N is convex in C. For any g ∈ NG[H], the composition Nα → (p◦ g)(Nα)
is a diffeomorphism. Thus ρ : NG[H] y F⊥ leaves N invariant and acts on N by
Riemannian isometries.

Choose x ∈ N . Since N ⊂ C, the stabilizer Stabρ(x) is commensurable to H.
Let TxN be the tangent space of N at x. Let H ′ be the kernel of the natural
homomorphism from Stabρ(x) to orthogonal group of TxN .

Claim. The subgroup H ′ is of finite index in Stabρ(x).

To see the claim, take an orthogonal frame e1, e2, . . . , en in TxN (it is possible
that n = 0), and find x1, x2, . . . , xn in N such that the geodesic segment from x to xi
has tangent vector ei at x (such xi exists since N is a manifold without boundary).
Since xi ∈ N ⊂ C, the subgroup Stabρ(xi) is commensurable to Stabρ(x). Thus a
finite index subgroup Hi ≤ Stabρ(x) stabilizes xi, hence also stabilizes ei. It follows
that ∩ni=1Hi stabilizes all of {e1, e2, . . . , en} and thus the claim follows.

Let h : NG[H] → Isom(N) be the homomorphism induced by ρ. Since N is
a smooth manifold, H ′ acts trivially on N . Thus H ′ ≤ ker(h). On the other
hand, ker(h) ≤ Stabρ(x). Since H ′ is of finite index in Stabρ(x) and Stabρ(x) is
commensurable to H, we obtain that ker(h) is commensurable to H. Let H ′′ be
a finite index characteristic subgroup of ker(h) such that H ′′ ≤ ker(h) ∩H. Then
H ′′ is of finite index in H and H ′′ is normalized by NG[H]. Since clearly we have
NG(H ′′) ≤ NG[H], we conclude that NG[H] = NG(H ′′).

If the action G y X is geometric then by Theorem 3.1.(ii) the normalizer
NG(H ′′) acts geometrically on Min(H ′′) and thus it is finitely generated. �

5. The cube complex case

5.1. General actions. We refer to the excellent notes by Sageev [Sag12] for back-
ground on CAT(0) cube complexes and hyperplanes. Let X be a finite dimensional
CAT(0) cube complex and let F ⊂ X be a flat.

A hyperplane h crosses F if F is not contained in a halfspace bounded by h.
Note that if h crosses F , then h ∩ F is a codimension 1 flat in F . Given F , let
H(F ) be the collection of hyperplanes that cross F .

Lemma 5.1. Let F1 and F2 be two parallel flats. Then H(F1) = H(F2). Moreover,
for any h ∈ H(F1), h ∩ F1 and h ∩ F2 are parallel.

Proof. First we claim that if h crosses F1 then for anyN > 0, there exist x1, x2 ∈ F1

such that they are on different sides of h, and we have d(x1, h) > N and d(x2, h) >
N . Note that the first assertion of the lemma follows readily from this claim. To
see the claim, first take y0 ∈ F1 ∩ h and y1, y2 ∈ F1 on different sides of h. Let
r1 : [0,∞) → F1 be a ray emanating from y0 and passing through y1. Then the
convexity of the function t → d(r1(t), h) implies that limt→∞ d(r1(t), h) = ∞ and
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r1 ∩h = {y0}. Thus we can define x1 to be r1(t) for a sufficiently large t. Similarly
we can find x2.

Now we prove the ‘moreover’ statement. Let E be the convex hull of F1 and F2.
By [BH99, Chapter II.2.12], E is isometric to F1× [0, a] where a = d(F1, F2). Since
h has a product neighborhood isometric to h× [0, 1], E ∩h is a convex codimension
1 surface of E. Thus E ∩ h is isometric to (h ∩ F1)× [0, a′] for some a′ ≥ a. Hence
h ∩ F1 and h ∩ F2 are parallel. �

Let G be a group acting on X properly by cubical automorphisms. Let H ≤ G
be a free abelian subgroup and suppose H acts on a flat F ⊂ X cocompactly. Since
for k ∈ NG[H], flats F and kF are parallel, we get that kH(F ) = H(kF ) = H(F )
by Lemma 5.1. This shows that H(F ) is NG[H]–invariant.

For h1, h2 ∈ H(F ), we define h1 ∼ h2 if h1∩F and h2∩F are parallel. It is clear
that ∼ is an equivalence relation. Since each element in H(F ) intersects F in a
codimension 1 flat, any pair of non-equivalent hyperplanes in H(F ) have non-empty
intersection. Since X is finite dimensional, the collection H(F ) has finitely many
equivalence classes, which we denote by {Hi(F )}ni=1.

Choose a basepoint o ∈ F . For each i, let ~vi be a non-zero vector based at o
such that it is orthogonal to h ∩ F for some h ∈ Hi(F ).

Lemma 5.2. The flat F is spanned by {~vi}ni=1.

Proof. Suppose the contrary is true. Then there is a line ` ⊂ F which is orthogonal
to each ~vi. Let h0 be a hyperplane crossing `. Then h0 ∈ H(F ). It follows from the
choice of ` that h ∩ F contains a line parallel to ` for each h ∈ H(F ). Thus h0 6= h
and h0 ∩ h 6= ∅ for each h ∈ H(F ), which yields a contraction. �

Lemma 5.3. There is a finite index subgroup L of NG[H] such that L(Hi(F )) =
Hi(F ) for each i.

Proof. An orthogonal partition of H(F ) is a partition H(F ) = tmi=1Wi such that
for any i 6= j, each element in Wi crosses every element in Wj . Note that every two
orthogonal partitions of H(F ) have a common refinement which is an orthogonal
partition. Thus H(F ) has a canonical finest orthogonal partition H(F ) = tli=1W

′
i

(since X is finite dimensional, l < ∞), and NG[H] permutes the factors of this
partition. Thus NG[H] has a finite index subgroup L such that L(W ′i ) = W ′i for
1 ≤ i ≤ l. Since H(F ) = tni=1Hi(F ) is also an orthogonal partition, the lemma
follows. �

Corollary 5.4. Let L ≤ NG[H] be as in Lemma 5.3. Then for each k ∈ L and
h ∈ H(F ), k(h ∩ F ) and h ∩ F are parallel.

Proof. By Lemma 5.3, kh and h are in the same equivalence class. Thus F ∩h and
F ∩ kh are parallel. By Lemma 5.1, flats F ∩ kh and kF ∩ kh are parallel (as F
and kF are parallel). Thus the corollary follows. �

Theorem 5.5. Suppose G acts properly on a finite dimensional CAT(0) cube com-
plex X by cubical automorphisms. Let H ≤ G be a finitely generated virtually
abelian subgroup and let K ≤ NG[H] be a finitely generated subgroup. Then K
normalizes a finite index subgroup of H.

Proof. We can assume H is free abelian by Lemma 2.1. Let φ and Φ be the maps
in Definition 3.3. By Proposition 3.5 it suffices to show that Φ(K) is finite. Define
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K ′ = K ∩ L where L is as in Lemma 5.3. Note that [K : K ′] is finite since
[NG[H] : L] is finite. Then Corollary 5.4 implies that for any k ∈ K ′ and for any
h ∈ H(F ), flats h∩F and φ(k)(h∩F ) are parallel. Let {~vi}ni=1 be as in Lemma 5.2,
and let {si}ni=1 denote the corresponding points on Tits boundary ∂F . Then each
element in Φ(K ′) maps si to si or −si. Since {~vi}ni=1 spans F , we conclude that
Φ(K ′) is finite and hence that Φ(K) is finite. �

Remark 5.6. We cannot relax the assumption in Theorem 5.5 that G acts by
cubical automorphisms to G acts by isometries (though for many cube complexes
these two conditions are equivalent). This is because LM groups in Definition 8.1
clearly act on a CAT(0) cube complex by isometries, but the action does not respect
the cubical structure.

Remark 5.7. It follows from [NR97] that if a group G acts on Davis complex for
a Coxeter group properly by cellular isometries, then G satisfies the assumptions
of Theorem 5.5 and hence G satisfies Condition (C). More generally, we speculate
that by the same proof, Condition (C) should hold for groups acting properly by
cellular isometries on CAT(0) piecewise Euclidean polyhedral complexes whose cells
are isometric to Coxeter cells.

5.2. Virtually special actions. In this section, we comment on an important
class of actions which are virtually special. The main point is that the pathological
behavior in Proposition 9.1 cannot happen when the action is virtually special.

Definition 5.8. The action of G on a CAT(0) cube complex X is virtually special
if there exists a torsion free finite index subgroup G′ ≤ G such that X/G′ is a (not
necessarily compact) special cube complex in the sense of [HW08].

Recall that a group G has the unique root property if for any positive integer n
and arbitrary elements x, y ∈ G the equality xn = yn implies x = y in G. We will
need the following elementary property of groups with the unique root property.

Lemma 5.9. Suppose G has the unique root property and let g, h ∈ G. If gm and
hn commute for some non-zero integers m and n, then g and h commute.

If X/G′ is a special cube complex, then G′ is a subgroup of a (possibly infinitely
generated) right-angled Artin group [HW08, Theorem 4.2]. Since any finitely gen-
erated right-angled Artin group is biorderable [DT92], the group G′ is a union of
biorderable groups. As biorderable groups have the unique root property [Min12,
Lemma 6.3], we get that G′ has the unique root property.

Corollary 5.10. Suppose G acts properly on a finite dimensional CAT(0) cube
complex X by cubical automorphisms such that the action is virtually special, or
more generally G has a finite index subgroup G′ which has the unique root property.
Let H ≤ G be a finitely generated virtually abelian subgroup. Then NG[H] is equal
to the normalizer of a finite index subgroup of H. In particular, if the action Gy X
is geometric then NG[H] is finitely generated.

Proof. By replacing H with H ∩G′ if necessary, we can assume that H ≤ G′. Note
that in this case we have NG′ [H] = NG[H] ∩G′. It follows from Theorem 5.5 and
Theorem 3.1.(i) that each finitely generated subgroup K ≤ NG′ [H] has a finite
index subgroup K ′ such that K ′ centralizes a finite index subgroup H ′ of H. Thus
for any k ∈ K and h ∈ H, there exist non-zero integers n,m such that kn and
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hm commute. By applying Lemma 5.9 we get that k and h commute. Thus K
centralizes H. Since NG′ [H] is a union of finitely generated subgroups, NG′ [H]
centralizes H. Since NG′ [H] has finite index in NG[H], by Lemma 3.7 we get
that NG[H] normalizes a finite index subgroup H ′′ of H, and thus we conclude
that NG[H] = NG(H ′′). If the action G y X is geometric then NG[H] is finitely
generated by Theorem 3.1.(ii). �

Remark 5.11. For virtually special actions, Condition (C) follows from [CKRW17,
Corollary 9] (since abelian subgroups of right-angled Artin groups, or, more gener-
ally, of GL(n,Z) are always separable, cf. Section 2). Thus in the proof of Corol-
lary 5.10 one can replace Theorem 5.5 with [CKRW17, Corollary 9].

6. Products of symmetric spaces and Euclidean buildings

In this section we discuss how an intersection pattern of flats in a CAT(0) space
interacts with Condition (C). The main example is a product of irreducible sym-
metric spaces of noncompact type and/or irreducible thick Euclidean Tits buildings.

Proposition 6.1. Suppose G acts properly by isometries on X = X1×X2×· · ·×Xn

such that each Xi is either a nonflat irreducible symmetric space of noncompact type
or an irreducible thick Euclidean Tits building with cocompact affine Weyl group.
Let H ≤ G be a finitely generated semisimple virtually abelian subgroup and let
K ≤ NG[H] be a finitely generated subgroup. Then K normalizes a finite index
subgroup of H.

Proof. Recall that the Tits boundary ∂TXi is an irreducible spherical building,
which has the structure of a simplicial complex. A top–dimensional isometrically
embedded sphere in ∂TXi is called an apartment and ∂TXi is a union of apartments.
Since we are assuming thickness, each top–dimensional simplex is an intersection
of apartments. Let qi : Xi → Xi be an isometry. Then ∂qi : ∂TXi → ∂TXi clearly
preserves the collections of apartments, and hence it respects the simplicial struc-
ture. The Tits boundary ∂TX is a spherical join of irreducible spherical buildings,
and thus it has a structure of a polyhedral complex. Apartments in ∂TX are spher-
ical joins of apartments in each of its factors. Any isometry q : X → X respects the
product decomposition (up to permutation of factors), and therefore the induced
boundary map ∂q : ∂TX → ∂TX respects the polyhedral structure of ∂TX.

Let H ≤ G be a finitely generated semisimple virtually abelian subgroup and let
K ≤ NG[H] be a finitely generated subgroup. By Lemma 2.1 we can assume that
H is free abelian. Then H acts on a flat F ⊂ X cocompactly by translations. Let
S ⊂ ∂TX be the smallest isometrically embedded sphere containing ∂TF which is
also a subcomplex. Note that at least one such sphere exists, since ∂TF is contained
in an apartment [KL, Proposition 3.9.1]. Let k ∈ K. We claim ∂k(S) = S, where
∂k is the boundary map. By Lemma 3.2, ∂k(∂TF ) = ∂TF . Since ∂k respects the
polyhedral structure and S is the smallest spherical subcomplex containing ∂TF ,
the claim follows. The action of K on ∂TX provides a homomorphism β : K →
Isom(∂TF ) (note that β equals to Φ from Definition 3.3). By the previous claim,
each element in β(K) is the restriction of an isometry of S which respects the
polyhedral complex structure on S. Thus β(K) is finite, which implies the theorem
by Proposition 3.5. �
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What is really happening in Proposition 6.1 is that flats in X branch in suf-
ficiently many directions. To this end, we formulate Proposition 6.3 below with-
out referring to the structure of symmetric spaces and Euclidean buildings, where
Proposition 6.1 is a special case of Proposition 6.3.

Definition 6.2. Let F be a flat in a CAT(0) space X. Let ∂TF be the Tits
boundary of F . A subsphere S of ∂TF is singular if there is a subflat F0 ⊂ F
with ∂TF0 = S such that the parallel set PF0 of F0 is not contained in a bounded
neighborhood of PF .

The following generalization of Proposition 6.1 is straightforward.

Proposition 6.3. Suppose G acts on a CAT(0) space X properly by isometries.
Let H ≤ G be a finitely generated free abelian group acting cocompactly on a flat
F ⊂ X by translations. Suppose the collection of all singular subspheres in ∂TF is
rigid in the sense that there are only finitely many isometries of ∂TF permuting the
singular subspheres. Then any finitely generated subgroup K in NG[H] normalizes
a finite index subgroup of H.

7. Bredon cohomological dimension for virtually abelian stabilizers

Let G be a group and let F be a family of subgroups of G, i.e., a collection
of subgroups which is closed under taking subgroups and conjugation. Let cdFG
denote the Bredon cohomological dimension of G for the family F . For definition
and properties of Bredon cohomological dimension we refer the reader to [Lüc05].
Let us mention that a closely related invariant is the Bredon geometric dimension
gdFG which is the lowest dimension of the universal G–CW–complex with stabi-
lizers in F . These two invariants are related by cdFG ≤ gdFG ≤ max{3, cdFG}.

For any integer r ≥ 0, let Fr denote the family of all subgroups of G which are
finitely generated virtually abelian of rank at most r. Thus F0 consists of all finite
subgroups of G and F1 consists of all virtually cyclic subgroups of G. In [Pry18]
there is presented a method for bounding cdFr

G for CAT(0) groups, which depends
on Condition (C).

Theorem 7.1. [Pry18, Theorem 1.1] Let G be a group acting properly by semisim-
ple isometries on a complete proper CAT(0) space of topological dimension n. Sup-
pose additionally that G satisfies Condition (C). Then for any 0 6 r 6 n we have
cdFr

G ≤ n+ r + 1.

However, by analyzing the action of NG[H] on the core C ⊂ F⊥, we are able to
remove Condition (C) from the assumptions of the above theorem. We need the
following definition.

Definition 7.2. Given a subgroup H ∈ Fr, let All[H] denote the family of sub-
groups of NG[H] which consists of all subgroups A such that A∩H is of finite index
in A.

The only place where Condition (C) is used in the proof of [Pry18, Theorem 1.1]
is the proof of [Pry18, Lemma 3.4], where it is shown that

cdAll[H]NG[H] ≤ n− r + 1.

This is obtained in two steps. First, using Condition (C) one writes NG[H] as
the limit limiNG(Hi) of normalizers of subgroups Hi which are commensurable with
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H. Then one bounds cdAll[H]∩NG(Hi)NG(Hi) for every i using the proper action of

NG(Hi)/Hi on a CAT(0) space Min(Hi) ∩ F⊥.

Proposition 7.3. Let G be a group acting properly by semisimple isometries on a
proper CAT(0) space X of topological dimension n. Let H ∈ Fr be subgroup of G.
Then

cdAll[H]NG[H] ≤ n− r.

The proposition is an easy consequence of the following theorem of Degrijse-
Petrosyan.

Theorem 7.4. [DP15, Corollary 1] Let G be a group acting by isometries on a
separable CAT(0) space of topological dimension n and suppose that the G–orbit
of every point x ∈ X is discrete. Let F be the smallest family of subgroups of G
containing the point stabilizers Gx for every x ∈ X. Then we have

cdFG ≤ n.

Proof of Proposition 7.3. Consider the action of NG[H] on the core C ⊂ F⊥ given
by Lemma 3.13. Clearly C is a CAT(0) space, since it is a convex subset of X.
We have that C is separable, since it is a subset of a proper, and hence separable,
metric space X. Let dim denote the topological dimension. Notice that

dim(F × F⊥) ≤ dim(X) ≤ n.
Since dim(F ) = r and C ⊂ F⊥ we obtain that dim(C) ≤ n − r. By Lemma 3.14
the action has discrete orbits.

It remains to check that All[H] is the smallest family of subgroups of NG[H]
which contains point stabilizers. By definition of C every point stabilizer is com-
mensurable with H and thus belongs to All[H]. On the other hand, any subgroup
A ∈ All[H] has a fixed point. To see this, notice that the intersection A ∩H has
a fixed point, and since [A : A ∩H] is finite, the subgroup A has a finite orbit and
thus a fixed point as well. �

Combining proof of [Pry18, Theorem 1.1] with Proposition 7.3 we obtain the
following.

Theorem 7.5. Let G be a group acting properly by semisimple isometries on a
complete proper CAT(0) space of topological dimension n. Then for any 0 6 r 6 n
we have cdFr

G ≤ n+ r + 1.

Remark 7.6. In Proposition 7.3 we obtain a better dimension bound when com-
pared with [Pry18, Lemma 3.4]. However, this does not improve the bound for
cdFr

G in Theorem 7.5. Nonetheless, it does simplify the construction, as for any
commensurability class [H] one can use a single CAT(0) space C ⊂ F⊥ rather than
a countable collection of spaces Min(Hi) ∩ F⊥.

8. Relation with Leary-Minasyan groups

The following construction is due to Leary and Minasyan [LM18].

Definition 8.1. Let T be a flat torus of dimension n. We identify H = π1(T )
with a subgroup of Isom(En). Let α be an element in the commensurator of H in
Isom(En) such that the induced action of α on the Tits boundary ∂TEn has infinite
order. Let H1 and H2 be finite index subgroups of H such that αH1α

−1 = H2. Let
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T1 and T2 be the coverings of T corresponding to H1 and H2 respectively. Then α
descents to an isometry α′ : T1 → T2.

Now we define
X = (T1 × [0, 1]) t T/ ∼

where the relation ∼ is defined as follows. We identify points in T1×{0} with points
in T via the covering map T1 → T , and identify points in T1 × {1} with points in
T via T1 → T2 → T where the first map is α′ and the second map is the covering
map. We endow T1 × [0, 1] with the product metric. Since the identification maps
are local isometric, X has a well-defined quotient metric, and one readily verifies
that this metric is locally CAT(0).

Then π1(X) is defined to be a Leary-Minasyan group (or LM group). Note that
π1(X) is an HNN–extension of form

{H, t | tH1t
−1 = H2}

where the isomorphism between H1 and H2 is induced by α. Moreover, π1(X) is a

CAT(0) group acting geometrically on X̃ ∼= En × T where T is a locally finite tree.

It follows from Proposition 3.5 that Condition (C) does not hold for LM groups.
This leads to the following result of [LM18].

Theorem 8.2. There exists a CAT(0) group which does not satisfy Condition (C).

Corollary 8.3. There exists a group G acting geometrically on a CAT(0) piecewise
Euclidean complex such that G does not satisfy Condition (C). There exists a closed
non-positively curved manifold such that its fundamental group does not satisfy
Condition (C).

Proof. For the first statement, we claim that the space X constructed in Defini-
tion 8.1 admits a piecewise Euclidean structure. To obtain such structure, one
chooses an appropriate net inside X and takes the corresponding Voronoi tessela-
tion.

For the second statement, we triangulate X further such that it is a piecewise
Euclidean simplicial complex. Then π1(X) can be embedded as a subgroup of the
fundamental group G′ of some non-positively curved closed manifold via relative
hyperbolization [Hu95]. Clearly G′ does not satisfy Condition (C). �

It turns out that LM groups are the only obstructions for a CAT(0) group to
satisfy Condition (C) in the following sense.

Proposition 8.4. Let G be a group acting properly on a CAT(0) space X by
semisimple isometries. The Condition (C) fails for G if and only if there is a group
homomorphism η : G0 → G such that G0 = {H, t | tH1t

−1 = H2} is a LM group
and η|H is injective.

Proof. We first prove the ‘if’ direction. Given the existence of such η, we claim the
subgroup K ≤ G generated by η(t) cannot normalize any finite index subgroup (in
particular K is not the trivial subgroup). If the claim does not hold, then there is
a finite index subgroup H ′ ≤ H such that η(tH ′t−1) = η(H ′). Since tH ′t−1 and
H ′ are contained in H and η|H is injective, we get tH ′t−1 = H ′. This contradicts
the definition of LM groups and Proposition 3.5.

Now we prove the ‘only if’ direction. Suppose there is an abelian subgroup
H ≤ G such that a finitely generated subgroup K ≤ NG[H] does not normalize any
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finite index subgroups of H. Then Proposition 3.5 implies that Φ(K) is infinite.
Since Φ(K) is a finitely generated subgroup of some orthogonal group, by Selberg’s
lemma [Sel62] Φ(K) has a finite index torsion free subgroup, which is also infinite.
Thus there is t ∈ K such that Φ(t) is of infinite order. Choose finite index subgroups
H1, H2 ≤ H such that tH1t

−1 = H2. Let G0 be the HNN–extension of H along the
isomorphism between H1 and H2 induced by t. Clearly there is a homomorphism
G0 → G which is injective on H. It remains to show G0 is an LM group. Let
F ⊂ X be a flat where H acts cocompactly. Let φ be as in Definition 3.3. It follows
from the proof of Lemma 3.4 that φ(t) conjugates H1 to H2 when viewing them as
subgroups of Isom(F ), which finishes the proof. �

9. Examples, comments and questions

In this section we discuss several examples in the literature which serve as a
comparison to results in other sections. The examples show possible pathological
behavior of commensurators. The following is a consequence of an example in
Wise’s thesis [Wis96].

Proposition 9.1. There exists a torsion free group G acting geometrically on a
product of two trees such that there is a Z–subgroup H ≤ G whose commensurator
NG[H] is not finitely generated. Moreover, NG[H] does not normalize any finite
index subgroup of H.

Proof. Let X be the compact non-positively curved square complex defined in
[Wis96, pp.38, Section II.2.1]. Let a, b, c, x and y be loop in X indicated in [Wis96,
pp.38, Section II.2.1]. Let V be the subspace of X which is a union of a, b and c.
Take two copies of X and identify them along V to obtain X ′ ([Wis96, Section II.5]).
The universal cover of X ′ is isomorphic to a product of two trees. We denote edges
(which are actually loops) of X ′ by a, b, c, x, y, x1 and y1. Let H = 〈c〉 ≤ π1(X ′)
and K = Nπ1(X′)[H]. It is clear that Φ(K) is at most of order two (Φ is defined in
Definition 3.3). On the other hand, it follows from [Wis96, pp.40, Figure 10] and
discussion around there that for any n > 0, yn(y1)−n ∈ Nπ1(X′)[H] and the biggest

subgroup of H normalized by yn(y1)−n is of index 2n in H. Thus Nπ1(X′)[H]
does not normalize any finite index subgroup of H, and thus it cannot be finitely
generated by Proposition 3.5. �

Remark 9.2. Proposition 9.1 shows that the ‘finitely generated’ assumption in
Proposition 3.5, Theorem 5.5 and Proposition 6.1 cannot be removed.

Now we discuss another type of irreducible lattices. Let (p, l) be a pair of distinct
odd primes and let G = Gp,l be the lattice in PGL2(Qp) × PGL2(Ql) defined in
[Moz95, Section 3] and [Rat04, Chapter 3]. It is known that Gp,l is torsion free
and it acts geometrically on Tp+1 × Tl+1, where Tk denotes the homogeneous tree
of degree k. The following is a consequence of [RR05].

Proposition 9.3. There exists a torsion free group G acting geometrically on a
product of two trees such that there is a Z–subgroup H ≤ G which is highest.

Proof. Let G = Gp,l be as above. The key property which we need, proven in
[RR05, Corollary 2.2], is that G is commutative transitive. Recall that a group is
commutative transitive if the relation of commutativity is transitive on its non-
trivial elements. This property implies that if H is a maximal abelian subgroup
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in the sense that H is not properly contained in another abelian subgroup, then
H is highest. However, there exists an example of Gp,l which has a maximal
abelian subgroup isomorphic to Z [RR05, Corollary 3.7 and Example 3.8]. Thus
the proposition follows. �

Corollary 9.4. Let G = Gp,l and let H ≤ G be a non-trivial abelian subgroup.
Then the commensurator of H in G is isomorphic to either Z or Z2.

Proof. By Theorem 5.5, H satisfies Condition (C). Let K ≤ NG[H] be a finitely
generated subgroup. Then K normalizes a finite index subgroup H ′ ≤ H. By The-
orem 3.1.(i), the subgroup 〈K,H ′〉 has a finite index subgroup that centralizes H ′.
Thus each k ∈ K has a non-trivial power which centralizes H ′. Then the commu-
tative transitivity implies that K is abelian. It follows that NG[H] is a countable
union of abelian subgroups, and thus it is abelian by commutative transitivity.
Then the corollary follows. �

Definition 9.5. Let G be a group acting geometrically and cellularly on a product
of infinite trees T ×T ′. The Tits boundary of T ×T ′ is a complete bipartite graph.
A Z–subgroup H ≤ G is regular if the two boundary points of an axis of H are not
vertices of the graph ∂T (T × T ′), otherwise H is singular.

Let G be as in Definition 9.5. Then G contains both a regular Z–subgroup and
a singular Z–subgroup [BB95, Lemma 8.8]. Moreover, the commensurator of a
regular Z–subgroup is virtually Z2 [BB95, Lemma 7.13].

In the special case whereG isGp,l defined above, the commensurator of a singular
Z–subgroup is either Z or Z2. In particular, for a singular Z–subgroup H, the
commensurator NG[H] never acts cocompactly on the parallel set of the axis of
H. This is very different from the case of virtually compact special actions, where
the algebraic properties of NG[H] are always compatible with the geometry of the
space on which G acts on. More precisely:

Proposition 9.6. Suppose W is a compact virtually special cube complex. Then
for any abelian subgroup H ≤ π1(W ), the commensurator of H acts cocompactly

on the parallel set PF , where F is a flat in the universal cover W̃ stabilized by H
such that H y F is cocompact.

Sketch of a proof. Without loss of generality we can assume that W is special.
Since there is a local isometric embedding from W to a compact Salvetti complex
of some right-angled Artin group, it reduces to proving the lemma in the case where
W is a Salvetti complex. In this case, it follows from Servatius’ centralizer theorem
[Ser89, Section III] that the centralizer of an abelian subgroup H of a right-angled

Artin group acts cocompactly on the parallel set of F in W̃ , where F is a flat in

W̃ stabilized by H such that H y F cocompact. Now the lemma follows. �

Recall that for a group G acting geometrically and cellularly on a product of two
trees, the action is reducible if and only if the quotient cube complex is virtually
special [Wis96]. This together with Corollary 9.4 and Lemma 9.6 naturally leads
to the following question, which is a variant of a question by Wise on whether
irreducible actions always give rise to an anti-torus.

Question 9.7. Suppose G acts geometrically and cellularly on a product of two
trees X. Suppose for each singular Z–subgroup H ≤ G, the commensurator of H
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acts cocompactly on the parallel set of an axis of H. Is G reducible, i.e., is G
commensurable to a product of two free groups?

We also ask whether one can find examples similar to Proposition 9.3 in the
world of symmetric spaces.

Question 9.8. Let G be a cocompact lattice in SL(3,R). Can G contain a highest
Z–subgroup?

One readily verifies that if such Z–subgroup exists, then it is generated by a
matrix M in SL(3,R) such that

(1) M has one real eigenvalue and two complex eigenvalues;
(2) the real eigenvalue is not 1 or −1;
(3) the rotation induced by the pair of complex eigenvalues has irrational angle.

However, we do not know whether such matrix can live inside a cocompact
lattice, though we speculate that the answer is positive.

Remark 9.9. Note that Theorem 4.2 and Corollary 5.10 have the same conclusion
for NG[H]. However, the geometry of the action of NG[H] on PF could be quite
different. For virtually compact special actions, the action of NG[H] on PF is
geometric (Proposition 9.6). We speculate that this is not the case for geometric
actions on Hadamard manifolds. In particular, a positive answer to Question 9.8
would give an example of a non-cocompact action of NG[H] on PF (consider the
action on the associated symmetric space).
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[BH99] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, vol-

ume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Princi-
ples of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.

[CE08] Jeff Cheeger and David G Ebin. Comparison theorems in Riemannian geometry, vol-

ume 365. American Mathematical Soc., 2008.
[CKRW17] Pierre-Emmanuel Caprace, Peter H. Kropholler, Colin D. Reid, and Phillip Wesolek.

On the residual and profinite closures of commensurated subgroups, 2017.

[DP15] Dieter Degrijse and Nansen Petrosyan. Bredon cohomological dimensions for groups
acting on CAT(0)-spaces. Groups Geom. Dyn., 9(4):1231–1265, 2015.

[DT92] Gérard Duchamp and Jean-Yves Thibon. Simple orderings for free partially commuta-
tive groups. International Journal of Algebra and Computation, 2(03):351–355, 1992.

[Hu95] B Hu. Retractions of closed manifolds with nonpositive curvature. Geometric group
theory (Columbus, OH, 1992), 3:135–147, 1995.

[HW08] Frédéric Haglund and Daniel T Wise. Special cube complexes. Geometric and Func-
tional Analysis, 17(5):1551–1620, 2008.

[KL] Bruce Kleiner and Bernhard Leeb. Rigidity of quasi-isometries for symmetric spaces
and euclidean buildings. Mathematical Publications of the Institute of Higher Scien-

tific Studies, 86(1).
[Laf08] Jean-François Lafont. Construction of classifying spaces with isotropy in prescribed

families of subgroups. LEnseign. Math.(2), 54:127–130, 2008.
[LM18] Ian J Leary and Ashot Minasyan. Preprint. 2018.
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