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In this Supplementary Information, we first describe the details of the correlation analysis and the global fitting
approach. Second, we analyze the vibrational dynamics of the peaks related to the ground-state bleach (GSB) and the
excited-state absorption (ESA) in the two-dimensional (2D) electronic spectrum. The details of the Tukey-window
Fourier transform and wavelet analysis are described in the final section.

I. GLOBAL FITTING APPROACH

Multidimensional global fits of both experimental arrays of 2D spectra were performed in accordance with the
available algorithm developed earlier @] A detailed description of the technique can be found in the Supplementary
Information of Ref. ﬂﬂ] In this method, a sequence of 2D spectra taken at different waiting times 1" are collected to
form a three-dimensional array S(w;, we, T'). This 3D array is then decomposed into a sum of two-dimensional decay-
associated spectra A;(w,,w;) with individual exponential decays of correspondingly associated life times 7; according
to

S(wr,wg, T) = ZAi(WT,Wt)exp(—T/ﬂ). (S1)

We apply the global fitting to the 2D electronic spectra of perovskite.

II. CORRELATION ANALYSIS IN 2D ELECTRONIC SPECTRA

To verify the origin of the oscillations observed in the 2D spectra, we have performed a cross-correlation analysis
of the residuals across diagonal w, = w;. To quantify the correlation, we have calculated the correlation coefficients
C between the residuals R for each pair of conjugated spectral positions in the delay time window up to 2 ps. The
delay time steps were equally distributed with dt = 15 fs and the correlation coefficients are given by

C(wy, wr) = corr(R(wy, wr, T), R(w,r, wy, T)), (S2)

where corr evaluates the correlation with respect to T. This yields a 2D correlation spectrum.
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III. TWO-DIMENSIONAL POWER SPECTRA OF VIBRATIONAL MODES AT 33 AND 48 CM™*

In this section, we show the measured 2D power spectra of vibrational modes at 33 and 48 cm ™! in Fig. They
show the same features as the modes at 65 and 87 cm ™!, namely a strong magnitude located in the GSB and ESA
regions. Moreover, these two areas are connected by a node in between, which indicates the opposite phase of the
oscillations in the GSB and ESA regions. To identify the origin of these two modes, our theoretical calculations
reveal that these two low-frequency modes are generated by the skeletal motion (I-Pb-I bending) of the sublattice in
perovskite, which are presented in Fig.
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FIG. S1. Measured 2D power spectra of vibrational modes at 33 (a) and 48 (b) cm™'. They show a strong amplitude in the
GSB and ESA regions which are connected by a node.

37.4 cm (I-Pb-I bend) 47.0 cm™ (I-Pb-I bend)

FIG. S2. The calculated vibrational modes at 37 and 47 cm ™', respectively. Our theoretical calculations reveal that low-
frequency vibrations originate from I-Pb-I bending motions of sublattice.
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IV. VIBRATIONAL COHERENCES IN 2D ELECTRONIC SPECTROSCOPY

In this section, we examine the vibrational coherences of the GSB and ESA peaks in the 2D electronic spectra.
For this, we first construct a model of a three-level system, in which the electronic ground state, the first and second
excited states are denoted by |g), |e1) and |ea), respectively. We assign the optical transitions from |g) to |e;) and
from |e;) to |e2) to mimic the response signals of the GSB, stimulated emission and the ESA. Moreover, to study
the coherent vibrational dynamics, the electronic ground and excited states are vibronically coupled to a vibrational
mode. Here, we select an identified mode with a frequency of 180 cm™'. By this, the system Hamiltonian is given as

Hg = |g) €g (9] + [e1) €1 (e1] + |e2) €2 (ea] , (S3)

where ¢4, €1 and ey are the site energies of the electronic ground, the first and second excited states, respectively.
Moreover, a thermal reservoir of harmonic oscillators has been used to model the dissipative interactions with the
environment. Thus, we have

Hp, = Z hwj(a;aj + 1/2)7

J
Hp, = > hw;(B18; +1/2),
j

where a; (a;) and f3; (B;r) are the annihilation (creation) operators for the j-th bath mode with frequency of w;. For

simplicity, we assume linear system-bath interactions, i.e.,

Hsp, = |e1) (e1] Z(cj(a} + ;)

: (55)
Hsn, = |ea) (eal 3 (48] + 5,)),

where, ¢; and d; are the coupling strengths of j-th mode to the electronic state. In addition, we assume the frequency
distribution of bath to follow an Ohmic form with a Debye cutoff. Thus, the spectral density can be written as

i yfw D Ajwiw

J(w) = (S6)

77%+w2 T (w2 —wd) +4y3w?’

where 7, /5 and 7 /2 are the coupling and damping constants, respectively. wp is the frequency of a particular mode
coupled to electronic states. To calculate this model, we assume ¢, = 0, ¢ = 800 cm™! and €2 = 2100 cm™'. In
addition, we assume n; = 1, v; = 100 cm™ !, 75 = 2.0, 72 = 20 ecm ™! and wy = 500 ecm~!. The transition diple is
chosen as pt = |g) tge, (€1|+]€1) ftese, (€2]. By this, we calculate the population dynamics and the 2D electronic spectra
of this model using the hierarchy equation of motion E, @] The details of this method and the way to calculate 2D
electronic spectra have been described in Ref. [H]. We show the calculated 2D spectra in Fig. for selected waiting
times. In Fig. [S3] we show that we are able to separate the ESA peak from the GSB peak completely by carefully
selecting the site energies of €; and €. To examine the coherent dynamics, we extract the time-evolved amplitude
of the GSB and ESA peaks, which are marked by “A” and “B” in Fig. at T = 200 fs. We plot the traces of the
GSB and ESA peaks as red and blue solid lines in Fig. Moreover, we perform the global fitting on time series of
the calculated 2D spectra. The fitted traces are shown in Fig. as black dashed lines. The obtained residuals are
shown in Fig. In Fig. [S6 we clearly observe the opposite phases of the oscillations in the residuals of the GSB
and ESA peaks, respectively. By this, we demonstrate the anti-corrlated phases of the vibrational coherences of the
optical signals from the GSB and ESA peaks in the 2D electronic spectra. Although it is based on a simple three-level
model, we believe that this uncovered phase relation can be extended to the optical transitions between the valence
and conduction bands in solid state dynamics.
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FIG. S3. Calculated 2D electronic spectra at T=0 (left) and 200 fs (right). The GSB and ESA peaks are marked by the positive
and negative magnitudes in the 2D spectra.
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FIG. S4. The traces of the GSB (red solid line) and the ESA (blue solid line) from “A” and “B” in Fig. [S3]at T=200 fs.
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FIG. S5. Residuals of the GSB (red solid line) and the ESA (blue solid line) after removing the kinetics using a global fitting
approach. They show opposite phases of oscillations of the GSB and ESA peaks.

V. TUKEY-WINDOW FOURIER TRANSFORM

Here, we provide the details related to the Fourier transform with the Tukey window. To isolate the high-frequency
jitters, Fourier filtering in the frequency domain is employed. By this, we isolate each of these regions of interest with
a Tukey window, which has the form

iy {1 i 0<|n|<af, )
= T(n—asg) N N
%(1—%(}05[(1_@)% ]), o <Inj< &

Due to the flat top, it conserves the amplitudes of the Fourier components of interest over a larger frequency range
than a cosine or a Gaussian window, while it still limits the artifacts arising from a pure bandpass filter. In this work,
we use the Tukey window with o = 1/5 and a Fourier bandpass filter with <700 cm~!.

VI. RAW TRACES OF THE GSB AND ESA PEAKS

In this section, we show the raw data of the traces extracted from the GSB and ESA peaks. The high-frequency
jitters are filtered by the Tukey-window Fourier transform.
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FIG. S6. Raw data of the trace from the GSB peak (red solid line). The kinetic fit is plotted as black dashed line. The raw
data of the trace of the ESA peak is shown as blue solid line, the fitted trace is presented as black dashed line. The raw data
and the polished residuals are shown as dashed and solid lines, respectively, in the lower panel.

VII. WAVELET ANALYSIS

In this section, we summarize the technical principles of the wavelet transform. The details are presented in Ref.
ﬂa, ﬁ] It starts from the definition of a zero mean and a short-time oscillating function 1, called a “mother” wavelet,
which is used to decompose a one- or multi-dimensional real-valued signal into different frequency bands. This mother
wavelet function is translated in time by ¢ and stretched by the scale of w™!, giving the wavelet “atom” function

Urw(t') = Vwip([t' — tw) . (S8)

It provides the effective basis for the transformation. The two most common transforms are the discrete wavelet
transform and the continuous wavelet transform B] The discrete one decomposes the signal into several frequency
bands and is frequently used for data and image compression. The continuous one, which is used in this paper, is
based on an expansion of a temporal signal f(¢) via the inner product of the function with a wavelet atom and reads

+oo

CWTy(tw) = [ dt F)w (i~ tlo). (9)

— 00

The parameter t indicates where the wavelet atom is centred, while the scale parameter w™! controls the relative
width of the wavelet atom compared to the mother wavelet function. This nonlinear integral transform provides a
high time resolution of high-frequency components, while for the slowly varying components of the signal, the frequency
resolution is high. It projects the signal onto basis functions with a varying “center” frequency and a varying range
fixed by the scaling factor.
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VIII. TIME EVOLUTION OF ELECTRONIC CHARGE

In this section, we show the time evolution of electronic charge on the skeleton of perovskite in Fig. After
photoexcitation, the initial generated free carriers are mainly delocalized along Pb atoms in perovskite. This extra
electronic charge on Pb atom enables the rotation of MA cation, which generates macroscopic signal of vibrational
coherence of librational motion. The existed anharmonic interaction between MA cation and inorganic sublattice
enable the coherent transfer of vibrational coherence from librational motion of MA cation to skeletal motion of per-
ovskite. This coherent transfer enable perovskite to stabilize the electronic charge by enhancing particular coherence
of skeletal motion. By this, the equilibrium state of electronic charge are reached by electron-phonon interaction at
timescale of 700 fs. Moreover, we also show more detailed dynamics of vibrational coherences of perovskite in Fig.
after photoexcitation.

FIG. S7. Time evolution of electronic charge with the skeletal motion of perovskite. The free carriers are localized by electron-
phonon interaction and the polaron formation at 700 fs.
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FIG. S8. Time-evolved vibrational coherences after photoexcitation.

IX. CHARGE LOCALISATION AT DIFFERENT CARRIER DENSITIES

In this section, we include excess electrons in our DFT simulations in order to model the excited state of the
perovskite material as a first approximation. The considered value of the charge density (i.e., 10*® cm~2) was chosen
following the previous predictions. The main outcome of these calculations is that electrons are mainly localized on
the Pb atoms (Fig. 4 (a)). We have also conducted electron localization function calculations for different values of
the electron density. The results are shown in Fig. 89 for electron densities ranging from 10'® em ™3 to 5 x 10'® cm~3.
It is seen from this figure that regardless of the electron density, excess electrons are mainly localized near the Pb
atoms. We would like to note that such electron injection method is used only in our static (i.e., electron localization
function) calculations. Different method is used to perform the excited-state molecular-dynamics calculation which

does not require such explicit charge injection.

We used the norm-conserving and relativistic pseudopotential PseudoDojo with medium basis set for all atoms with
improved accuracy, which is implemented in the current version of the ATK software.
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FIG. S9. Difference of electron localization functions with different level of excess electrons compared to its ground state: (1)
1% 10%em ™2, (2) 5 x 10" em™3, (3) 1 x 10" em ™3, (4) 5 x 10" em ™3, (5) 1 x 10*” em™3, (6) 5 x 10*" em™3, (7) 1 x 10*®
em™® and (8) 5 x 10'® cm™3. The number in each panel shows the isosurface value.
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