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ABSTRACT: Negatively curved nanographene (NG) 4, having two heptagons and a [5]helicene, was unexpectedly obtained by aryl
rearrangement and stepwise cyclodehydrogenations. X-ray crystallography confirmed the saddle-shaped structures of intermediate 3
and NG 4. The favorability of rearrangement over helicene formation following radical cation or arenium cation mechanisms is
supported by theoretical calculations. NG 4 demonstrates a reversible mechanochromic color change and solid-state emission,
presumably benefiting from its loose crystal packing. After resolution by chiral high-performance liquid chromatography, the circular
dichroism spectra of enantiomers 4-(P) and 4-(M) were measured and showed moderate Cotton effects at 350 nm (|Δε| = 148 M−1

cm−1).

Curved nanographenes (NGs), obtained by incorporating
nonhexagonal rings into the “honeycomb” framework,

have become exciting targets in different scientific fields.1−4

The resulting surfaces, which can be classified as having
positive or negative Gaussian curvatures, furnish NGs with
unique properties.1 NGs containing pentagons have positive
curvature and possess bowl-shaped structures. Thus, corannu-
lene-based NGs can be considered as subunits of fullerene,5,6

and they have been used as caps in the chemical synthesis of
carbon nanotubes;7 bischrysenyl molecules with fused
pentagons exist as stable open-shell singlet biradicals and
hold promise for quantum computing.8,9

On the other hand, seven- or eight-membered rings induce
negative curvature. Saddle-shaped NGs containing heptagons
often demonstrate dynamic stereochemistry, which can lead to
fluorescence quenching in solution.10 Moreover, the syntheses
and studies of heptagon-incorporating NGs could stimulate the
investigation of elusive carbon nanostructures, such as carbon
schwarzites and Mackay crystals.11−14 Compared with their
positively curved counterparts, negatively curved NGs with
heptagons are rare and deserve more attention.
The first reported heptagon-embedded NG, [7]circulene

was achieved by Yamamoto in 1983 by intramolecular
photocyclization and reductive coupling.15,16 Since then,
several methods to construct seven-membered carbocycles,
including ring expansion,17,18 cyclotrimerization,19 and intra-
molecular cyclization,20−26 have been developed. Among these
bottom-up approaches, multiple intramolecular cyclizations by
the Scholl reaction are particularly powerful, as demonstrated
by the grossly warped NG reported by Scott and Itami.27

However, the outcome of the Scholl reaction is sometimes
surprising, even counterintuitive, since it can be accompanied
by migrations and rearrangement processes.28−32

During our attempts at synthesizing π-extended [7]helicene
2 through the oxidative cyclodehydrogenation of precursor 1,
we unexpectedly obtained a negatively curved NG 4 with two

seven-membered rings and a [5]helicene substructure through
an aryl rearrangement and cyclodehydrogenation sequence
(Scheme 1). The structures of both intermediate 3 and final
NG 4 were unambiguously identified by X-ray crystallography
analysis. Density functional theory (DFT) calculations revealed
that rearrangement via spiro-ring formation was favored over
helicene formation by either radical cation or arenium cation
mechanism. NG 4 is fluorescent in the solution and solid states
and demonstrated a reversible change in color and emission
between crystalline and amorphous powders, presumably due
to its loose crystal packing. Because of the incorporation of
heptagons and a [5]helicene, NG 4 was twisted into a saddle-
shaped curvature with an experimental isomerization barrier of
25.4 kcal mol−1, enabling the separation of its enantiomers by
high-performance liquid chromatography (HPLC) with a
chiral column and subsequent circular dichroism (CD)
measurements.
3′,6′-Bis(naphthylphenyl)-o-terphenyl precursor (1) was

synthesized in four steps on a gram scale (Scheme 1). Starting
from 2,3-dibromo-1,4-bis(trimethylsilyl)benzene (5), 3′,6′-
diiodo-o-terphenyl derivative 7 could be obtained by Suzuki
coupling and iodination in high yields as adapted from our
previous procedure.33 The selective Suzuki coupling of 7 and
2-bromophenylboronic acid produced 3′,6′-bis(2-bromo-
phenyl)-o-terphenyl compound 8 in 80% yield. Precursor 1
was then obtained by the Suzuki coupling of 8 and 2-
naphthylboronic acid in 88% yield. Precursor 1 was
subsequently subjected to oxidative cyclodehydrogenation
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with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and
trifluoromethanesulfonic acid (TfOH) in dry dichloromethane
(DCM) at 0 °C under argon, which after 20 min, provided
compound 3 in 82% yield. Matrix-assisted laser desorption/
ionization-time-of-flight (MALDI-TOF) mass spectrometry
(MS) analysis of 3 exhibited an intense signal at m/z =
738.32 (Figure S11, calculated value for C58H42: 738.33),
indicating 3 to be an intermediate with two more hydrogens
than target product 2.
Further reacting intermediate 3 with DDQ/TfOH in dry

DCM at 40 °C under argon furnished product 4 in 71% yield.
MALDI-TOF MS analysis of 4 displayed an intense signal at
m/z = 736.31 (Figure S14, calculated value for C58H40:
736.31). Although this mass is the same as that of π-extended
[7]helicene 2, the 1H and 13C NMR spectra of 4 suggested a
highly unsymmetrical structure (Figures S15−S16).
Crystals of 1, 3, and 4 suitable for single-crystal analyses by

X-ray diffraction could be obtained by slow diffusion of ethanol
into their chloroform or dichloromethane solutions (Figures
1A−C, S21−S22). Excitingly, NG 4 revealed a unique
structure with two heptagons as well as a [5]helicene (marked
by black arrows in Figure 1A) with a torsion angle of 35.2°
(atoms 1−2−3−4). Due to the two heptagonal subunits, NG 4
was negatively curved into a saddle shape with out-of-plane
deformed benzenoid rings (Figure 1B). This saddle was 9.79 Å
wide and 3.36 Å deep from the upper part, while it was 9.31 Å
wide and 2.79 Å deep from the lower part. P/M enantiomers of
4, denoted 4-(P) and 4-(M) (highlighted in blue and red,
respectively), were observed, and they stacked in an alternating

manner to form pairs of enantiomers (Figure 1C). The
intermolecular distances of the P/M enantiomer pairs were
measured as d1 = 3.90 Å and d2 = 3.83 Å, suggesting that 4 was
loosely packed, reflecting its highly twisted structure.
Assisted by its crystal structure, 2D NMR analyses, and

simulated 1H NMR spectrum (Figures S17−S20), all the
aromatic proton peaks in the 1H NMR spectrum of NG 4 were
assigned (Figure 1D). Notably, while the chemical shift of
proton 20 was still at 8.37 ppm, the signal of proton 21 was
shifted upfield to 6.42 ppm. This was in line with the shielding
effect expected from the curved surface. Nucleus-independent
chemical shift (NICS) calculations of NG 4 at the GIAO-
B3LYP/6-311G (d,p) level (Figure S36)34−36 revealed
negative values ranging from −3.41 to −26.88 ppm for all
the benzene rings. In contrast, the two heptagons showed
positive values of 15.12 and 16.76 ppm (Figure 1D), indicating
their antiaromaticity,37,38 which might also account for the
upfield shift of proton 21 adjacent to a heptagon.
To understand the rearrangement during the cyclodehy-

drogenation of precursor 1 leading to NG 4 instead of π-
extended helicene 2, DFT calculations were performed at the
(U)ωB97X-D/6-31+G(d,p)//(U)ωB97X-D/6-31G(d) level
of theory using the SMD solvation model with DCM.
According to the literature,29,39,40 two possible intermediates,
radical cation R1 and arenium cation A1, were proposed for
the key step for comparing the energy barriers in the
“rearrangement” and “helicene” pathways. Radical cation
intermediate R1 can undergo C−C bond formation at either
the ipso or ortho position of the central benzene ring, with
respect to a naphthylphenyl group (Scheme 2A). The C−Cipso

Scheme 1. Synthetic Route towards Negatively Curved NG
4

Figure 1. (A−C) Single-crystal structures of 4-(P) and 4-(M). (B)
Side view of 4-(M). (C) Molecular packing of 4. All hydrogen atoms
are omitted for clarity. (D) Aromatic region of the 1H NMR spectrum
of 4 with proton peak assignments (850 MHz, C2D2Cl4) and
NICS(1)zz values (in ppm in parentheses) of two heptagons.
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bond formation leading to spiro intermediate R2 was found to
proceed through a transition state (TS) with a lower energy
(TSR1R2 = 19.9 kcal/mol) than that toward R6 by C−Cortho
bond formation (TSR1R6 = 20.9 kcal/mol). Subsequent H atom
abstraction (R3), 1,2-migration of the phenyl group (R4), and
deprotonation afforded rearranged intermediated R5 with the
formation of a new C−C bond. R5 could undergo further
dehydrogenative couplings to afford 3 and 4. This mechanism
is analogous to that involving a 1,2-aryl migration in the
oxidative coupling of tetraarylpyrrolopyrroles.41 Similarly, the
energy barriers were also calculated through arenium
intermediate A1, and the rearrangement was again more
favorable than helicene formation (Scheme 2B). The possible
mechanisms involving arenium cation intermediates with
protonation on the central benzene ring were excluded due
to higher energies in transition states (Figure S35 for more
details). Therefore, the rearrangement occurs in the first step
of the dehydrogenation and is favored over helicene formation
in both the radical cation and arenium cation mechanisms.
While the absorption spectrum of 3 exhibited a maximum

(λabs) at 380 nm, the λabs of 4 was red shifted to 392 nm, in
agreement with its extended π-conjugation (Figure S23).
Notably, both 3 and 4 featured large Stokes shifts (0.89 and
1.13 eV), showing green and orange-red fluorescence with
emission maxima of 522 and 611 nm, respectively. Such large
Stokes shifts and broad emission bands were attributed to their
conformational flexibility in solution,10 which could also
account for their relatively low quantum yields in solution
(3: 5%; 4: 11%). Further details for the emission properties of
4, including the aggregation-caused quenching of fluorescence,
concentration and solvent dependence of the spectra, as well as
an emission lifetime measurement, are reported in Figures
S24−S28. The electrochemical properties of 3 and 4 were
studied by cyclic voltammetry in DCM solutions with
ferrocene as an external standard, and the highest occupied
molecular orbital (HOMO) energy levels of 3 and 4 were

estimated to be 5.32 and 5.17 eV, respectively (Figure S29),
consistent with the DFT calculations (Figure S37). The
HOMO−LUMO (lowest unoccupied molecular orbital) gaps
of 3 and 4 were calculated to be 3.22 and 3.02 eV, respectively.
Interestingly, when the DCM was evaporated from the NG 4

solution, a nanocrystalline powder was formed, displaying
yellow fluorescence with an emission peak at 550 nm (Figure
2A). Inspired by its loose crystal packing and structural

flexibility, the mechanochromic behavior42 of 4 was explored.
When the nanocrystalline powder of 4 obtained from DCM
was ground into an amorphous powder, the emission peak was
red shifted to 610 nm, which was almost identical to that in
solution. The amorphous powder could be transformed into
yellow nanocrystals by treatment with DCM vapor for 10 min.
This grinding-fuming sequence could be reversibly repeated for
5 cycles without obvious fatigue (Figure S30). Notably, 4
formed a slightly different crystal when crystallized from THF
solution, showing an emission peak at 565 nm. The shifting of
emission wavelength was caused by the presence of solvent
molecules, which was confirmed by the X-ray analysis (Figure

Scheme 2. Proposed Reaction Mechanisms for the Rearrangement during the Scholl Reaction via (A) Radical Cation or (B)
Arenium Cation Intermediates. Gibbs Free Energies and Enthalpies (Italicized) are Given in kcal/mol.a

aDDQ•− as an H atom acceptor. bDDQ as an oxidant.

Figure 2. (A) Emission spectra of 4 in solution and different solid
states, showing a mechanochromic behavior. Solution concentration:
10 μM. (B) Powder XRD analyses of 4 in different solid states.
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S31, CCDC: 2021692). These results indicated that the
mechanochromic behavior of 4 was caused by different
molecular packing modes in the solid states, which was also
supported by different diffraction patterns in powder X-ray
diffraction (PXRD) measurements (Figure 2B). Such rever-
sible mechanochromic behavior is unusual in curved nano-
graphenes with only fused hydrocarbons,43,44 suggesting
potential applications of 4 in mechanosensors, security papers,
optical storage, etc.45,46

The isomerization barrier between 4-(P) and 4-(M) was
calculated by DFT to be 26.1 kcal mol−1 (Figure 3A) and

experimentally determined as 25.4 kcal mol−1 (Figures S32−
S33), which was higher than those of previously reported
heptagon-bearing NGs17,18,22,27 but similar to other [5]-
carbohelicenes.47−50 4-(P) and 4-(M) could indeed be
separated by chiral HPLC (Figure S34). CD spectra of the
first HPLC fraction demonstrated a negative Cotton effect at
350 nm with a moderate value (|Δε| = 148 M−1 cm−1), while
the enantiomer that eluted second displayed a mirror image
CD curve with a positive Cotton effect, which was in good
agreement with the simulated spectra calculated by time-
dependent DFT (TD-DFT) (Figure 3B). The first and second
HPLC fraction could thus be assigned to 4-(M) and 4-(P),
respectively. The hole−electron analysis of the major
transitions36,51 (first, second, and ninth excited states in

Figures S38−S39) suggest that the CD signal at >450 nm can
be attributed to the twisted π-backbone of the whole molecule,
while the configuration of [5]helicene structure is more related
to the CD signal at 350 nm.
In summary, the oxidative cyclodehydrogenation of

precursor 1 provided unprecedented NG 4 with a negative
curvature through an aryl rearrangement, which was
unambiguously revealed by X-ray crystallography. With two
heptagonal and one [5]helicene substructure, NG 4 was highly
twisted into a saddle shape with two enantiomers, 4-(P) and 4-
(M), which could be resolved by chiral HPLC. According to
theoretical studies, the energy barriers of the rearrangement
pathways are lower than those for helicene formation in both
the radical cation and arenium cation mechanisms, ration-
alizing the experimental results. The unexpected rearrange-
ment observed in this study has inspired us to systematically
investigate the Scholl reactions of related precursors. More-
over, it facilitates the design of modified precursors leading to
π-extended helicenes and other curved NGs in subsequent
studies.
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Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://dx.doi.org/10.1021/jacs.0c05504
J. Am. Chem. Soc. 2020, 142, 14814−14819

14818

http://orcid.org/0000-0003-1309-4977
https://pubs.acs.org/doi/10.1021/jacs.0c05504?ref=pdf
https://dx.doi.org/10.1021/acs.accounts.8b00140
https://dx.doi.org/10.1039/C8CC02325E
https://dx.doi.org/10.1039/C8CC02325E
https://dx.doi.org/10.1002/anie.201807004
https://dx.doi.org/10.1002/anie.201807004
https://dx.doi.org/10.1039/C6CS00623J
https://dx.doi.org/10.1039/C6CS00623J
https://dx.doi.org/10.1002/ejoc.201600311
https://dx.doi.org/10.1002/ejoc.201600311
https://dx.doi.org/10.1002/ejoc.201600311
https://dx.doi.org/10.1038/nature07193
https://dx.doi.org/10.1038/nature07193
https://dx.doi.org/10.1021/ja209461g
https://dx.doi.org/10.1021/ja209461g
https://dx.doi.org/10.1002/anie.201611689
https://dx.doi.org/10.1002/anie.201611689
https://dx.doi.org/10.1126/science.aay7203
https://dx.doi.org/10.1126/science.aay7203
https://dx.doi.org/10.1021/jacs.5b00403
https://dx.doi.org/10.1021/jacs.5b00403
https://dx.doi.org/10.1038/355333a0
https://dx.doi.org/10.1038/355333a0
https://dx.doi.org/10.1038/352762a0
https://dx.doi.org/10.1088/0953-8984/22/33/334220
https://dx.doi.org/10.1103/PhysRevLett.91.237204
https://dx.doi.org/10.1103/PhysRevLett.91.237204
https://dx.doi.org/10.1021/ja00362a025
https://dx.doi.org/10.1021/ja00362a025
https://dx.doi.org/10.1021/ja00219a036
https://dx.doi.org/10.1002/anie.201711437
https://dx.doi.org/10.1002/anie.201711437
https://dx.doi.org/10.1002/anie.201711437
https://dx.doi.org/10.1021/jacs.9b03910
https://dx.doi.org/10.1021/jacs.9b03910
https://dx.doi.org/10.1039/C6SC02895K
https://dx.doi.org/10.1039/C6SC02895K
https://dx.doi.org/10.1002/anie.201403509
https://dx.doi.org/10.1002/anie.201403509
https://dx.doi.org/10.1002/anie.201403509
https://dx.doi.org/10.1021/acs.orglett.8b00477
https://dx.doi.org/10.1021/acs.orglett.8b00477
https://dx.doi.org/10.1021/acs.orglett.7b00714
https://dx.doi.org/10.1021/acs.orglett.7b00714
https://dx.doi.org/10.1039/c2cc34245f
https://dx.doi.org/10.1039/c2cc34245f
https://dx.doi.org/10.1039/c2cc34245f
https://dx.doi.org/10.1021/jacs.6b05820
https://dx.doi.org/10.1021/jacs.6b05820
https://dx.doi.org/10.1021/jacs.6b05820
https://dx.doi.org/10.1021/jacs.8b09992
https://dx.doi.org/10.1021/jacs.8b09992
https://dx.doi.org/10.1021/acs.joc.7b01540
https://dx.doi.org/10.1021/acs.joc.7b01540
https://dx.doi.org/10.1038/nchem.1704
https://dx.doi.org/10.1038/nchem.1704
https://dx.doi.org/10.1038/nchem.1704
https://dx.doi.org/10.1021/ol0708018
https://dx.doi.org/10.1021/ol0708018
https://dx.doi.org/10.1021/ol0708018
https://dx.doi.org/10.1021/jacs.5b10399
https://dx.doi.org/10.1021/jacs.5b10399
https://dx.doi.org/10.1021/jacs.5b10399
https://dx.doi.org/10.1021/ja000832x
https://dx.doi.org/10.1021/ja000832x
https://dx.doi.org/10.1021/ja000832x
https://dx.doi.org/10.1016/j.tet.2008.09.105
https://dx.doi.org/10.1016/j.tet.2008.09.105
https://dx.doi.org/10.1021/jo3027752
https://dx.doi.org/10.1021/jo3027752
https://dx.doi.org/10.1021/jo3027752
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c05504?ref=pdf


On-Surface Growth Dynamics of Graphene Nanoribbons: The Role
of Halogen Functionalization. ACS Nano 2018, 12, 74−81.
(34) von Rague ́ Schleyer, P.; Maerker, C.; Dransfeld, A.; Jiao, H.;
van Eikema Hommes, N. J. R. Nucleus-Independent Chemical Shifts:
A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc. 1996,
118, 6317−6318.
(35) Corminboeuf, C.; Heine, T.; Seifert, G.; von Rague ́ Schleyer,
P.; Weber, J. Induced magnetic fields in aromatic [n]-annulenes
interpretation of NICS tensor components. Phys. Chem. Chem. Phys.
2004, 6, 273−276.
(36) Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction
analyzer. J. Comput. Chem. 2012, 33, 580−592.
(37) Zhang, X.-S.; Huang, Y.-Y.; Zhang, J.; Meng, W.; Peng, Q.;
Kong, R.; Xiao, Z.; Liu, J.; Huang, M.; Yi, Y.; Chen, L.; Fan, Q.; Lin,
G.; Liu, Z.; Zhang, G.; Jiang, L.; Zhang, D. Dicyclohepta[ijkl,
uvwx]rubicene with Two Pentagons and Two Heptagons as a Stable
and Planar Non-benzenoid Nanographene. Angew. Chem. 2020, 132,
3557−3561.
(38) Oki, K.; Takase, M.; Mori, S.; Shiotari, A.; Sugimoto, Y.; Ohara,
K.; Okujima, T.; Uno, H. Synthesis, Structures, and Properties of
Core-Expanded Azacoronene Analogue: A Twisted pi-System with
Two N-Doped Heptagons. J. Am. Chem. Soc. 2018, 140, 10430−
10434.
(39) Rempala, P.; Kroulik, J.; King, B. T. Investigation of the
Mechanism of the Intramolecular Scholl Reaction of Contiguous
Phenylbenzenes. J. Org. Chem. 2006, 71, 5067−5081.
(40) Zhai, L.; Shukla, R.; Wadumethrige, S. H.; Rathore, R. Probing
the arenium-ion (protontransfer) versus the cation-radical (electron
transfer) mechanism of Scholl reaction using DDQ as oxidant. J. Org.
Chem. 2010, 75, 4748−4760.
(41) Krzeszewski, M.; Sahara, K.; Poronik, Y. M.; Kubo, T.; Gryko,
D. T. Unforeseen 1,2-Aryl Shift in Tetraarylpyrrolo[3,2- b]pyrroles
Triggered by Oxidative Aromatic Coupling. Org. Lett. 2018, 20,
1517−1520.
(42) Dong, Y. Q.; Lam, J. W.; Tang, B. Z. Mechanochromic
Luminescence of Aggregation-Induced Emission Luminogens. J. Phys.
Chem. Lett. 2015, 6, 3429−3436.
(43) Kumar, R.; Aggarwal, H.; Srivastava, A. Of Twists and Curves:
Electronics, Photophysics, and Upcoming Applications of Non-Planar
Conjugated Organic Molecules. Chem. - Eur. J. 2020, 26, 1−24.
(44) Wang, C.; Li, Z. Molecular conformation and packing: their
critical roles in the emission performance of mechanochromic
fluorescence materials. Mater. Chem. Front. 2017, 1, 2174−2194.
(45) Qiu, Z.; Zhao, W.; Cao, M.; Wang, Y.; Lam, J. W. Y.; Zhang, Z.;
Chen, X.; Tang, B. Z. Dynamic Visualization of Stress/Strain
Distribution and Fatigue Crack Propagation by an Organic
Mechanoresponsive AIE Luminogen. Adv. Mater. 2018, 30,
No. 1803924.
(46) Sun, H.; Liu, S.; Lin, W.; Zhang, K. Y.; Lv, W.; Huang, X.; Huo,
F.; Yang, H.; Jenkins, G.; Zhao, Q.; Huang, W. Smart responsive
phosphorescent materials for data recording and security protection.
Nat. Commun. 2014, 5, 3601.
(47) Janke, R. H.; Haufe, G.; Wurthwein, E.-U.; Borkent, J. H.
Racemization Barriers of Helicenes: A Computational Study. J. Am.
Chem. Soc. 1996, 118, 6031−6035.
(48) Barroso, J.; Cabellos, J. L.; Pan, S.; Murillo, F.; Zarate, X.;
Fernandez-Herrera, M. A.; Merino, G. Revisiting the racemization
mechanism of helicenes. Chem. Commun. 2018, 54, 188−191.
(49) Cruz, C. M.; Marquez, I. R.; Mariz, I. F. A.; Blanco, V.;
Sanchez-Sanchez, C.; Sobrado, J. M.; Martin-Gago, J. A.; Cuerva, J.
M.; Macoas, E.; Campana, A. G. Enantiopure distorted ribbon-shaped
nanographene combining two-photon absorption-based upconversion
and circularly polarized luminescence. Chem. Sci. 2018, 9, 3917−
3924.
(50) Berezhnaia, V.; Roy, M.; Vanthuyne, N.; Villa, M.; Naubron, J.
V.; Rodriguez, J.; Coquerel, Y.; Gingras, M. Chiral Nanographene
Propeller Embedding Six Enantiomerically Stable [5]Helicene Units.
J. Am. Chem. Soc. 2017, 139, 18508−18511.

(51) Liu, Z.; Lu, T.; Chen, Q. An sp-hybridized all-carboatomic ring,
cyclo[18]carbon: Electronic structure, electronic spectrum, and
optical nonlinearity. Carbon 2020, 165, 461−467.

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://dx.doi.org/10.1021/jacs.0c05504
J. Am. Chem. Soc. 2020, 142, 14814−14819

14819

https://dx.doi.org/10.1021/acsnano.7b07077
https://dx.doi.org/10.1021/acsnano.7b07077
https://dx.doi.org/10.1021/ja960582d
https://dx.doi.org/10.1021/ja960582d
https://dx.doi.org/10.1039/B313383B
https://dx.doi.org/10.1039/B313383B
https://dx.doi.org/10.1002/jcc.22885
https://dx.doi.org/10.1002/jcc.22885
https://dx.doi.org/10.1002/ange.201914416
https://dx.doi.org/10.1002/ange.201914416
https://dx.doi.org/10.1002/ange.201914416
https://dx.doi.org/10.1021/jacs.8b06079
https://dx.doi.org/10.1021/jacs.8b06079
https://dx.doi.org/10.1021/jacs.8b06079
https://dx.doi.org/10.1021/jo0526744
https://dx.doi.org/10.1021/jo0526744
https://dx.doi.org/10.1021/jo0526744
https://dx.doi.org/10.1021/jo100611k
https://dx.doi.org/10.1021/jo100611k
https://dx.doi.org/10.1021/jo100611k
https://dx.doi.org/10.1021/acs.orglett.8b00223
https://dx.doi.org/10.1021/acs.orglett.8b00223
https://dx.doi.org/10.1021/acs.jpclett.5b01090
https://dx.doi.org/10.1021/acs.jpclett.5b01090
https://dx.doi.org/10.1002/chem.201905071
https://dx.doi.org/10.1002/chem.201905071
https://dx.doi.org/10.1002/chem.201905071
https://dx.doi.org/10.1039/C7QM00201G
https://dx.doi.org/10.1039/C7QM00201G
https://dx.doi.org/10.1039/C7QM00201G
https://dx.doi.org/10.1002/adma.201803924
https://dx.doi.org/10.1002/adma.201803924
https://dx.doi.org/10.1002/adma.201803924
https://dx.doi.org/10.1038/ncomms4601
https://dx.doi.org/10.1038/ncomms4601
https://dx.doi.org/10.1021/ja950774t
https://dx.doi.org/10.1039/C7CC08191J
https://dx.doi.org/10.1039/C7CC08191J
https://dx.doi.org/10.1039/C8SC00427G
https://dx.doi.org/10.1039/C8SC00427G
https://dx.doi.org/10.1039/C8SC00427G
https://dx.doi.org/10.1021/jacs.7b07622
https://dx.doi.org/10.1021/jacs.7b07622
https://dx.doi.org/10.1016/j.carbon.2020.05.023
https://dx.doi.org/10.1016/j.carbon.2020.05.023
https://dx.doi.org/10.1016/j.carbon.2020.05.023
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c05504?ref=pdf

