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Turbulent fluid flows exhibit a complex small-scale structure with frequently occurring extreme
velocity gradients. Particles probing such swirling and straining regions respond with an intricate,
shape-dependent orientational dynamics, which sensitively depends on the particle history. Here,
we systematically develop a reduced-order model for the small-scale dynamics of turbulence, which
captures the velocity gradient statistics along particle paths. An analysis of the resulting stochas-
tic dynamical system allows pinpointing the emergence of non-Gaussian statistics and non-trivial
temporal correlations of vorticity and strain, as previously reported from experiments and simula-
tions. Based on these insights, we use our model to predict the orientational statistics of anisotropic
particles in turbulence, enabling a host of modeling applications for complex particulate flows.

Turbulent flows show complex dynamics with a wide
range of dynamically active scales [1–3], which play an
important role for the dispersal of pollutants and aerosols
in the atmosphere [4, 5], the transport of microorganisms
in the ocean [6–9], as well as the mixing of reactants in
turbulent combustion [10, 11]. The smallest turbulent
scales, which are essentially independent of the bound-
aries and anisotropies of the large-scale flow [1], have a
profound impact on the dynamics and collision rates of
small suspended particles, like plankton in the ocean [6–
9] as well as droplets and ice crystals in clouds [12–16].
Even in the simplest case of very small, neutrally buoyant
particles, which passively follow the velocity field, highly
nontrivial, shape-dependent rotational motion has been
observed [17–22]. Theoretically, this intricate dynamics
is not well understood.

The spinning and tumbling of particles immersed in
a turbulent flow are determined by the complex inter-
play of particle shape and the small-scale structure of
the turbulent flow field, as encoded in the gradients of
the velocity field Aij = ∂ui/∂xj [23]. Because particle
rotations are very sensitive to various small-scale features
of turbulence such as non-Gaussian fluctuations, the lo-
cal flow topology and, most importantly, the temporal
correlation of strain and vorticity along Lagrangian tra-
jectories, capturing this complex motion with theoreti-
cally insightful reduced-order models for turbulence so
far remained elusive. The challenges in predicting these
aspects of turbulent velocity gradients ultimately arise
from the nonlinear, nonlocal, and dissipative dynamics
of the governing Navier-Stokes equations.

Over the past years, a variety of reduced-order mod-
els for the velocity gradient statistics based on stochastic
differential equations (SDEs) has been developed [23–27].
In these models, the effects of nonlocal pressure and vis-
cous diffusion result in unclosed terms, to which diverse
closure techniques have been applied. Closure theories
range from models based on the coarse-grained veloc-
ity gradient as perceived by a tetrad of tracer particles
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[24, 28], or the deformation of fluid elements [25] to func-
tional closures based on Gaussian random fields [26], as
well as combinations of these approaches [27]. The most
advanced reduced-order SDE models successfully repro-
duce many of the characteristic geometric and statistical
properties of the turbulent small scales [18, 26, 27, 29–
31]. However, all current models struggle to capture im-
portant aspects of the temporal correlation of strain rate
and rotation rate, which in particular leads to poor pre-
dictions for the orientational dynamics of particles im-
mersed in turbulent flows.

Here, we develop a minimal model for the velocity
gradients in turbulence, which enables profound theoret-
ical insights. Starting from an exact statistical evolu-
tion equation, we systematically constrain its structure
based on tensor function representation theory. By using
an ensemble approach, we construct a physically consis-
tent model which complies with important homogene-
ity constraints of turbulent fields. Based on an analysis
of the associated Fokker-Planck equation, we establish a
clear interpretation of its nonlinear dynamics. Specifi-
cally, we identify the dynamical mechanisms which con-
trol the degree of non-Gaussianity and temporal corre-
lations of vorticity and strain. We test our predictions
against high-resolution simulation results of fully devel-
oped turbulence, and show that our model successfully
captures the temporal auto-correlations of rotation rate
and strain rate. Coupled to the equations for the orienta-
tion dynamics of ellipsoidal particles, our model, further-
more, accurately reproduces the tumbling and spinning
rates of particles in turbulent flows.

The foundation of our model is an exact, unclosed SDE
for the one-point statistics of homogeneous isotropic tur-
bulence, which is derived from the Navier-Stokes equa-
tions using stochastic calculus [26]. The resulting SDE
takes the form

dA =
(
−Ã2 − 〈H̃|A〉+ 〈ν∆A|A〉

)
dt+ dF . (1)

Here A is the stochastic process corresponding to the
velocity gradient field at the position of a fluid particle,
and the conditionally averaged fields are evaluated at the
same position. The tilde denotes the traceless part of
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the tensor, e.g. Ã2 =
(
A2 − 1

3Tr(A2)I
)
. The first term

on the right-hand side captures the non-linear local self-
amplification of the velocity gradient, and includes the
local isotropic part of the pressure Hessian Hij = ∂p

∂xi∂xj
,

which is obtained from the pressure Poisson equation
∆p = Tr(H) = −Tr(A2) [32]. The conditional average

〈H̃|A〉 contains information about the mean nonlocal,
deviatoric part of the pressure Hessian given a velocity
gradient configuration A, which a priori depends on the
full flow field due to the pressure Poisson equation. The
conditional Laplacian 〈ν∆A|A〉 encodes viscous effects
in the velocity gradient tensor evolution. The term dF
is a Gaussian, temporally delta-correlated tensorial forc-
ing, that is consistent with isotropy, homogeneity and
incompressibility Tr(A) = 0 [cf. Supplemental Material
(SM)].

To close the conditional mean pressure Hessian and the
conditional mean Laplacian terms, we express them as
isotropic, tensor-valued functions of the symmetric and
anti-symmetric part of the velocity gradient, the strain
rate S and rotation rate W , respectively. Using tensor
function representation theory, one can derive a complete
and irreducible representation in terms of a small num-
ber of tensorial terms [33–38]. The individual tensorial
terms are comprised of combinations of S and W , with
coefficient functions that depend on isotropic invariants
of S and W . The conditional mean traceless, symmet-
ric pressure Hessian, for example, can be expressed as
a linear combination of seven tensorial terms with ap-
propriate coefficient functions [cf. SM]. Previous studies
[26, 39] showed that the most important features of the
dynamics can already be captured by retaining terms up
to the lowest possible order (i.e. second order in the pres-
sure Hessian and up to first order in the viscous term)
with constant coefficients. To enable analytical insights,
we therefore truncate the general tensorial expansion and
consider the closure

〈H̃|A〉 = αS̃2 + βW̃ 2 + γ(SW −WS) + δS (2)

〈ν∆A|A〉 = ξA . (3)

This expression still contains five scalar parameters,
which need to be further constrained. A general limi-
tation of single-point closures is that they lack the pos-
sibility to include physical constraints which depend on
information from the full field. For homogeneous turbu-
lence, for example, the velocity gradient field fulfills the
Betchov constraints [40] 〈Tr(A2)〉 = 0 and 〈Tr(A3)〉 = 0,
which encode the balance of enstrophy and dissipation,
as well as of their production. So far, velocity gradient
models need careful calibration to fulfill these constraints
[27]. An intriguing alternative to achieve a model which
is physically consistent with homogeneous turbulence is
to consider an ensemble of Lagrangian fluid elements that
sample the full velocity gradient field. We then achieve
consistency with the Betchov constraints by identifying
spatial averages over the field with ensemble averages
over the Lagrangian fluid elements. This can be used to
derive analytical expressions from (1) for two of the pa-
rameters, which allows us to constrain our closure (2)-(3)

[cf. SM]. One additional parameter can be fixed by non-
dimensionalizing the velocity gradient model with the
Kolmogorov time scale τη, which implies 〈Tr(S2)〉 = 1/2.
Thereby, the parameter space is reduced by three dimen-
sions, and Betchov’s homogeneity constraints are fulfilled
by design. Besides the forcing amplitude, which we fix
for the following considerations (see SM for the impact of
the forcing amplitude), this leaves two free parameters:
α, γ.

The impact of these free parameters on the nonlinear
dynamics of the velocity gradient model can be revealed
from the Fokker-Planck equation (FPE) corresponding
to (1), which governs the evolution of the full probability
density function (PDF) f(A; t) of the velocity gradient
tensor (implied summation):

∂

∂t
f = − ∂

∂Aij
[(Nij + Lij)f ] +

1

2
Qijkl(0)

∂

∂Aik

∂

∂Ajl
f .

(4)
Here, Qijkl(0) denotes the forcing covariance [cf. SM],
and the nonlinear and linear drift terms are given by

N =− (1 + α)S̃2 − (1 + β)W̃ 2

− (1 + γ)SW − (1− γ)WS (5)

L =− δS + ξA . (6)

The parameter α controls the strength of the strain self-
amplification in the velocity gradient dynamics. For a
vanishing self-amplification (α = −1) and parameters de-
termined such that the Betchov constraints are fulfilled,
we find that (4) has an exact Gaussian solution [cf. SM].
Remarkably, even in this case, the FPE contains nonlin-
ear drift terms. We demonstrate below that the strength
of strain self-amplification controls the Gaussianity as
well as important features of the small-scale topology
of the predicted velocity gradient statistics (see Fig. 1).
Further analysis of the FPE shows that the single-time
statistics is independent of the parameter γ for isotropic
turbulence. In this case, the velocity gradient PDF is a
function of the tensor invariants only, and one can read-
ily calculate that ∂

∂Aij
γ([SikWkj−WikSkj ]f(A)) = 0 [cf.

SM]. This result is related to a recently reported gauge
symmetry of the pressure Hessian [41]. However, we show
below that for the two-time statistics, and in particular
the autocorrelations of vorticity and strain, the γ-term
turns out to be crucial (see Fig. 2).

To determine appropriate values for the free parame-
ters, we perform parameter scans and compare our model
results with velocity gradient statistics obtained from di-
rect numerical simulations (DNS) of the Navier-Stokes
equation. We conducted simulations of homogeneous
isotropic turbulence with 20483 grid points at a Taylor-
scale Reynolds number of Rλ ≈ 509. For the subsequent
data analysis, 25 statistically independent snapshots are
taken into account. For the parameter scans, we nu-
merically solve (1) using the Euler-Maruyama method
[42] with a time step of ∆t = 0.0002. For all simu-
lations shown here, we have integrated an ensemble of
105 Gaussian initial conditions for 5 × 106 time steps,
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FIG. 1. Controlling single-time statistics with the strength of the strain self-amplification α. (a) α controls the Gaussianity
of the model statistics: Standardized PDFs of the longitudinal (A11) and transverse (A12) velocity gradient components for
different values of α. (b) α determines the probability of different flow topologies: Joint PDF of the standardized isotropic

invariants R̂ = − 1
3

Tr(A3)

〈Tr(S2)〉3/2 and Q̂ = − 1
2

Tr(A2)

〈Tr(S2)〉 for different values of α. DNS results in lower right panel. The Vieillefosse

line is indicated in gray. (c) Alignment of principal strain axes and vorticity increases with strain self-amplification: PDFs of
the cosine of the angle between the vorticity vector and the three eigenvectors of the strain-rate tensor for the same values of
α as in panel (a).

which corresponds to 1000τη in physical time, after an
initial transient of 100τη. Initial simulations of (1) re-
vealed the occurrence of rare rogue trajectories explor-
ing far-out regions of the phase space, which leads to
non-convergent statistics and may introduce numerical
instabilities in the determination of our parameters. We
identified the second-order truncation of the unclosed
terms as the origin of this shortcoming, which can be
remedied by including a nonlinear damping term. The
auxiliary term εA, which is added to (3), is constructed
to damp trajectories that diverge far from the ensem-
ble mean and is negligibly small for the major, dy-
namically most relevant part of phase space; we set
ε = −10−8((Tr(W 2) + 1/2)4 + (Tr(S2)− 1/2)4).

Figure 1(a) illustrates how the strength of strain self-
amplification controls the Gaussianity of the predicted
velocity gradient statistics. As α deviates from −1, the
single-component PDFs become non-Gaussian with in-
creasingly heavy tails. For α = −0.6, the standardized
PDFs of the velocity gradient components of our model
agree well with DNS results within seven standard de-
viations (cf. Fig. 1(a)). The match is particularly good
for the transverse components, for which our model cap-
tures the vanishing skewness and closely matches the
DNS kurtosis of 〈A4

12〉/〈A2
12〉2 ≈ 14.34 to within one per-

cent (model: 14.25). For the longitudinal components
our model underpredicts the skewness, (Model: -0.42,
DNS: -0.61), consistent with other recent models [27] and
slightly overpredicts the kurtosis (Model: 11.42 , DNS:
9.2).

Furthermore, the strain self-amplification determines
the probability of different flow topologies, as encoded
in the invariants Q = −Tr(A2)/2 and R = −Tr(A3)/3,
which capture the competition between enstrophy and
dissipation as well as their production. In the R-Q plane,
the Vieillefosse line, i.e. the zero-crossing of the discrimi-

nant of A given by (27/4)R2+Q3 = 0, plays an important
role as it separates the upper region with complex eigen-
values of A from the lower region with purely real eigen-
values. Fig. 1(b) shows the joint PDF of the standard-

ized invariants Q̂ and R̂ for different values of α and from
DNS. As α is tuned from −1.3 to −0.6, the joint PDF
first extends along the left part of the Vieillefosse line, be-
comes symmetric for Gaussian statistics (α = −1), and
finally extends along the right part of the Vieillefosse
line. This corresponds to a shift of probability from flow
regions with two compressive principal strain directions
to regions with two extensional principal strain direc-
tions [43]. For α = −0.6, our model qualitatively cap-
tures the shape of the PDF as observed in DNS (lower
right panel) and experiments [23], although the proba-
bility of velocity gradient configurations along the right
part of the Vieillefosse line is underestimated. Nonethe-
less, since our model inherently fulfills the Betchov con-
straints, the mean of our model R̂-Q̂ PDF lies accurately
at 〈R̂〉 = 〈Q̂〉 = 0 for all values of α.

Strain self-amplification also impacts another impor-
tant aspect of the the small-scale topology, the alignment
between the vorticity vector and the principal strain rate
axes. Fig. 1(c) shows the PDFs of the cosine of the angle
between the vorticity vector and the three eigenvectors
of the strain-rate tensor. Our model (with α = −0.6)
accurately captures the alignment of the vorticity with
all three eigenvectors. In particular, it captures the well-
known preferential alignment of the vorticity with the
eigenvector to the intermediate eigenvalue [23, 44, 45].
The alignment strength decreases with decreasing self-
amplification and for α = −1, when the strain self-
amplification vanishes and the model statistics are Gaus-
sian, as expected, no preferential alignment is observed.

While we showed analytically that the γ-term has no
effect on the single-time statistics, it determines tempo-
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FIG. 2. Controlling temporal correlations and particle ro-
tation rates with γ. (a) Temporal auto-correlation of strain
rate (red) and rotation rate (blue) for different values of γ
and DNS. (b) Mean square rotation rates of anisotropic par-
ticles as predicted by our model as a function of the particles’
aspect ratio. The tumbling rates (green) and spinning rates
(blue) are plotted for three different values of γ correspond-
ing to panel (a). The total rotation rate (sum of spinning and
tumbling) is plotted for γ = −1.1 in violet.

ral correlations of the velocity gradients. This can be
rationalized from the fact that γ(SW −WS) essentially
rotates the principal strain vectors about the axis given
by the vorticity vector with a rotation rate proportional
to the vorticity magnitude [26]. This directly impacts
the temporal correlation of velocity gradients and allows
to precisely control them. Figure 2(a) compares tem-
poral correlations of velocity gradients 〈Cij(t0)Cij(t0 +

τ)〉/
√
〈Cmn(t0)2〉〈Cpq(t0 + τ)2〉 (implied summation) of

our model to DNS results, where Cij = Sij or Wij . For
the DNS results, we continued our simulations with 106

Lagrangian tracer particles and collected data from the
statistically stationary state. For γ = −1.1, our model
matches the vorticity autocorrelation very well. Im-
portantly, it also captures the previously observed [46]
shorter correlation time of the rate of strain compared
to the rate of rotation, although differences occur in the
shape of the correlation function. These results show in
particular that the rotation of the strain-rate tensor as
encoded by the γ-term is responsible for a decrease of the
correlation time of the strain rate and an increase of the
rotation-rate correlation time.

Having established a model which captures the differ-
ent temporal correlations of strain and vorticity along
with the central non-Gaussian features of small-scale tur-
bulence, we can use it to predict the tumbling and spin-
ning rates of Lagrangian particles. To this end, we couple

our model to Jeffery’s equation [47], which describes the
orientational dynamics of ellipsoidal particles:

d

dt
pi = Wijpj +

λ2 − 1

λ2 + 1
(Sijpj − pipkSklpl) . (7)

Here, p denotes the particles’ symmetry axis, and λ is
the particles’ aspect ratio, i.e. the ratio of the length
along the symmetry axis to the length perpendicular to
it. The rotation of an axisymmetric particle can be de-
composed into spinning (rotation around the symmetry
axis) and tumbling (rotation around an axis perpendicu-
lar to the symmetry axis) [17], with the squared spinning

rate Ω2
p =

(
1
2ω · p

)2
, where ω is the vorticity, and the

squared tumbling rate ṗiṗi. In Fig. 2(b) the nondimen-
sionalized mean square tumbling and spinning rates as
predicted by our model are shown for different values of
γ as a function of the particles’ aspect ratio. Fig. 2(b)
shows that especially the tumbling rates of disk-like parti-
cles increase when the temporal correlations are modified
by increasing the magnitude of the coefficient γ. When
our model exhibits the most realistic correlation times,
i.e. for γ = −1.1, the rotation rates predicted by our
model agree very well with the ones observed in our DNS
and literature [17, 20] for the full range of particle shapes.
In particular, our model predicts the high tumbling rates
of disk-like particles observed in DNS and experiments.
The comparison of the results for different values of γ in
Fig. 2(a) and Fig. 2(b) indicates that the realistic auto-
correlation times of our model are crucial for an accurate
prediction of tumbling rates of suspended particles.

In summary, we have analyzed the dynamics and
statistics of velocity gradients in turbulence in the frame-
work of a minimal, physically consistent reduced-order
model. Our combined analytical and computational
analysis showed that strain self-amplification controls the
non-Gaussianity as well as the small-scale topology of the
velocity gradient dynamics, and identified the rotation
of the strain eigenvectors by the vorticity as the major
factor in determining the temporal correlations of veloc-
ity gradients. As a result, we obtained a reduced-order
model for the small scales of turbulence that captures the
different correlation times of strain and vorticity in tur-
bulence. We showed that the reduced-order model can be
used to accurately predict the orientational statistics of
suspended anisotropic particles, enabling a host of mod-
eling applications for complex particulate flows.

Based on tensor function representations theory and
the systematic implementation of physical constraints,
our closure approach explicitly uncovers the general ten-
sorial structure of the unclosed terms, which also provides
a firm foundation for future advancements. For exam-
ple, we expect that the inclusion of higher-order terms
and coefficient functions which depend on velocity gradi-
ent tensor function invariants will lead to further quan-
titative improvement. Machine learning approaches [48]
could turn out to be instrumental in achieving such im-
proved parameterizations.
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I. STRUCTURE OF UNCLOSED TERMS BASED ON TENSOR FUNCTION REPRESENTATION
THEORY

To obtain a closed statistical evolution equation for the velocity gradient tensor (Eq. (1) in the main text), the
conditional mean pressure Hessian and the conditional mean viscous Laplacian terms need to be specified. Both terms
are tensor-valued functions of the velocity gradient tensor, whose structure is constrained by statistical isotropy. For
a second-order tensorial function M which depends on the velocity gradient tensor A, statistical isotropy implies

M(QAQT ) = QM(A)QT (S1)

where Q is an arbitrary orthogonal matrix. Additional constraints arise when M is symmetric or anti-symmetric and
depends on symmetric or anti-symmetric tensorial arguments. The general structure of the tensorial function can
then be determined using tensor function representation theory [33–35, 37], which expresses the function as a linear
combination of tensorial terms (also called generators or form-invariants) with scalar coefficient functions that may
depend on scalar tensor invariants of A. In the mathematical literature representations for two kinds of functions
exist: For polynomial [49–51] and for general tensor functions [33–35, 37]. For the closure, we use representations for
general tensor functions, as these do not require assumptions about the functional form and also contain in general
fewer terms than the representations of polynomial functions [37, 38]. Based on this, the conditional traceless and
symmetric pressure Hessian takes the form:

〈H̃|A〉 = 〈H̃|S,W 〉 =

7∑
n=1

b(n)B(n) (S2)

where the B(n) are:

B(1) = S B(2) = S2 − 1

3
Tr(S2)I B(3) = W 2 − 1

3
Tr(W 2)I

B(4) = SW −WS B(5) = SW 2 + W 2S − 2

3
Tr(SW 2)I B(6) = S2W −WS2

B(7) = WSW 2 −W 2SW

and the coefficients b(n) are functions of the scalar invariants Tr(S2), Tr(S3), Tr(W 2), Tr(SW 2), Tr(S2W 2) and
Tr(S2W 2SW ). Note that there are six independent scalar invariants of S and W (and hence A), i.e. one independent
scalar invariant more than typically discussed in the turbulence literature [1, 23, 43]. This difference is rooted in the
fact that the number of invariants in an irreducible functional basis of a tensor is not necessarily equal to the number
of independent entries of the tensor, which is typically considered. Furthermore, an irreducible functional basis
is not necessarily minimal, meaning that a different representation with fewer elements might exist [36, 37]. The
irreducibility of the functional basis presented here has been explicitly proven in [36].

Similar to the conditional pressure Hessian, one can construct the most general tensor function representation
for the viscous Laplacian term. Since the function representations only hold for symmetric or anti-symmetric tensor
functions, one first has to decompose the Laplacian of A into the Laplacian of its symmetric part S and anti-symmetric
part W . We find:

〈ν∆A|A〉 = 〈ν∆S|S,W 〉+ 〈ν∆W |S,W 〉 =

7∑
n=1

c(n)B(n) +

3∑
n=1

d(n)D(n) (S3)

where the tensors for the representation of the anti-symmetric part are D(1) = W , D(2) = SW + WS, D(3) =
SW 2 −W 2S. The c(n) and d(n) are functions of the same scalar invariants as the b(n).
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FIG. S1. (a) Values of the adaptive coefficients as a function of time for a simulation with α = −0.6, f = 0.08, γ = −1.1. (b)
Empirical values of the imposed constraints for the same simulation as in (a). Dashed: imposed values, solid: actual values
during simulation. The error margins are determined as the standard deviation from the mean.

II. DERIVATION OF THE ADAPTIVE COEFFICIENTS

The closure for the velocity gradient model, as given by eqs. (2) and (3) in the main text, depends on five coefficients.
The number of independent coefficients can be reduced by non-dimensionalizing the equation of motion (Eq. (1) in
the main text) by the Kolmogorov time scale τη, which implies 〈Tr(S2)〉 = 1/2. Here and in the following 〈·〉 denotes

an ensemble average. The Betchov constraints for homogeneous turbulence, 〈Tr(A2)〉 = 0 and 〈Tr(A3)〉 = 0, can be
used to further reduce the number of parameters to a total of two independent parameters, α and γ. For the three
model coefficients fixed in this way, analytical expressions can be found. They are constructed by deriving stochastic
differential equations from the model SDE for each constrained quantity (〈Tr(S2)〉, 〈Tr(W 2)〉, 〈Tr(A3)〉) using Itô’s
formula. After averaging, one finds for example the following equation for 〈Tr(S2)〉:

d〈SabSba〉 =

〈
∂SabSba
∂Aij

(Nij + Lij)

〉
dt+

1

2

〈
∂SabSba
∂AikAjl

〉
Qijkl(0)dt (S4)

and accordingly for the other constraints. Here, Nij and Lij are the non-linear and linear terms of the FPE (eqs. (5),
(6) in the main text), respectively, and Qikjl(0) denotes the forcing covariance, detailed in section IV. Combined with
Eq. (1) in the main text, the averages can be evaluated. As for constant constraints the left-hand sides vanish, we
can solve for three of the parameters and obtain

ξ = 2〈εTr(W 2)〉 − 15

2
f2 − 4〈Tr(SW 2)〉 (S5)

δ = 2〈Tr(SW 2)〉(3α− β) + 2〈εTr(A2)〉 (S6)

β =
〈Tr(A2Ã2)〉+ a− 〈εTr(A3)〉

2〈Tr(SW 2)〉〈Tr(A2S)〉 − 〈Tr(A2W̃ 2)〉
(S7)

where a = α
(
〈Tr(A2S̃2)〉+ 6〈Tr(SW 2)〉〈Tr(A2S)〉

)
+ 2〈εTr(A2)〉〈Tr(A2S)〉 and ε is the auxiliary damping term,

discussed in the main text. These expressions are evaluated in every simulation timestep to update the coefficient
values. Fig. S1(a) shows an example of the parameter values which are dynamically obtained throughout a simulation.
Fig. S1(b) demonstrates that the constraints are indeed fulfilled to very good precision throughout the simulation.

III. SIMULATION DETAILS

The integration of the SDE (Eq. (1) in the main text) has been implemented in Python using the Euler-Maruyama
method with a time step size ∆t = 0.0002. For all simulations shown here, we have integrated an ensemble of 105
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FIG. S2. (a) Standardized PDFs of the longitudinal A11 and transverse A12 velocity gradient components for different forcing
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3

Tr(A3)

〈Tr(S2)〉3/2 and Q̂ = − 1
2
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of f . (c) Alignment of principal strain axes and vorticity. PDFs of the cosine of the angle between the vorticity vector and the
most negative, intermediate eigenvectors of the strain-rate tensor for the same values of f as in panel (a). The alignment of
the vorticity with the most positive eigenvector is very weak for all values of f . It is therefore omitted to improve the visual
clarity.

Gaussian initial conditions for 5 × 106 time steps, which corresponds to 1000τη in physical time, after an initial
transient of 100τη.

Furthermore, an integration of Jeffery’s equation (Eq. (7) in the main text) has been implemented to obtain the
rotation rates of Lagrangian particles. Initially, 104 randomly oriented symmetry axes of the particles were created
for each particle aspect ratio and then evolved with Jeffery’s equation using the Euler method, where S and W were
taken from our model simulation. The simulation of the particles was done for logarithmically spaced aspect ratios
ranging from 0.02 to 40.

IV. IMPACT OF THE FORCING AMPLITUDE

The forcing term dFij = fDijabdWab is based on tensorial Gaussian white noise dWab with statistically independent
components, and has a covariance

Qikjl(0) = f2DijabDklab = f2〈Tr(S2)〉 [4δijδkl − δikδjl − δilδjk] (S8)

which is designed to be consistent with isotropy, homogeneity and tracelessness of A [26, 29] in the model SDE (Eq. (1)
in the main text). It can be motivated from a stochastic Gaussian force term in the Navier-Stokes equation [26] and
assures stationary statistics by counteracting dissipative terms of the model. For small values of f (f ≈ 0.05) the
deterministic dynamics are only little perturbed, leading to more excursive trajectories. Larger values of f (f ≈ 0.2)
regularize the dynamics by increasing the influence of the Gaussian forcing. For large forcing amplitude f , the forcing
dominates over the deterministic dynamics of the model, leading to Gaussian statistics. Therefore, as f increases, the
tails of the component PDFs become less pronounced and the preferential alignments become weaker (see Fig. S2(a)
and (c). Furthermore, the probability density along the Vieillefosse line in the lower left quadrant of the R-Q PDF
decreases (see Fig. S2(b)). Based on a parameter scan of the forcing amplitude f and comparison with direct numerical
simulations, we set f = 0.08.

V. ANALYSIS OF THE FOKKER-PLANCK EQUATION

V.1. Gaussian solution for α = −1

The strain self-amplification, controlled by the parameter α, determines the degree of Gaussianity of the modeled
velocity gradient statistics. In fact, for α = −1, the Gaussian velocity gradient PDF

g(A) =
225
√

5

16π4〈Tr(S2)〉4
exp

(
−1

2
AikR

−1
ijklAjl

)
δ(Tr(A)) (S9)
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is an exact solution to the Fokker-Planck equation (Eq. (4) in the main text), which is consistent with the Betchov
constraints. Here, R−1ijkl = 1

〈Tr(S2)〉 [4δijδkl + δilδjk] is the pseudo-inverse of the velocity gradient covariance tensor

Rijkl = 〈AikAjl〉. The delta function stems from the incompressibility condition of the velocity field, Tr(A) = 0.
To see that (S9) solves the Fokker-Planck equation, we consider the nonlinear drift term. To this end, it is important

to note that
∂Nij

∂Aij
= 0. We then obtain

∂

∂Aij
[Nijg(A)] = Nij

∂

∂Aij
g(A)

= Nij
1

〈Tr(S2)〉
[−5Sij − 3Wij ]g(A)

=
1

〈Tr(S2)〉
[5(1 + α)Tr(S3)− Tr(SW 2) + 5βTr(SW 2)]g(A) .

(S10)

This expression vanishes for α = −1 and β = 1/5, which implies that all nonlinear drift terms cancel. Note that for
α = −1, the Betchov constraints already require β = 1/5, such that effectively only α = −1 needs to be fixed. The
Gaussian PDF (S9) solves the remaining FPE with linear drift term, if δ = 0 and ξ = − 15

2 f
2, which is consistent with

the Betchov constraints.

V.2. Independence of the single-time statistics of γ

Here we show that the single-time statistics is independent of γ under the assumption of statistical isotropy. This
allows us to control the temporal correlations in our model through γ without changing the single-time statistics. For
isotropic statistics, the velocity gradient PDF is a scalar function of the six isotropic invariants of A [37]:

f(A) = F
(
Tr(S2),Tr(S3),Tr(W 2),Tr(SW 2),Tr(S2W 2),Tr(S2W 2SW )

)
. (S11)

For the γ-term in the Fokker-Planck equation (Eq. (4) in the main text), we therefore obtain

∂

∂Aij
[γ(SikWkj −WikSkj)f(A; t)] = γ(SikWkj −WikSkj)

∂

∂Aij
f(A; t)

= γ(SikWkj −WikSkj)

6∑
n=1

∂Xn

∂Aij

∂F (A)

∂Xn

(S12)

where the Xn are the six scalar invariants listed above. One can now straightforwardly compute that the tensor
contraction γ(SikWkj −WikSkj)

∂Xn

∂Aij
= 0 term by term, which shows that the γ-term vanishes in the Fokker-Planck

equation.
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