Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Emergence and melting of active vortex crystals

MPG-Autoren
/persons/resource/persons216602

James,  Martin
Max Planck Research Group Theory of Turbulent Flows, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons250669

Suchla,  Dominik Anton
Max Planck Research Group Theory of Turbulent Flows, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons192996

Wilczek,  Michael
Max Planck Research Group Theory of Turbulent Flows, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

2005.06217.pdf
(Preprint), 5MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

James, M., Suchla, D. A., Dunkel, J., & Wilczek, M. (2021). Emergence and melting of active vortex crystals. Nature Communications, 12: 5630. doi:10.1038/s41467-021-25545-z.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-00B0-1
Zusammenfassung
Melting of two-dimensional (2D) equilibrium crystals, from superconducting
vortex lattices to colloidal structures, is a complex phenomenon characterized
by the sequential loss of positional and orientational order. Whereas melting
processes in passive systems are typically triggered by external heat
injection, active matter crystals can self-assemble and melt into an active
fluid by virtue of their intrinsic motility and inherent non-equilibrium
stresses. Emergent crystal-like order has been observed in recent experiments
on suspensions of swimming sperm cells, fast-moving bacteria, Janus colloids,
and in embryonic tissues. Yet, despite recent progress in the theoretical
description of such systems, the non-equilibrium physics of active
crystallization and melting processes is not well understood. Here, we
establish the emergence and investigate the melting of self-organized vortex
crystals in 2D active fluids using an experimentally validated generalized
Toner-Tu theory. Performing hydrodynamic simulations at an unprecedented scale,
we identify two distinctly different melting scenarios: a hysteretic
discontinuous phase transition and melting through an intermediary hexatic
phase, both of which can be controlled by self-propulsion and active stresses.
Our analysis further reveals intriguing transient features of active vortex
crystals including meta-stable superstructures of opposite spin polarity.
Generally, these results highlight the differences and similarities between
crystalline phases in active fluids and their equilibrium counterparts.