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1 Introduction

The amplituhedron proposal of planar N =4 SYM [1, 2] is a novel reformulation which only

uses positivity conditions for all physical and some auxiliary spurious poles to construct

the amplitude or integrand. For given (n, k, L) where n is the number of external particles,

(k+2) is the number of negative helicities and L is the loop order, the most generic loop

amplituhedron is defined via

Y I
α = CαaZ

I
a , LI(i)α = D(i)αaZ

I
a , (1.1)

here Cαa is the (k×n) positive Grassmannian encoding the tree-level information and

D(i)αa is the (2×n) positive Grassmannian with respect to the i-th loop, and ZIa is the

kinematical data made of n generalized (k+4)-dimensional momentum twistors, which also

obeys positivity as

〈Za1 . . . Zak+4
〉 > 0 for a1 < . . . < ak+4. (1.2)

Based on these notions, we have 〈Y ZiZi+1ZjZj+1〉>0, and the rest physical poles involving

the loop part also must be positive:

〈Y L(i)ZjZj+1〉 > 0, 〈Y L(i)L(j)〉 > 0. (1.3)

To pedagogically investigate this object, we often separately consider the “pure loop part”

of which k=0, namely the MHV sector [3, 4], in particular the 4-particle case (n=4) has

been extensively understood up to high loop levels [5, 6] and can be compared to the known

results from 2-loop to 10-loop level [7, 8], and the “pure tree part” of which L=0 [9–11], as

well as the simplest nontrivial mixture of these two: the 1-loop NMHV case (k=1, L=1)

treated in [12].
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Below we will focus on the 2-loop MHV amplituhedron determined by the sign flips [13]

plus a single mutual positive condition, and the relevant background of its integrand can

be found in [14–16]. There are also interesting investigations of loop amplituhedron and

the integrated results [17, 18].

Back to the specified object of interest, now we continue to elaborate following the

general definition above. As k = 0, there is no Y = C ·Z part, and L = 2 gives two

L = D ·Z parts, each of which individually obeys physical constraint (note the twisted

cyclicity Zn+1=−Z1 for k=0)

〈L(i)ZjZj+1〉 > 0, (1.4)

and together they obey the mutual positive condition

〈L(1)L(2)〉 > 0. (1.5)

First, to triangulate the trivial 1-loop MHV amplituhedron and identify each cell, we need

to impose the sign-flip constraint [13], namely in the sequence (defining L(1) ≡ AB and

L(2)≡CD below)

〈AB12〉+ 〈AB13〉± 〈AB14〉± . . . 〈AB1, n−1〉± 〈AB1n〉+, (1.6)

while the head 〈AB12〉 and tail 〈AB1n〉 are both positive, the entire sequence has two sign

flips, so there are (n−2)(n−3)/2 possibilities. Explicitly, if the two sign flips occur at

. . . 〈AB1i〉+ 〈AB1, i+1〉− . . . 〈AB1j〉− 〈AB1, j+1〉+ . . . (1.7)

with 2≤ i<j≤n−1, we can parameterize L(1)=AB as

A = Z1 + x1Zi + w1Zi+1, B = −Z1 + y1Zj + z1Zj+1, (1.8)

which satisfies physical constraint 〈ABZaZa+1〉>0 and the sign-filp constraint, similar for

L(2)=CD:

C = Z1 + x2Zk + w2Zk+1, D = −Z1 + y2Zl + z2Zl+1, (1.9)

where x1, w1, y1, z1 and x2, w2, y2, z2 are all positive variables. Then, the nontrivial mutual

positive condition of major concern is

〈L(1)L(2)〉 = 〈ABCD〉 > 0 (1.10)

for each composite 2-loop cell made of any two 1-loop cells, so there are (n−2)2(n−3)2/4

combinations.

Note that, there are two types of triangulation. The first type is the sign-flip triangu-

lation to carve out each 1-loop cell with a specific parameterization, while the second is the

triangulation with respect to positive variables of each cell, identical to those extensively

manipulated in the 4-particle case which has only one cell. In this work the triangulation

mentioned is the second type, and we will see how the idea of positive infinity [6] can free

us from this tedious task first at 2-loop, in an extremely simple way.
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2 Minimal review of positive d log forms and dimensionless ratios

To get familiar with the mathematical concepts we will extensively use, let’s first give a

minimal review of d log forms in positive geometry. As defined in [2], for a positive variable

x without further restriction, we know its d log form is

dx

x
(2.1)

which has a singularity at x= 0. If we require x>a, as the singularity is shifted to x=a,

then the form is
dx

x− a
, (2.2)

on the other hand, the form for x<a is defined as the complement of x>a (dropping the

measure dx):
1

x
− 1

x− a
=

a

x(a− x)
(2.3)

which naturally has two singularities at x=0 and x=a. This equality is also known as the

completeness relation [5], if we reshuffle it as

1

x− a
+

a

x(a− x)
=

1

x
, (2.4)

furthermore if we drop the measure d log x=dx/x instead of dx, we get the completeness

relation
x

x− a
+

a

a− x
= 1 (2.5)

in terms of dimensionless ratios [6], which is a more natural way to characterize positive

d log forms. Here x and a are treated on the same footing (a also can be a variable), and

the sum is always unity.

As done in [5], we can generalize these conditions to
∑

n xi>a and
∑

n xi<a, and the

corresponding dimensionless ratios also sum to unity:∑
n xi∑

n xi − a
+

a

a−
∑

n xi
= 1. (2.6)

To inductively prove the dimensionless ratio of
∑

n xi>a is∑
n xi∑

n xi − a
, (2.7)

we can first assume it holds for
∑

n−1 xi>a. Then depending on
∑

n−1 xi≷a, we require

simply xn>0 or xn>a−
∑

n−1 xi to satisfy
∑

n xi>a, which gives∑
n−1 xi∑

n−1 xi − a
× 1 +

a

a−
∑

n−1 xi
× xn

xn −
(
a−

∑
n−1 xi

) =

∑
n xi∑

n xi − a
(2.8)

as expected. And a also can be generalized to a sum of positive variables, then the dimen-

sionless ratio of
∑

n xi>a=
∑

m yj is ∑
n xi∑

n xi −
∑

m yj
, (2.9)
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which treats
∑

n xi and
∑

m yj on the same footing. If any xi goes to positive infinity [6],

the ratio above trivially becomes 1, as any xi→∞ trivializes
∑

n xi−
∑

m yj>0.

The physical meaning of positive infinity is also transparent, for example, if we look

at A=Z1+x1Zi+w1Zi+1 in (1.8), while x1 = 0 means A is spanned by Z1 and Zi+1 only,

x1→∞ leads to A→∞Zi. Recall that a momentum twistor is invariant under rescaling, so

this is equivalent to setting A=Zi. In fact, using this cut upon positive infinity helps cover

configuration A = Zi without changing the parameterization into A = x1Z1+Zi+w1Zi+1

and setting x1=w1=0. As we will see, positive infinity is an indispensable notion for fully

understanding the cut structure of the loop amplituhedron.

Now we are ready to move forward, to explore the extraordinary simplicity hidden in

the 2-loop MHV amplituhedron.

3 Triangulation-free trivialization for linear polynomials

For a single positive condition defining (a cell of) the 2-loop MHV amplituhedron, it’s an

ubiquitous fact that the numerator part of its relevant d log form is always “maximally

positive”, instead of just positive. For example, in the 4-particle case, if we look at the

dimensionless ratio of its d log form

D+
12

D12
=

x2z1 + x1z2 + y2w1 + y1w2

(x2 − x1)(z1 − z2) + (y2 − y1)(w1 − w2)
(3.1)

which is the nontrivial factor in its loop integral (superscript ‘+’ is the “positive monomials

extraction”) ∫
dx1
x1

dy1
y1

dz1
z1

dw1

w1

dx2
x2

dy2
y2

dz2
z2

dw2

w2
× D+

12

D12
, (3.2)

obviously D+
12 is the maximally positive part of D12, namely the term-wise positive poly-

nomial including every positive term in D12. This pattern also applies to all n≥5 particle

cases, and usually the proof must be done case by case with triangulation. We are often

annoyed by the fact that, the tedious triangulation is inevitable but still this process leaves

no trace in the final sum, which however means the sum is correct. This subtle phenomenon

motivates us to circumvent the triangulation, and maybe it is possible to redefine positive

conditions that characterize the generic multi-loop MHV amplituhedron in this way.

First for a single positive condition, so far all cases we have encountered are linear in

all variables. So we can assume this polynomial takes a not-so-general form as

P ({xi}, {yj}, {zk}) = P0 ({yj}, {zk}) +
∑

xi Pi ({yj}, {zk}) > 0, (3.3)

where {xi}, {yj}, {zk} are three subsets of all positive variables, and P0 and Pi are inde-

pendent of any xi. Such an expansion is always possible, and we can further expand Pi as

Pi ({yj}, {zk}) = Pi,0 ({zk}) +
∑

yj Pi,j ({zk}) . (3.4)

Obviously, this nested expansion can be done for as many levels as needed, while this not-

so-general form has only three levels of expansion but it is enough for an inductive proof.
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Let’s give some examples:

P = 1− (x + y + z), Q = 1− x(1− y(1− z)), R = (1− x)(1− y)(1− z), (3.5)

all of these are linear polynomials of level 1, 3, 3 respectively. Now assuming the positive

sub-condition

Pi = Pi,0 +
∑

yj Pi,j > 0, (3.6)

we want to determine its dimensionless ratio

P ′i
Pi

. (3.7)

First, P ′i must also be linear in {yj}, because a y2j term will render this ratio diverge at

yj =∞, so will a 1/yj term at yj =0. Recall that when the positive condition is trivialized,

this ratio must be 1. Therefore we can take the following ansatz

P ′i
Pi

=
P ′i,0 +

∑
yj P

′
i,j

Pi,0 +
∑

yj Pi,j
, (3.8)

then if all yj =0, we have a simplified ratio

P ′i
Pi

=
P ′i,0
Pi,0

=
P+
i,0

Pi,0
. (3.9)

Note that Pi,0 is of level one without further nontrivial entanglement as assumed, for

example

Pi,0 = 1−
∑

zk, (3.10)

which trivially leads to P ′i,0 = P+
i,0, as we have proved via (2.9) in the previous section.

Next, inspired by the trick of positive infinity in [6], each yj =∞ also leads to P ′i,j =P+
i,j .

Since P+
i,0, P

+
i,j are independent of any yj , we must have

P ′i
Pi

=
P+
i,0 +

∑
yj P

+
i,j

Pi,0 +
∑

yj Pi,j
=

P+
i

Pi
, (3.11)

again this “prime” operation is actually the positive monomials extraction. Because the

derivation above is inductive, similarly for

P = P0 +
∑

xi Pi = P0 +
∑

xi

(
Pi,0 +

∑
yj Pi,j

)
> 0, (3.12)

we also have
P ′

P
=

P+
0 +

∑
xi P

+
i

P0 +
∑

xi Pi
=

P+

P
, (3.13)

which finishes the clean proof of the dimensionless ratio for a linear P of any levels of

nested expansion.

The physical meaning of this proof is, given a generic ansatz P+/P based on extensive

known results we find that it is the only legal quantity that satisfies the correct cut structure

simplified by cuts at either zero or infinity, and here positivity is the only dominating

principle. As we have explained in the previous section, cuts upon positive infinity are

equivalent to conventional cuts upon zero after reparameterization.
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4 2-loop MHV amplituhedron revisited

Now for a generic cell of the 2-loop MHV amplituhedron [4, 13], from the parameterization

A = Z1 + x1Zi + w1Zi+1, B = −Z1 + y1Zj + z1Zj+1,

C = Z1 + x2Zk + w2Zk+1, D = −Z1 + y2Zl + z2Zl+1,
(4.1)

we see the mutual positive condition

〈ABCD〉 = 〈Z1+x1Zi+w1Zi+1,−Z1+y1Zj+z1Zj+1, Z1+x2Zk+w2Zk+1,−Z1+y2Zl+z2Zl+1〉 > 0

(4.2)

is a linear polynomial, and it can have maximally four levels. Let’s see a concrete example

by choosing

i = 2, j = 8, k = 4, l = 6, (4.3)

then this quantity becomes

〈ABCD〉= 〈Z1+x1Z2+w1Z3,Z1+x2Z4+w2Z5,−Z1+y2Z6+z2Z7,−Z1+y1Z8+z1Z9〉,
=C+x1(−C2+x2(−C2,4+y2C2,4,6+z2C2,4,7)+w2(−C2,5+y2C2,5,6+z2C2,5,7))

+w1(−C3+x2(−C3,4+y2C3,4,6+z2C3,4,7)+w2(−C3,5+y2C3,5,6+z2C3,5,7)) ,

(4.4)

where the positive determinants are defined as

C = 〈Z1, x2Z4+w2Z5, y2Z6+z2Z7, y1Z8+z1Z9〉,
Ci = 〈Z1, Zi, y2Z6+z2Z7, y1Z8+z1Z9〉,

Ci,j = 〈Z1, Zi, Zj , y1Z8+z1Z9〉,
Ci,j,k = 〈Zi, Zj , Zk,−Z1 + y1Z8+z1Z9〉,

(4.5)

we see that it actually has three levels, since Ci,j,k is trivially positive and needs not expand

as a fourth. Then we can immediately apply the proof in the previous section to show that

its dimensionless ratio is

〈ABCD〉+

〈ABCD〉
, (4.6)

note that if we try to prove this result with triangulation, it will be extremely tedious

already for the 2-loop case, as we have to handle complicated shifting and intersecting

relations in three copies of 2-dimensional planes spanned by variables (x1, w1), (x2, w2)

and (y2, z2). Since such a proof holds for generic i, j, k, l, all d log forms corresponding to

various cells of the 2-loop MHV amplituhedron are trivialized and free of the case-by-case

triangulation.
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5 Proof in [4] revised

However, the proof in [4] using triangulation also seems clean (see its appendix B). Now

we explain why this proof should be revised while its conclusion still holds. There, the

positive condition of combination i < k < l < j is reorganized as (the arguments indicate

how a, b, c, d, e depend on z2, w1, x1, w2, y2)

〈ABCD〉 = a(w1, x1, w2) z2 − b(z2, y2)w1 − c(z2, w2, y2)x1 − d(w1)w2 + e(w1, x1, w2) y2,

(5.1)

then the subsequent discussion continues as if these a, b, c, d, e were all constants. We find

it problematic, because this is equivalent to rescaling z2, w1, x1, w2, y2 by five constants

respectively, but the Jacobian of this rescaling is not trivially 1. So why is the conclusion

still correct?

The subtle secret here is that though the rescaling is illegal, a, b, c, d, e are still positive.

So pretending that they were constants just gives us the same result

a z2 + e y2
a z2 − bw1 − c x1 − dw2 + e y2

=
〈ABCD〉+

〈ABCD〉
, (5.2)

while the correct logic is not so trivial. Without the trick of positive infinity, we will have

a tough work of triangulation to do. Now we find an even cleaner and also more general

proof for this neat result.

6 An example of quasi-linear polynomials

Besides linear polynomials, we would like to go further and take a glance at an interesting

generalization: an example of the quasi-linear polynomials, which is a linear polynomial

times an overall positive factor, though we will not explore this category systematically as

we have done before.

In this case, the problem originates from a 3-loop example proved in [5] (namely T8)

which has three positive conditions:

z1 + c12 > z2, z1 + c13 > z3, z2 + c23 > z3, (6.1)

besides z1, z2, z3, here c12, c13, c23 are also treated as independent positive variables (namely

intermediate variables introduced in [5]). Using ordinary triangulation, we have known its

dimensionless ratio is

(z1 + c12)(z1 + c13)(z2 + c23)− z1z2z3
(z1 + c12 − z2)(z1 + c13 − z3)(z2 + c23 − z3)

, (6.2)

now let’s see how the new proof reproduces this result.

First, since the new proof can only handle a single positive condition, we have to

trivialize two out of three by defining some convenient positive variables as below:

z2 ≡
s

1 + s
(z1 + c12), z3 ≡

t

1 + t
(z1 + c13), (6.3)

– 7 –
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obviously, when s ranges from 0 to ∞, z2 naturally ranges from 0 to (z1+c12), and similar

for t and z3. It is easy to find their reverse transformations, given by

s =
z2

z1 + c12 − z2
, t =

z3
z1 + c13 − z3

, (6.4)

and clearly this change of variables is non-linear. In terms of s, t, the third condition

becomes
s

1 + s
(z1 + c12) + c23 −

t

1 + t
(z1 + c13) > 0, (6.5)

or equivalently

c23 + (c12 + c23 + z1) s + ((c23 − c13 − z1) + (c12 + c23 − c13) s) t

(1 + s)(1 + t)
> 0. (6.6)

Note the numerator is of the form (A(s)+B(s)t) as A,B do not depend on t, which is

linear in all variables and separated properly as (3.3). Now forgetting the positive denom-

inator, we can safely use the new proof for this quasi-linear polynomial and obtain the

dimensionless ratio

R8 =
c23 + (c12 + c23 + z1) s + (c23 + (c12 + c23) s) t

c23 + (c12 + c23 + z1) s + ((c23 − c13 − z1) + (c12 + c23 − c13) s) t
, (6.7)

multiplied by the Jacobian transformed from (s, t) back to (z2, z3) and factors from d log

forms, it is then

∂(s, t)

∂(z2, z3)

z2 z3
s t

R8 =
(z1 + c12)(z1 + c13)(z2 + c23)− z1z2z3

(z1 + c12 − z2)(z1 + c13 − z3)(z2 + c23 − z3)
(6.8)

as expected. Furthermore, in [5] there are other seven d log forms (namely T1 . . . T7) that

can be obtained by flipping cij to −cji in the denominator and setting cij to zero in the nu-

merator, which exactly reflects the logic of the new proof as the numerator always collects

positive terms only.

This example also provides a tentative approach to extend the triangulation-free triv-

ialization to the cases with multiple positive conditions, as will be discussed more in the

next section. But of course, we should note this example is a much simpler case in the

context of 4-particle amplituhedron, as restricted to the ordered subspace X(123) in which

x1 <x2 <x3. In general, n≥ 5 particle cases at 3-loop will have various combinations of

1-loop cells in terms of three sets of loop variables, so the positive conditions are no longer

uniform, and they may have more complicated nested expansions.

7 Outlook

The discussion above is also a key motivation to develop a triangulation-free approach,

otherwise even the 3-loop work will be overwhelmingly difficult. The luxurious ambition

is to extend the 2-loop proof to the all-loop, generic n-particle MHV amplituhedron, or

directly redefine this geometric object with positivity but without the annoying triangula-

tion. Here, we can easily trivialize positivity by evaluating the integral at zero or positive

– 8 –
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infinity with respect to some variables, however, unlike the 2-loop case, its challenge is to

reconstruct the correct integrand or dimensionless ratio from multiple positive conditions.

How to find a minimal set of such “cuts” that can fully cover every facets of the object,

requires a further geometric understanding, especially about the shifting and intersecting

relations among multiple higher dimensional planes representing the positive constraints.

Naturally, the 4-particle amplituhedron at 3-loop is a simplest nontrivial testing ground

for this goal of which the result has been well known from various perspectives, and more

importantly, in the 4-particle case, the positive conditions are always uniform and this

symmetry is partly maintained upon the cuts. In fact, the Mondrian reduction [6] is a

special type of application of these cuts, but we must know the DCI integral basis first in

that diagrammatic context, and now we would like to derive the basis as well from a more

algebraic perspective, as for the generic n≥5 particle case there is no simple insight similar

to the Mondrian diagrammatics. In the future, we will focus on the 4-particle case up to

higher loops as usual, as well as the tentative derivation of the 5-particle case at 3-loop,

using the triangulation-free approach.
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