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Abstract: Geodesic acoustic modes (GAMs) are a fundamental part of turbulence and
zonal-flow dynamics in tokamaks. They exhibit simple yet non-trivial dispersive and
dissipative properties. In linear numerical simulations, they are often initialized in the
form of (e.g. Gaussian) packets which evolve in time. Depending on the parameters,
dispersion and damping can act on comparable time scales during the GAM evolution.
Wigner-function methods developed in the frame of non-Hermitian quantum mechanics
are shown to be applicable to damped geodesic oscillations. In this approach, the standard
approximation of “weak damping”, often introduced for the treatment of plasma waves, is
not needed. The method requires that the properties of the plasma do not vary significantly
across the width of the packet (i.e. in the radial direction), so that a paraxial expansion of
the underlying equations around the centre of the packet can be applied. For a quadratic
Hamiltonian, the equations for the Wigner function governing the packet in the paraxial
limit are shown to be equivalent to the equations of paraxial WKB theory (usually applied
to the description of high-frequency wave beams in plasmas), with the real Hamiltonian
replaced by the corresponding complex one. Analytic solutions are derived in particular
cases and shown to agree with the results of global gyrokinetic simulations.

Keywords: Plasma physics, magnetic confinement, WKB approximation, complex eikonal,
geodesic acoustic modes

1 Introduction

Geodesic Acoustic Modes (GAMs) are axisymmetric plasma oscillations originating from
the fact that zonal E × B flows are not divergence-free in tokamak geometry. Their
compression leads to an oscillation, first described by Winsor et al. [1] using the equations
of magnetohydrodynamics, which has a typical frequency of the order of the sound speed
divided by the major radius of the tokamak. Since this seminal work, the interest in
GAMs increased considerably, in particular in the context of the dynamics of turbulence
and zonal flows [2, 3, 4, 5], as reviewed in [6]. The theoretical treatment was further refined
by including finite-β and collisionality effects in fluid analyses [7, 8]. A variety of kinetic
effects is also crucial for the GAM excitation, dispersion and damping and the interested
reader is referred to [9] for a compact overview. In particular, the importance of a kinetic
treatment of the electrons was discussed e.g. in [10, 11, 12, 13, 14, 15]. Meanwhile,
gyrokinetic simulations can be considered as a standard tool to tackle both linear and
nonlinear GAM-related problems [16, 17, 18, 19, 20, 21].

Due to their role in turbulence regulation, a significant body of work on GAMs is
available on the experimental side as well, see e.g. [22, 23, 24, 25, 26, 27, 28, 29, 30] and
references therein.

The linear properties of the GAM oscillation, which are of particular relevance for this
paper, and primarily the GAM dispersion relation, have been investigated in detail in a
kinetic frame in e.g. [31, 32, 33]. In this context, also the radial propagation of the GAM
has been investigated [34, 35, 36, 37], including the role of the nonlinear drive [38]. An
important aspect of the GAM dynamics is that they can be heavily (Landau) damped, this

1



damping being dependent on various parameters and notably on the radial wavevector kr
through finite-orbit effects [31, 16, 39].

The relatively simple nature of the GAM oscillation, and the possibility of studying
it–at least theoretically–as a radially localized wave packet, make it a well-suited test-
bed for the application of paraxial techniques, which in the context of nuclear fusion
are mainly applied to the description of focused and/or collimated wave beams used for
plasma heating, see e.g. [40, 41, 42] and particularly [43, 44, 45, 46], where an approach
very close to that of this paper is adopted. In this respect, it should be stressed that low-
frequencies eigenmodes in tokamaks (which include non-Hermitian dispersion functions of
interest in this paper, see below) can be described in terms of propagating wave packets
as well, see [47] and references therein, a method which can be applied when the group-
velocity component perpendicular to the magnetic field is much smaller than that in
parallel direction, like in the case of lower hybrid waves [48]. A complex generalization of
this approach has been proposed to capture asymmetries in the two-dimensional structure
of the eigenmode [49]. Interestingly, also the paraxial WKB method mentioned above were
applied to low-frequency eigenmodes in early work [50].

Specifically for the description of the linear evolution of GAMs, in the past years
methods of (complex) geometrical optics have been considered successfully in [36, 37]. In
particular, it was shown that the radial dependence of the plasma parameters (temperature
in particular) leads to an evolution in time of kr, which impacts both the dispersive and
the dissipative properties of the oscillation, leading to a radial displacement of the packet
on one side and to an enhanced damping on the other side [51, 52].

In the papers quoted above [36, 37], the focus was on the dispersive properties of the
oscillation rather than on dissipation. Less than a decade ago, a theoretical description of
the evolution of Gaussian packets subject to significant damping has been developed in the
frame of the semiclassical (WKB) analysis of coherent quantum states in non-Hermitian
Hamiltonian systems [53, 54], based on the Wigner-function formalism. Since a paraxial
wave equation possesses the same form as the Schrödinger equation, it can be surmised
that a similar approach can be applied also to problems of plasma physics, provided that
the packet is sufficiently localized in space so that a paraxial expansion is justified. Inter-
estingly, while the Wigner-function formalism gives a description of the wave through real
equations in phase space, an equivalent description (at least for quadratic Hamiltonians)
can be obtained in configuration space in terms of a complex WKB formalism, as shown
in [54]. The corresponding equations coincide with those of the paraxial WKB method
as developed for the propagation of high-frequency wave beams in plasmas [43, 44], with
two fundamental differences. First, the “coordinate along the ray path”, which is a space
coordinate in wave-beam applications, is replaced by the time in the case of wave pack-
ets. Second, the Hamiltonian employed to trace the packet becomes complex, while in
plasma applications the Hamiltonian is real and absorption does not influence the beam
propagation, but appears as a damping on the trajectory determined through the real
Hamiltonian (or in other words through the Hermitian part of the dielectric tensor). The
equivalence of the two methods, which can be checked by explicit calculation, has its roots
in the structure of the underlying equations; the reader is referred to [54] for more details.

The main goal of this paper is to demonstrate the applicability of the approach de-
veloped in [53, 54] outside quantum mechanics, considering the simple case of the GAM
oscillation in a tokamak. The results obtained through either the (complex) paraxial WKB
or the Wigner-function approaches are shown to agree very well with numerical gyrokinetic
simulations, which entail a more complete description of the GAM physics. After a brief
introduction on the basic properties of the GAM dispersion relation (Sec. 2), the relevant
paraxial equations are discussed in Sec. 3 and explicit analytic solutions are derived in
particular cases in Sec. 4 and 5. The solutions obtained with both methods mentioned
above are shown to be equivalent. The width of the GAM packet is found to be char-
acterized by two typical time scales, the dispersion leading to a time constant tR which
is the equivalent of the Rayleigh range in optics, and dissipation leading to a diffusion
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time tD, for which a simple physics interpretation is given. The analytic predictions are
compared to linear gyrokinetic simulations performed with the global particle-in-cell code
ORB5 [55, 56, 57] in Sec. 6. Conclusions are drawn in Sec. 7. Appendix A provides a
summary of some basic definitions related to the Wigner-Weyl approach, while the deriva-
tion of the paraxial equations is reviewed in Appendix B and the relation between the
Gaussian-envelope descriptions in both methods is briefly discussed in Appendix C.

2 The dispersion relation of Geodesic Acoustic Modes

The dynamics of a Gaussian GAM packet can be treated in the frame of paraxial theory,
provided that its radial extension is smaller than the region over which the plasma param-
eter vary significantly. The GAM dispersion relation will be taken in the form (see e.g.
[33] and references therein):
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In the previous equation, τe = Te/Ti is the electron-to-ion temperature ratio, R0 is the ma-
jor radius of the tokamak, ρi is the ion Larmor radius and α1 is a τe-dependent coefficient
of order one [32, 33] which changes sign around τe ≈ 6,
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In a homogeneous medium, the ion thermal speed vth,i and the safety factor q are constant,
otherwise they are a function of the minor-radius coordinate r. In the cases studied here,
krρi ≪ 1 for kr within the spectral width of the packet. This limit has been used to
Taylor-expand the square root in the last factor in Eq. (1).

For the GAM damping rate, we employ a useful formula [31] which takes into account
lowest-order finite-orbit-width corrections in the limit krρi ≪ 1/q2 ≪ 1:

γ =
q2
√
π

2

vth,i
qR0

[
1 +

2(23 + 16τe + 4τ2e )

q2(7 + 4τe)

]−1 {[
ω̂4
G + (1 + 2τe)ω̂

2
G

]
exp

(
−ω̂2

G

)
(4)

+
1

4

[
ω̂6
G

128
+

1 + τe
16

ω̂4
G +

(
3

8
+

7τe
16

+
5τ2e
32

)
ω̂2
G

]
exp

(
−ω̂2

G/4
)(qvth,ikr

Ωi

)2 }
,

where ω̂G = qR0ω0/vth,i. Here and in the following, to draw a clearer connection with
previous work [53, 54], we take the convention that positive values of γ correspond to
damping. Hence, the imaginary part of the dispersion relation exhibits a similar functional
dependence on the variables r and kr as the real part of the dispersion relation (1) which
allows us to write for the complex frequency ω = ω − iγ = F(r) + G(r)k2r/2, where the
complex functions F and G account for the dependences expressed by Eq. (1) for the real
part and Eq.(4) for the imaginary part of ω. Although more complete expressions for the
GAM dispersion relation are available in the literature, see for example [32], in this paper
we will use the relatively simple expressions (1,4) reported above. This has basically
two reasons. One the one side, it has been shown in [36] that these expressions are in
good agreement with numerical simulations (at least for the parameters we will consider,
see also discussion in Sec. 6). Secondly, this choice for the dispersion relation (i.e. for
the Hamiltonian used below), which is a polynomial of second degree in the wavevector
coordinate kr, simplifies considerably the analysis presented in Sec. 4 and 5 and allows
us to compare directly the Wigner-function approach with the complex paraxial WKB
method, as mentioned in Sec. 1.
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3 Paraxial equations

The derivation of the paraxial equations for both the radial electric field and the corre-
sponding Wigner function is reviewed in Appendix B. In this section, we report and briefly
comment the resulting equations, which are later applied to the case of GAM oscillations.

The equations for the evolution of the GAM packet follow from the Hamiltonian

H = H − iΓ = F(r) + 1

2
G(r)k2r = ω − iγ (5)

with the complex functions F and G introduced above. No assumption about the size
of Γ as compared to H is made. As noted above, only the radial coordinate r appears
in Eq. (5) i.e. the system is one-dimensional in space (and the corresponding phase-space
two-dimensional). The strong analogy between the treatment developed in the following
and the propagation of a wave beam relies on the fact that in both cases the evolution of
the wave can be tracked through a “parameter along the beam trajectory”, which in the
present case is related explicitly to time rather than to space, as mentioned in Sec. 1 and
discussed below.

3.1 Paraxial WKB equations

The paraxial WKB (pWKB) method looks for a solution of the relevant wave equation in
the form

ψ(t, r) = A(t)ei[k0(t)(r−r0(t))+
1

2
s(t)(r−r0(t))

2]−i ωt. (6)

The centre (k0, r0) of the packet obeys equations (B.7) derived in Appendix B:

dr0
dt

= Hk
dk0
dt

= −Hr, (7)

while its transverse structure follows Eq. (B.8)

ds

dt
= −Hrr − 2Hkrs−Hkks

2, (8)

which is a complex Riccati equation for the beam envelope s = s+iφ. Here, φ > 0 is related
to the width w of the packet by φ(t) = 2/w2(t), while s is connected to the curvature
of the wave front in the (t, r) space. In the previous equations, partial differentiation
with respect to a given variable is indicated by the corresponding subscript. Finally the
equation (B.9) for the amplitude reads

dA

dt
= A

[
i

(
k0

dr0
dt

)
− 1

2

dHk

dr

]
, (9)

where the last term is related to the divergence of the group velocity, with dHk/dr =
Hkr +Hkks. The equation for the complex amplitude A = |A| exp(iϕ) can be split into
the following two equations

d|A|
dt

= −1

2
Re

[
dHk

dr

]
|A| (10)

dϕ

dt
= −1

2
Im

[
dHk

dr

]
. (11)

Note that the paraxial theory as derived by Pereverzev from an asymptotic analysis of
the Maxwell equations is valid for “weak” absorption, i.e. the anti-Hermitian part of the
dielectric tensor is ordered small (by a factor κ−1 ≡ c/ωL ≪ 1) with respect to the
Hermitian part [44] (here c is the speed of light and L the inhomogeneity scale of the
medium). In the derivation presented in Appendix B, no assumption concerning the
imaginary part of H has been made. For this reason the dissipation does not appear
explicitly on the right-hand side of Eq. (9). This point is addressed further in Sec. 4.4.
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3.2 Paraxial Wigner function

In Appendix B, the evolution equations for the Wigner transform of a Gaussian packet are
derived following [53]. The result is a set of paraxial equations for the quantities z0, G and
α which appear in W (z, t) ∼ α(t) exp[−(z−z0(t)) ·G(t)(z−z0(t))−2γt], where z = (kr, r)
is the phase-space variable associated to the radial direction, and the symmetric matrix
G is related to the Gaussian parameters s and φ used above by (see Appendix C)

G =

(
Gkk Gkr

Gkr Grr

)
=

(
1/φ −s/φ
−s/φ s2/φ+ φ

)
(12)

The (real) equations to be solved for a reconstruction of the wave packet read for the
centre of the packet (they reduce to the standard Hamilton equations for Γ→ 0):

dk0
dt

= −Hr − ΓkGrr + ΓrGkr (13)

dr0
dt

= Hk + ΓkGkr − ΓrGkk (14)

for the Gaussian envelop (G matrix):

dG

dt
=

(
2HkrGkk − 2HkkGkr −HkkGrr +HrrGkk

−HkkGrr +HrrGkk 2HrrGkr − 2HkrGrr

)
+ (15)

(
Γkk(1−G2

kr) + 2ΓkrGkkGkr − ΓrrG
2
kk Γkr(1 +G2

kr +GkkGrr)− ΓkkGkrGrr − ΓrrGkkGkr

Γkr(1 +G2
kr +GkkGrr)− ΓkkGkrGrr − ΓrrGkkGkr Γrr(1−G2

kr) + 2ΓkrGkrGrr − ΓkkG
2
rr

)

and for the amplitude:

1

α

dα

dt
= −1

2
(ΓrrGkk − 2ΓkrGkr + ΓkkGrr) . (16)

Since we single out the dependence on the (complex) frequency in the Gaussian ansatz,
the term −2Γ which appears on the right-hand side of the amplitude equation in [53] does
not appear in Eq. (16).

It is shown below that both the pWKB method and the Wigner-function approach lead
to the same results, if the initial conditions are chosen consistently. It is interesting to note
that only two of the three equations (15) for the symmetric matrix G are needed in order
to reconstruct the two physical quantities s and φ (or the complex quantity s) of pWKB
theory. As noted first by Littlejohn, this redundancy in the Wigner-function approach
appears to be related to the fact that “Wigner functions are capable of representing both
pure and mixed states” [58] (while the Schrödinger equation for the wavefunction ψ can
describe only pure states). In classical physics, mixed states can arise e.g. through beam
scattering from density fluctuations [59] and their “purity” can be quantified through an
appropriate entropy function [60]. Here, this redundancy is exploited to reduce the number
of equations to be solved, as reported in the next sections.

In the following, a few cases are discussed for which analytic solutions for both the
paraxial WKB equations and those of the Wigner-function approach can be derived.

4 Homogeneous plasma

If the background plasma is spatially uniform, all the derivatives with respect to the
radial coordinate r in the previous equations vanish and the problem has simple analytic
solutions.
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4.1 Paraxial WKB approach, no damping

We consider first the case of negligible damping, so that the Hamiltonian is real. In the
case of a uniform plasma, the equation for the maximum of the packet imply r = r0 and
kr = k0 = 0. Eq. (8) reduces to

ds

dt
= −Hkks

2, (17)

where Hkk = ω0α1ρ
2
i is a constant. This equation can be solved straightforwardly by

separation of variables. One has
1

s
− 1

s0
= Hkkt (18)

with the final result [61, 37]

s(t) =
s0

1 +Hkks0t
. (19)

Splitting real and imaginary part yields explicitly

s(t) =
s0 +Hkk

(
s20 + φ20

)
t

(1 +Hkks0t)
2
+H2

kkφ
2
0t

2
, φ(t) =

φ0

(1 +Hkks0t)
2
+H2

kkφ
2
0t

2
(20)

Assuming no initial “focusing” of the packet (s0 = 0), the initial condition is s0 = iφ0 =
2i/w2

0 so that the solution for the evolving width of the packet is

φ(t) = Im[s] =
φ0

1 + ω2
0α

2
1ρ

4
iφ

2
0t

2
(21)

or, taking the relation between φ and w into account,

w2(t) = w2
0

[
1 +

(
2ω0α1ρ

2
i t

w2
0

)2
]
. (22)

This well-known expression describing the broadening of a wave packet in the presence
of dispersion (notice that broadening occurs for both positive and negative values of α1)
allows the identification of a “Rayleigh time” by analogy with the treatment of wave beams
in optics [37], namely

tR =
1

Hkkφ0
=

w2
0

2ω0α1ρ2i
(23)

(we choose here to include the sign of α1 in the definition of tR) and write

w(t) = w0

√
1 +

t2

t2R
. (24)

The curvature of the wave front is given by the real part of s and reads for the same
initial conditions

s(t) = Re[s] =
ω0α1ρ

2
iφ

2
0t

1 + ω2
0α

2
1ρ

4
iφ

2
0t

2
(25)

or, in terms of the Rayleigh time,

s(t) =
2

w2
0

t/tR
1 + t2/t2R

. (26)

Note that the sign of this term does depend on the sign of α1, giving rise to both “normal”
(for α1 < 0) and “anomalous” (for α1 > 0) phase fronts, using the terminology of [62], as
shown in [37] and in Sec. 6.

The equation for the amplitude can also be integrated in a straightforward way. Since
without damping the Hamiltonian is real, and since in the homogeneous case Hkr = 0, one
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has Re[div (Hk)] = Hkks and Im[div (Hk)] = Hkkφ, with div (Hk) defined in Eq. (B.10).
Integration of Eq. (10) with s(t) given by Eq. (26) yields with the help of Eq. (23)

log
|A(t)|
|A0|

= −1

4
log

[
1 +

t2

t2R

]
⇒ |A(t)| =

√
w0

w(t)
|A0| (27)

while integration of Eq. (11) with φ(t) given by Eq. (26) leads to

ϕ(t) = −1

2
atan

(
t

tR

)
. (28)

The scaling |A| ∼ 1/
√
w expresses the fact that while the packet broadens the energy in the

dissipation-free case under consideration should be conserved. The phase shift expressed
by Eq.(28) is the analogous of the Gouy shift in optics and arises from the different phase
speed of the various spectral components of the GAM packet. The factor 1/2 on the
right-hand side of Eq. (28) arises because the GAM is a one-dimensional oscillation, see
e.g. [63].

4.2 Paraxial WKB approach including damping

As explained in Sec. 3, the paraxial WKB equations maintain the same form (with the
substitution H → H − iΓ) if damping is included. Under the same assumptions of a
uniform medium and quadratic dependence of the damping coefficient on the wavevector
as before, the variables r0 = const. and k0 = 0 remain real even if the Hamiltonian
is taken to be complex. The solutions derived above are therefore still valid (assuming
Γkk = const.) and read, on splitting again real and imaginary part:

s(t) =
s0X + φ0Y

X2 + Y 2
, φ(t) =

φ0X − s0Y
X2 + Y 2

(29)

with
X ≡ 1 + (Hkks0 + Γkkφ0) t, Y ≡ (Hkkφ0 − Γkks0) t. (30)

In the limit Γkk → 0, these solutions reduce to Eqs. (20). It is interesting to notice that
also in the opposite limit, Hkk → 0, the width of the packet increases with time, i.e.
undergoes a dissipative broadening. Eqs. (29-30) simplify in this case (for s0 = 0) to

s(t) = 0, φ(t) =
φ0

1 + Γkkφ0t
. (31)

A kr-dependent dissipation is seen to introduce the diffusive time scale

tD =
1

Γkkφ0
(32)

(where tD ≥ 0 if the damping increases with increasing kr), so that the width of the packet
evolves in time as

w(t) = w0

√
1 +

t

tD
. (33)

The fact that this is the solution of a one-dimensional diffusion equation for the width of
a Gaussian distribution with initial condition w(0) = w0 is not coincidental but is related
to the fact that the imaginary part of the Hamiltonian introduces a diffusive term in the
wave equation, see Appendix B and the discussion in Sec. 4.4. If both tR and tD are finite,
the width of the packet w =

√
2/φ is, according to Eq. (29),

w(t) = w0

√
(1 + t/tD)2 + t2/t2R

1 + t/tD
(34)
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In the equation for |A|, both Hkks and Γkkφ contribute now to Re[div (Hk)]. The
terms containing arc-tangent functions cancel in the integration of Eq. (10) and Eq. (27)
generalizes in the case of damping to

log
|A(t)|
|A0|

= −1

4
log

[(
1 +

t

tD

)2

+
t2

t2R

]
. (35)

In the limit 1/tD → 0 (no damping), Eq.(27) is recovered. In the opposite limit, 1/tR → 0
(negligible dispersion), the solution scales like

|A(t)| = w0

w(t)
|A0| (36)

with w(t) given by Eq. (33), in agreement with the behaviour of a diffusive solution in
dimension one. Obviously, the energy of the packet is not conserved in the damping
process. It is interesting to note that while the first term in the damping coefficient
(independent of kr), see Eq. (4), leads to the usual exponential damping of the packet
according to the ansatz ψ ∼ exp[−γt], the second term (proportional to k2r) does not
contribute directly to the exponential damping, since kr = 0 at the centre of the packet in
the homogeneous case we are considering. This second term leads, on the other hand, to
a finite value of tD through the second derivative of the damping coefficient with respect
to kr, and thus to the “diffusive-like” damping expressed by Eq. (36).

As far as the phase is concerned, the terms contributing to Im[div (Hk)] are Γkks
and Hkkφ. In this case, the terms containing the logarithmic functions arising from the
integration cancel and one obtains

ϕ(t) = −1

2

[
atan

(
t

tR
+
tRt

t2D
+
tR
tD

)
− atan

(
tR
tD

)]
, (37)

which is a generalization of the Gouy phase to the case of damped oscillations.

4.3 Wigner-function treatment

Also in the Wigner-function approach, the phase-space position of the centre of the packet
is constant for k0 = 0 because in this case Γk = 0 in Eqs.(13-14) (while Γr = 0 because of
the medium uniformity). Thus, in the uniform case, also Eq. (15) simplify significantly to

d

dt

(
Gkk Gkr

Gkr Grr

)
=

(
−2HkkGkr + Γkk

(
1−G2

kr

)
−Grr (Hkk + ΓkkGkr)

−Grr (Hkk + ΓkkGkr) −ΓkkG
2
rr

)
. (38)

The solution for Grr is immediate after separation of variables and reads

Grr(t) =
Grr,0

1 + ΓkkGrr,0t
. (39)

The equation for Gkr can be also be solved by separation of variables:

dGkr

Hkk + ΓkkGkr
= − Grr,0dt

1 + ΓkkGrr,0t
(40)

from which
Hkk + ΓkkGkr

Hkk + ΓkkGkr,0
=

1

1 + ΓkkGrr,0t
(41)

and finally

Gkr(t) =
Gkr,0 −HkkGrr,0t

1 + ΓkkGrr,0t
. (42)

A solution for Gkk is not required since, as noted before, two elements of the G matrix
are sufficient to determine the two physics quantities of interest, namely s(t) and φ(t).
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Using the relations Grr = (s2 + φ2)/φ and Gkr = −s/φ, see Eq.(12), one can easily check
that the solutions of the paraxial WKB method (29) coincide with those of the Wigner
approach. Eq.(16) for the amplitude of the Wigner function α reduces in the homogeneous
case to

1

α

dα

dt
= −1

2
ΓkkGrr, (43)

with Grr given by Eq. (39). After simple integration one has

α(t) =
α0√

1 + ΓkkGrr,0t
=

α0

1 + t/tD
, (44)

where the last step follows from taking again s0 = 0 as initial condition, so that Grr,0 = φ0.
The wave energy density (proportional to |ψ|2) is related to the Wigner function through
an integral over wavevector space:

|ψ|2 ∝
∫
Wdkr = αe−φ(r−r0)

2−2γt

∫
exp

[
−(kr − k0 − s(r − r0))2/φ

]
dkr, (45)

where the last step comes from expressing the element of the matrix G in terms of s
and φ using Eq. (12). The integral over a shifted Maxwellian yields simply

√
πφ. After

substitution of φ from Eq. (29), again with s0 = 0, we find

|ψ|2 ∝ e−φ(r−r0)
2−2γt

√
(1 + t/tD)2 + t2/t2R

, (46)

consistently with Eq. (35).

4.4 Physical interpretation of dissipative broadening

In Sec. 4.2 it was observed that a non trivial evolution (of diffusive kind) of the width of
the packet can be induced by a finite second-order derivative of the damping coefficient
with respect to kr, i.e. Γkk 6= 0. Physically, a damping coefficient of the form γ = f + gk2r
with g > 0 implies that higher components of the Gaussian kr-spectrum constituting the
packet are dissipated more strongly than smaller wavevectors. This results in a shrinking
of the kr-spectrum and hence in a broadening of the packet in real space. To simplify the
discussion we can take the limit Hkk → 0. In the case of GAMs, the limit of negligible
(real) dispersion can be achieved when α1 in Eq. (1) is close to zero.

One can model this situation by considering that a wave packet of initial width w0

exhibits a spectral width 2/w0. Applying the selective damping of the higher spectral
components and transforming back to real space one finds

ψ ∼ 1

2π

∫
eikrxe−w2

0
k2

r
/4e−(f+gk2

r
)tdkr =

e−ft

√
π

e−x2/(w2

0
+4gt)

√
w2

0 + 4gt
, (47)

where x = r − r0. This shows that the maximum of the wave packet is damped expo-
nentially by the term including f , while its width increases according to Eq. (33), since
clearly Γkk = 2g and 1/tD = Γkkφ0 = 4g/w2

0. As mentioned above, these analogies with
a diffusion process are not really surprising given the fact that Γkk introduces a diffusion
term in the equation for W , Eq.(B.18) or, correspondingly, that exp(−gk2r t) is the Fourier
transform of the heat kernel.

5 Inhomogeneous plasma, no damping

If the plasma parameters, most importantly the temperature, vary with radius, the wave
vector evolves from its initial value kr = 0 at the centre of the packet. If the radial variation
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of the plasma parameters can be approximated as linear, then kr increases linearly with
time and the position of the packet scales quadratically with time (“GAM acceleration”
[36]). Analytic solutions for the packet evolution can be obtained in this limit of linear
radial dependence of the dispersion relation. In this section, the solution of the paraxial
WKB equations presented in [37] is summarized and shown to coincide again with the
corresponding solution for the Wigner function.

The GAM frequency ω0 is assumed here to exhibit a linear radial profile

ω0 → ω0

(
1− r − r0

2LT

)
, (48)

which results from a linear variation of the thermal ion speed (the factor 1/2 appearing in
the last term has been introduced for consistency with a Taylor expansion of the tempera-
ture profile, assumed to vary as 1− (r− r0)/LT ). For the imaginary part of the dispersion
function, the approximation of “weak variation” of the dispersion relation across the width
of the packet is more critical, since the (Landau) damping varies exponentially with ω0,
as discussed in Sec. 2. Damping will be ignored in the remainder of this section. Exper-
imentally, GAMs are known to appear also in form of eigenmodes, which oscillate with
constant frequency across a finite radial extent [64, 65] also in non-uniform equilibria.
This feature is known from theory [5, 66, 67] and has been reproduced also numerically
[68, 69]. Here, we suppose the GAM behaves as a continuum [32], i.e. it oscillates at the
local (radially varying) frequency given by Eq. (1) with Eq. (48). In the applications of
the paraxial theories discussed in [36, 37], however, the parameters were selected in such a
way that the packet retained largely its structure in the time interval under investigation.

5.1 Paraxial WKB treatment

In the case of linear variation of the Hamiltonian with r, we have Hrr = 0 and Eq. (8)
reduces to a Bernoulli equation which can be solved for its inverse as in the homogeneous
case. Setting u = 1/s Eq. (8) becomes

du

dt
− 2Hkru = Hkk (49)

which has the solution

u(t) = e−F (t)

(
u0 +

∫ t

0

Hkk(t
′)eF (t′)dt′

)
, (50)

with

F (x) = −2
∫ x

0

Hkr(y)dy. (51)

In the homogeneous limit considered in the previous section, F ≡ 0 and Eq.(50) reproduces
Eq. (18).

The solution of the ray equations for the inhomogeneous case has been given in [36].
The equation for the wave vector

dkr
1 + α1k2rρ

2
i /2

=
ω0

2LT
dt (52)

has the solution

kr =





(α1 > 0) tan
(√

α1ρ2i /2 ω0t/2LT

)
/
√
α1ρ2i /2

(α1 < 0) tanh
(√
|α1|ρ2i /2 ω0t/2LT

)
/
√
|α1|ρ2i /2

. (53)

For small values of the argument (which amounts to the condition ρi/LT ≪ 1 for times of
the order of some inverse transit frequencies) one has

kr =
ω0t

2LT
. (54)
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Eq.(54) recovers explicitly the corresponding limiting case of Eq.(A5) of [36]. The equation
for the position of the centre of the wave packet

dr

1− (r − r0)/2LT
= α1ρ

2
iω0krdt (55)

has the solution
r − r0
2LT

= 1− exp

[
−α1ρ

2
i

ω2
0

8L2
T

t2
]
. (56)

Taking again the limit for small values of the argument of the exponential function one
has

r − r0
LT

≃ α1ρ
2
i

ω2
0

4L2
T

t2, (57)

which coincides with Eq. (A7) of [36].
Using Eqs. (54,57) the integrals in the paraxial solution (50) can be calculated explic-

itly. This leads to the solution

u(t) = u0e
−Ct2 − α1ρ

2
iω

2
0t+

3

2
α1ρ

2
iω

2
0

√
π

C
e−Ct2 erfi

(√
Ct

)
, (58)

with C ≡ α1ρ
2
iω

2
0/2L

2
T . Performing again a small-argument expansion, using erfi(x) ≃

2x/
√
π, Eq. (58) becomes to lowest order in t

u(t) = u0 + α1ρ
2
iω0t, (59)

which coincides with the solution found in the homogeneous limit, Eq. (18).

5.2 Wigner-function treatment

In the Wigner approach, the equations for the centre of the packet are the same as in the
paraxial WKB theory if damping is neglected. Recalling that Hrr = 0, Eq. (15) takes the
form

dG

dt
=

(
2HkrGkk − 2HkkGkr −HkkGrr

−HkkGrr −2HkrGrr

)
(60)

The equation for Grr can be solved immediately and gives

Grr(t) = Grr,0 exp

[
−2

∫ t

0

Hkr(t
′)dt′

]
= Grr,0e

F (t), (61)

with F (t) defined in Eq. (51). The solution for Gkr is also straightforward,

Gkr(t) = Gkr,0 −Grr,0

∫ t

0

Hkk(t
′)eF (t′)dt′. (62)

These solutions can be compared with those of the paraxial WKB method, Eq.(50). Since
u = 1/s = (s− iφ)/(s2 + φ2), one has from Eq. (12)

1

Grr
=

φ

s2 + φ2
= −Im(u)

Gkr

Grr
= − s

s2 + φ2
= −Re(u). (63)

Substituting the solutions for Grr, Eq.(61), Gkr, Eq.(62), and u, Eq.(50), in the previous
equation, one can verify that the solutions obtained with both approaches are indeed
identical.
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6 Gyrokinetic simulation of GAM packets

The analytic results presented in the previous sections are compared here with numerical
simulations of the evolution of a Gaussian GAM packet obtained with the gyrokinetic
particle-in-cell code ORB5. The equations solved by the code and in particular their ap-
plication to the GAM problem are detailed elsewhere [36, 37] and are not reported here.
It is just remarked that in these simulations the gyrokinetic Vlasov-Poisson problem is
solved in the linear and electrostatic limit across the whole radial domain of a tokamak
with circular concentric flux surfaces. Unless specified differently, density, temperature and
safety-factor profiles are taken to be flat. The electron-to-ion temperature ratio τe = Te/Ti
and the value of the safety factor q are employed as the main handle on the dispersive
and dissipative properties of the plasma with respect to GAMs. The electron response
is treated as adiabatic. A Gaussian electric-field perturbation in radial direction, centred
around r0/a = 0.5 with width w/a = 0.04, is initialized through a corresponding pertur-
bation of the ion density. Further parameters are the major radius R0 = 1.3 m, minor
radius a = 0.13 m, magnetic field on axis B0 = 1.9 T and Lr = 2a/ρs = 320 (where ρs is
the sound Larmor radius).

As a first example, a damping-free case as those discussed in detail in [37] is selected
by taking τe = 18 and q = 5. The first plot of Fig. 1 shows the absolute value of the
radial electric field (normalized to its peak value at t = 0) as a function of the time t
and of the normalized radial coordinate r/a. In this representation, the analogy between
the behaviour of the packet and the propagation of a wave beam in optics (in which case
the time coordinate would be substituted by a space coordinate) becomes particularly
evident. The cyan and red curves overlaid to the numerical results have been obtained by
following the points corresponding to a given level (1/e and 1/e2 respectively) of the initial
maximum of the electric-field amplitude at t = 0, slightly corrected as explained below.
It is noted that the width of the packet at time t, as obtained directly from Eq. (22),
describes the 1/e-level of the GAM electric field with respect to the maximum of the
envelope calculated at the same time t. A curve connecting the points corresponding to
a given fraction C of the initial amplitude maximum can be obtained by observing that
paraxial field ansatz, Eq. (B.2), and Eq. (35) imply

|ψ|
|ψ0|

= C ⇒ −1

4
log

[(
1 +

t

tD

)2

+
t2

t2R

]
− (r − r0)2

w2(t)
= logC (64)

from which

r − r0 = ∓w(t)

√√√√− logC − 1

4
log

[(
1 +

t

tD

)2

+
t2

t2R

]
(65)

with w(t) from Eq. (34) and C = 1/e or C = 1/e2 for the cyan and red curves in Fig. 1,
respectively. The usefulness of this equation is simply that it is designed to follow the
edge of the contours with the same colour, while the width w would deviate from it with
decreasing amplitude |A| (which is the meaning of the correction in the second term of
the previous equation).

The agreement between the numerical simulation and the analytic solutions presented
in the previous sections is particularly clear from the bottom plot in Fig. 1, which rep-
resents the time evolution of the GAM electric field at the centre of the packet, r = r0.
As shown in [37], the inclusion of the Gouy phase shift leads to an almost perfect super-
position of analytic and numerical solution. It has to be remarked, however, that in the
numerical simulations a short transient phase at the beginning of the simulation is often
observed, which leads to a comparatively strong drop of the amplitude during the first two
or three oscillations, after which the time evolution of the envelope becomes smooth. In
the plots presented in this section, therefore, the initial amplitude of the analytic solution
has been chosen as to match the numerical value after this transient phase. Furthermore,
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Figure 1: Time evolution of the absolute value of the radial electric field for electron-to-
ion temperature ratio τe = 18 and safety factor q = 5. Overlaid in the upper plot (t − r
plane) are the curves at level 1/e (cyan) and 1/e2 (red) of the initial maximum. In the
lower plot the value of the electric field at r/a = 0.5 as obtained in the simulations is
compared to the analytic predictions derived in Sec. 4.

as observed in previous work (see Fig. 16 of [36]), the value of parameter α1 governing
the strength of the dispersion can deviate from the value inferred e.g. through the dis-
placement of the centre of the packet with time as inferred from its “ray” trajectory. The
agreement between simulations and theory improves with increasing q, consistently with
the approximations performed in the theoretical derivation of α1.

A stronger impact of the damping on the GAM evolution is achieved through a re-
duction of τe or q, as in both cases the Landau damping on the ions is moved towards
the thermal bulk. As shown in Fig. 2, for the parameters chosen in our simulations the
“diffusive” time scale due to stronger absorption of higher kr can compete or overcome
the dispersive (“Rayleigh”) time scale only for q = 2 and relatively low values of τe. At
values of τe <

∼ 3, the ordering under which the damping rate shown in Eq. (4) has been
derived starts to break down, as the ion Larmor radius is increased so that krρi can be
equal or exceed 1/q2 for typical spectral components kr ∼ 2/w0. For the same reason,
the damping rate considered here might become inaccurate at higher values of q. These
issues are discussed later in this section. Different or more accurate models may be able
to treat these regions of parameter space better than those considered here. It is stressed
that the focus of this paper is on the derivation and basic validation of the formalism
described in the previous sections, for which simpler formulas are better suited and allow
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Figure 2: Inverse Rayleigh time (left) and inverse diffusive time (right) in units of Ωi as
a function of τe for different values q.

a straightforward derivation. An analysis of the applicability of the present formalism
to the case of more complicated Hamiltonians (i.e. dispersion relations) is left for future
work.

Fig. 3 shows the absolute value of the GAM electric field as a function of time and
radius for τe = 7 and q = 5 (upper plot) and q = 3 (lower plot). Since for this value
of τe the factor α1 ruling the “dispersiveness” of the plasma is close to 0, the dispersive
broadening is significantly smaller than in Fig. 1. The main difference which can be
appreciated between the two values of q considered in Fig. 3 is the flattening of the “wave
fronts” (or, in other words, the fact that the GAM oscillation occurs simultaneously over
the whole radial extent of the packet) in the case q = 3 as compared to q = 5. This is in
agreement with the behaviour described by Eq. (29) in the limit of vanishing dispersion,
Eq. (31). On the other hand, according to Fig. 2 this effect should still not be visible,
given the fact that for the considered values 1/tD is still smaller than 1/tR. This seems
to suggest that Eq. (4) does not reproduce quantitatively the damping rate found in the
simulations for these parameters, as discussed above.

The results of a simulation in which the diffusive time scale is shorter than the dis-
persive time scale (this is obtained by choosing τe = 4 and q = 2) are finally reported
in Fig. 4. Notice that α1 is positive for this value of τe, while it is negative for the case
τe = 18 reported in Fig. 1. Correspondingly, the “phase fronts” have a different shape in
both figures, reflecting the fact that the edges of the packet oscillate faster than the centre
for α1 < 0 and slower than the centre for α1 > 0.

For q = 2 and τe = 4, the damping rate (4) is expected to describe correctly the
damping process. Due to the strong decrease of GAM energy, the cyan lines connecting
the points which correspond to an electric field amplitude smaller by a factor 1/e with
respect to the initial maximum, drawn according to Eq. (65), close on themselves before
half of the simulation time is elapsed. The time evolution of the electric field maximum
according to the analytic formulas derived in the previous section is seen to accurately
reproduce the results of the simulation also in this strongly-damped regime.

7 Summary and final remarks

Two different sets of paraxial equations, which include damping effects without any or-
dering assumption on their magnitude, have been employed for the description of damped
geodesic acoustic oscillations. Although derived in the context of non-Hermitian quantum
systems, this approach turns out to be applicable also in other systems because of the
formal equivalence between the Schrödinger equation and the paraxial wave equation. In
the case of homogeneous plasmas, simple analytic solutions can be obtained for the time
evolution of the GAM electric field, which highlight in particular the effect of selective
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Figure 3: Absolute value of the GAM electric field as a function of time and radius for
τe = 7 and q = 5 (upper plot) and q = 3 (lower plot). Cyan and red curves are like in
Fig. 1.

dissipation of higher wavenumbers on the shape of a GAM packet. The predictions of the
analytic theory are confirmed by linear gyrokinetic simulations performed with the code
ORB5.

As a technical remark, it is noted that the equivalence between the Wigner-function
approach and the complex pWKB method has been proved in [54] only for the case of
Hamiltonians which are quadratic in the position and momentum variables (this includes
linear terms). In particular, in this case a projection of the (in general complex-valued)
pWKB solution to real space is provided, which can be shown to lead to the same results
as for the Wigner-function approach. How far this equivalence can be extended to more
general Hamiltonians is an open issue. It is stressed, however, that the Wigner-function
approach can be employed for general Hamiltonians, as long as the wave equation can be
cast in the form of a paraxial (“Schrödinger”) equation, cf. App. B. Moreover, for all the
cases considered in this paper, the “ray trajectories” determined through Eqs.(7) [cf. also
Eqs. (13-14)] do not leave the real space because the terms proportional to the first-order
derivatives of the imaginary part of the Hamiltonian vanish. This is either due to the fact
that the wave vector kr at the centre of the packet is identically zero (homogeneous case,
Sec. 4.2) or that damping has been excluded (inhomogeneous case, Sec. 5), but the theory
is not limited to such cases. The investigation of complex ray trajectories is left for future
work.

As far as our understanding of geodesic acoustic modes is concerned, the results pre-
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Figure 4: Time evolution of the absolute value of the radial electric field as in Fig. 1,
here for τe = 4 and q = 2.

sented in this paper complement those discussed in [36, 37] and demonstrate the accuracy
of the quasi-optical techniques in predicting the linear evolution of GAM packets. This
implies that the parameter dependence of their linear dynamics can be extracted from
analytic solutions without resorting to computationally expensive numerical simulations.
Apart from this intrinsic relevance for the physics of GAMs, the present analysis is in-
tended as an exploratory investigation of the potentialities of the complex-Hamiltonian
approach, whose range of applicability has not been studied here beyond the simple scalar,
one-dimensional case of the GAM radial electric field with quadratic Hamiltonian. It is
likely that the same approach can be applied to more complicated situations. An inter-
esting example could be represented by the paraxial description of tokamak eigenmodes
proposed in [50], see also the introductory remarks in Sec. 1. Possible analogies with or
extensions to other treatments involving the Wigner function for both low-frequency (e.g.
[70] and references therein), and high-frequency waves (e.g. [59, 71] and references therein)
shall be considered as well. More generally, a topic which was not addressed in this paper
is the possibility of extending the treatment presented here towards nonlinear applica-
tions. In this sense, it should be mentioned that methods for describing the dynamics of
(paraxial) wave packets are widely employed in several contexts beyond plasma physics,
most notably in optics (indeed the approach employed in this paper was already applied
to the propagation of beams in the presence of gain or loss [72]) and more specifically in
nonlinear optics, where spatial optical solitons or temporal solitons in optical fibers emerge
as a solution of a nonlinear Schrödinger equation [73, 74]. As far as a Wigner-Moyal ap-
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proach is concerned, it was observed almost two decades ago in both physical [75] and
mathematical [76] literature that a nonlinear Schrödinger equation can be converted into
a Vlasov-like equation for the relevant Wigner function, which leads to striking analogies
with typical plasma-physics phenomena, like optical bump-on-tail instabilities [77]. But
also in the frame of fusion applications, it has been shown [78, 79, 80, 81] that the evo-
lution of the radial envelope of an Alfvénic wave packet interacting with a population
of energetic particles can be expressed as a Schrödinger equation with integro-differential
nonlinear terms, which in the case of energetic-particle modes can be cast into a special
form of the complex Ginzburg-Landau equation [82, 83]. Extensions of the present work
in this direction will be explored in the future.
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A Basic definitions

TheWeyl symbol maps the kernelA(x, x′) of an integral operator Â[f ] =
∫
A(x, x′)f(x′)dx′

into phase space according to

A(x, k) =

∫
e−iksA

(
x+

s

2
, x− s

2

)
ds (A.1)

(Weyl symbols are denoted by capital letters). Following [84], we define the “common” or
“standard” (unsymmetrized) symbol (denoted by a lowercase letter)

a(x, k) =

∫
e−iksA (x, x− s) ds. (A.2)

These symbols are related through

A(x, k) = e(i/2)∂k∂xa(x, k) ∼
∞∑

n=0

1

n!

(
i

2

)n (
∂

∂k

∂

∂x

)n

a(x, k). (A.3)

In general, the series is asymptotically convergent only, each term scaling with 1/(kL)n

for large k. The Weyl symbol of the composition of two operators Â and B̂ is given by
the so-called Weyl-Moyal product

C(x, k) = A(x, k) ⋆ B(x, k) ∼ A(x, k)e(i/2)[
←−
∂x
−→
∂k−
←−
∂k
−→
∂x]B(x, k), (A.4)

where the arrows denote if the differentiation acts on the symbol on the left or on the right
and the exponential is defined as before in terms of the corresponding (asymptotically
converging) series.

B Derivation of the paraxial equations

We assume that the GAM dynamics can be described by an equation of the form

i
∂ψ

∂t
= Fψ − 1

2

∂

∂r

[
G ∂ψ
∂r

]
(B.1)
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which is an equation of the form i∂tψ = Ĥψ, with the Hamiltonian operator Ĥ defined by
the right-hand side of the previous equation. The complex functions F and G reflect the
dispersive (real part) and dissipative (imaginary part) properties of the GAM and can be
read off directly from Eqs. (1,4,5).

The paraxial WKB equations follow from direct substitution of the paraxial ansatz for
the field (with ω = ω − iγ),

ψ(t, r) = A(t)ei[k0(t)(r−r0(t))+
1

2
s(t)(r−r0(t))

2−ωt] (B.2)

into Eq. (B.1) and separation of different powers of r − r0. In this process, F and G are
expanded to second order around r0 and ∂G/∂r to first order. The terms proportional to
r − r0 give

−dk0
dt

+ s
dr0
dt

=
∂F
∂r

+
1

2

∂G
∂r
k20 + Gk0s, (B.3)

while the terms proportional to (r − r0)2 lead to an equation for s:

−ds

dt
=
∂2F
∂r2

+
1

2

∂2G
∂r2

k20 + 2
∂G
∂r
k0s+ Gs2. (B.4)

The remaining terms give the transport equation for the amplitude:

1

A

dA

dt
= i

[
k0

dr0
dt

+ ω −
(
F +

1

2
Gk20

)]
− 1

2

(
∂G
∂r
k0 + Gs

)
. (B.5)

We introduce the complex Hamiltonian H defined as

H = F(r) + 1

2
G(r)k2r , (B.6)

and choose ω so that H = ω on the central trajectory, see Eq. (5). Calculating explicitly
the relevant derivatives of H, it is straightforward to recast the previous equations in the
form:

dr0
dt

= Hk
dk0
dt

= −Hr (B.7)

ds

dt
= −Hrr − 2Hkrs−Hkks

2 (B.8)

dA

dt
= A

[
ik0

dr0
dt
− 1

2
div

(
Hk

)]
, (B.9)

where the last term in Eq. (B.9) represents the divergence of the group velocity,

div
(
Hk

)
= Hkr +Hkks. (B.10)

It should be remarked at this point that, contrary to the usual derivation of WKB equa-
tions for plasma waves, see e.g. [85], no ordering assumption has been made on the
magnitude of the damping rate, i.e. on the imaginary part of ω. As a consequence [86],
dissipation does not appear explicitly in Eq. (B.9). Apart from this difference, Eqs. (B.7-
B.9) are the equations of the paraxial WKB method as derived e.g. by Pereverzev [44],
specialized to the case of a scalar field and a one-dimensional system. For the sake of
completeness we note that, in principle, the trajectory of the centre of the packet as de-
scribed by Eq.(B.7) becomes complex (although this case is not considered in the present
paper), and the functions F and G should be required to be analytic. Analogous equations
have been derived for quantum-mechanical applications in the past, see e.g. [87, 88]. In
this paper, a set of equations for the Wigner transform of the field given by Eq. (B.2) is
also applied to the determination of the dynamics of a GAM packet. The derivation of
these equations is reported in [53] and summarized below, slightly adapted to the classical
situation under consideration.
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As for the density matrix in quantum mechanics, we can introduce an operator Ŵ =
ψψ†, whose action on a test function f is

Ŵf =

∫
ψ(x)ψ†(x′)f(x′)dx′. (B.11)

Multiplying the equation i∂tψ = Ĥψ by ψ† and its adjoint by ψ, and adding them together
one can derive

i
∂Ŵ

∂t
= ĤŴ − Ŵ Ĥ

†

. (B.12)

Introducing Ĥ = (Ĥ + Ĥ
†

)/2 and Γ̂ = i(Ĥ − Ĥ
†

)/2, the previous equation becomes
the Liouville-von-Neumann equation for Ŵ , generalized to the case of a non-Hermitian
Hamiltonian:

i
∂Ŵ

∂t
= [Ĥ, Ŵ ]− i[Γ̂, Ŵ ]+, (B.13)

where [·, ·]+ denotes the anticommutator. This equation is translated into an equation
involving the Weyl symbols H and Γ of the Hamiltonian, and the Wigner function W
(Weyl symbol of the spectral operator), according to the Weyl-Moyal product introduced
in Eq. (A.4). For the terms involving H, the commutator in Eq. (B.13) implies that only
odd powers in the expansion of the exponential operator in Eq. (A.4) contribute to the
Weyl-Moyal product. Expansion to second order gives then

H ⋆W −W ⋆H = i

(
∂H

∂r

∂W

∂k
− ∂H

∂k

∂W

∂r

)
+ . . . . (B.14)

The left-hand side of Eq. (B.14) exhibits a Poisson-bracket structure multiplied by the
imaginary unit and leads to the classical Liouville equation (in the limit Γ→ 0). On the
contrary, in the expansion of Γ ⋆ W +W ⋆ Γ only even powers contribute to the product
in Eq. (A.4). To second order this yields

Γ ⋆ W +W ⋆ Γ ∼ 2ΓW − 1

4

(
∂2Γ

∂r2
∂2W

∂k2
− 2

∂2Γ

∂k∂r

∂2W

∂k∂r
+
∂2Γ

∂k2
∂2W

∂r2

)
+ . . . . (B.15)

The previous equations can be written in compact form switching to the phase-space
variable z = (kr, r) and introducing the matrix Ω defined as

Ω =

(
0 −1
1 0

)
. (B.16)

In terms of Ω, Eq. (A.4) becomes

A(r, kr) ⋆ B(r, kr) ∼ A(r, kr)e(i/2)
←−∇Ω
−→∇B(r, kr), (B.17)

where ∇ denotes differentiation with respect to z. The evolution equation for the Wigner
function W can be written as

∂W

∂t
=

[
1

4
∆Γ +∇HΩ∇− 2Γ

]
W, (B.18)

where ∆Γ = ∇Γ′′
Ω∇, with Γ′′

Ω = ΩtΓ′′Ω and Γ′′ is the matrix of second derivatives of Γ.
The imaginary part of the Hamiltonian Γ leads to the appearance of the diffusion term
in Eq. (B.18). We truncate the right-hand side of Eq. (B.18) retaining the terms written
explicitly on its right-hand side and look for a solution in terms of a Gaussian ansatz for
the Wigner function,

W (t, z) = α(t)e−(z−z0(t))·G(t)(z−z0(t))−2γt, (B.19)
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into Eq. (B.18) and splitting the different powers of z − z0 leads to

dz0
dt

= Ω∇H −G−1∇Γ (B.20)

from the terms linear in z − z0,
dG

dt
= H ′′ΩG−GΩH ′′ + Γ′′ −GΓ′′

ΩG (B.21)

from the terms quadratic in z − z0 and

1

α

dα

dt
= −1

2
Tr[Γ′′

ΩG] (B.22)

from the remaining terms. Use has been made of the fact that Ωt = −Ω and the symmetry
of the matrix G has been enforced by the substitution G → (G + Gt)/2 in Eq. (B.21).
Explicit evaluation of the matrix multiplications in the previous equations leads to Eqs.(13-
16).

C Relation between s and G

The Wigner function associated to a field

ψ = Aeik0x+(i/2)sx2

, (C.1)

with x = r − r0 and s = S + iΦ can be readily calculated according to the definition

W =

∫
eikrsψ

(
x+

s

2

)
ψ∗

(
x− s

2

)
ds

= |A|2 e−Φx2

∫
ei(−k+Sx)s−Φs2/4ds

=
2 |A|2√
Φ/π

e−[(Φ+S2/Φ)x2−2(S/Φ)kx+k2/Φ] (C.2)

with k = kr − k0. Eq. (12) for the elements of the G matrix follow directly from the
previous expression.
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