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EXTENSIONS OF REAL BOUNDED SYMMETRIC DOMAINS
GESTUR OLAFSSON AND ROBERT J. STANTON

ABSTRACT. For a real bounded symmetric domain, G/K, we construct various natural
enlargements to which several aspects of harmonic analysis on G/K and G have extensions.
Our starting point is the realization of G/K as a totally real submanifold in a bounded
domain Gj/Kp. We describe the boundary orbits and relate them to the boundary orbits
of G,/ K,. We relate the crown and the split-holomorphic crown of G/K to the crown =y,
of Gi,/ K. We identify an extension of a representation of K to a larger group L. and
use that to extend sections of vector bundles over the Borel compactification of G/K to
its closure. Also, we show there is an analytic extension of K-finite matrix coefficients of
G to a specific Matsuki cycle space.

INTRODUCTION

Elie Cartan was the first to prove the existence of a compact real form of a complex
semisimple Lie algebra. This can be considered the introduction of duality into the the-
ory of Riemannian symmetric spaces. Subsequently, even in the more general context of
symmetric spaces, various people have identified several types of duality. In this paper we
explore some of the consequences of a type of duality involving compactly causal spaces and
noncompactly causal spaces or, said geometrically, involving Hermitian and split-Hermitian
spacesEl We describe here, in heuristic form, various results to which one is lead (to conjec-
ture) from this viewpoint. Some of this is, without a doubt, known to experts. Thus, as we
use standard terminology, we relegate precise definitions and careful notation to subsequent
sections, for now we take a more casual approach.

Let GG}, be a semisimple Hermitian Lie group of noncompact type with maximal compact
subgroup Kj, i.e. Gj/Kj, is a Hermitian Riemannian symmetric space. Let 7 be an
involution commuting with # and such that, GG, the fixed point set of 7 has Riemannian
symmetric space, G/ K, a real form of G,/ K. Denote by g, the Lie algebra of GG;, and by
g its complexification. Of course 7 induces an involution 7 on g,. We let 7 also denote
the complex linear extension of 7 to g%; while we let 7 be its complex conjugate — linear
extension to g5. The associated holomorphic (resp. anti-holomorphic) involutions on Gy,
are denoted 7 (resp. 7). Then Gy (resp. K}) is the fixed point set of 7 in Gy, (resp.
Ky), and let G. (resp. L.) be the fixed point set of n in Gy, (resp. Kj). Then G, is a
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semisimple split-Hermitian Lie group, i.e. G./L. is a split-complex pseudo-Riemannian
symmetric space with an integrable bi-Lagrangian structure. Now 7 restricts to G. giving
an involution 7. having fixed point set G such that G/K is a split-real form of G./L.. One
could repeat the above with G. and 7, the complex linear extension to g&. Notice that
oS 2 g% but not equal. Various properties of {G}, G, n} and {G,, G, 7.} are the main focus
of this paper. Detailed discussion about G./L. and its compactification can be found in
the work of Kaneyuki [K85], [K&7].
We begin with several decompositions involving {G},, G, n}.

From Harish-Chandra we have the open subset

(a) GpBy, = exp Dy, K, P C Gy,
then applying 1 we should obtain similarly the open containment
(a”) GP,in =expD, L.N._ C G,.
From we have the complex open neighborhood of G,
(b) Grexpih Ky, C Gy,
then with n we should obtain an open neighborhood of G
(b”) GexpiQ) L. C G..
Also from we have the holomorphic extension of the Iwasawa decomposition
(c) exp i)y, G, C KpApNy,
so that with n we get
(c') exp ZQZ G c L.A,)'N,” C G..
The Akhiezer-Gindikhin crown of (G}, is an open subset
(d) =n = {Grexp i, K} K, C G /Ky,
so with 17 we should get for the ‘real 'crown of G
(d”) == {GexpiQ) L.}/L. C G./L..

Now in [KS05] and for a real form G/ K, the existence of an open subset =y C E is shown
such that

(e) Zp is biholomorphic to G}/ K.
A straightforward variation of that argument shows that
(e') Ep is split-biholomorphic to an open subset of G./L..

From various sources we have the crown of G, is biholomorphic to an open subset of flag
manifolds

(f) =, C Gh/Kh]P)h_ X Gh/Kh]P)h-H
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so that applying 1 we have for the crown of G an open subset
(f") ECG./LN._ xG./L.Ng,.

In the various parts of the text we will identify several of these fixed point sets for . The
intent of this summary is to motivate several results. Now we give a more careful outline
of the paper. The bounded Hermitian domain G},/ K} has a boundary that is a finite union
of Gy, orbits whose geometric structure is described in considerable detail in [Sa80]. We
summarize this in §1 so that in §2 and §3 using 1 we may give a similar description of the
boundary G orbits for G/K. This geometric description was crucial in [MSIII] to describe
the decomposition of a natural holomorphic extension of homogeneous vector bundles to
the boundary along these G orbits. For the R-form G/K an extension of homogeneous
vector bundles over G/K to the boundary will be needed and a geometric description of
their decomposition on the orbits. An extension of homogeneous vector bundles over G/K
is the content of §4, §5 and §6. In §7 we give a proof of the open neighborhood (¢’) using
both 7 and the main result in [Ma03]. Using this, the holomorphic extension of the Iwasawa
decomposition (c) from [KS04], together with 1 we obtain then in §7 an analytic extension
of K-finite matrix coefficients of irreducible representations of G' to D = L.exp ZQZ G.

1. BOUNDED SYMMETRIC DOMAINS: COMPLEX CASE

We recall some facts about bounded symmetric domains in C". This goes back to [KW65al,

[KW65D, W69, WT2], but for structure theory our reference is [Sa80], although we shall
alter his presentation to suit our needs; for analysis see [KS05], [MSITI].

1.1. Notation.

Let D;, be a bounded symmetric domain in C". The identity component of the group
of holomorphic automorphisms of Dj, is a connected noncompact semisimple Lie group
that we shall denote by Gy, A The group (G}, acts transitively, and the isotropy at any
base point is a maximal compact subgroup of GG;,. We fix one and denote it by Kj, so
that Dy, ~ G /K. The Lie algebra of G, (resp. K}) is denoted by g; (resp. €,), while
the superscript © denotes a complexification of the indicated Lie algebra. For a cleaner
presentation we assume that G}, is simple, and that it is contained in a simply connected
complex Lie group Gy, whose Lie algebra is g&. The analytic subgroup of Gy, corresponding
to £ is denoted Kj,. The reason for requiring Gy, to be simply connected comes from the
following result, see [He78, Thm. 8.2, p. 320 and p. 351].

Proposition 1.1. Let G be a connected simply connected semisimple Lie group with finite
center and o : G — G an involutive homomorphism. Then G° := {a € G | o(a) = a} is
connected.

Proof. In [HeT8] G is assumed to be compact; in [Ra74] G is just simply connected. If G
is semisimple with finite center here is an easier argument. Let 6 be a Cartan involution
commuting with o, g = £@p the associated Cartan decomposition, and K = G. Then K is

>The subscript h will be used for objects related to the Hermitian symmetric space.
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compact, connected, and simply connected by hypothesis. Furthermore G = K7 exp(p?).
Since K7 is connected, the claim follows. O

If b is a Lie algebra and if ¢ : g, — b is a Lie algebra homomorphism, then we denote
by the same letter the complex linear extension, i.e. ¢ : g- — hC. Similarly on the group
level, if 7 : G, — H is an analytic homomorphism, and if H is contained in a complex
Lie group H with Lie algebra h*, then we will denote by the same letter the holomorphic
extension, i.e. 7 : Gy — H. This extension always exists as we are assuming that Gy, is
simply connected. The same convention will be used for other Lie groups without comment.

Let 0y, : G — G}, be the Cartan involution corresponding to Kj,, i.e. 2 = id and G0 =
K),. Denote by 6, : g, — g the derived involution. Then €, = {X € gn | éh(X) = X}
and with pj, == {X € g5, | 0,(X) = —X}, one has g, = &, @ ps. The subspace p;, can be
identified with the tangent space of D) at eK;. As Dy, is a complex domain, there is a
complex structure J : p, — pi. Moreover, J extends to a derivation of g, which, as gy, is
semisimple, must be inner. Since J commutes with ad,|,, , the derivation is represented
by an element Z, in 3,, the center of ¢, i.e. J = adZ,|,,. As we also assume that G, is
simple, one knows that 3¢, is one dimensional, hence J is essentially unique.

As (adZy),,)? = —1, adZ), has eigenvalues 0, i, and —i. For the respective eigenspaces
we have g~ (adZ,;0) = €5, and we set ppy = g~ (adZy,; =i). Then pp+ is a complex abelian
subalgebra of dimension n; K, acts on ppi; and pt = ppy @ pp_ as a Kj-module. The
Kj-modules pj+ and p;,_ are contragredient and, as the center acts by a different constant,
inequivalent.

Denote by P, ., resp. P,_, the analytic subgroup of G} corresponding to the Lie algebra
Pre, resp. pn_. Then P,. is abelian, simply connected and exp : pp+ — P, is a holo-
morphic diffeomorphism and group homomorphism. We denote the inverse of exp |,,, by
log.

Proposition 1.2. P, K,P,_ is open and dense in Gy, and the multiplication map
Ph+ X K, x P, — ]P)h—i—Kh]P)h— R (p+, k‘,p_) — p+k‘p_
s a holomorphic diffeomorphism. We denote the inverse by

(1.1) a = (pi(a), kn(a),p-(a)).

We consider the usual generalized flag manifold P, = G, /K,P;,_ and a basepoint x, =
eK,P,_. The G}, orbit of the basepoint, G}, - z,, is G /K ~ Dj. On the other hand, the
Bruhat cell P, - z, is open and dense in P,,. By means of log one obtains a holomorphic
isomorphism Py, -z, ~ P, ~ p;,., denoted by g-x, — z(g-x,), such that for p € Pp, - z,,
k€K, and X € pj.

(1) z(k-p) = Ad(k)z(p)
(2) z(exp(X) -p) = X + z(p).

Restricted to G}, - x, the map has image Dy, C ppy, the Harish-Chandra bounded
realization of Dj,.
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Theorem 1.3. Phy O Dy ~ Dy ~ Gh/Kh CPn= Gh/KhPh_.

In a moment we will discuss the boundary components of G,/ K),. For that we note that
we can take a closure in p,, or the closure in P,. It is a priori not clear that those two
closures should be isomorphic. It is however clear that the closure in P, is G,-invariant, but
it is not clear that Gy, acts on the closure in pj,y. In Lemma [[L7 we show that ¢(Dy ), the
closure of Dy, in pj, ., viewed as a subset of Py, is the same as the closure in Pj,. In particular,
Gy, acts on ¢(Dpy ). Let ODpy := ¢(Dpy) \ Dpy be the topological boundary of Dy, in
p; . The action of G}, on Dy, extends to one on 9Dy, which then decomposes into a finite
disjoint union of Gj-orbits. In a later section we shall give a complete parameterization
of the orbits and determination of the isotropy. This is well known, e.g. [Sa80], but we
include the proof because of its importance for our treatment of real domains.

1.2. Essential Structure Theory - C forms.

Let ¢, be a Cartan subalgebra of g; containing 7, hence ¢, C €,. Let A, be the set of
roots of ¢ in g%. Since ¢, C €, 4, = id. Then éh(g%a) = gj.,,, and as dimc gj,,, = 1,
either gy, C € in which case one calls a a compact root, or g}, C pj. and « is called
noncompact. Denote by Ay, the set of compact roots, and by Ay, the set of noncompact
roots. Then

(1.2) Ape ={a € Ay | a(Zy) =0},

Ay, = {Oé SANS | Oé(Zh) = :|:’L}
We choose the set of positive roots, A, so that {« | a(Z,) = i} € Af. Denote by
Wy, = W(A}) the Weyl group generated by reflections s,, o € Ay, and denote by W, the
subgroup generated by s,, @ € Ap.. As a(Z),) = 0 for all @ € Ay, it follows that A} is

invariant under Wp,.
Recall that «, 8 € Ay, are called strongly orthogonal if o+ 3 ¢ Ay,. In the usual way one

constructs a maximal set {71,...,7,, } of strongly orthogonal roots in A} .
Denote by &5, : g~ — g~ the conjugation with respect to gn. For each j = 1,... 7,
choose E; € g%w and set F; = ,(L;) € g(,g_%_. One can normalize E; so that with

Hj = [E],F’]] € iCh one has VJ(H]) = 2. Let Z] = ZH], X] = E]+FJ, and Y} = Z(EJ—FJ)
We set

T T
(1.3) t, = PRH; Cig, and a,:=EPRX; Cp,.
Jj=1 Jj=1
Then ay, is maximal abelian in pj.
More generally, for I C {1,...,r} and € € {—1,1}#" let Z(I,¢) := 3, ¢;iH; € cp,
E(l,€) == 6B € pny, F(L,€) =3 ;6 F; € pp_. Similarly H(I,€) := —iZ(I,¢),
X(I,e):=E(l,e)+F(l,¢e) € ppand Y (I,€) :=i(E(l,e)—F(l,¢)) € t,. Weset Hy = —iZ,.

3Note that this is not correct for the unbounded realization of GJ, /K, as the example of the upper
half-plane shows.
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If I = {1,...,b} then we write E(b,¢€) instead of E(I,€), etc., and if furthermore ¢ = 1
then we simply write E(b) etc.

Then Z(1,€), X(I,e) and Y (I,€) generate a subalgebra of g, isomorphic to su(1,1).
These determine equivalence classes of holomorphic disks in D}, which, since we are in a ho-
mogeneous space, lift to equivalence classes of compatible homomorphisms £ : su(1,1)) —
gn, together with their holomorphic extensions # : s(2, C) — g%, here s[(2,C) := su(1,1)¢ .
Amongst these, the homomorphisms associated to Z(b), X (b) and Y (b) play a critical role
and will be referred to as basic homomorphisms. In passing we note that H(1,¢€), E(I,¢€)
and F(I,¢) generate a subalgebra of g% isomorphic to s[(2,R) which is the Cayley trans-
form of the su(1,1) described above. Much of this notation is not needed in the complex
case but will be needed when we do the real case.

The word ‘Essential’in the subsection title refers to the fact that we have fixed the
structure theory, whereas if, as in [Sa80], one chooses first the geometry of holomorphic
disks, one would have a different but equivalent choice of structure theory.

Basic Example. SU(1,1)

The prototype bounded domain is SUél, 1)/U(1) ~ {z € C | |z| < 1}. In this case we
have G;, = SL(2, C). The conjugation &1 on s[(2, C)(:= su(1,1)%) with respect to su(1,1),
and the holomorphic extension of the standard Cartan involution 6 of su(1,1) are given

by B
((0) =G o) e a((0)-(5 7))
() 0 e ()
Then [h, €] = 2e, [h, f] = =2f, |e, f] = h, 61(h) = —h and &,(e) = f. Taking Z, = ih gives

pry = Ce, € = Ch, and p;,_ = Cf.
A computation gives

GG &G0 1)

Py KyPp_ = { <‘CL Z) € SL(2,C) ' d+ o} |
Identifying Py = ppy = C, P,_ ¥ pj,- = C and Kj, = C* the maps in (L)) are given by

n((01) - ()
() - (49

4The subscript 1 will be used for objects related to this basic case.

2 ol

Let

Thus
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(1) - ()

This gives the Harish-Chandra realization of Dy, as Dy = Dy = {z € C| |z| < 1}. As

a b\ (1 z\ (a az+0b
c dJ\0 1) \c¢ cz+d)’

it follows that the action of SU(1,1) on D is the usual action g - z = %+

cz+d’

To return to the general situation we let in su(1,1)

(1.4) leih:(é fl) X1::e+f:<(1) (1)) and Yl::z'(e—f):<_02. é)

For I and € as above,
(1.5) Rre:Zv— Z(1e), X1 X(1,€), and Yi—=Y([e€)
defines a Lie algebra homomorphism of s[(2, C) into gf such that
(1.6) fipeody =dp0kie and .00 =0 0k,.
It follows, in particular, that
su(l,1)rc = kr(su(l,1)) = span{Z(1,¢€), X (1,¢€),Y(I,¢)} C gp.
These are the lifts of holomorphic disks embedded into D; and are those called standard

homomorphisms.
Similarly
(1.7) S[(2,R); = Fr(sl(2,R)) = span{H(I,¢€), E(L,¢€), F'(I,€)}.

As SL(2,C) is simply connected, there exists a group homomorphism xy. : SL(2,C) —
Gy, such that dk;. = k. In particular, £7(SU(1,1)) C Gi. We set £; = kg1 and
Kj = Kij}1- We also note that if 7N J = 0 then [/ (sl(2,C)), ke (sl(2,C))] = {0} and
similarly for x;. and k;-. In particular, kq,...,k,, is a maximal family of commuting
standard homomorphisms SL(2,C) — Gy,

A simple matrix calculation shows that

exp (%Yl) = % G _11) and Ad (exp (%Yl)) h=X;.

Thus if we set

. ] B
Cle := €Xp <%Y(I,e)) = Kl (ﬁ G 11)) and Cy.:= Ad(cy,),

then
(1.8) Ci.H(I,e)=X(I,e).
Lemma 1.4. Let C = Cyy,. ,3,0,..1)- Then C(ty) = ay.
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Theorem 1.5 (Moore). Let 3; := [C ] (4], ). There are two possibilities for the restricted
roots 3y, = X(gn, an):

Case I: ¥, = + {ﬁi, % (B; £ Br)

i=1,...,m, 1§j<k5§rh},

Case II: ¥, = + {ﬁi, %@', % (B; % Br)

1=1,...,7p, 1§j<k§rh}

The first case occurs if and only if Dy, is a tube type domain.

We will use
Th
a, = {Z z; X
j=1

as a positive Weyl chamber. The corresponding set of positive roots are obtained by taking
+ in front of the parenthesis in Case I and II above.

$1>.§(]2>...>.§C7«h>0}

1.3. Boundary orbits.

Using SU(1, 1)-reduction, eq. (L) is the main step in the proof that D, ~ G, /K} is
diffeomorphic to a bounded domain in pj,,. Indeed let ), = Z;’; (=1, 1)E; C ppy. For
t € R™ let ay :=exp )" ¢;X;. By a calculation in SU(1, 1) we have

= 7 cosh(t,)é, + sinh(t,)
1.9 . JE, = - E,.
(1.9) e ;f ; sinh(t,)&, + cosh(t,)

In particular,
Th
ay -0 = Ztanh(t,,)E,, .
v=1

Thus we have

(110) Dy, ~ Gh/Kh ~ Dy, = Ad(Kh)Qh C Pu+,

the Harish-Chandra bounded realization of D;,. Now it is clear that G}, acts on 0Dy . For
be{l,...,r} recall E(b) := E) + ...+ E, and set O,(b) := G}, - E(b).

Theorem 1.6. Let z € 0Dy,.. Then there exists b € {1,...,r,} and g € G}, such that
z=g-E(). In particular,

*Th
ODyy = szloh(b) .
Thus, the boundary orbits are parameterized by {1,... ry}.
Proof. Let {z,} be a sequence in Dy, such that z, — z. As a; is maximal abelian in py,
there exists k, € Kj, and t;, € (—1,1) such that z, = k,exp Y '", t;, ;. By applying a

Weyl group element we can assume that ¢y, > to, > ... > t,,, > 0. As K and [—1,1] are
compact we can assume (by going to subsequences) that k, — k € K and t;, — t; € [-1,1].
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Let b be such that t;,...,t, = 1 and 1 > ¢; > 0 for j > b. Let s; = —tanh™'(¢;) for j > b.
By ([3) we have

Th
exp Y 5;X;- Y B =FEi+ ...+ E,=E({).
j>b j=1
We can therefore take g = eXp(Zj>b s; X))kt U

The closure of Dy, in P, appears to be bigger than ¢(Dj,) the closure of Dy in pj.. In
fact we show,

Lemma 1.7. The closure of Dy in Py is the same as the closure, ¢(Dyy), of Dpy in
exp(Pns) - To. In particular, the action of G, extends to ¢(Dyy).

Proof. 1t is clear that the closure in exp(pp) - x, is contained in the closure in Pj. As in
the proof above, let z = lim; k;a; - =, be in the closure of D), in P,,. Again let £ be a limit
of a subsequence of {k;} and recall that k; and k normalize pj,,. As £E; € pj, it follows
that z € k- exppps - T, = expppa - To. O

Consequently, we do not have to distinguish if we are talking about the closure of D), in
Py, or the closure of Dy in pp.

1.4. Isotropy of boundary orbits.

We come to the determination of the isotropy of the various orbits in the boundary.
Again, we provide more details than are needed in the complex case, but they will be used
later in the real case. Let

(1.11) Qn(l,e):={9€Gyrlg-E(l,e)=FE(l,e)} and
(112 Qul.0) = {9 € Gy | g~ E(L.¢) = E(L,0)}.

Then the boundary orbit On(I,¢) := Gy, - E(1,€) is isomorphic to G,/Qn(I,¢). If I =
{1,...,b} and € € {—1,1}" then we simply write E(b,¢),Qn(b,€), On(b,¢), etc. If € =
(1,...,1) then we do not include it in the notation.

As before, for a standard homomorphism & : sl(2,C) — g%, ie. (LX), we write E,
for k(e), Xx = k(e + f) etc. The corresponding homomorphism SL(2,C) — G, and the
restriction to SU(1,1) is denoted by k. The following is valid for an arbitrary standard
homomorphism. To avoid even more burdensome notation we will use subscripts involving
x only when it seems useful. We remark that [Sa80] (Chapter 2 and 3) refers to a standard
homomorphism as one % : §[(2,R) — g;. There should be no confusion from the terminol-
ogy herein as the two are related by the Cayley transform introduced earlier, see [Sa80, p.
107-109] for a detailed discussion.

Given a standard homomorphism let 7, := ad o £. Then m, is a finite dimensional
representation of s[(2,C). As the irreducible representations of sl(2,C) are determined
by their dimension with the 1-dimensional representation being the trivial representation,
the 2-dimensional representation being the natural representation of sl(2, C) acting on C2,
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and the 3-dimensional representation being the adjoint representation of sl(2, C) acting on
itself. The corresponding highest weights are 0, 1, and 2. According to [Sa80] Lemma 1.1
p. 90, every irreducible sl(2, C) representation occurring in 7, has dimension less than or

equal to 3. Following [Sa&0], for v € {0, 1,2} denote by g."! (resp. gl)) the corresponding
isotypic subspace. Then (as s[(2,R) is split)

(1.13) o=, @a, Sg,,
and similarly for the complexification g%. From [Sa80] §1, Chapter 3 we obtain

Lemma 1.8. Let v : SU(1,1) — G}, be a standard homomorphism. Let

1
Z,=ik(Z) and ZWY =27, — 5%k

Then the following conditions are equivalent:
(1) z& =o;
(2) g% = {0} and gh is compact.

Notice that each of the spaces ghM is 65, and ), stable. As & is standard, it intertwines
the respective Cartan involutions and conjugations. Hence we have similar decompositions
for €,, €. pp, p-, and pp+. In particular, we have

(1.14) Phe = Phs © Phs © Pis
Also, g%[o](: 3¢ (£(s1(2, C))) is a subalgebra, as is

(1.15) g =g @ gl

Since g[even] is ,-stable, it follows that g[even} is a reductive subalgebra. Furthermore Z; €

ggsvon} so each non-compact ideal of g,

Next we decompose gg vl into ideals, = @j On;, such that gy is the maximal

compact ideal, while g, is simple and noncompact for 7 > 1. It follows that the maximal
n]

[even]

is of Hermitian type.
even]

abelian ideal of ggfve is contained in gpg, and each gy ;, j > 1, is of Hermitian type. Define

gg) = @ Ohj

[0]

9rn; <9,
L = gno
(1.16) e = D o,
ghjggf]dzl
O = P o,
ghjggf]

= b O P
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Then gg) - gﬁ?}, gf} C g5, and gﬁleven} = gg) @® g;.. The corresponding analytic subgroups
of GG}, will be denoted by the respective upper case Latin letter.

Finally we arrive at the parabolic subalgebra corresponding to . Recall that X, =
k(e+ f). Let m) = gn(adX,;0), n}. = gn(adX,; 1), ni, = gp(adX,;2), np, :=np, Bni,
and qp, = m?m &5 nhKE Then g, is a maximal parabolic subalgebra of g,. Denote by
Qhi = M;?HN;M the corresponding maximal parabolic subgroup in Gj,. It will be useful to
give a more detailed description of Q,, the nilradical Ny, the structure of M7 and the
connected component of M} .

Let Fy be the finite abelian group generated v, = exp(miX,). We have the Levi factor

(1.17) My, = Fo(Mp,)o = (Mp, N Ky)(My,)o.

We note that by [VT7, p. 287] every Ad(m), m € MY, is in Ad(mJ%) but not necessarily,
as the set F}; shows, in Ad(m,).

Now F preserves the decomposition (LI3)), and as F, C K}, it also preserves (L.I4]).
Finally

Ad(7x)

Thus cach p*) is a K, N M? -module.

Consider next the Lie algebras defined in (I.I6) and their relationship to the Levi factor
m),. Recall ¢, = exp(ZY;) and C,, = Ad(c,). Set gt = C-HEC) Ng,. Thenm?, =m! @
mﬁi) ®R(X,) where mﬁ},,} = Lo gg), [5 is a compact ideal in m, and gg) is of Hermitian non-
compact type having zM defining the almost complex structure, and mﬁ) OR(X,) = ggi)
Let M. be the connected subgroup with Lie algebra m'”. Then we have (M?), = MY MP

exp R(X,,) and M° = F,M" MPexp R(X,,).

[even] — ld aIld Ad(f}/ﬁ)| 1] = _ld .
9 9h

Lemma 1.9. The following holds true:
(1) ad ggzl)‘“i =0 and ad ggi)|n}1l is faithful. The orbit Gf) - E, is a self-dual cone.
(2) Let I, = —ad(Yy) o éh|n}1l = 0), o ad(Y},) = 2ad(Z,gl)) Then 1, defines a
complex structure on n), . We have

W (Lo31) = me N O (py)  and  ny(Toy —i) = m N O (8.

Now we have all the notation to give a detailed description of the stabilizer of E, € D),
and hence the isotropy of the orbit Op(k), see §1, Chapter 3 and Proposition 8.5, p. 142

in [Sa80].
Theorem 1.10. Let x : SU(1,1) — G, be a standard homomorphism. Then one has the
following:

(1) z, e &,

2) z" e €

I -
ik Yhie

Note that our notation here differs from [Sa80, p.95] where n} _ is denoted by Vi, and n? _ is denoted
by Uy.
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(3) g even] = gh(adYH; 0)Pgn(adYy,2)®gn(adYy; —2) = g,(C%; 1) as a MY N Kj-module.
(4) “;m = C.'(pi)

(5) gy = gh(adel) @ gn(adYy; —1) = gn(Cyi; —1).

(6) adzM | o = ath|g£o]. In particular, the Zy-element in the Hermitian type Lie

algebra gh is 7.

(7) If 7z # 0 then the stabilizer of E, in Gy, is Zg, (X,Q,Z,(il))Nh,{. Hence there is a
fibration

M}(“li/K ﬁM}(l — Oh( ) — G/th = Kh/Kh ﬁM,?R
with typical fiber a Hermitian symmetric space.
(8) If 7Y — 0 then the stabilizer of E in Gy, is Zg, (X.)Nnw = Qne. Hence the orbit
On(k) 2 G/Qns = Ky /Ky N Mp . In particular, in this case Op(k) is compact.
Next consider the Cartan decomposition of my, corresponding to the Cartan involution
9|m First we have ggl) = E(l) b pgl), and (pg))(C = pﬁ}j o pgl_) with pg simultaneous +i
elgenspaces of adZ{" and ad Z,. Morcover we have the identification p 3 i = p! h i
Now consider mgm, the other summand of m{,_, with Cartan decomposition €, ﬂmfﬁ) EBpf).
Note that

(1.18) g =t Nm? o
Lemma 1.11. Z, is in the center of €, and C;*(£C) = mhﬁ ®CX,.

Define now .
Ly = Zk,(Zs) = Z1,(2)").

Lemma 1.12. The Lie algebra .. of L, decomposes into ideals as
=t Nm) e,
and Z, defines an almost complex structure on K,/ L,.
This gives yet another fibration in Theorem 1.10 (7),(8) here with base Kahlerian, namely
Lo/ KN M, — G/Que = Ky /K, N My, — Ky /L.
We have now according to [Sa80]:
Lemma 1.13. C, 06, o C;l(pﬂ) = t-(adZ,; i) as K, N M} -modules.
For convenience we summarize these various identifications in the next statement.

Proposition 1.14. We have the following K, N M}, ~isomorphisms:
(1) pfil):t phlj:
(2) iy 2 6 (adZ ).
2 ~
(3) pik = i) © CX,e
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2. BOUNDED SYMMETRIC DOMAINS: REAL CASE

In this section we consider homogeneous real forms of Dy, i.e. fixed point sets of anti-
holomorphic automorphisms. We continue to assume that Gy is simple or of the form
G = G x G where G/ K is a bounded symmetric domain in C" with G simple. Thus either
g is simple, or g, = (g, g) with g simple and 7(X,Y) = (Y, X). We use [H096, (090| [091]
as standard references although the perspective will be slightly different in this section. We
will present a parallel presentation for the material for real domains vis a vis the complex
case. The first observation in the real case will be a replacement for Gj. This will be the
Lie group G, to be described shortly.

2.1. Real Bounded Symmetric Domains and Related Subgroups of Gj.

Let 7 : G}, — G}, be a non-trivial involution commuting with 8. Let 7 : g, — g5 be the
derived involution which then commutes with 6,. F inally, we let G := Gj,. Then G is a
connected, reductive subgroup of G, having Lie algebra g := g} = {X € g5 | 7(X) = X}.
With the usual notation, set q, := {X € g, | 7(X) = —X}. Then g, = g ® qp.

As 7 and ), commute, it follows that § := 9'h|g defines a Cartan involution on g and
g = EEB]J with € := gﬂ%h andp = g M pp. AISO, qn = qhk@th with qne = qhﬂEh and
dhp = qn [ Ph-

As 7 and 6), commute, 7 induces an involution on Gy /K}, ~ Dy, denoted 7p, : D, — Dp,
such that 7p, (¢ - z) = 7(g9) - 7p, (2). Via the biholomorphism Dj ~ Dy, 7 induces an
involution denoted o} : Dy, — Dy, such that o} (9-2) = 7(g) - 0/ (2). We assume that o,

O'+ .
is anti-holomorphic, i.e., defines a conjugation on Dy, C ppy. Then Dy := D, is a totally
real submanifold as follows from
Lemma 2.1. 7(Z;,) = —Zj,.

Let K := GN K, = G?. Then K is maximal compact in G with Lie algebra €. We have
(see Lemma [[3] for notation)

(21) ,D+2G/K<—>Gh/Kh2Dh+
is a realization of the Riemannian symmetric space G/K as a bounded totally real domain
n ppy.

We come to the substitute for G,. Denote by n := ¢, o 7 the conjugate linear extension
of 7 to g and, as usual, n the corresponding involution on Gy,. Set g. = (g%)7 and let Gcﬁ
be the corresponding analytic subgroup of Gy. By Lemma [[1l G. = G} as G, is assumed
simply connected. g. is a real semisimple subalgebra of g& which is stable under 7 and 6y,.
Clearly _

g=0.={X€g[7(X)=X}=g.Nan
and with iq, = {X € g. | 7(X) = —X}, then

ge =9 ®iqy = (ED iqny) © (b @ iqnr)

6The subscript ¢ will be used for objects related to this group.
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where £ =8, Ngand p =p, Ng. ‘ ‘

On the other hand, the involution 6, := 7 o 6|, defines a Cartan involution on g, with
corresponding decomposition g. = €.@s. and corresponding Cartan involution 6. on G.. (we
reserve the notation p. for a parabolic subalgebra). Then ¢, = € & iqy, and s, = p D iqu.
Notice that 6, agrees with the conjugate linear extension of 0, restricted to ge. To streamline
the notation we let q. := iq, so that g. = g®q.. Then q. = q.N€. D q. NS = ek D qep, With
qck = qnp and qep = iqpk, i.€., the elliptic and hyperbolic parts have been interchanged. In

the special case that D, is a bounded complex domain, then G. = G, the complexification
of G.

Lemma 2.2. o, =1|p,,. In particular, Dy = Dy1 N g,.

Proof. Recall that Hy = —iZ),. From Lemma 2.1l and 7 = 6, o 7 we get 7(Hy) = Hy. As
pre = g (adHo; 1) and € = g~ (adHy;0) it follows that 7(pps) = ppe and 7(EF) = €,
similarly n(P,+) = Pp+ and n(K,) = K. For g € G, and 0 € pj,, write g-0 = Z € Dy,
Then g = exp(Z)kc(g)p-(g) and

7(9) = n(g) = exp(n(Z))n(kc(9))n(p-(9))-
From this the claim follows. O

2.2. Essential Structure Theory - R forms.
We shall refine our choice of Cartan subalgebra ¢, C gy, to take into account the involution
7 and the associated decomposition g, = g ® q,. We still require ¢; to contain Z; but now
choose the Cartan subalgebra ¢; such that b, := ¢, N g, is maximal abelian in qp;. Thus
all the notation from §1.2 remains in force here so will be used freely when applicable.
Denote by %(gt, bf) the set of roots of b in gf. Set a. := ib;, C s.. Recall that o, is
anti-holomorphic and 7(Z},) = —Zj,.

Lemma 2.3. by, is maximal abelian in qnr and qp ; a. is mazimal abelian in s. and in
Qep = Sc M ge.
Proof. The first claim is by construction. Since Zj, € b, one has j,c(b}) C € = € @ qf,

while g, = iqp. Hence s, N 392(6‘5) C iqpp. O

Corollary 2.4. 3(g.,a.), the set of restricted roots of a. in g., are all restrictions from
the complex space ¥(g%, b%) to the real form a,.

Let 2. := 3(g., a.). We will view X, either as the set of roots of a, in g. or the roots of
bf in g without further comment. Recall that Hy = —iZ, € a.. Then ad(Hy) has three
eigenvalues: 0,£1. We set

(2.2) [ = gc(adHy;0) =€ Ng.=EDiqm
(2.3) n, = g.(adHp;1) =ppe Nge
2 n_ = ge(adHp; —1) = pp-Nge
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(2.5) P. = G¢/L.N_

where N_ denotes the analytic subgroup of G, with Lie algebra n_ and L. := Zg, (Hy).
Note that L. has Lie algebra [., but that L. is not necessarily connected. For future
reference we set [, := [l., [.]. We also note that

=€" np=p/. and L @ns= (€ Dpus)’.
The set Y. of restricted roots decomposes accordingly into two disjoint sets
Yo ={a €X.| gy CL, a0}
={aeX.|a(Hy) =0, a0}
= {Bla. | B € Ape, Bla, # 0},
and
Yen = {a € e | gea C Py N g}
={a €. |a(Hy) ==+1}
={p B € Apn}.
If a € ¥, then a(Hy) = £1. We choose the system of positive roots in X, such that
Yo ={a €Xc | a(Ho) =1} = Ay lo. = {Bla. | 95 € pns}
and X1 U {0} = A} ...

From [. = £ @ iqy, notice that K is a maximal compact subgroup of (L), and preserves
ny; a. is maximal abelian in [.,; and ¥, is the set of restricted roots of a. in [, .

e

Lemma 2.5. Let m,. denote the centralizer of a. in €.. Then m, C €.

Proof. Since Hy € a. one has m, C 3, (Hp) = € @ iqu. O
Denote by W,.. the Weyl group generated by the roots in X..

Lemma 2.6. W,. = Nk(a.)/Zk(a.) and W.(E1) = X1.

As Z), € by, and 7(Z),) = —Z, it follows that Ay,, A} and Ay, are stable under the
involution 7% : 3 + —f o 7. Moreover 7*|;,« = 7'|;,~. Via the identification of X(g., a.)
with X(g5, b%) we extend 7 to X..

The dichotomy present in Moore’s classification of restricted roots in the complex case
is reflected in the next several results.

Lemma 2.7 (m, Lemma 3.2). Let v € A} . If 7(7) # 7y then v and 7#(7y) are strongly
orthogonal. In particular, if {v1,...,%, } is a set of strongly orthogonal roots in A} | then
either 7(v;) = ;, or v; and 7#(vy;) are strongly orthogonal.

Lemma 2.8. We have either 7*(v;) = v; for all j = 1,...,r, or 7 (v;) # v, for all
j = 1, ey Th.

This follows from the classification in [Al The classification also shows that 7"’1%» # v
only for the following five cases:
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(1) G, = G x G is not simple and G/K is embedded into G/K x G/K diagonally.

(2) gn =s0(2,n) and g = so(1,n), n > 3.

(3) gn = su(2p,2q) and g = sp(p, q).

(4) gn = sp(2n,R) and g = sp(n, C).

(5) gn = eg(—14) and g = f4(_20)-
As we will see later, the cases 7#(v;) = v; and 7#(v;) # v, are very different from the point
of view of the underlying geometry.

In the case 7#(7y;) = 7; we set r = 3, while in the case 7#(v;) # v; we set r = r;,/2. In

the latter case we order the strongly orthogonal roots so that 7#(va;_1) = 725, j = 1,...,7,
see @, Section 3, for more details and discussion.

Lemma 2.9. Assume that r = r,. Then we can choose E; and F; = 6,(E;) such that
7(E;) = F;, n(E;) = E;, and 7(F;) = F;. So with X; = E; + F; and Y; = i(E; — Fj), then
n(X;) = T(X ) =X; and n(Y;) = 7(Y;) = =Y;. In particular,

a:=a, = @RX Cp, and
7j=1

Apg 1= @RY]- C qnp-
j=1

Moreover since Rank G/ K = Rank G} /K, = r, a is maximal abelian in p and in p,, while
apq s mazimal abelian in qpn, and in py,.

Proof. As 7#(;) = ~; it follows that 7’7(9‘,?%) = 9%%- SO

Oiry = Ohyy (18 B, N 0e)-

Thus we can choose E; € g, such that —B.(E;,0.(E;)) = 1, where B, denotes the
Killing form on g.. Then [E;, —6.(E;)] = H;. Notice that —6.(E;) = 7(E;) as E; € pyy.
= on(T(E;)) or 7(E;) = on(Ej) = Fj. D

Furthermore, E; € g. and hence F; =
Similarly in the other case we have
Lemma 2.10. Assume that r # 1,. Then we can choose E; and F; = &,(E;) such

that 7"(E2j_1) = ng, and T(E2]> = F2j—1 fOT’ 1 S j S r, hence T)(Egj_l) = EQj and
’f](FQj_l) = ng. SO with Xl == E[ +E and YE == Z(El - E), then 7L(X2j_1) = ng = ﬁ(ng_1>
while 7(Ya;_1) = —Ya; = 1(Ya;_1). One has a;, = a @ aj with

(26) a=ayNg=EPHR(Xg1 + X)) and af = PR(Xoj_1 — X)) C g -

j=1 j=1

Moreover, a is mazimal abelian in p and Rank G/ K = %Rank Gn/Kp=r.
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To allow for uniform treatment of the cases we introduce the notation E} = E;, Fj = F},
X], = Xj etc. in case r = Th, and EJI = EQj_l + EQj, Fj/ = F2j—1 -+ ng, Xj/ = X2j—1 + ng,
etc. in case r # 1,. Then in all cases we have 7(E£%) = F and

a= éRX]’-.
j=1

The order in a* is obtained from the lexicographic order with respect to the basis { X7, ..., X/}.
Similarly we will need an extension of this notation to include subsets and signs. So
for I C {1,...,r} and ¢ € {=1,1}#1 if r = r, set I' = [ and ¢ = ¢; otherwise, set
I'={2j—-1,2j|j€el}= (2] —1)U2l with €; | = ¢; = ¢;. Then we will have E'(I’, ¢
equal to either F(I,¢) in the first case, and to E(2] — 1,¢) + E(2I,¢) in the second case.

Remark 2.11. We mention that all the classical irreducible Riemannian symmetric spaces,
with a possible extension by the abelian group R™ = {t € R | ¢t > 0}, arise in this way as
a real form of a bounded symmetric domain in C”, see Tables 3 and 4. The Riemannian
symmetric spaces that do not occur this way are those that correspond to the symmetric
pairs: (eg(2), 5u(6) X 5u(2)), (e6(6), 5p(4)), (€7(7), 5U(8)), (€7(—5), 50(12) X 5u(2)), (€s(s), 50(16)),
(€s(—24), €7 X 5U(2)), (Faca),50(3) x su(2)), and (ga(2), 5u(2) x su(2)), namely, those with a
quaternionic Kahler metric or associated to a split exceptional group.

The extra factor Rt occurs in the cases exactly where D, ~ RF 4 i) is a tube type
domain and (up to finite coverings) G ~ GL({2), is the automorphism group of the sym-
metric cone €2; moreover, here r = r,. These are not all the tube domains, but those for
which g, = g.. The simplest case is when G}, = SU(1,1) and G = {exptX; | t € R} (see
(L4) for the notation). In this case K is trivial and exptX; acts on Dy by

x + tanh(t)
xtanh(t) 4+ 1
according to (LY). In the general case the R factor is exp RHy where Hy = X7 +- - -+ X,.
The element Hy(= —iZy) is centralised by K. Let a = )_, RXj, which by Lemma 2.9is

maximal abelian in p, and set A = expa. Then G = KAK. It follows that the action of
the R* is given by

exptX; -z =

exp(tHy) - (ka-0) = kexp Z(tj +1)X;-0=F- Z tanh(t; + t)Ej.
j=1

The Lie algebra g is simple except for the aforementioned tube type cases and the case
gn = 50(2,p+q), 9 = so(l,p) x s0(1,q), p,q > 2. If G/K itself is a bounded symmetric
domain in C", then G, = G x G and G/K is embedded diagonally into Dy, x Dy, (D,
the conjugate structure). This is the only case where G}, is not simple.

Non-uniqueness of the bounded realization occurs if g = so(1,p), then one can take
gn = su(l,p) or g, = s0(2,p+ 1); while for g = sp(2,2) one has the choices g, = su(4,4)
OI €6(—14)-
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2.3. Boundary Orbits of D.

The G orbit of the basepoint, G - x,, is D, an open domain in P. = G./L.N_. On the
other hand, the Bruhat cell N, -z, is open and dense in P,. As in the complex case, by
means of log one obtains an analytic isomorphism N, - x, ~ N, Zn,,

(2.7) D~G/K ~Dy Cn,,

the Harish-Chandra bounded realization of D.

There are two possible ways to consider the closure of D and the corresponding boundary
orbits: we can consider the closure in the generalized flag manifold P,, or in the open dense
set expny - g ~ n,. As for the complex case, Lemma [[.7], the two agree.

Lemma 2.12. Denote by ¢(D) the closure of D in P.. Then ¢(D) is also the closure of D
in Gy /KpPn_ and the closure of exp Dy - xqg in expny - xg. In particular, the action of G
on D, extends to the boundary of D, .

Proof. This follows from the fact that P. is compact and hence closed in G, /K;P,_. O

Remark 2.13. The above statement is also a consequence of the fact that P. = (G, /K,Py,_)".
The rest then follows from Lemma [L.7] by taking n-fixed points.

Denote by 0D = ¢(D) \ D the topological boundary of D.

Proposition 2.14. Let I C{1,...,r} and let e € {—1,1}#.
(1) If r =1y, thenn(E(1,€)) = E(I,€) and n(On(1,€)) = On(1,€).
(2) If r # ry, then n(E(21 — 1,¢)) = E(21,¢) and (O (21 — 1,¢)) = On(21,¢).
(3) Uniformly in all cases we have n(E'(I',€)) = E'(I',€') and n(On(I',€)) = On(I', €).

Proof. This follows from Lemma 2.9/ and Lemma as 7(Gp) = Gp. O

Clearly 9D = (0D; )" and each Oy (I',€)" is G-invariant although the orbits are yet to
be determined. However from Theorem we can conclude

Lemma 2.15.

(1) If r = ry, then 0D = ngloh(b)ﬁ'
(2) Ifr # ry then, 0D = szloh(zb)ﬁ.

Indeed more can be said in both cases, but we start with some simple observations about
the strongly orthogonal roots 7; and the maximal abelian subspace a..
In the case r = r, we have ;07 = —v; and t, = @ RH; C a. (see (L3) for notation).

Let aj = 7j|q.. Then {ay,..., o, } is a maximal set of strongly orthogonal roots in X,.
In the case r = r,,/2 we have dimt, Nq. = %dim t, and ry, is even. We let a; = y9j]q, =
Y2j-1lae, J = 1,...,r. Then the set {aq,...,a,} is a maximal set of strongly orthogonal

roots in X,.

Lemma 2.16 (ﬂm Lemma 2.23). Let {f,..., 0.} C XF be a mazimal set of strongly
orthogonal roots. Then given a permutation 3; — B, there is an element k € K that
implements it, in particular Ad(k)(Hg,) = Hg,,; .
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Suppose that r = 7,. Now v; € ¥} and E; € g.,,. Then E(b) = Ey + --- + E with
Ej € gey,;. It follows from Lemma 2,16 that dimg g.,, is independent of j, so denote it by a.
Also g2, = 0 as can be seen from Lemma 2.16and Moore’s Theorem. If a > 1 then Zg, (a.)
acts transitively on the unit sphere in g.,, ( [W73] Theorem 8.11.3, p. 265). But in this
case the unit sphere is connected so Zg,(a.), acts transitively. We also know from Lemma
2.5 that the Lie algebra of Zk, (a.), is contained in €. Hence Z (a.), C K. It follows that
E; and —E; are conjugate under Zg(a.) C G. Now apply this argument to each of the
analytic subgroups of G, corresponding to the Lie algebra generated by RE; DRH; GRE_;
to see that we can find k; € G; such that Ad(k;)E; = —FE;. But the groups G; and G,

commute if ¢ # 7, thus with k = H;’ kj(»lJrEj)/Q we have Ad(k)E(b,€) = E.

Lemma 2.17. The following are equivalent:
(1) there exists m € Ng(a) such that Ad(m)|, = —1;
(2) there exists m € K such that Ad(m)E; = —E}, j=1,...,7;
(3) there exists m € K such that Ad(m)F} = —Fj, j=1,...,r.

Proof. As noted following Lemma 210, 7(E}) = Fj. Since 7| = id, it follows that (2)
and (3) are equivalent. Assume that there exists m € K such that Ad(m)|, = —1. Then
Ad(m)(E} + Fj) = =B, — F}, j =1,...,7. As K C L. we have Ad(m)ny = n.. Hence
Ad(m)E; = —E} and Ad(m)Fj = —F}. On the other hand, if (2) and (3) hold then, as
Xj=FEj;+ F, Ad(m)X} = —X]. Since a = P, RX}, the claim follows. O

Remark 2.18. It follows from Lemma that it is enough to assume that (2) and (3)
above hold for one j.

Corollary 2.19. Assume that r = ry,. If —1 is not in the Weyl group W = Nk(a)/Zk(a),
then E(b,€) is not conjugate to E(b,€") if € # €.

Theorem 2.20. Assume thatr =1, and let 1 < b <r.
(1) If =1 € W then (O,(b))" = G - E(b) =: O(b) is one G-orbit and
oD = szlo(b) .

(2) If —1 ¢ W then (O4(5)" = | J G- E(b,e) and

ee{-1,1}
0D = szluee{_lvl}p(b, e with  O(be) =G E(be).

Proof. Let z € (O(b))" C OD. Using the familiar argument we can choose k; € K and
a; € A such that kja; - 0 — 2. Again, k; has a convergent subsequence, so we can assume
that k; — k € K. Replace z by w = k™ 'z in the same G-orbit. Write a; = exp > _ 1, ;X,.
Then

Qj + 0= Z tanh(t,,J)Ej .
j=1
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As a; - 0 — w it follows that there exists a set I such that tanh(¢, ;) — €, € {—1,1} for
v € I and tanh(t, ;) = z, € (—1,1) for v ¢ I. Hence

w = ZEVE,, —i—Zx,,E,,.
vel vl
If t, € R is so that z, = tanh(¢,) then exp(— Zygl t,X,) - Zygl x,E, = 0 so we can
assume that w = Zue ;&E,. As E, € g, from Lemma we can assume that there
exists a b and € € {—1,1}° such that w = E(b, €). The claim now follows from Lemma 217
and Corollary O

Theorem 2.21. Assume that r # ry,. Let 1 < b <r. Then O(2b)" = G- E(2b) = G- E'(D)
is one G-orbit. In particular, with O(b) = G - E'(b) we have

- T

oD = (b).

b=1
Proof. Let z € (O(2b))". By replacing Xs;_1 + Xo; with X/ we see as above that we can

assume that z = 5"

.—1 €., for some b. As before let a; = ¥9;_1]q.. Then o; € X7, and

ai|ac - 727;|Clc = 7Lﬁ(727;_1)|ac‘

It follows that dimg., > 2. We also have 2a; ¢ .. Thus Zk(a.) acts transitively
on spheres in g.,, which implies that £ and —F;, which are both in g.,, are conjugate
via Zg(a.). Thus we can take ¢, = 1 for all i. The roots o; and «a; are conjugate by

S(ai—ay)/2 € Wee and Ej, € gq,. It follows that we can assume that J = {1,...,b} for some
b<r. OJ

2.4. Isotropy of E(b,e¢).

In this section we describe the stabilizer in G of E(b,€), respectively E(2b), on the
boundary of D. On the way we give some extra information about the structure of each
part in the stabilizer. Our notation for subgroups of G will be the same as that used for
G}, except we drop the subscript “h”and L = Zg(Hp). Our standard homomorphism will
always been assumed to be of the form s, for I ={1,...,b} C{1,...,7}. We define I’ as
in the earlier subsection and then write x instead of xr . wherever the exact form does not
matter. As before, we write E,, H., X, O(k) etc. for E(b,€), H(b,e), X(b,e), O(I' ¢).
We have 7(E,) = E,. Hence if G} is the stabilizer of Ej in Gy, then the stabilizer GZ* of
E. in G.is GE = ((G}f“)77 and the stabilizer GF* in G is (GF#)". Same argument holds
also for the Lie algebra of the stabilizers.

Basic Example. SU(1,1) - cont.
We return to the prototype example, §1.3, and introduce an anti-holomorphic involution.
Consider the map 7, : sl(2,C) — s[(2,C) given by the matrix multiplication

() e () e 1)
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Clearly 7, is complex linear, whereas for X € su(1,1) one has 71(X) = X, in particular
71(su(1,1)) = su(1,1). Recall that the conjugate linear extension of 7; from su(1,1) to
s1(2,C)(= su(1,1)%) is denoted 7, and so on su(1, 1) is also given by complex conjugation,
as is m; on SU(1,1). For the involution 7y, the Lie subalgebra of sl(2,C) denoted g. is
s[(2,R) = su(1,1). Thus for the subgroup G C SU(1,1) N SL(2,R) we have

o={ (i) ) [rer)

o.+
Dy =Dyt =(-1,1) C Dy = D1 C ppy-

Since g, = g. we know (cf. Table 4) that g has an R-factor and that r = r;, (cf. Lemma
2.10). As regards compatibility of the involutions,

(2.8) komp =70k and kol =0ok,

consequentlyﬁ
KoM =10k.

o o ey
Moreover, with £} . := kp o« we similarly have £} o7 =70 R} .

Earlier we recalled the decomposition obtained from m, := ad o &:

[ Cl C[2]

(2.9) o= ®g ©g and  gf =g % @g@gr.

Lemma 2.22. If 7 is a finite dimensional representation of sl(2,C) then m and wo 7 are
equivalent.

Proof. This is well known. We assume that 7 is irreducible, then 7 is uniquely determined
by its dimension. As the dimension of 7 and 7 o 7 are equal and 7 o 7 is irreducible the
result follows. O

It follows from this Lemma that the decompositions in (29) are preserved under 7 and
7). In particular, where the superscript refers to n-fixed points, respectively intersection:

se=ooollwd? g=g”e0d"od? and g =gd"ed'ed?eq g oq’
Remark 2.23. Recall that we have defined k such that it defines a homomorphism
su(l,1) — g,. But as pointed out in [[L7] one can, by extending  to s[(2,C) and then
restrict to sl(2,R), view x as a homomorphism sl(2,R) into g.. Then the first decompo-
sition in (2.9)) is the isotypic decomposition of the representation adge o x of s[(2,R). The
second decomposition is then obtained by taking the 7-fixed point in each of the spaces g([f :
We will discuss that in more details in the next section. Note that the spaces gV, j = 1,2,
are not necessarily £(sl(2, R))-invariant.

"We remark that the results in this subsection are valid for all standard homomorphisms satisfying (Z.8)).
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As 7(X,) = n(X,) = X, it follows that the eigenspaces of adX, are 7 and 7 stable and
compatible with the decomposition g, = g®qy and g5 = g. Dig.. In short, all the essential
structure from the previous sections is invariant under 7 and 7). In particular,

(2.10)
m?m = mg@mgnmqh’ nflm = nflf@nflmmqh> n%m = ni@n%mmqha and Jhe = 9D qnsMNqn -

Let Hy and Z, be as before. Let H, = r(H;) and Y — 0 — %HR and note that

H., HY €a, C ge N s.. Complexifying the decomposition in (2.I0) and then taking 7 and
7 fixed points we get

nin :nigmgc:gc(aerc;j)a J=12,
and
nl =n), Ng=go(adX,;j) = gladX,;j), =12

For the complexification of the Levi factor of the maximal parabolic subalgebra q, and
its intersection with g. we also have with [.,, = 3,.(X,) and with the obvious notation:

Per = low B e = (1IN & (D) @ RX, @ (n}, ®n2)
and
pr =L on, = (Vo 1?) ORX, @ (n, ®n)

semidirect products.

Let Loy = Zao, (Xy) = Lg,l.@)Lg,?A,.i where L&Y is the analytic subgroup of G, with Lie
algebra [2}3, L? = Za. (X, Hy), and A, = expRX,. We use analogous notation for g

and G dropping the index ¢. Up to connected components for L,({l), those Lie algebras,
respectively Lie groups, are obtained by taking 7, respectively 7 fixed points. Finally we
let

P.. = Ng,(n) = LY, AN, and P, = Ng(n,) = LYAN,.
Theorem [[LT0, parts (7) and (8) now imply:

Lemma 2.24. The following holds true
(1) P.. is a mazimal parabolic subgroup of G..
(2) If Y £ 0 then HY is central in 1Y N5, and Lgl,.@)/L,.C is, up to compact factors, a
split-Hermitian symmetric space.
(3) P. is a parabolic subgroup in G.
(4) If HYD # 0 then L&Z)/K N LP s the fized point set of the conjugation 1 in the
Hermaitian symmetric space M}(Llli)/Kh N M}(L? and we have a fibration

LY/KNnLY - Ok) - K/KN LY.

(5) If H" = 0 then the stabilizer of E, in G is P, and O(k) = G/P, = K/K N L® is
a compact symmetric R-space.
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3. FINER STRUCTURE OF @),

In this section we discuss the finer structure of the stabilizer of E,. This material will
not be used in this article but we still think it is worth including. Recall from §1.5 that

gﬁ?} = 3q, (A(su(1,1)) is a subalgebra which has ideal g, = @ghjggf]7j21 Ohj-

Lemma 3.1. Let V C g%ﬂ be an irreducible gn.-module. Then exactly one of the following
holds:

(1) 7(V) =V and 7|y =id. In this case V' C g and the action of gn. is trivial.

(2) 7(V) =V and 7|y = —id. In this case V C q and the action of gn. is trivial..

(3) #(V) =V and 7|y # id. Then dimV > 1 and dimV Ng=1. If dimV =2, then
VAagcnl orVNgcn . IfdimV =3, then Vg CglNnag.

(4) 7(V) # V. ThendimV > 1 and VN7 (V) = {0} and 7|ve:rqvy : VOT(V) = Var(V)
is given by 7(X,Y) = (#(Y), 7#(X)) and (V & 7(V)) Ng = {X +7(X) | X € V} is

three dimensional.

Proof. 1t is clear that exactly one of the conditions (1) to (4) must hold. In the case where
dimV =2 or dimV = 3 the action of ad|,, and ad o 7|, on V are different as e and f
act differently on R? and s[(2,R). Thus, if 7|;; = +id, we must have that the action of gy,
is trivial as ad o 7y = 7 o ad. Then (1) and (2) follow.

Assume that 7(V') = V and 7|y # £id. Then clearly dim V' > 1. Assume that dim V' = 2.
Then V =Im (id+7) @ Im (id —7) = V(7,1) ® V (7, —1) and each of the eigenspaces is one
dimensional. As 71 (X;) = X, R? = R*(X;,1) ®R*(X;, —1). Since 07, = 70, it follows
that ad X, |y (1) = £1. If dim V' = 3, then the action is the standard su(1, 1) action on its
Lie algebra and

su(l,1)Ng =RX; = su(1,1)(adX;,0) = su(1,1)™.
For (4) we note that V' N 7(V) is invariant. As V' is assumed irreducible, we either have

V =7(V)or VN7 (V)={0}. The rest is now obvious.
O

Lemma 3.2. Assume that (3) above holds and dimV = 2. Then (V) NV = {0}. Fur-
thermore,

(1) O(V) is gn,-stable.

(2) O(V(1,£1)) =0(V)(7,£1).

(3) O(V(adX,,£1)) =0(V)(adX,, F1).
(4) If0 # X € V(adX,, £1) then 0(X) € V(adX,, F1) and [X,0X] € m® N p.
Proof. Fix v € V(7,1). If [X,,,v] = v then [X,.,0(v)] = —6(v), hence v and f(v) are linearly
independent. As dim V/(7,1) = 1 it follows that f(v) ¢ V. Similarly, if [X,,v] = —v then

[X,.,0(v)] = vand v € V. It follows that V N O(V) = {0}.
O

The conclusion from this is
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Corollary 3.3. If n;, # {0}, then n) # {0} and dimn} =  dimn;,. Purthermore, 7|y
defines a conjugation on n} _ sonl is a totally real subspace.

Remark 3.4. This follows also from the following observation. Lemma states that
I, = —ad(Y,) o 6, defines a complex structure on n,lm. 7 commutes with 8, and anti-
commutes with ad(Y,). Hence I,7 = —7, which shows that 7|, is conjugate linear.

1 _ gl : 1 1 _ gl 1
Hence n,, = n;, N g is a real form for n;, and n;,, =n,. @ In,.

Lemma 3.5. Let V C g; be one dimensional or a simple ideal. Then either 7(V) =V, or
(V)N V = {0} and we have the “group case” where V- x 7(V') is an ideal, V and 7(V)
commute, and (V x 7(V))" = {(X,7(X)) | X € V}.

Proof. If V.0 7(V) # {0} then VN 7(V) is an ideal in V. As V' is either one dimensional
or simple it follows that V' = 7(V'). The rest is obvious. O

Lemma 3.6. 7(lo) = [y and lyNg is an ideal in m®. Let Ly be the analytic subgroup of G,
with Lie algebra ly. Then Lo /G N Ly is a compact symmetric space.

Proof. Iy is the maximal compact ideal of m? . As [, + 7(ly) is a compact ideal it follows
that 7(l3) = ls. The rest of the Lemma is now obvious. O

Lemma 3.7. Assume that gg) # {0}. We have 7‘(921)) = gg) and 7(Z}) = =Z1. Let G},
be the analytic subgroup of Gy with Lie algebra gg). Then G} is 0, and T invariant. If
K} = (G})" = K, NG}, then K} is mazimal compact in G}, G} is a bounded domain,
7 defines a conjugation on G}/K} and (GNG})/(GNK}) = (G} /K})T is a real form of
Gi/K}.

Lemma 3.8. g := gng'" is an ideal in m?.

Proof. We have [m% gM] C gg) Nng=gW. O

The next result follows easily from the above.

Lemma 3.9. 7(m”)) = m!? and m{? = m!> N g is an ideal in m?.

As 7(X,) = X, we have F, C G},". Let F.:=F.NG.

4. LT FROM K TO (L.)o

One of the results in the paper (§6) will be an extension of sections of homogeneous vector
bundles over G/K to its closure, and hence the boundary orbits. A key step in the proof
will be a lift of irreducible representations of K to L.. In this section we will do the lift
from € to [, i.e. from K to (L.),. Subsequently we will treat the full L.. A glance at Table
5 shows the real forms G divided into three types. In subsequent subsections the proof of
the lift will be done for each type.
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4.1. The case OCCC.

We shall use the terminology of o-normal system of roots for which a convenient reference
is [Wa-I] p. 21-24. For this subsection only we shall denote by G a non-compact connected
semisimple Lie group with Lie algebra g, later the results will be applied to (L), in Table
5. The Killing form on g induces a non-degenerate symmetric bilinear form on g* for which
we use (-, -). Let 6 be a Cartan involution and write g = €@ s for the Cartan decomposition
of g. Let a be a maximal abelian subspace in s and, as usual, let m = 3¢(a), and extend a
to a Cartan subalgebra t = t, @ a of g. Denote by A = A(g®, t%) the set of roots of t* in
g®. Clearly A is a reduced system of roots. Our assumption in this subsection is that all
Cartan subalgebras in g are conjugate, to be denoted OCCC.

Lemma 4.1. t, is a Cartan subalgebra of € and m.

Proof. For a Cartan subalgebra ¢ of g let
cr={X ec|Vaec A" ")) a(X) eR}

and
o ={X cc|(VaeAlg", ) a(X) €iR}.
Then ¢ = ¢; @ ¢ and the dimensions dim ¢; and dim ci are constant on each conjugacy
class. In particular, for c =t, tg = a and t; = t,.
If t, is not a Cartan subalgebra of €, then t, extends to a Cartan subalgebra t, of ¢
which in turn extends to a Cartan subalgebra ¢ of g such that t, is a proper subspace of
t,, or t, C ¢; which is not possible by the above discussion. O

It follows that t is a fundamental Cartan subalgebra as well as a maximally split Cartan
subalgebra. As t = t, ® a we can restrict roots from A to either t, or a. Denote by
¥ = 3(g,a) the set of (restricted) roots of a in g, i.e. ¥ = {f], | € A} \{0}. Fora € ¥
and A(a) :=={f € A | Bla = a} we let g, C g be the restricted root space, and set

me = dim g, = #A(«).

That g has one conjugacy class of Cartan subalgebra is equivalent to all multiplicities m,,

a € X are even. Next we define the involution that will serve as the o of the g-normal

system. Let tg = ¢t @ a. For A\ € { let
MNoi=Xof, =\ \T .=

A+ X)) == (A= A9,

N | =
N | —

and . .
A= (A=A == A+ ).
Loy = Lo
We identify A* with A+ and similarly write A~ for Al,.
If & € A then o, af are in A because ggg = 0(g%) and ggﬁ =0(g%,). Also # and * are
isometries for (-, -).

It is also clear that
Avi={aeAlad’=a} =AM t]) = {a € Ala =0}.
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Lemma 4.2. Assume OCCC. Then 3* # 3 for all B € A. In fact, 3% — 3 ¢ A.
Proof. Let € A. Suppose that 3% = 3. Then 3+ = 0, hence 3 € ¥. But then

AB)={BYu{ye Al¥ #7, 7= 8}
Hence mg is odd which contradicts OCCC.
If 3% =  then 8% — 3 = 0, so is not a root. Assume that 8% # 8 and that v = 8% -3 € A.
Then 7% = —v so that % = 0, i.e. v is a real root. But t is fundamental so there are no
real roots. O

Corollary 4.3. (A,0) is a normal o-system of roots per [Wa-I].

From this, various properties of the roots will follow. The OCCC condition will impose
some additional constraints which we will identify in the next few results.

Lemma 4.4. Let o« € A. Then o € A(€°,15).
Proof. Let X, = X + X7 € g§. Here XF =1 (X, £0(X,)). If H € a then
[HuXOé] = Oé(H)(X;_ _'_Xoj) = [HvX;_] + [HuX;] :
It follows that
[H,X3] = a(H)XT .
Thus X # 0. But the same argument shows that for H € t, we have [H, XT] = a(H)X=
and therefore €5, = {0}.

Lemma 4.5. Assume OCCC. Let o € A\ A,. Then o and of are strongly orthogonal.

Proof. We have a — o = 2a~. By the above 2o~ ¢ A. Similarly we have a + of = 2a*.
We just saw that a™ € A(E°,t5). As t§ is a Cartan subalgebra of £© it follows that
20 & AT, O

Corollary 4.6. Assume OCCC. If a € A\ A, ={a € A|a#a’}. Then |a™| = |la”|.

Proof. This follows from the last lemma which implies that o and o are orthogonal or
(@, %) = o[ — [la~|* = 0. 0
Lemma 4.7. Let Ay = {a™ | o # a} (not counted with multiplicities). Then A(E,5) =
AUA,.

Proof. Tt is clear that the union is disjoint. Let X% be a set of positive roots in ¥ and, as
usual, n = P, .+ g, Then

C=m"e P{X, +0(X,) | X, g5}
~ext

As ¥ = {al, | o’ # a} the claim follows now using the same argument as in the proof of

Lemma 14
]
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The following set of simple roots is adapted from [Wa-I] p. 21-24 with slightly different
notation. Let ¢, := dimt,, ¢ := dima and ¢ = ¢, + {5, = dimtg. We choose a lexico-
graphical ordering in t; with respect to a basis Hy, ... Hy so that Hy,..., Hy, is a basis for
it,. Let AT be the corresponding set of positive roots and II the set of simple roots. Then
by Lemma .2 and [Wa-I] there exists ¢, such that the following holds:

(1) Iy = {ai,...,ap} is a set of simple roots for A, (contained in A} = A, N AT).
Furthermore I, = {a € IT | o = a}.
(3) If 1 <v < /5 then agﬁy = Q105+ and a?1+£2+u = Qyy1p-

Lemma 4.8. 11, = {ay,..., ap, aZH, c aZHQ} is a simple system in AT (€° £5).
Let W = {u1,...,u} denote the set of fundamental weights for II.

Lemma 4.9. Let V. := {uf | j = 1,...,0, + l} (where we identify p; with p for
j=1,...,01). Then V. is the set of fundamental weights corresponding to the simple
system 1Il..

Proof. We have to show that
2(pt s af)
(aF,af)
This is clear for v = 1, ..., ¢; as in this case p, = p;f. Assume now that (1+1 < v < {1 +/0s.
Then for 1 < o < ¢; we have

=00 -

0= (th, ) = <,Uj>aa> .
Assume (1 +1 < o </l + {y and write 0 =01 + 5, 1 < j < (5. then
1

(uhaf) = <ui,§(aa+a§)>

1
= §<:U’V7 g + Oég>

because 6 is an involution. As o = ay, 14,4+ and [af||* = 3]s |* = 1][a||? we get
20pf,0f)  _ 2Am 3 (a0 +0a7))
o> ot |1?
2, 300) 2y 30 4y45)
allas|? sllae ve,ll?
= Oyo

)

O

Denote by AT(K) the set of highest weights of irreducible representations of K and simi-
larly by A*(G) the space of highest weights of irreducible finite-dimensional representations
of G. If p € AT(K) then we denote the corresponding irreducible representation of K by
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oy. If p € AT(G) then the corresponding irreducible representation of G with highest
weight i is denoted by 7.

Let G be the universal covering of G and let K denote the analytic subgroup of G
corresponding to the Lie algebra €. Then K is simply connected and locally isomorphic to
K. Furthermore, the center of G, Z(G), is contained in K.

Theorem 4.10. Let u = 23”52 ki, € AT(K). Set i := Eflﬁ& kjp;. Then i € AT(G),

descends to be in AT(G). Moreover o, is contained in x| with multiplicity one.

Proof. Tt is clear that u € A+(é) and p € A+(K ). Denote by 7; respectively 7, the
correspondmg representation of G respectlvely K. Clearly o O is contained in TH‘ 7 Let
Z be the kernel of the canonical projection ¢ G — G. Then Z € K and K ~ K / Z. Since

p € AT(K) it follows that o,|; = id. As 7 is central in G and 7; is irreducible one has
Ti| 7 is a scalar. But ¢, is contained in 7|z, it follows that 7;|; = id. Hence 7; defines a
representation of G and 1 € AT (G). The multiplicity one assertion is clear because there is
no way to write p as a non-trivial linear combination (x,0) — > ny(a™, a7)|y, of positive
roots (o™, a”) and n, > 0 (and at least one # 0). The rest is now obvious. O

4.2. The special cases.

We turn to the third type in Table 5. The technique is a variation of o-systems from the
previous subsection. Here we use some results from [Kn96] on Vogan diagrams. The proce-
dure parallels that followed in the OCCC case. One begins with t = t, ® a a fundamental
Cartan subalgebra of g but here not a maximal split Cartan. Hence again there are no real
roots. Of course t determines a parabolic subalgebra which will play no direct role. We
have A = A(g®, t©) the set of roots of t© in g W the Weyl group of A; let A(¢5,t5) be
the set of roots of t& in €& and Wy its Weyl group. We choose a lexicographical ordering
in t; with respect to a basis Hy,...H, so that Hy,..., Hy, is a basis for it,. Let A*
be the corresponding set of positive roots and I1 = {ay, -+, o} the set of simple roots.
Denote by ¥ = {py,..., ue} the set of fundamental weights for I1. As before, for A € tj; let
N := X o@. Then we have the restriction to t,, A\* := % ()\ + Xg) , and the restriction to
a, A\~ = % (>\ — Xg) . A different but important feature arises here in that imaginary roots
can be compact or noncompact. Thus we must examine 3T, the restrictions of A™ to t,.
Also we make a choice of simple roots for A(¢%, %) compatible with A*. To us it seemed
easiest to continue with the remaining details in each case separately.

Example 4.11. We start with g = s0(5,5) and € = sp(2) x sp(2) = s0(5) x so(5). Using
standard notation and as presented in [Kn96] p. 359 we have IT = {a; = e; — eg, a0 =
€ —€4,03 = €4—€5,0y = €5 —€3,5 = €5+ €3}, where t; =< eq,e9,¢4,65 > and a =< e3 >.
Clearly 6 : II — II interchanges s and asy, so relative to the involution € we have a normal
o-system with a o order for which II is a o-fundamental system. A computation using the
Cartan on [Kn96l, p. 359] determines the set of restrictions, ¥*, of A* to t, which, from
[Wa-I], is a (non-reduced) root system and contains the positive roots of the Levi subalgebra
50(4,4)Da. We let Wg+ be its Weyl group. Now set Wy = {w € W|wof = fow}. Then Wy
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induces a map on t; and, from [Wa-I] p. 24, as there are no real roots we have Wy|,, = Wx+.
Finally with regard to Weyl groups (following [HI0] p. 1016 and others) we will take a
distinguished set of representatives for Wy /Wi, viz. let D:fF be the positive Weyl chamber
for A*(¢°,5) and let D] be the projection of the positive chamber for A in ¢(= t, & a)
to ty. Then set W' = {w € Wylw| (D) C D{ }. Then W' gives the required coset
representatives.

Yet another computation is necessary to obtain AT (€5, %) = {e1, of , a3 +ad +a, af +
20 + 205 + 20 } U {eq, a5, af , a3 + 2 }, with compatible basis of simple roots {a] =
e1— e, 08 +ai +af =e}U{as =es—e5,af = ez} As for the fundamental weights for
g, one gets

1 =€, po2=e1+ey, U3 =er+ e+t ey,

€1+ e —e3+e4+es5 €1+ €2 +e3+e4+ €5

while for €,
Mf =€ =/~L1,M§r =etey= /~L2,/~L:3,F = 647@ = €4 t €5.

In terms of the e;, for a highest weight 1 we have g = Z‘;’ mip; = (mq + mg + mg +
%)61 + (mg +ms + %)62 + (m45m5)63 + (mg + %)64 + (%)65. SO, similar
to the procedure in the Theorem above, to obtain g as a natural lift from t© we take
my = my giving ut = 1 = Mye; + Myey + Myey + Mses with My > My > My > My > 0.
Now take a candidate highest weight p = Z‘f niu; of € to lift to g. In terms of the e;
we have 1 = (ny + ng)ey + nges + (n3 + ny)ey + nges = Nieg + Noeg + Nyey + Nses and
Ny > Ny > 0,Ny > N5 > 0. Clearly when Ny = mo + Ny, i.e. Ny > Ny, we have a pu to lift
to /1 . However this determines a chamber in t™ for the action of W'. Now g = s0(5,5) is
type D5 so the Weyl group contains all permutations of the e;. We summarize in Table 1
Case . ITlvarious possibilities for the chamber and an element of W that maps the chamber
to the original one. We use the abbreviation i <— N; and e; — ¢; <— s, € wt.

I w orbit
1>2>42>5 id 1245
1>4>22>5 €y — €4 1245 — 1425
1>4>5>2 €y — €406y — €5 1245 — 1542 — 1452
4>1>22>5 €y —€40€e1 — €y 1245 —4215—4125
4>1>5>2|eg—e40e9—e50e; —eq | 1245 —4215 —-4512—4152
4>5>1>2 €y —€50€E] — €4 1245 —4215—4512

TABLE 1. Case [I.11]

So given € AT(K) one finds it in the first column, applies w™ to it obtaining a highest

weight of the form 1 > 2 > 4 > 5 which can be lifted to a natural 1 € AT(G). Tt is clear the



30 GESTUR OLAFSSON AND ROBERT J. STANTON

w~! belongs to W' as it takes a chamber of dominant K-weights to another. The result
then follows from the multiplicity one Theorem in [HI0] which says the K-type w(i)|q+
occurs with multiplicity 1 in V3.

An alternative approach to the existence of the K-submodule is to use the generalization
of the PRV conjecture ([MPR11]), but this does not yet give multiplicity 1.

Example 4.12. Next we consider g = ¢4 and € = sp(4). We shall use the notation of
[Bo68] so that we have a basis {a1, as, as, ay, as, ag} for AT (g€ tY). We use Table C p.
532 in [Kn96] for a compatible basis of the simple roots for £ = sp(4) C eg(). In particular,
node 2 is black, and under €, nodes 3 ¢~ 5 and 1 «~ 6. This suggests the followmg basis
for AT (&C, t(c) {m=a+as+ °‘3+°‘5 Y2 = a1+°‘6,7 = a3+°‘5 , 74 = ay}. Note that we use
~ because these are not always the projections to t*, e.g. 72 £ ay.

From one computes that (a;, a;) = 2, and since the fundamental weights satisfy

(aj,0)
roots ;. Similarly one obtains that 1 = (y1,71) = (72,7%) = (73,73) while (y4,71) = 2.
Then for the fundamental weights of AT(£°,t7) we can take w; = &2, w, = %,a@, =
M3+ —p2

= 0;; we have that the fundamental weights p; are the dual basis to the simple

P) yWq = g — [2.
Let p € AT(K). Then pu = Zzll n;w; with n; > 0 and integers. In terms of the p; we have
(4.1) u:nl%+n2u1—gue+n3u3+;;5—u2+n4(u4_u2)
+ + ng—n
MIWM . He +n3M3 . M5 + nagia + ( 1 5 3 )

Here we must make the assumption that n; — ng is an even integer. Then, as before, we
are left with a few cases which will be handled using the Weyl group, i.e. W'. We begin
with the case n; —ns —2ny > 0. Here we Lift 1 to 1 = nojuy +ngpis + nyfig + (M52 —ng) fio.
Then g+ = p so we have a valid lift. In Table 2 Case L12] similar to that above the first
column contains the various cases for u, the second the sequence of roots whose reﬂections
give w, and the third the lift to A™(G) to which you apply w™! and the restriction gives p.

So here, given p = 31 nw; € AT(K) (ny — ns an even integer) one finds it in the first

column, applies w™! to it obtaining a highest weight 11 € A*(é). It is clear the w~! belongs
to W' as it takes a chamber of dominant K-weights to another. The result then follows
from the multiplicity one Theorem in [HI0] which says the K-type w™'(j)|¢+ occurs with
multiplicity 1 in V. Life would be easier if one knew more about the action of W' on
the chambers D; ; unfortunately, we were unable to obtain the result we needed which
necessitated the lengthy computations. These computations were facilitated by having the
expressions of the simple roots of eg(s) expressed in terms of the fundamental weights.

Example 4.13. The next case g = s0(1,n — 1) and ¢ = so(n — 1) is elementary and
surely in several places in the literature. Assume that n — 1 > 3 to avoid the Abelian
case. Base extend the Lie algebras to C. The fundamental representations of € are either
exterior powers of the standard representation or spin. All these are known to occur



EXTENSIONS OF REAL BOUNDED SYMMETRIC DOMAINS 31

1 w Lift 1z
ni—n3—2n4 >0 id n2H1+n3u3+n4u4+("15"3 .
n—mns —2ns <0,ny —n3 >0 Q2 N2 + naps + 5y — (M5 — ng)pe
ny—mn3—2n4 <0,n1 —n3 <0 | as0qs 00605004002 napt + (ns + S5 — ng)us
ns > na — gt Fraps + (=) g
n1—ng —2n4 <0,n1 —n3 <0 | asoasoasoasoasoaz | [n2+ns+ (M52 _n4)]u1+(n1§n3)u5
ng < ng — "3 Qg O (ig O (30 —(n3+%—n4)uz+(—"lg"3)ue
712+n32n4—%
nit—n3—2n4 <0,n1 —n3 <0 | asoqs 0oqs 0as 040 nqu_[n2+n3+(n1§n3_n4)]u4
n3<n4—% Qg 0 (ig © (30 [nl+n2+n3_n4]ll5+(—m§"3),u6
ng +ng < ng — L2 Q4 O (¥3 0 (V10
ANS 4oy 4 g > ny — 508
ni—n3—2n4 <0,m1 —n3 <0 | asoqs 0060500402 nzp@-‘-%;u
n3<n4—% Q2 O (ig © (30 _[’HTW +n2+n3—n4+m§n3]us
ng +ng < ng — M58 (rg O (¥3 0 (V10 +[n2 + 2ns — na + 2573
MRS 4 opy 4 ng <mg — S0S 50
n2 4 2n3 —na + M5 >0
ni1—n3—2n4 <0,m1 —n3 <0 | asoqs 0060500402 nzp@-‘-%;u
n3 < ng — M-8 Q2 0 iy © 30 — sy
n2 +nz < ng — M5 Q4 © (i3 © 10 —[na + 2n3 — n4 + M5y
me+n2+n3<n4_n1_;ng Qg O (50
n2 4 2nz — na + M5 <0

TABLE 2. Case [4.12]

with multiplicity one in the similar representation of g. Then define a length function on
highest weights in the usual way: I(u) = (32" niw;) = .y n;. Induction and using Cartan
composition provides a natural lift.

One can be more precise using standard material on highest weights and branching, e.g.
as in [GWOS8] p. 351. Say relative to a suitable Cartan subalgebra the highest weight of
g® is given by a decreasing sequence A; while the highest weight of €€ is given by a similar
sequence ;. Then depending on the parity of n —1,ie. n—1=2korn—1= 2k —1,
either one takes A; = ;i <k and  Ap = |ux|, or Ay = ;i <k and  Ap=0.

For g = s0(1,2) = sl(2,R) and £ = s0(2) the procedure is the same as in the previous
examples, viz., each irreducible unitary representation of s0(2) occurs as the highest (lowest)
weight of an irreducible finite dimensional representation of s((2, R).

Example 4.14. The remaining special case is g = s0(p, q) € = so(p) x so0(q) and p,q # 2.
If at least one of the factors in £ has even parity then we have an equal rank situation.
Then we have in W1 all reflections generated by noncompact roots, in particular we have
transpositions between e;,1 < i < p, and ¢;,p+1 < j < g. By means of these we can
arrange the highest weights of the factors to be in decreasing order for g and thus obtain
a lift for any highest weight of £. If both p, ¢ are odd then we are not equal rank but g is
still of type D; whose Weyl group contains enough reflections to accomplish the same goal.

4.3. The Isometries.
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We turn to the remaining type in Table 5. Here ¢ is the Lie algebra of the isometries of
a standard representation on a finite dimensional vector space while g is the Lie algebra of
all automorphisms of the vector space. For the cases at hand we will have no need of the
spin representation of €. It is classical that all other such representations are obtainable
from exterior powers of the standard representation together with Cartan composition, all
of which have natural lifts to g.

5. EXTENSION FROM (L), TO L,

In the previous section we considered the extension of representations from K to (L.)o.
In this section first we discuss the extension from the connected group (L.) to L. For
that we need more information about L./(L.)o. Let P2, = M?. A'N° be a minimal
parabolic subgroup in (L), where a. = a2 & RHy, so that a? is maximal abelian in I/, N s,.
Then Prin = MyinAcNpin is a minimal parabolic subgroup in G, where N,,;, = N°N_,
A =expRHy, A. = A’A and M,,;, = Zk.(a.). Note that M,,;, has the same Lie algebra
as MC. and hence (Min)o = (M2, )o.

We now use well known results about the connected components of M,,;, to describe the
connected components of L.. As a. = a’ & RH® where a¥ is maximal abelian in [, the

roots Y. can be identified with 3([, a) via restriction.
Lemma 5.1. We have L., = M,,;n(L.)o
Proof. This follows from [W88 Lem. 2.2.8]. O
Let Fy := exp(ia.) N K.. We note that if f € F} then
f=n(f) =nlexpifl) = exp(—in) = exp(~ifl) = f~.

Thus f? = e and Fy ~ Z3 for some s. We remark that were F; cyclic then the desired
extension can be found in [Kn86] Lemma 14.22. Choose generators fi,. .., f, € F} so that
with F' = [[{e, f;} we have M, = F(Mpmin)o = F X (Myin)o, see [HeT8, Ch. VII] for
details, in particular Theorem 8.5. But we will not need the exact form of Fi. The following
lemma now follows:

Lemma 5.2. Let F' be as above. Then L. = F(L.)o.

Lemma 5.3. Let ji € AT((L.)o) and denote by (15, Vy) the corresponding irreducible rep-
resentation. Let f € F. Then the representations t; and f - 15 @ m — 7(fmf) are
equivalent.

Proof. Clearly f -7 is an irreducible representation of (L.)y. Let t =t @ a? be a Cartan
subalgebra of I[. Then for H € t we have

f-malexpH) =1:(fexp Hf) = 1h(exp Ad(f)H) = 7a(exp H).

Thus f-7; and 7; have exactly the same weights. In particular the highest weights are the
same. Hence f-7; >~ 7. O
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It follows that for each f € F there exists Ty € GL(Vj) such that for all m € (L.)o,
Trra(fmf) = 7a(m)Ty. If f = e we take Ty = id. Note that T is unique up to a scalar
A € T. Let Vi(t) be the highest-weight space. Then dim V; (/i) = 1. Hence there exists
0 % Up such that Vﬁ(ﬂ) = (CUﬁ.

Lemma 5.4. For f € F' let Ty be as above. Then we can choice Ty such that
(1) T2 = id,
(2) Ty(vp) = v

Ty is uniquely determined by (1) and (2).

Proof. We have for m € (L)o by repeating the definition twice that
TfQTﬂ(m) = T]?Tﬂ(f2mf2) = Tﬂ(m)Tf.
As 75 is irreducible there exists ¢y € T such that T7 = ¢sid. (1) now follows by replacing
T by c]?l/ T r. As dim V(1) = 1 and Ty leaves the weight spaces invariant, it follows that
T¥|v, (g is scalar, say multiplication by dy # 0. By (1) it follows that d7 = 1. Hence we can
replace Ty by d;le to obtain (2) and (1). If Ty and S satisfy (1) and (2) then Sj?l =5
and S;Ty = cid for some ¢ € C. But by (2) it follows that S;Ty(v;) = vz = cvp. Hence
c=1 U
From now on we always assume that Ty, € F, satisfies (1) and (2).

Lemma 5.5. Let f,g € F. Then TyT, = T,T5%.

Proof. As fg = gf it follows that fgfg = f2¢g®> = e. As above this implies that S =
TyT,T/T, = (TyT,)* is an 7;-intertwining operators. Hence there exists d € C* such that
S = did. But Tf|Vﬂ(ﬁ) = Tg‘vﬁ(ﬁ) = 1. Hence

d= S‘VH(M) =1

Thus d =1 and S =id. As T]? = ng = id it follows, by multiplying S first by 7+ and then
by T, that T4T, = T,T;. Hence, the claim. U

Corollary 5.6. Let fi,..., fu be generators for F' and let f = fire. fiu, i; € {0,1}. Then
Ty = T}: - T;Z

Proof. The operator Sy = T}ll . T}Z satisfies S7;(fmf) = 7:(m)S as well as (1) and (2)
in Lemma 5.4l Hence Sy = T7. O

Theorem 5.7. Let F' be as above, let ji € AT((L)o) and let Ty, f € F, as in Lemma[5.3)
Define
Tﬂ(fm) = Tf’Tﬂ(m), f c F,m c (L/C)()

Then T is an irreducible representation of L.
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Proof. We need only show that 7; : L, — GL(Vj) is a homomorphism, 7;(fmgn) =
Tau(fm)Ta(gn), f,g € F and m,n € (L.)o. But we have

Ta(fmgn) = 7a(fg(gmg)n)
= Tyema(gmg)Ta(n)
= TyTy7a(gmg)Ta(n)
= Ty7p(m) Ty (n)
= 7u(fm)7a(gn).
O

The final step, the extension to all of L, is now easy. We use that L.~ L/ x A. Hence
we can take any character y on A and define

Tay(ma) = m3(m)x(a).

Remark 5.8. If one needs to extend 7; to the complexification LS of L., a common
compatibility issue arises. L¢ is not the direct product L'C x A, one needs to be more
careful with the choice of x. Then the requirement is that each T has to be scalar ¢(f)
and c(f) = eX) where f = expiH. For that one needs to use the exact form of F to
determine possible choices of .

On the other hand, since [. ® C = ¢, ® C and we work with finite dimensional represen-
tations, a lift from € to [, gives a lift from € to &,.

6. EXTENSION OF SECTIONS OF HOMOGENEOUS VECTOR BUNDLES

We return to the notation of §2. We consider the generalized flag manifold P. = G./L.N_
and a basepoint x, = eL.N_. The G orbit of the basepoint, G - z,, is D = G/K, an open
domain in G./L.N_.

For a unitary representation (¢,V’) of K on the complex vector space V we let V de-
note the associated homogeneous vector bundle over D. Without loss of generality, we can
assume that o is irreducible, in which case we shall denote by p a highest weight and, as
before, by V, its representation space. In [Br07] and [Ka05] homogeneous vector bundles
over certain compler homogeneous spaces were shown to have an extension to natural com-
pactifications, e.g. the wonderful compactification. In [MSIII] again in the complez setting
in somewhat greater generality homogeneous holomorphic vector bundles over Hermitian
(locally) symmetric manifolds were extended to the Borel compactification and a detailed
analysis of their restriction to the boundary orbits was obtained. We shall give a version
of this for the real domain D C G./L.N_. Here, we just give the extension of V to V over
the compactification D C G./L.N_, subsequently we shall analyze the restriction to the
boundary orbits.

In the previous section for such (o,,V,) we produced a natural lift (7, V;) from K
to L. (with some minor exceptions). Then extending the representation trivially on N_
we have an irreducible finite dimensional representation of L.N_. Denote the associated
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homogeneous bundle over P. = G./L.N_ by g’g. Since 7; contains o, with multiplicity

one we have that V is a subbundle of g’g. In particular, §7ﬁ is defined over 0D and gives
an extension of V to the boundary of D = G/K.

7. ANALYTIC EXTENSION OF K-FINITE MATRIX COEFFICIENTS OF G TO G,

The first task is to construct a G-invariant domain in G, that will serve as the domain
of ‘para’-analytic (or split-holomorphic) extension of K-finite matrix coefficients of G. In
[Ma03] he provides a general setup for cycle spaces. We shall show that this also gives the
target domain in G..

To prepare for this we recall some previous notation related to various involutions that
have played a role here; to simplify the notation we will omit the dot on involutions on
the Lie algebra as it will always be clear whether we are discussing the Lie algebra or the
group. Then we recall some facts about the crown of a semisimple Lie group, in particular
for G, whose crown will be denoted by Z;, see [AGI0, [KS04, [KS05] and especially [KS05,
Sec. 7]. Once we recall the construction from [Ma03] of a real analytic cycle domain =),
for G/K inside G./L., we then show that =5, = (£]), is a totally real submanifold of =,.
We also discuss the connection between the crowns of Gj/K} and G/K, in particular in
the case r = r,/2 we show that = = (=}),. We conclude the section by proving analytic
extension of orbit maps of representations to the real analytic cycle space thereby justifying
the name real analytic crown.

The involution basic to this paper is 7 : g, — gp, giving the real form g = g; and
G = (G}7),. The eigenspace decomposition w.r.t. 7 is g, = g @ q,. Recall that the
complex linear extension of 7 (or 6y) is still denoted 7 (or 6),), while the conjugate linear
extension of 7 to gv is n = 0,07 = 7oo0y,. Then g. = (g§)” while G, = G]. g. is a
semisimple Lie algebra stable under 7 and 6. The resulting eigenspace decompositions are
9 =0Dq. = L. D g%, where [, = €D ique and g_% = p @ iq, (see also the discussion
after Lemma 2.1]). We have G = (G, N G.),. For the restrictions to g., resp. G., we will
still use the notation 7 but introduce 7* = 6,,|,,. Notice that 7 and 7% commute (because
7 and 6, do).

The involution 6. = 706, defines a Cartan involution on g, with corresponding Cartan
decomposition g. = €. @ s.. We have &, = €D iqp, and s. = p ® iqp, showing that 0, agrees
with the conjugate linear extension of ), restricted to g.. Then it is consistent to denote
this on g by 7 = 7 0 0. It should always be clear which involution is being discussed.

We have 7* = .0 7 so our notation agrees with the standard notation for the involution
on g. associated with 7. As is standard in this R-form setup I = €5, [, = 3,.(Ho) and
7% = Ad(exp(miHy)).

Let, as before, a; be a maximal abelian subgroup of pj,. Let X, = X(gp, az), let X be a
positive system, and take the basepoint to be z, = eK; € G, /K. Define

™ = . —_ =
— } . Zn = Grexp(iQn) Ky, and == 2, .

0, = {X € a ‘ (Va € %) [a(X)| < 3
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The G- 1nvar1ant set =), was dubbed by Gindikhin the crown of G,/ Kj. Motivated by the
results in we call =, the crown of Gj. The set =, is an open Gj-invariant complex
submanifold of Gp,. Similarly, =5, is a Gp-invariant complex domain in G, /K,. Z;, and =,
are independent of the choice of a; as any two such are Kj, conjugate. Write €2, = and =
for the corresponding sets obtained by this construction for G and G/K.

We denote by 0=, resp. 02, the topological boundary of =, resp. €. Set

Q= na ={X e |VaeX, a(X)>0} and = = GhrexpiQ) - x,.

Then = is an open Gj-invariant subset of =, such that =, = (N, (a,)Z)), = (Wh_h)

For restricted roots we keep the notation from Lemma ZTI0 and ([26]). Thus fi,..., [, €
Y (gn, ap) are strongly orthogonal roots (up to sign they are the Cayley transform of the
strongly orthogonal roots «;, per the discussion after Theorem Z21]). We denote by X;,
j=1,...,r, the dual basis and as usual we have a, = @ RX;. We also define Y; € q, Npy,
as in Lemma 2.9 and let then a,, = P RY].

If » = rj, then a;, = a is maximal abelian in p;, and p, and a, is maximal abelian in py,
and qp, N pp.

If = 1,,/2 we choose the ordering so that fy; = fyj_1 07 = Ttﬁgj_l and assume, as we
may, that TXQj_l = ng. Let X]/ = X2j—1 + ng, Xj_ = X2j—1 — ng, a = @;:1 ]RX]/ and
aj = @)_, RX;. Then a is maximal abelian in p and af is maximal abelian in p; N qp.
We let

1 1 .
Yoj-1 = 5 (Baj—1 + B2)) and Yoj = 5 (Bojo1— Boj), F=1,...,7

and note, that according to Moore’s theorem 7, € X1 (gs, a,). Note that previously the
notation v; was used for strongly orthogonal roots in A. We note that v5;_1|¢ = faj—1|a =
Bajla # 0 and 72j|ag = ﬁ2j—1|ah = —52j|ag # 0.

Let’s recall that ), is inner, in particular 6, = Ad(exp 7Z;). Then

7% = Ad(exp gZh) o7 o Ad(exp gZh).

Thus g and g}°, resp. ¢, and gf_fa, are conjugate. Statements that are formulated for 7
and its eigenspaces are therefore also valid for 7% and its eigenspaces.
The next result can be gleaned from [KS05].

Theorem 7.1. Let the notation be as above. Then the following holds true:

() O = (X7 6%, | (V5 € {1, mb) [ty] < 7/2).

(b) We have gy expiXy - x, = gaexpiXs - x, for some g1,90 € Gy and Y1,Ys € Qy, if
and only if there exists k € Zk, (Y1) and w € Ng, (ay) such that g1 = gowk and
Yi = Ad(w)Ys.

(¢) If rexpiXy-x, = gaexpiXa -z, € Z then X1 = Xy and there exists m € Z, (a5
such that gy = gam.

(d) If x, = gnexpY, -z, € Z; is a sequence such that z, — 0=, C G,/K, then
Y,—>Y e th
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(e) Eh C N,ALK,,.
Proof. (a) is the comment after [KS05, Lem. 7.4] and follows easily from Moore’s Theorem;

(b) is [KS05 Prop. 3.1]; (c) is [KS05|, Cor. 4.2]; (d) is [KS05, Lem. 2.3] and (e) is (1.1).D

Next we recall the construction of the cycle space or Matsuki crown of G/K in G./L.,
per [Ma03].

Remark 7.2. To assist the reader we give the correspondence between the notation in
[Ma03] with our setup. Here the left hand side lists Matsuki’s notation and the right hand
side the corresponding object in this article: g <> g., h <> g, b’ < [, £ < £, m < s,
q <> ge. Similarly for the groups. In particular G <+ G. and H <> G. As L. = Zg,(H,)
might be disconnected, so H' <+ L.

Let t be a maximal abelian subspace of £.Mq. = iqp,. Denote by i(gf, t®) the roots of t©
in g~ = g% As 0| = ide, given a root space gt = g (t, a) we have 0,(g<(t, o)) = g&(t, )
and one decomposes it according to the eigenvalues of f, getting aS(t, o) = €5(t, a)DsE (¢, a).
Let X.(s$,t) = {a € it*|sS(t, ) # {0}}. Finally set

Oy = {Y €t ] (Var € 5,55, 19)) |a(Y)] < g} .

As before we define 2}, as the intersection of Q) with a positive Weyl chamber.
Let T(Qy) = expQy C T =expt, T(,) = expifdy,, and define
EM:GT(QM)LC CGC and EMZEM'ZIZ'OC GC/LC.
Theorem 7.3 (Matsuki). CIVRL open in G. and =y is connected and open in G,/ L.

Proof. This will follow from [Ma03, Prop. 1] using the dictionary above. For that we need
some material about 7 = 7% o §.-stable parabolic subalgebras in g.. Let, as before, a C p
be maximal abelian. Let ¥ = ¥(g., a) denote the set of roots of a in g. and let ¥ be a
set of positive roots. Define n = @aezﬂgc,a) g and m = the orthogonal complement of a
in 34.(a). Then p. = Mm@ a @ n is a minimal 6, o 7% stable parabolic subalgebra in g., see
[Ma79] or [vdB8g]. Let P, = M_AN, be the corresponding minimal 6, o 7* stable parabolic
subgroup. That L.P, is open in G, follows from [MaT79]. Hence by Matsuki duality [Ma79]
GIBC is closed. Now compare this with the assumption on [Ma03], p. 565] and we see that

we can take P, for the parabolic P in [Ma03] or [vdB8g], i.e. P < P.. O
The main result in [Ma03] is

Theorem 7.4 (Matsuki). Set S = S(Gcﬁc; LCIBC) ={z GNGC | a:‘lGﬁc C Lcﬁc}. Then S is
open and if Sy denotes a connected component, we have Zy; C Sy.

We mention a slightly different interpretation of €2,,. We refer to m Chap. 5] for
a more detailed discussion. The abelian Lie algebra t is a maximal abelian subspace of
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€. N g. = iqs,. But the generalized flag manifold G./L.N_ is diffeomorphic to K./K. N
L. = K./FK which is a Riemannian symmetric space. We have even more, L.N_ is a
maximal parabolic subgroup with abelian nilradical, n_. Hence K./K.NL, ~ G./L.N_is a
symmetric R-space. Note that Ad(F") normalizes £ and hence F K is a group. Furthermore,
(FK)NG = K. Since ¢ = ¢ @ iq, we have the tangent space at eF K is given by iqp,.
Thus t is the Lie algebra of a maximal torus (an Iwasawa torus) in the tangent space.
But we have the open embedding D ~ G/K C G./L.N_ so the tangent space at eK
can be identified with p which has maximal abelian subalgebra a. On the other hand,
G./L.N_ ~ K./FK is, up to covering, the compact dual symmetric space to G/K. Thus
within g© there is an R-isomorphism ¢ : a.®t — a%, i.e. between the split-complexification
and the complexification.

As n(Gp) = Gy, n(Kp) = K and we can choose a; so that n(a,) = aj it follows
that n(éh) = =, and n(Z) = Ep. As G./L. = G. -z, it follows that we can view

G./L. as a real form of G;/K;. We note that =), is not connected unless L. is, but
(EM)O = GC exXp QM(Lc)o-

Remark 7.5. The Matsuki crown is defined with respect to G.. To connect the notation
to g, we make some additional observations. First notice that if a; is maximal abelian
in q, Np, = p; if and only if t = da; is maximal abelian in q. N & = i(q, N pp). As
s. = i(qy N€,) © p we have X(s$,tC) = X(g, ™", a1) and

Qu = ’ith where th = {X c | (VOK c 2(9}:7—“, Cll) ‘Oé(X)‘ < 7T/2},

quite analogous to the construction in the group case. This shows that there is a funda-
mental difference between the case r = r,/2 and r = r,. In the first case we can take
a = QRX] as before, and a; = aj = GRX; . In particular a and t commute as in the
group case. For r = rj, the space a is already maximal abelian so there is no way to chose
t so that a and t commute.

If r = 1, we always have X(g,a) C X(gp,a) and %(g,; ", ang) € X(gn, an,) which implies
that €, C Q. So if we define ), as a subset of ap,, 2, C Q. Similarly, if r = 7,/2, as Q
and p,, are defined by via restriction of roots in X(gy, ay) to a, resp. aj, and because €, is
invariant under 7 and —7 it follows that ©2,Na = pr,(€2,) € Q2 and QNal = prqh(Qh) C Qg
Here pr is the projection along g, onto g and pr,, is the projection along g onto qp,. This
clearly implies that we always have = C (Z7), and Z); C (Z]),.

Lemma 7.6. Let the notation be as above.
(a) Assume that r =1y and Q, = Q. Then = = (Z7),.
(b) Assume that r =1y, and Q, = Qpq C apy. Then Zp = (Z]),.
(c) Assume that r =1,/2 and Q, Na = Q. Then Z = (Z}),.
(d) Assume that r =1,/2 and Qp N a] = Qpy. Then Ep = (Z]),.

Proof. We prove only (c¢) and (d). The proofs of (a) and (b) are simpler following the same
line of argument.
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(c¢): We have = = Gexp(Q) -z, C Grexpy -z, = =, C Gy /K,. Taking 7 fixed points
implies the inclusion = C (Z7),. As Gy, is simply connected it follows that G = GJ. Hence
(21)o = (EnNG/K),. As = is open in G/K it follows that = is open in (Z]),. Assume that
E is not closed in (Z7),. Then there exists a sequence &; = gjexpY; - z,, g; € G, Y; €
such that §; — £ € 02N (Z}),. According to Theorem [Tl part (d) there exists Y € 0
such that Y; — Y. Hence there exists o € ¥(g, a) such that |a(Y;)| — 7/2. Let

gho ={X € g | (VH € a) [H, X] = a(H)X} # {0} .

Then g, is ad(ay,) invariant. It follows that there exists E € X(gn, ap) such that Ea = o.
Thus Y € 0=, contradicting the assumption that £ € =;,. Thus Z is closed in (Z]),.
Part (d) follows in the same way replacing 7 by 1 and in the last argument replacing a

by af. O

Lemma 7.7. Assume that r =r,/2. Write a, = a ® aj, and let 3 € X(gn, an). If Blag # 0
and H € aj is so that B(H) = 1 then adH : pry(gns) — pry, (gns) is an isomorphism. In

particulor, if o # 0, then {0} # pry(gns) € as1, and {0} # by, (d15) € (07" Vs

Proof. Let X = X, + X, € gno with Xy = pr(gns) and X, = pr,, (gns). Then adH(X) =
X =[H, X, +[H,X,]. As [H,X,] € qand [H, X,| € g it follows that [H, X,] = X, and
[H, X,] = X,. The last part follows by replacing 7 by 7% which interchanges the role of a
and aj. O

Lemma 7.8. We have the following.

(a) Assume that r = 1), then we have:
(a-i) If B; € X(g,a) for all j =1,... 1 then Q = .
(a—ii) If ,Bj c E(Q_Ta, Clhq) then Qyy = ’ith.
(b) If r = r,/2 then we have:
(b-1) If yajla = B2jla € X(g, ), j=1,...,7 then Q = Q) Na.
(b-ii) If yoj-1las = Bojlas € (g, 7, af) then Qar = iQq.
Proof. This follows directly from Moore’s Theorem. For example consider (b-ii). We only
have to show that Q Naj C Q. Let X = 377" ¢;X; € Q,Naj. Then [t;| < 7/2 for all j.
Furthermore X = —7X. Hence X = > " t5; 1(Xy;-1 — Xy;) and hence |8 1(X)| < 7/2.
The claim now follows from Moore’s Theorem as all the roots in i(g,fa, aj) are restrictions
of roots in X(gy, ay) O

Finally we come to the relationship of various crowns.

Theorem 7.9. Let the notation be as above. Then the following holds:
(a) If r =1y, then Q, = Qg and Epr = (E))o-
(b) If r = rp/2. Then Q = Qp Na and Q= Qp, N a}, Furthermore Zy = (Z]), and
==(2])o.
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Proof. Lemma and Lemma [T.§ imply that we have to show that f;|, € ¥(g, a) respec-

tively Bl € S(g;™",al), for j = 1,...,r,. For (a) we use su(1,1)-reduction for 7 to
show that 3, € i(g,_LTa, (). For (b) this follows from Lemma [T.7] as each /3; has a non-zero
restriction to a and aj. O

Basic Example. SU(1,1) - cont.
Recall that g, = su(1,1) =&, ® p;, = g @ qp, where

v 0 01 0 =«
{%h:R<O _z.), ph:R<1 o) @R(_Z. 0) ~R-X®R.Y,
while g = R-X and q, = £, ®R-Y. As before, SU(1, 1) has two natural choices of Iwasawa:

A =expRX or A, = expRY.
From [KS04] we know that either choice gives, with the obvious notation,

Grexp Q K, € NAK, and

Gy, exp ’ith K, C thAthh.

Also from before we have T'(Q2) = exp {2 = exp i{ly,. Since a and ay, are conjugate via
K, we have

Gh exp i) Kh = Gh exp ’ith Kh = GhT(Q) Kh.
Taking fixed points of the conjugate linear n gives

GT(Q) L. C (GyT(Q)K,)" C (NAK,)" C G.,
N:eprC —;):{(Hw _“’.) UGR}.
T —1 w 1—w

Now GT'(€2)(L.)o is connected and contains the identity.
Take nak € NAK,,. Then

(14w —dv cosh(z) sinh(z)\ fw O .

nak = ( v 11— z'v) (Sinh(z) cosh(z)) \ 0 w™1)" U7 cCuwel.

where

Multiplication gives
b — wcosh(z) +wive™ w'sinh(z) —w live™\  [a b
M=\ wive=* + wsinh(z) wlcosh(z) —wlive™*) ~ \c¢ d)°
On the other hand, if gtl € GT(2)(L.)o then
i cosh(t) sinh(t) cos(f) sin(f)\ (e 0
g = sinh(t) cosh(t) ) \ —sin(f) cos(@)) \ 0 e )"

Since in this example G = A and L. C K}, it suffices to express t in terms of nak. An

elementary, though tedious, computation gives the following solutions provided 0 < || < F:

e 2" = cos(26), z=u€eR
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cos(6) + sin(6)

e’ = — w=e"€eR
cos(26)2
v sin (26

v — 5 = — SS0E0), seR,
2 cos(26)2

With these substitutions it is straightforward to verify that t = nak withn € NNG.,a €
Ak € (L.)o. Also notice that [Y, (; :i)] =2 ( ) thus [0 < 7 is the full range to
describe T'(2). Thus GT(Q)L. C (NN G,)AL..

Example 7.10 (Cayley Type Spaces). There are examples where r = rj, and 2 = Q. The
simplest case is the rank one case (so(1,n),s0(1,n — 1)) with n > 3. But the following
example shows that we have no general statement in this case. Assume that g = g’ ® RH,
is not simple with g’ = [g, g] simple. Then a;, = a = o’ ®RH, with o’ = ang’. We have by
Moore’s Theorem, Theorem [I.5, we have

o) = {556 li#7)  and S0 =+ =1 =n}

Let again Xi,..., X, be so that «;(X;) = 0;; and use those as coordinate axes. Then
Q, = (=m/2,7/2)". On the other hand the condition for Q is i|z; — z;| < 7/2. Thus

Qn S Q. Interchanging 7 and 7% we see that €, = Q which again leads to = = Z.

Given (7, F) an 1rredu(:1ble Banach representation of G and a K-finite vector v € E
Theorem 3. 1 in states that the orbit map g — 7(g)v has a holomorphlc extension to
the domain = C G There is an analogous result here with the domain =,; just constructed
and the group G. in place of G.

Theorem 7.11. Let (7, E) be an irreducible Banach representation of G, and let v € E

be a K-finite vector. Then the map g — w(g)v has an analytic extension to () =
GT () (Le)o C Ge.

Proof. The key to the result is that (L.)p and G have the same maximal compact sub-
group K. First we consider the case r = r;. Then a;, and a,, are Kj conjugate, so
Gh exp(z'Qh) Kh = Gh exp ith Kh = GhT(Q) Kh. From “Km, GhT(Qh) Kh C NhAhKh is
open and the projection maps to A, and K, are holomorphic. Now = mo = GT(Qp)Ley C
So C [(GRT (2, Kp))"o C Ge. The restriction of the projection maps to A, and K, gives
analytic maps to A = (Ay,)" and L. = (K)" but as = is connected, to L. Since r = 71y,
a = qay, is also an Iwasawa for G, Denote the map to L.y by £. Since both L.y and G have the
same maximal compact subgroup, K, composition of ¢ with the usual x projection of L
to K gives an analytic map from =y = GT(Qr)Leo C [(GRT(Q2) Kp)"o to K. With these
analytic maps from = mo to A and K we are now in the position of the proof of Theorem
3.1 in [KS04] and can continue it verbatim to obtain the result.

If v # 7, then as we have seen r = 2. As in Lemma 2.12 a5, = a® a as a Lie algebra
direct sum, i.e. a, ag‘ are abelian and [a, aq] = 0. Also from the Lemma we have 1, restricted
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to ay, is one on a and —1 on ag. Then the conjugate linear extension 7 is one on a@z’ag, ie.
Az = Aexp zag‘ with A C G. Thus EMO = GT(QM)LC(] C [(GhT(Qh Kh)n]o C Gc Again has
the restriction of the holomorphic projection maps taking values in K and exp iaf; with the

latter isomorphic to exp ia. Thus here to we are in the position of Theorem 3.1 of [KS04].
U

Remark 7.12. In the Basic Example G = R*, the representations of G are just char-
acters, so from the above expression the continuation of the characters to GT 'L, as just
translation in the variable by —3 log cos(26).

Example 7.13 (The case of SU(m, 1)). We will show that the computations for SU(m,1)
reduce to those of the Basic Example. Here g, = su(m, 1) = €, ® p;, = g ® qp, where

A 0 : . 0 Z : m
Eh:<0 —tr(A))’(WlthA:_A ) ph:(Z* 0)(W1ch€(C)

and g = so(m, 1). Using obvious block matrices let

0 00 0 0 0
X=(001),Y=10 0 1
010 0 —i 0

As before, SU(m, 1) has two natural choices of Iwasawa:
A=expRX(X €g) or Ay =expRY(Y €qp).

We will do the computations for SU(3,1) for then the procedure for SU(m,1) will be
clear. Either choice of Iwasawa gives

GhexpiQ K, C NAK, and
G expifdpg Ky, C NpgAp Ky,
moreover G, exp i K, = Gy exp i€, K, = GRT(Q) K,
where T'(2) = exp i€ = expi{d,. Taking fixed points of the conjugate linear n gives
GT(Q)L. C (G, T(Q)K,)" C (NAK,)" C G,

where

0 0 -2 Z
00 ~Z 7

N = exp Zy v —iv
Zy v —iv

0 -7 Z1

1 —Zs Zy

Zy 1+iv—5(1Zi12+|2?)  —iv+ 32 + 125 ’
Zy, =32+ 12 1-iw+i(2]2+]2.%

NN o = ——
N
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: _ (GL(3,R) 0
(Z; € C,v € R) while L, = ( 0 1/det

only the t term. Now in (G,T1K},)" the right action by L. has the effect of multiplying
the last column by det™!, but

). Again in GTT L, it suffices to consider

0 0
0 0
cos(f) —sin(0)
sin(f)  cos(0)
Consequently we must have Z; = 0 = Z,, reducing the computations to the case SU(1,1)

thus obtaining essentially the same formulae for ¢ = nak as before. In particular, GT'(2) L. C
(NN G.)AL. C (NAK})".

o O O
OO = O

APPENDIX A. THE CLASSIFICATION

In the following tables we set gl (n,C) = sl(n, C) @ Rid and t = /R = the Lie algebra of
the torus T = {2z € C| |2| = 1}.

Je gn g
sl(p+¢,C) ( .q) x su(p,q) | su(p.q)
50(2n,C) 0*(2n) x s0*(2n) | s0*(2n)
so(n+2,C) ( ,n) X s0(2,n) | s0(2,n)
sp(n,C) 5p(n R) x sp(n,R) | sp(n,R)
€6 €6(—14) X €6(—14) €6(—14)
¢7 €7(—25) X €7(—25) €7(—25)

TABLE 3. g with complex structure (group case)

In Table 4 the items listed below the line are those where G, /K, is a tube type domain
and g. =2 g,. That happens if and only if g ~ [. if and only if g has a one-dimensional center.
We denote the compact real form of Eg by eg. We also note that sl(n,R) xR = gl(n,R) but
we write it using sl(n, R) x R so that it fits better into the general picture. Same comments
hold for u(n) and su(n) x t.

In Table 4 and Table 5 we can assume the ¢ > p because interchanging the role of p and
q leads to isomorphic cases. The case g, = s0(2,¢q) D g = so(1, q) corresponds to the case
p = 0, and the case p = 1 corresponds to the case g, = s0(2,n) D g = s0(1,n — 1) x R.
The case g, = s0(2,2) is excluded because s0(2,2) is not simple.

In Table 5 we have reorganized Table 4 into three groups. The first group consists of
those g for which the [. has one conjugacy class of Cartan subalgebra (denoted OCCC).
The second group consists of those g for which [. consists of automorphisms of a vector
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e gh g e €n
sl(p+ ¢, R) su(p, q) s0(p, q) s(al(p, R) x gl(q,R)) s(u(p) x u(q))
su”(2(p+q)) su(2p, 2q) sp(p, q) su”(2p) x su”(29) X R | s(u(2p) x u(2q))
so(n,n) 50" (2n) s0(n,C) sl(n,R) x R su(n) x t
s0(1,q+1)(qg > 3) 50(2,q) s0(1,q) s50(q) x R 5(s0(2) x s0(q))
so(p+1,q+1)(¢=>p=>2)|s0(2,p+q) | so(l,p) xso(l,q) so(p,q) x R 50(2) x s0(p +q)
sp(n,n) sp(2n, R) sp(n,C) su”(2n) xR u(2n) = su(2n) x t
¢6(6) C6(—14) sp(2,2) 50(5,5) X R 50(10) x t
€6(—26) C6(—14) f4(,20) 50(17 9) x R 50(10) Xt
e7(7) e7(—25) su” (8) eg(6) X R eg X t
su(n,n) su(n,n) 5l(n,C) xR 5l(n,C) xR s(u(n) x u(n))
50" (4n) 50" (4n) su”(2n) xR su”(2n) xR su(2n) x t
50(2,n) 50(2,n) so(l,n—1) xR so(l,n—1) xR so(n) x t
sp(n,R) sp(n, R) sl(n,R) x R sl(n,R) x R su(n) x t
e7(—25) e7(—25) es(—20) X R es(—26) X R e X t
TABLE 4. g without complex structure
ge an g le ¢
su(n,n) su(n,n) 5l(n,C) x R 5l(n,C) x R u(n)
su”(2(p +q)) su(2p, 2q) sp(p, q) su”(2p) x su”(2g) x R | (sp(p) x sp(q))
50" (4n) 50" (4n) su”(2n) x R su”(2n) x R sp(n)
sp(n,n) sp(2n, R) sp(n,C) su*(2n) x R sp(n)
s0(1,q+1)(q¢ > 3) 50(2,q) s0(1,q) s50(q) x R s0(q)
s50(2,n), (n = 2k) s50(2,n) so(l,n—1) xR so(l,n—1) xR so(n—1)
€6(—26) €6(—14) f4(,20) 50(17 9) x R 50(9)
e7(—25) e7(—25) ee(—26) X R ee(—26) X R fa
sl(p+ ¢, R) su(p,q) s0(p,q) s(gl(p, R) x gl(q,R)) | so(p) x s0(q))
so(n,n) 50" (2n) s0(n,C) sl(n,R) x R so(n)
sp(n,R) sp(n,R) sl(n,R) x R sl(n,R) x R so(n)
s50(2,n),(n=2k+1) s0(2,n) so(l,n—1) xR so(l,n—1) xR so(n—1)
so(p+1,g+1)(g>p>2) | s0(2,p+q) | s0(1,p) xs0(1,q) s0(p,q) x R s0(p) X s0(q)
€6(6) C6(—14) 5p(2,2) 50(5,5) xR sp(2) X sp(2)
e7(7) e7(—25) su”(8) ¢se) X R s5p(4)

TABLE 5. g by type

space while the maximal compact, €, of g corresponds to isometries of the space. The third
group consists of exceptions that will be treated individually. Of course there are ways, say
using the octonions, to incorporate some of the third group into the second but we prefer
this way. Notice that in all groups ¢ is the maximal compact for both g and I..
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