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EXTENSIONS OF REAL BOUNDED SYMMETRIC DOMAINS

GESTUR ÓLAFSSON AND ROBERT J. STANTON

Abstract. For a real bounded symmetric domain, G/K, we construct various natural
enlargements to which several aspects of harmonic analysis onG/K and G have extensions.
Our starting point is the realization of G/K as a totally real submanifold in a bounded
domain Gh/Kh. We describe the boundary orbits and relate them to the boundary orbits
of Gh/Kh. We relate the crown and the split-holomorphic crown of G/K to the crown Ξh

of Gh/Kh. We identify an extension of a representation of K to a larger group Lc and
use that to extend sections of vector bundles over the Borel compactification of G/K to
its closure. Also, we show there is an analytic extension of K-finite matrix coefficients of
G to a specific Matsuki cycle space.

Introduction

Élie Cartan was the first to prove the existence of a compact real form of a complex
semisimple Lie algebra. This can be considered the introduction of duality into the the-
ory of Riemannian symmetric spaces. Subsequently, even in the more general context of
symmetric spaces, various people have identified several types of duality. In this paper we
explore some of the consequences of a type of duality involving compactly causal spaces and
noncompactly causal spaces or, said geometrically, involving Hermitian and split-Hermitian
spaces1 We describe here, in heuristic form, various results to which one is lead (to conjec-
ture) from this viewpoint. Some of this is, without a doubt, known to experts. Thus, as we
use standard terminology, we relegate precise definitions and careful notation to subsequent
sections, for now we take a more casual approach.

Let Gh be a semisimple Hermitian Lie group of noncompact type with maximal compact
subgroup Kh, i.e. Gh/Kh is a Hermitian Riemannian symmetric space. Let τ be an
involution commuting with θ and such that, G, the fixed point set of τ has Riemannian
symmetric space, G/K, a real form of Gh/Kh. Denote by gh the Lie algebra of Gh and by
gCh its complexification. Of course τ induces an involution τ̇ on gh. We let τ̇ also denote
the complex linear extension of τ̇ to gCh ; while we let η̇ be its complex conjugate − linear
extension to gCh . The associated holomorphic (resp. anti-holomorphic) involutions on Gh

are denoted τ (resp. η). Then Gh (resp. Kh) is the fixed point set of τ in Gh (resp.
Kh), and let Gc (resp. Lc) be the fixed point set of η in Gh (resp. Kh). Then Gc is a

2000 Mathematics Subject Classification. Primary 32M15, 22E46, Secondary: 22E50, 53C35.
Key words and phrases. Structure of semisimple symmetric spaces, bounded domains, duality of sym-

metric spaces, extension of representations, crown.
1split-Hermitian and split-complex are called para-Hermitian in [K85, K87] and elsewhere.
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2 GESTUR ÓLAFSSON AND ROBERT J. STANTON

semisimple split-Hermitian Lie group, i.e. Gc/Lc is a split-complex pseudo-Riemannian
symmetric space with an integrable bi-Lagrangian structure. Now τ restricts to Gc giving
an involution τc having fixed point set G such that G/K is a split-real form of Gc/Lc. One
could repeat the above with Gc and τ̇c the complex linear extension to gCc . Notice that
gCc
∼= gCh but not equal. Various properties of {Gh, G, η} and {Gc, G, τc} are the main focus

of this paper. Detailed discussion about Gc/Lc and its compactification can be found in
the work of Kaneyuki [K85, K87].

We begin with several decompositions involving {Gh, G, η}.
From Harish-Chandra we have the open subset

(a) GhBh = exp Dh+Kh Ph− ⊂ Gh,

then applying η we should obtain similarly the open containment

(a’) GPmin = expD+ LcNc− ⊂ Gc.

From [KS04] we have the complex open neighborhood of Gh

(b) Gh exp iΩhKh ⊂ Gh,

then with η we should obtain an open neighborhood of G

(b’) G exp iΩη̇
h Lc ⊂ Gc.

Also from [KS04] we have the holomorphic extension of the Iwasawa decomposition

(c) exp iΩh Gh ⊂ KhAhNh,

so that with η we get

(c’) exp iΩη̇
h G ⊂ LcAh

ηNh
η ⊂ Gc.

The Akhiezer-Gindikhin crown of Gh is an open subset

(d) Ξh := {Ghexp iΩhKh}/Kh ⊂ Gh/Kh,

so with η we should get for the ‘ real ’crown of G

(d’) Ξ ∼= {G exp iΩη̇
h Lc}/Lc ⊂ Gc/Lc.

Now in [KS05] and for a real form G/K, the existence of an open subset Ξ0 ⊂ Ξ is shown
such that

(e) Ξ0 is biholomorphic to Gh/Kh.

A straightforward variation of that argument shows that

(e’) Ξ0 is split–biholomorphic to an open subset of Gc/Lc.

From various sources we have the crown of Gh is biholomorphic to an open subset of flag
manifolds

(f) Ξh ⊂ Gh/KhPh− ×Gh/KhPh+,



EXTENSIONS OF REAL BOUNDED SYMMETRIC DOMAINS 3

so that applying η we have for the crown of G an open subset

(f’) Ξ ⊂ Gc/LcNc− ×Gc/LcNc+.

In the various parts of the text we will identify several of these fixed point sets for η. The
intent of this summary is to motivate several results. Now we give a more careful outline
of the paper. The bounded Hermitian domain Gh/Kh has a boundary that is a finite union
of Gh orbits whose geometric structure is described in considerable detail in [Sa80]. We
summarize this in §1 so that in §2 and §3 using η we may give a similar description of the
boundary G orbits for G/K. This geometric description was crucial in [MSIII] to describe
the decomposition of a natural holomorphic extension of homogeneous vector bundles to
the boundary along these Gh orbits. For the R-form G/K an extension of homogeneous
vector bundles over G/K to the boundary will be needed and a geometric description of
their decomposition on the orbits. An extension of homogeneous vector bundles over G/K
is the content of §4, §5 and §6. In §7 we give a proof of the open neighborhood (c’) using
both η and the main result in [Ma03]. Using this, the holomorphic extension of the Iwasawa
decomposition (c) from [KS04], together with η we obtain then in §7 an analytic extension

of K-finite matrix coefficients of irreducible representations of G to D = Lc exp iΩ
η̇
h G.

1. Bounded Symmetric Domains: Complex Case

We recall some facts about bounded symmetric domains in Cn. This goes back to [KW65a,
KW65b, W69, W72], but for structure theory our reference is [Sa80], although we shall
alter his presentation to suit our needs; for analysis see [KS05], [MSIII].

1.1. Notation.

Let Dh be a bounded symmetric domain in Cn. The identity component of the group
of holomorphic automorphisms of Dh is a connected noncompact semisimple Lie group
that we shall denote by Gh

2. The group Gh acts transitively, and the isotropy at any
base point is a maximal compact subgroup of Gh. We fix one and denote it by Kh, so
that Dh ≃ Gh/Kh. The Lie algebra of Gh (resp. Kh) is denoted by gh (resp. kh), while
the superscript C denotes a complexification of the indicated Lie algebra. For a cleaner
presentation we assume that Gh is simple, and that it is contained in a simply connected
complex Lie group Gh whose Lie algebra is gCh . The analytic subgroup of Gh corresponding
to kCh is denoted Kh. The reason for requiring Gh to be simply connected comes from the
following result, see [He78, Thm. 8.2, p. 320 and p. 351].

Proposition 1.1. Let G be a connected simply connected semisimple Lie group with finite
center and σ : G → G an involutive homomorphism. Then Gσ := {a ∈ G | σ(a) = a} is
connected.

Proof. In [He78] G is assumed to be compact; in [Ra74] G is just simply connected. If G
is semisimple with finite center here is an easier argument. Let θ be a Cartan involution
commuting with σ, g = k⊕p the associated Cartan decomposition, and K = Gθ. Then K is

2The subscript h will be used for objects related to the Hermitian symmetric space.



4 GESTUR ÓLAFSSON AND ROBERT J. STANTON

compact, connected, and simply connected by hypothesis. Furthermore Gσ = Kσ exp(pσ).
Since Kσ is connected, the claim follows. �

If h is a Lie algebra and if ϕ̇ : gh → h is a Lie algebra homomorphism, then we denote
by the same letter the complex linear extension, i.e. ϕ̇ : gCh → hC. Similarly on the group
level, if τ : Gh → H is an analytic homomorphism, and if H is contained in a complex
Lie group H with Lie algebra hC, then we will denote by the same letter the holomorphic
extension, i.e. τ : Gh → H. This extension always exists as we are assuming that Gh is
simply connected. The same convention will be used for other Lie groups without comment.

Let θh : Gh → Gh be the Cartan involution corresponding to Kh, i.e. θ
2
h = id and Gh

θh =

Kh. Denote by θ̇h : gh → gh the derived involution. Then kh = {X ∈ gh | θ̇h(X) = X}
and with ph := {X ∈ gh | θ̇h(X) = −X}, one has gh = kh ⊕ ph. The subspace ph can be
identified with the tangent space of Dh at eKh. As Dh is a complex domain, there is a
complex structure J : ph → ph. Moreover, J extends to a derivation of gh which, as gh is
semisimple, must be inner. Since J commutes with adkh|ph , the derivation is represented
by an element Zh in zkh, the center of kh, i.e. J = adZh|ph. As we also assume that Gh is
simple, one knows that zkh is one dimensional, hence J is essentially unique.

As (adZh|ph)2 = −1, adZh has eigenvalues 0, i, and −i. For the respective eigenspaces
we have gCh(adZh; 0) = kCh , and we set ph± := gCh(adZh;±i). Then ph± is a complex abelian
subalgebra of dimension n; Kh acts on ph±; and pCh = ph+ ⊕ ph− as a Kh-module. The
Kh-modules ph+ and ph− are contragredient and, as the center acts by a different constant,
inequivalent.

Denote by Ph+, resp. Ph−, the analytic subgroup of Gh corresponding to the Lie algebra
ph+, resp. ph−. Then Ph± is abelian, simply connected and exp : ph± → Ph± is a holo-
morphic diffeomorphism and group homomorphism. We denote the inverse of exp |ph+ by
log.

Proposition 1.2. Ph+KhPh− is open and dense in Gh, and the multiplication map

Ph+ ×Kh × Ph− → Ph+KhPh− , (p+, k, p−) 7→ p+kp−

is a holomorphic diffeomorphism. We denote the inverse by

(1.1) a 7→ (p+(a), kh(a), p−(a)) .

We consider the usual generalized flag manifold Ph = Gh/KhPh− and a basepoint xo =
eKhPh−. The Gh orbit of the basepoint, Gh · xo, is Gh/Kh ≃ Dh. On the other hand, the
Bruhat cell Ph+ · xo is open and dense in Ph. By means of log one obtains a holomorphic
isomorphism Ph+ ·xo ≃ Ph+ ≃ ph+, denoted by g ·xo 7→ z(g ·xo), such that for p ∈ Ph+ ·xo,
k ∈ Kh and X ∈ ph+

(1) z(k · p) = Ad(k)z(p)
(2) z(exp(X) · p) = X + z(p).

Restricted to Gh · xo the map has image Dh+ ⊂ ph+, the Harish-Chandra bounded
realization of Dh.
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Theorem 1.3. ph+ ⊃ Dh+ ≃ Dh ≃ Gh/Kh ⊂ Ph = Gh/KhPh−.

In a moment we will discuss the boundary components of Gh/Kh. For that we note that
we can take a closure in ph+ or the closure in Ph. It is a priori not clear that those two
closures should be isomorphic. It is however clear that the closure in Ph is Gh-invariant, but
it is not clear that Gh acts on the closure in ph+. In Lemma 1.7 we show that c(Dh+), the
closure ofDh+ in ph+, viewed as a subset of Ph is the same as the closure in Ph. In particular,
Gh acts on c(Dh+)

3. Let ∂Dh+ := c(Dh+) \ Dh+ be the topological boundary of Dh+ in
p+h . The action of Gh on Dh+ extends to one on ∂Dh+ which then decomposes into a finite
disjoint union of Gh-orbits. In a later section we shall give a complete parameterization
of the orbits and determination of the isotropy. This is well known, e.g. [Sa80], but we
include the proof because of its importance for our treatment of real domains.

1.2. Essential Structure Theory - C forms.

Let ch be a Cartan subalgebra of gh containing Zh, hence ch ⊂ kh. Let ∆h be the set of
roots of cCh in gCh . Since ch ⊂ kh, θ̇h|ch = id. Then θ̇h(g

C
hα) = gChα, and as dimC g

C
hα = 1,

either gChα ⊂ kCh in which case one calls α a compact root, or gChα ⊂ pCh and α is called
noncompact. Denote by ∆hc the set of compact roots, and by ∆hn the set of noncompact
roots. Then

∆hc = {α ∈ ∆h | α(Zh) = 0},(1.2)

∆hn = {α ∈ ∆h | α(Zh) = ±i}.
We choose the set of positive roots, ∆+

h , so that {α | α(Zh) = i} ⊂ ∆+
h . Denote by

Wh = W (∆h) the Weyl group generated by reflections sα, α ∈ ∆h, and denote by Whc the
subgroup generated by sα, α ∈ ∆hc. As α(Zh) = 0 for all α ∈ ∆hc it follows that ∆+

h is
invariant under Whc.

Recall that α, β ∈ ∆h are called strongly orthogonal if α± β 6∈ ∆h. In the usual way one
constructs a maximal set {γ1, . . . , γrh} of strongly orthogonal roots in ∆+

hn.
Denote by σ̇h : gCh → gCh the conjugation with respect to gh. For each j = 1, . . . , rh

choose Ej ∈ gChγj
and set Fj = σ̇h(Ej) ∈ gCh−γj

. One can normalize Ej so that with

Hj = [Ej, Fj ] ∈ ich one has γj(Hj) = 2. Let Zj := iHj, Xj := Ej+Fj , and Yj := i(Ej−Fj).
We set

(1.3) th :=

rh⊕

j=1

RHj ⊂ igh and ah :=

rh⊕

j=1

RXj ⊂ ph .

Then ah is maximal abelian in ph.
More generally, for I ⊆ {1, . . . , rh} and ǫ ∈ {−1, 1}#I let Z(I, ǫ) :=

∑
j∈I ǫj iHj ∈ ch,

E(I, ǫ) :=
∑

j∈I ǫjEj ∈ ph+, F (I, ǫ) :=
∑

j∈I ǫjFj ∈ ph−. Similarly H(I, ǫ) := −iZ(I, ǫ),
X(I, ǫ) := E(I, ǫ)+F (I, ǫ) ∈ ph and Y (I, ǫ) := i(E(I, ǫ)−F (I, ǫ)) ∈ kh. We setH0 = −iZh.

3Note that this is not correct for the unbounded realization of Gh/Kh as the example of the upper
half-plane shows.
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If I = {1, . . . , b} then we write E(b, ǫ) instead of E(I, ǫ), etc., and if furthermore ǫ = 1
then we simply write E(b) etc.

Then Z(I, ǫ), X(I, ǫ) and Y (I, ǫ) generate a subalgebra of gh isomorphic to su(1, 1).
These determine equivalence classes of holomorphic disks in Dh which, since we are in a ho-
mogeneous space, lift to equivalence classes of compatible homomorphisms κ̇ : su(1, 1))→
gh together with their holomorphic extensions κ̇ : sl(2,C)→ gCh , here sl(2,C) := su(1, 1)C .
Amongst these, the homomorphisms associated to Z(b), X(b) and Y (b) play a critical role
and will be referred to as basic homomorphisms. In passing we note that H(I, ǫ), E(I, ǫ)
and F (I, ǫ) generate a subalgebra of gCh isomorphic to sl(2,R) which is the Cayley trans-
form of the su(1, 1) described above. Much of this notation is not needed in the complex
case but will be needed when we do the real case.

The word ‘Essential’ in the subsection title refers to the fact that we have fixed the
structure theory, whereas if, as in [Sa80], one chooses first the geometry of holomorphic
disks, one would have a different but equivalent choice of structure theory.

Basic Example. SU(1, 1)
The prototype bounded domain is SU(1, 1)/U(1) ≃ {z ∈ C | |z| < 1}. In this case we

have Gh = SL(2,C). The conjugation σ̇1
4 on sl(2,C)(:= su(1, 1)C) with respect to su(1, 1),

and the holomorphic extension of the standard Cartan involution θ̇1 of su(1, 1) are given
by

σ̇1

((
a b
c d

))
=

(
d c
b a

)
and θ̇1

((
a b
c d

))
=

(
a −b
−c d

)
.

Let

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
and f =

(
0 0
1 0

)
.

Then [h, e] = 2e, [h, f ] = −2f , [e, f ] = h, σ̇1(h) = −h and σ̇1(e) = f . Taking Z1 = ih gives
ph+ = Ce, kCh = Ch, and ph− = Cf .

A computation gives
(
1 z
0 1

)(
k 0
0 k−1

)(
1 0
y 1

)
=

(
k + zy/k z/k

y/k 1/k

)
.

Thus

Ph+KhPh− =

{(
a b
c d

)
∈ SL(2,C)

∣∣∣∣ d 6= 0

}
.

Identifying Ph+
∼= ph+ ∼= C, Ph−

∼= ph− ∼= C and Kh
∼= C∗ the maps in (1.1) are given by

p+

((
a b
c d

))
=

(
1 b/d
0 1

)
7→ b/d,

kh

((
a b
c d

))
=

(
1/d 0
0 d

)
7→ 1/d,

4The subscript 1 will be used for objects related to this basic case.
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p−

((
a b
c d

))
=

(
1 0
c/d 1

)
7→ c/d .

This gives the Harish-Chandra realization of Dh as Dh+ = D1 = {z ∈ C | |z| < 1}. As
(
a b
c d

)(
1 z
0 1

)
=

(
a az + b
c cz + d

)
,

it follows that the action of SU(1, 1) on Dh is the usual action g · z = az+b
cz+d

.

To return to the general situation we let in su(1, 1)

(1.4) Z1 = ih =

(
i 0
0 −i

)
, X1 := e+ f =

(
0 1
1 0

)
, and Y1 := i(e− f) =

(
0 i
−i 0

)
.

For I and ǫ as above,

(1.5) κ̇I,ǫ : Z1 7→ Z(I, ǫ) , X1 7→ X(I, ǫ), and Y1 7→ Y (I, ǫ)

defines a Lie algebra homomorphism of sl(2,C) into gCh such that

(1.6) κ̇I,ǫ ◦ σ̇1 = σ̇h ◦ κ̇I,ǫ and κ̇I,ǫ ◦ θ̇1 = θ̇h ◦ κ̇I,ǫ .

It follows, in particular, that

su(1, 1)I,ǫ := κ̇I,ǫ(su(1, 1)) = span{Z(I, ǫ), X(I, ǫ), Y (I, ǫ)} ⊆ gh.

These are the lifts of holomorphic disks embedded into Dh and are those called standard
homomorphisms.

Similarly

(1.7) sl(2,R)I,ǫ := κ̇I,ǫ(sl(2,R)) = span{H(I, ǫ), E(I, ǫ), F (I, ǫ)} .
As SL(2,C) is simply connected, there exists a group homomorphism κI,ǫ : SL(2,C) →

Gh such that dκI,ǫ = κ̇I,ǫ. In particular, κI,ǫ(SU(1, 1)) ⊆ Gh. We set κ̇j = κ̇{j},1 and
κj = κ{j},1. We also note that if I ∩ J = ∅ then [κ̇I,ǫ(sl(2,C)), κ̇J,ǫ′(sl(2,C))] = {0} and
similarly for κI,ǫ and κJ,ǫ′. In particular, κ1, . . . , κrn is a maximal family of commuting
standard homomorphisms SL(2,C)→ Gh.

A simple matrix calculation shows that

exp

(
πi

4
Y1

)
=

1√
2

(
1 −1
1 1

)
and Ad

(
exp

(
πi

4
Y1

))
h = X1 .

Thus if we set

cI,ǫ := exp

(
πi

4
Y (I, ǫ)

)
= κI,ǫ

(
1√
2

(
1 −1
1 1

))
and CI,ǫ := Ad(cI,ǫ) ,

then

(1.8) CI,ǫH(I, ǫ) = X(I, ǫ) .

Lemma 1.4. Let C = C{1,...,rh},(1,...,1). Then C(th) = ah.
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Theorem 1.5 (Moore). Let βj := [C−1]t(γj|th). There are two possibilities for the restricted
roots Σh = Σ(gh, ah):

Case I: Σh = ±
{
βi,

1

2
(βj ± βk)

∣∣∣∣ i = 1, . . . , rh , 1 ≤ j < k ≤ rh

}
,

Case II: Σh = ±
{
βi,

1

2
βi,

1

2
(βj ± βk)

∣∣∣∣ i = 1, . . . , rh , 1 ≤ j < k ≤ rh

}
.

The first case occurs if and only if Dh is a tube type domain.

We will use

a+h =

{
rh∑

j=1

xjXj

∣∣∣∣∣ x1 > x2 > . . . > xrh > 0

}

as a positive Weyl chamber. The corresponding set of positive roots are obtained by taking
+ in front of the parenthesis in Case I and II above.

1.3. Boundary orbits.

Using SU(1, 1)-reduction, eq. (1.8) is the main step in the proof that Dh ≃ Gh/Kh is
diffeomorphic to a bounded domain in ph+. Indeed let Ωh =

∑rh
j=1(−1, 1)Ej ⊂ ph+. For

t ∈ Rrh let at := exp
∑rh

j=1 tjXj . By a calculation in SU(1, 1) we have

(1.9) at ·
rh∑

ν=1

ξνEν =

rh∑

ν=1

cosh(tν)ξν + sinh(tν)

sinh(tν)ξν + cosh(tν)
Eν .

In particular,

at · 0 =

rh∑

ν=1

tanh(tν)Eν .

Thus we have

(1.10) Dh ≃ Gh/Kh ≃ Dh+ = Ad(Kh)Ωh ⊂ ph+,

the Harish-Chandra bounded realization of Dh. Now it is clear that Gh acts on ∂Dh+. For
b ∈ {1, . . . , rh} recall E(b) := E1 + . . .+ Eb and set Oh(b) := Gh · E(b).

Theorem 1.6. Let z ∈ ∂Dh+. Then there exists b ∈ {1, . . . , rh} and g ∈ Gh such that
z = g · E(b). In particular,

∂Dh+ =
⋃̇rh

b=1
Oh(b) .

Thus, the boundary orbits are parameterized by {1, . . . , rh}.
Proof. Let {zn} be a sequence in Dh+ such that zn → z. As ah is maximal abelian in ph,
there exists kn ∈ Kh and tjn ∈ (−1, 1) such that zn = kn exp

∑rh
j=1 tjnEj. By applying a

Weyl group element we can assume that t1n ≥ t2n ≥ . . . ≥ trhn ≥ 0. As K and [−1, 1] are
compact we can assume (by going to subsequences) that kn → k ∈ K and tjn → tj ∈ [−1, 1].
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Let b be such that t1, . . . , tb = 1 and 1 > tj ≥ 0 for j > b. Let sj = − tanh−1(tj) for j > b.
By (1.9) we have

exp
∑

j>b

sjXj ·
rh∑

j=1

tjEj = E1 + . . .+ Eb = E(b) .

We can therefore take g = exp(
∑

j>b sjXj)k
−1. �

The closure of Dh in Ph appears to be bigger than c(Dh+) the closure of Dh+ in ph+. In
fact we show,

Lemma 1.7. The closure of Dh in Ph is the same as the closure, c(Dh+), of Dh+ in
exp(ph+) · xo. In particular, the action of Gh extends to c(Dh+).

Proof. It is clear that the closure in exp(ph+) · xo is contained in the closure in Ph. As in
the proof above, let z = limj kjaj · xo be in the closure of Dh in Ph. Again let k be a limit
of a subsequence of {kj} and recall that kj and k normalize ph+. As ±Ej ∈ ph+ it follows
that z ∈ k · exp ph+ · xo = exp ph+ · x0. �

Consequently, we do not have to distinguish if we are talking about the closure of Dh in
Ph, or the closure of Dh+ in ph+.

1.4. Isotropy of boundary orbits.

We come to the determination of the isotropy of the various orbits in the boundary.
Again, we provide more details than are needed in the complex case, but they will be used
later in the real case. Let

Qh(I, ǫ) := {g ∈ Gh | g ·E(I, ǫ) = E(I, ǫ)} and(1.11)

Qh(I, ǫ) := {g ∈ Gh | g · E(I, ǫ) = E(I, ǫ)} .(1.12)

Then the boundary orbit Oh(I, ǫ) := Gh · E(I, ǫ) is isomorphic to Gh/Qh(I, ǫ). If I =
{1, . . . , b} and ǫ ∈ {−1, 1}b then we simply write E(b, ǫ), Qh(b, ǫ),Oh(b, ǫ), etc. If ǫ =
(1, . . . , 1) then we do not include it in the notation.

As before, for a standard homomorphism κ̇ : sl(2,C) → gCh , i.e. (1.5), we write Eκ

for κ̇(e), Xκ = κ̇(e + f) etc. The corresponding homomorphism SL(2,C) → Gh and the
restriction to SU(1, 1) is denoted by κ. The following is valid for an arbitrary standard
homomorphism. To avoid even more burdensome notation we will use subscripts involving
κ only when it seems useful. We remark that [Sa80] (Chapter 2 and 3) refers to a standard
homomorphism as one κ̇ : sl(2,R)→ gh. There should be no confusion from the terminol-
ogy herein as the two are related by the Cayley transform introduced earlier, see [Sa80, p.
107–109] for a detailed discussion.

Given a standard homomorphism let πκ := ad ◦ κ̇. Then πκ is a finite dimensional
representation of sl(2,C). As the irreducible representations of sl(2,C) are determined
by their dimension with the 1-dimensional representation being the trivial representation,
the 2-dimensional representation being the natural representation of sl(2,C) acting on C2,
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and the 3-dimensional representation being the adjoint representation of sl(2,C) acting on
itself. The corresponding highest weights are 0, 1, and 2. According to [Sa80] Lemma 1.1
p. 90, every irreducible sl(2,C) representation occurring in πκ has dimension less than or

equal to 3. Following [Sa80], for ν ∈ {0, 1, 2} denote by g
C[ν]
h (resp. g

[ν]
h ) the corresponding

isotypic subspace. Then (as sl(2,R) is split)

(1.13) gh = g
[0]
h ⊕ g

[1]
h ⊕ g

[2]
h ,

and similarly for the complexification gCh . From [Sa80] §1, Chapter 3 we obtain

Lemma 1.8. Let κ : SU(1, 1)→ Gh be a standard homomorphism. Let

Zκ := κ̇(Z1) and Z(1)
κ := Zh −

1

2
Zκ .

Then the following conditions are equivalent:

(1) Z
(1)
κ = 0;

(2) g
[1]
h = {0} and g

[0]
h is compact.

Notice that each of the spaces g
C[ν]
h is σ̇h and θ̇h stable. As κ̇ is standard, it intertwines

the respective Cartan involutions and conjugations. Hence we have similar decompositions
for kh, k

C
h , ph, p

C
h , and ph±. In particular, we have

(1.14) ph± = p
[0]
h± ⊕ p

[1]
h± ⊕ p

[2]
h± .

Also, g
C[0]
h (= zgCh(κ̇(sl(2,C))) is a subalgebra, as is

(1.15) g
[even]
h = g

[0]
h ⊕ g

[2]
h .

Since g
[even]
h is θ̇h-stable, it follows that g

[even]
h is a reductive subalgebra. Furthermore Zh ∈

g
[even]
h , so each non-compact ideal of g

[even]
h is of Hermitian type.

Next we decompose g
[even]
h into ideals, g

[even]
h =

⊕
j ghj, such that gh0 is the maximal

compact ideal, while ghj is simple and noncompact for j ≥ 1. It follows that the maximal

abelian ideal of g
[even]
h is contained in gh0, and each ghj, j ≥ 1, is of Hermitian type. Define

g
(1)
h :=

⊕

ghj⊆g
[0]
h

ghj

l2 := gh0

ghκ :=
⊕

ghj⊆g
[0]
h

, j≥1

ghj(1.16)

g∗hκ :=
⊕

ghj g
[0]
h

ghj

= k∗hκ ⊕ p∗hκ .
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Then g
(1)
h ⊆ g

[0]
h , g

[2]
h ⊆ g∗hκ and g

[even]
h = g

(1)
h ⊕ g∗hκ. The corresponding analytic subgroups

of Gh will be denoted by the respective upper case Latin letter.
Finally we arrive at the parabolic subalgebra corresponding to κ. Recall that Xκ =

κ̇(e+ f). Let m0
hκ := gh(adXκ; 0), n

1
hκ := gh(adXκ; 1), n

2
hκ := gh(adXκ; 2), nhκ := n1hκ⊕ n2hκ

and qhκ := m0
hκ ⊕ nhκ

5 Then qhκ is a maximal parabolic subalgebra of gh. Denote by
Qhκ = M0

hκNhκ the corresponding maximal parabolic subgroup in Gh. It will be useful to
give a more detailed description of Qhκ, the nilradical Nhκ, the structure of M0

hκ and the
connected component of M0

hκ.
Let Fκ be the finite abelian group generated γκ = exp(πiXκ). We have the Levi factor

(1.17) M0
hκ := Fκ(M

0
hκ)0 = (M0

hκ ∩Kh)(M
0
hκ)0.

We note that by [V77, p. 287] every Ad(m), m ∈ M0
hκ, is in Ad(m0C

hκ) but not necessarily,
as the set Fκ shows, in Ad(m0

hκ).
Now Fκ preserves the decomposition (1.13), and as Fκ ⊂ Kh it also preserves (1.14).

Finally
Ad(γκ)|g[even]

h

= id and Ad(γκ)|g[1]
h

= −id .
Thus each p

[ν]
h± is a Kh ∩M0

hκ-module.
Consider next the Lie algebras defined in (1.16) and their relationship to the Levi factor

m0
hκ. Recall cκ = exp(πi

4
Yκ) and Cκ = Ad(cκ). Set g

(2)
hκ = C−1

κ (k∗Chκ)∩gh. Then m0
hκ = m

(1)
hκ⊕

m
(2)
hκ⊕R(Xκ) where m

(1)
hκ = l2⊕g(1)h , l2 is a compact ideal in m0

hκ and g
(1)
h is of Hermitian non-

compact type having Z
(1)
κ defining the almost complex structure, and m

(2)
hκ ⊕R(Xκ) = g

(2)
hκ .

LetM
(i)
κ be the connected subgroup with Lie algebra m

(i)
κ . Then we have (M0

κ)o = M
(1)
κ M

(2)
κ

exp R(Xκ) and M0
κ = FκM

(1)
κ M

(2)
κ exp R(Xκ).

Lemma 1.9. The following holds true:

(1) ad g
(1)
h |n1hκ = 0 and ad g

(2)
hκ |n1hκ is faithful. The orbit G

(2)
h · Eκ is a self-dual cone.

(2) Let Io = −ad(Yκ) ◦ θ̇h|n1
hκ

= θ̇h ◦ ad(Yκ)|n1
hκ

= 2ad (Z
(1)
κ )|n1

hκ
. Then Io defines a

complex structure on n1hκ. We have

n1Chκ(Io; i) = n1Chκ ∩ C−1
κ (pCh) and n1Chκ(Io;−i) = n1Chκ ∩ C−1

κ (kCh) .

Now we have all the notation to give a detailed description of the stabilizer of Eκ ∈ Dh+

and hence the isotropy of the orbit Oh(κ), see §1, Chapter 3 and Proposition 8.5, p. 142
in [Sa80].

Theorem 1.10. Let κ : SU(1, 1) → Gh be a standard homomorphism. Then one has the
following:

(1) Zκ ∈ k
[2]
h .

(2) Z
(1)
κ ∈ k

[0]
h .

5Note that our notation here differs from [Sa80, p.95] where n1
hκ

is denoted by Vκ and n2
hκ

is denoted
by Uκ.
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(3) g
[even]
h = gh(adYκ; 0)⊕gh(adYκ, 2)⊕gh(adYκ;−2) = gh(C

4
κ; 1) as a M0

hκ∩Kh-module.

(4) n2Chκ = C−1
κ (p

[2]
h+).

(5) g
[1]
h = gh(adYκ; 1)⊕ gh(adYκ;−1) = gh(C

4
κ;−1).

(6) adZ
(1)
κ |g[0]

h

= adZh|g[0]
h

. In particular, the Zh-element in the Hermitian type Lie

algebra g
[0]
h is Z

(1)
κ .

(7) If Z
(1)
κ 6= 0 then the stabilizer of Eκ in Gh is ZGh

(Xκ, Z
(1)
κ )Nhκ. Hence there is a

fibration

M
(1)
hκ /Kh ∩M

(1)
hκ → Oh(κ)→ G/Qhκ

∼= Kh/Kh ∩M0
hκ

with typical fiber a Hermitian symmetric space.

(8) If Z
(1)
κ = 0 then the stabilizer of Eκ in Gh is ZGh

(Xκ)Nhκ = Qhκ. Hence the orbit
Oh(κ) ∼= G/Qhκ

∼= Kh/Kh ∩M0
hκ. In particular, in this case Oh(κ) is compact.

Next consider the Cartan decomposition of m0
hκ corresponding to the Cartan involution

θ̇|m0
hκ
. First we have g

(1)
h = k

(1)
h ⊕ p

(1)
h , and (p

(1)
h )C = p

(1)
h+ ⊕ p

(1)
h−, with p

(1)
h± simultaneous ±i

eigenspaces of adZ
(1)
κ and adZh. Moreover we have the identification p

[0]
h± = p

(1)
h±.

Now consider m
(2)
hκ , the other summand of m0

hκ, with Cartan decomposition kh∩m(2)
hκ⊕p

(2)
h .

Note that

(1.18) k∗hκ = kh ∩m
(2)
hκ ⊕ k

[2]
h .

Lemma 1.11. Zκ is in the center of k∗hκ and C−1
κ (k∗Chκ) = m

(2)C
hκ ⊕ CXκ.

Define now
Lκ = ZKh

(Zκ) = ZKh
(Z

(1)
h ) .

Lemma 1.12. The Lie algebra lκ of Lκ decomposes into ideals as

lκ = kh ∩m
(1)
hκ ⊕ k∗hκ

and Zκ defines an almost complex structure on Kh/Lκ.

This gives yet another fibration in Theorem 1.10 (7),(8) here with base Kählerian, namely

Lκ/Kh ∩M0
hκ → G/Qhκ

∼= Kh/Kh ∩M0
hκ → Kh/Lκ.

We have now according to [Sa80]:

Lemma 1.13. Cκ ◦ θ̇h ◦C−1
κ (p

[1]
h+) = kCh(adZκ; i) as Kh ∩M0

hκ-modules.

For convenience we summarize these various identifications in the next statement.

Proposition 1.14. We have the following Kh ∩M0
hκ-isomorphisms:

(1) p
[0]
h±
∼= p

(1)
h±.

(2) p
[1]
h+
∼= kCh(adZκ; i).

(3) p
[2]
h±
∼= p

(2)C
h ⊕ CXκ.
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2. Bounded Symmetric Domains: Real Case

In this section we consider homogeneous real forms of Dh+, i.e. fixed point sets of anti-
holomorphic automorphisms. We continue to assume that Gh is simple or of the form
Gh = G×G where G/K is a bounded symmetric domain in Cn with G simple. Thus either

gh is simple, or gh = (g, g) with g simple and τ(X, Y ) = (Y,X). We use [HÓ96, Ó90, Ó91]
as standard references although the perspective will be slightly different in this section. We
will present a parallel presentation for the material for real domains vis à vis the complex
case. The first observation in the real case will be a replacement for Gh. This will be the
Lie group Gc to be described shortly.

2.1. Real Bounded Symmetric Domains and Related Subgroups of Gh.

Let τ : Gh → Gh be a non-trivial involution commuting with θh. Let τ̇ : gh → gh be the
derived involution which then commutes with θ̇h. Finally, we let G := Gτ

h0. Then G is a
connected, reductive subgroup of Gh having Lie algebra g := gτ̇h = {X ∈ gh | τ̇(X) = X}.
With the usual notation, set qh := {X ∈ gh | τ̇ (X) = −X}. Then gh = g⊕ qh.

As τ̇ and θ̇h commute, it follows that θ̇ := θ̇h|g defines a Cartan involution on g and
g = k ⊕ p with k := g ∩ kh and p := g ∩ ph. Also, qh = qhk ⊕ qhp with qhk = qh ∩ kh and
qhp = qh ∩ ph.

As τ and θh commute, τ induces an involution on Gh/Kh ≃ Dh denoted τDh
: Dh → Dh

such that τDh
(g · z) = τ(g) · τDh

(z). Via the biholomorphism Dh ≃ Dh+, τ induces an
involution denoted σ+

h : Dh+ → Dh+ such that σ+
h (g · z) = τ(g) ·σ+

h (z). We assume that σ+
h

is anti-holomorphic, i.e., defines a conjugation on Dh+ ⊂ ph+. Then D+ := Dσ+
h

h+ is a totally
real submanifold as follows from

Lemma 2.1. τ̇(Zh) = −Zh.

Let K := G ∩Kh = Gθ. Then K is maximal compact in G with Lie algebra k. We have
(see Lemma 1.3 for notation)

(2.1) D+ ≃ G/K →֒ Gh/Kh ≃ Dh+

is a realization of the Riemannian symmetric space G/K as a bounded totally real domain
in ph+.

We come to the substitute for Gh. Denote by η̇ := σ̇h ◦ τ̇ the conjugate linear extension
of τ̇ to gCh and, as usual, η the corresponding involution on Gh. Set gc = (gCh)

η̇ and let Gc
6

be the corresponding analytic subgroup of Gh. By Lemma 1.1, Gc = G
η
h as Gh is assumed

simply connected. gc is a real semisimple subalgebra of gCh which is stable under τ̇ and θ̇h.
Clearly

g = gτ̇c = {X ∈ gc | τ̇ (X) = X} = gc ∩ gh

and with iqh = {X ∈ gc | τ̇ (X) = −X}, then
gc = g⊕ iqh = (k⊕ iqhp)⊕ (p⊕ iqhk)

6The subscript c will be used for objects related to this group.
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where k = kh ∩ g and p = ph ∩ g.
On the other hand, the involution θ̇c := τ̇ ◦ θ̇h|gc defines a Cartan involution on gc with

corresponding decomposition gc = kc⊕sc and corresponding Cartan involution θc on Gc (we
reserve the notation pc for a parabolic subalgebra). Then kc = k ⊕ iqhp and sc = p ⊕ iqhk.

Notice that θ̇c agrees with the conjugate linear extension of θ̇h restricted to gc. To streamline
the notation we let qc := iqh so that gc = g⊕qc. Then qc = qc∩ kc⊕qc∩sc = qck⊕qcp, with
qck = iqhp and qcp = iqhk, i.e., the elliptic and hyperbolic parts have been interchanged. In
the special case that D+ is a bounded complex domain, then Gc = G, the complexification
of G.

Lemma 2.2. σ+
h = η̇|Dh+

. In particular, D+ = Dh+ ∩ gc.

Proof. Recall that H0 = −iZh. From Lemma 2.1 and η̇ = σ̇h ◦ τ̇ we get η̇(H0) = H0. As
ph± = gCh(adH0;±1) and kCh = gCh(adH0; 0) it follows that η̇(ph±) = ph± and η̇(kCh) = kCh ,
similarly η(Ph±) = Ph± and η(Kh) = Kh. For g ∈ Gh and 0 ∈ ph+ write g · 0 = Z ∈ Dh+.
Then g = exp(Z)kC(g)p−(g) and

τ(g) = η(g) = exp(η̇(Z))η(kC(g))η(p−(g)).

From this the claim follows. �

2.2. Essential Structure Theory - R forms.

We shall refine our choice of Cartan subalgebra ch ⊂ gh to take into account the involution
τ̇ and the associated decomposition gh = g⊕ qh. We still require ch to contain Zh but now
choose the Cartan subalgebra ch such that bh := ch ∩ qhk is maximal abelian in qhk. Thus
all the notation from §1.2 remains in force here so will be used freely when applicable.

Denote by Σ(gCh , b
C
h) the set of roots of bCh in gCh . Set ac := ibh ⊂ sc. Recall that σ+

h is
anti-holomorphic and τ̇(Zh) = −Zh.

Lemma 2.3. bh is maximal abelian in qhk and qh ; ac is maximal abelian in sc and in
qcp = sc ∩ qc.

Proof. The first claim is by construction. Since Zh ∈ bh one has zgC
h
(bCh) ⊂ kCh = kC ⊕ qChk,

while qcp = iqhk. Hence sc ∩ zgC
h
(bCh) ⊂ iqhk. �

Corollary 2.4. Σ(gc, ac), the set of restricted roots of ac in gc, are all restrictions from
the complex space Σ(gCh , b

C
h) to the real form ac.

Let Σc := Σ(gc, ac). We will view Σc either as the set of roots of ac in gc or the roots of
bCh in gCh without further comment. Recall that H0 = −iZh ∈ ac. Then ad(H0) has three
eigenvalues: 0,±1. We set

lc := gc(adH0; 0) = kCh ∩ gc = k⊕ iqhk(2.2)

n+ := gc(adH0; 1) = ph+ ∩ gc(2.3)

n− := gc(adH0;−1) = ph− ∩ gc(2.4)
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Pc := Gc/LcN−(2.5)

where N− denotes the analytic subgroup of Gc with Lie algebra n− and Lc := ZGc(H0).
Note that Lc has Lie algebra lc, but that Lc is not necessarily connected. For future
reference we set l′c := [lc, lc]. We also note that

lc = k
Cη̇
h , n± = p

η̇
h± and lc ⊕ n± = (kCh ⊕ ph±)

η̇.

The set Σc of restricted roots decomposes accordingly into two disjoint sets

Σcc := {α ∈ Σc | gcα ⊂ l′c, α 6≡ 0}
= {α ∈ Σc | α(H0) = 0, α 6≡ 0}
= {β|ac | β ∈ ∆hc, β|ac 6≡ 0},

and

Σcn := {α ∈ Σc | gcα ⊂ pCh ∩ gc}
= {α ∈ Σc | α(H0) = ±1}
= {β|ac | β ∈ ∆hn} .

If α ∈ Σcn then α(H0) = ±1. We choose the system of positive roots in Σc such that

Σ+
cn = {α ∈ Σc | α(H0) = 1} = ∆+

hn|ac = {β|ac | gβ ⊆ ph+}
and Σ+

cc ∪ {0} = ∆+
hc|ac .

From lc = k⊕ iqhk notice that K is a maximal compact subgroup of (Lc)o and preserves
n±; ac is maximal abelian in lcp; and Σcc is the set of restricted roots of ac in lc .

Lemma 2.5. Let mc denote the centralizer of ac in kc. Then mc ⊂ k.

Proof. Since H0 ∈ ac one has mc ⊆ zgc(H0) = k⊕ iqhk. �

Denote by Wcc the Weyl group generated by the roots in Σcc.

Lemma 2.6. Wcc = NK(ac)/ZK(ac) and Wcc(Σ
+
cn) = Σ+

cn.

As Zh ∈ bh and τ̇(Zh) = −Zh it follows that ∆hn, ∆
+
hn and ∆hc are stable under the

involution τ̇ ♯ : β 7→ −β ◦ τ̇ . Moreover τ̇ ♯|ich∗ = η̇t|ich∗ . Via the identification of Σ(gc, ac)
with Σ(gCh , b

C
h) we extend τ̇ ♯ to Σc.

The dichotomy present in Moore’s classification of restricted roots in the complex case
is reflected in the next several results.

Lemma 2.7 ([Ó91], Lemma 3.2). Let γ ∈ ∆+
hn. If τ̇

♯(γ) 6= γ then γ and τ̇ ♯(γ) are strongly
orthogonal. In particular, if {γ1, . . . , γrh} is a set of strongly orthogonal roots in ∆+

hn, then
either τ̇ ♯(γj) = γj, or γj and τ̇ ♯(γj) are strongly orthogonal.

Lemma 2.8. We have either τ̇ ♯(γj) = γj for all j = 1, . . . , rh, or τ̇ ♯(γj) 6= γj for all
j = 1, . . . , rh.

This follows from the classification in A. The classification also shows that τ̇ ♯γj 6= γj
only for the following five cases:
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(1) Gh = G×G is not simple and G/K is embedded into G/K ×G/K diagonally.
(2) gh = so(2, n) and g = so(1, n), n ≥ 3.
(3) gh = su(2p, 2q) and g = sp(p, q).
(4) gh = sp(2n,R) and g = sp(n,C).
(5) gh = e6(−14) and g = f4(−20).

As we will see later, the cases τ̇ ♯(γj) = γj and τ̇ ♯(γj) 6= γj are very different from the point
of view of the underlying geometry.

In the case τ̇ ♯(γj) = γj we set r = rh, while in the case τ̇ ♯(γj) 6= γj we set r = rh/2. In
the latter case we order the strongly orthogonal roots so that τ̇ ♯(γ2j−1) = γ2j, j = 1, . . . , r,

see [Ó91], Section 3, for more details and discussion.

Lemma 2.9. Assume that r = rh. Then we can choose Ej and Fj = σ̇h(Ej) such that
τ̇(Ej) = Fj, η̇(Ej) = Ej, and η̇(Fj) = Fj. So with Xj = Ej + Fj and Yj = i(Ej − Fj), then
η̇(Xj) = τ̇ (Xj) = Xj and η̇(Yj) = τ̇(Yj) = −Yj. In particular,

a := ah =
r⊕

j=1

RXj ⊂ p, and

ahq :=
r⊕

j=1

RYj ⊂ qhp.

Moreover since RankG/K = RankGh/Kh = r, a is maximal abelian in p and in ph, while
ahq is maximal abelian in qhp and in ph.

Proof. As τ̇ ♯(γj) = γj it follows that η̇(g
C
hγj

) = gChγj
so

gChγj
= gCh γj

∩ gc ⊕ i(gCh γj
∩ gc).

Thus we can choose Ej ∈ gcγj such that −Bc(Ej , θ̇c(Ej)) = 1, where Bc denotes the

Killing form on gc. Then [Ej ,−θ̇c(Ej)] = Hj . Notice that −θ̇c(Ej) = τ̇(Ej) as Ej ∈ ph+.
Furthermore, Ej ∈ gc and hence Ej = σ̇h(τ̇(Ej)) or τ̇(Ej) = σ̇h(Ej) = Fj . �

Similarly in the other case we have

Lemma 2.10. Assume that r 6= rh. Then we can choose Ej and Fj = σ̇h(Ej) such
that τ̇(E2j−1) = F2j, and τ̇ (E2j) = F2j−1 for 1 ≤ j ≤ r, hence η̇(E2j−1) = E2j and
η̇(F2j−1) = F2j. So with Xl = El+Fl and Yl = i(El−Fl), then τ̇(X2j−1) = X2j = η̇(X2j−1)
while τ̇ (Y2j−1) = −Y2j = η̇(Y2j−1). One has ah = a⊕ a

q
h with

(2.6) a = ah ∩ g =
r⊕

j=1

R(X2j−1 +X2j) and a
q
h =

r⊕

j=1

R(X2j−1 −X2j) ⊂ qhp .

Moreover, a is maximal abelian in p and RankG/K = 1
2
RankGh/Kh = r.
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To allow for uniform treatment of the cases we introduce the notation E ′
j = Ej, F

′
j = Fj ,

X ′
j = Xj etc. in case r = rh, and E ′

j = E2j−1 + E2j , F
′
j = F2j−1 + F2j , X

′
j = X2j−1 +X2j ,

etc. in case r 6= rh. Then in all cases we have τ̇(E ′
j) = F ′

j and

a =

r⊕

j=1

RX ′
j .

The order in a∗ is obtained from the lexicographic order with respect to the basis {X ′
1, . . . , X

′
r}.

Similarly we will need an extension of this notation to include subsets and signs. So
for I ⊂ {1, . . . , r} and ǫ ∈ {−1, 1}#I , if r = rh set I ′ = I and ǫ′ = ǫ; otherwise, set
I ′ = {2j − 1, 2j | j ∈ I} = (2I − 1) ∪ 2I with ǫ′2j−1 = ǫ′2j = ǫj . Then we will have E ′(I ′, ǫ′)
equal to either E(I, ǫ) in the first case, and to E(2I − 1, ǫ) + E(2I, ǫ) in the second case.

Remark 2.11. We mention that all the classical irreducible Riemannian symmetric spaces,
with a possible extension by the abelian group R+ = {t ∈ R | t > 0}, arise in this way as
a real form of a bounded symmetric domain in Cn, see Tables 3 and 4. The Riemannian
symmetric spaces that do not occur this way are those that correspond to the symmetric
pairs: (e6(2), su(6)×su(2)), (e6(6), sp(4)), (ǫ7(7), su(8)), (ǫ7(−5), so(12)×su(2)), (ǫ8(8), so(16)),
(ǫ8(−24), ǫ7 × su(2)), (f4(4), sp(3) × su(2)), and (g2(2), su(2) × su(2)), namely, those with a
quaternionic Kähler metric or associated to a split exceptional group.

The extra factor R+ occurs in the cases exactly where Dh+ ≃ Rk + iΩ is a tube type
domain and (up to finite coverings) G ≃ GL(Ω)o is the automorphism group of the sym-
metric cone Ω; moreover, here r = rh. These are not all the tube domains, but those for
which gh = gc. The simplest case is when Gh = SU(1, 1) and G = {exp tX1 | t ∈ R} (see
(1.4) for the notation). In this case K is trivial and exp tX1 acts on D+ by

exp tX1 · x =
x+ tanh(t)

x tanh(t) + 1

according to (1.9). In the general case the R+ factor is expRH0 where H0 = X1+ · · ·+Xr.
The element H0(= −iZh) is centralised by K. Let a =

⊕r
j=1RXj , which by Lemma 2.9 is

maximal abelian in p, and set A = exp a. Then G = KAK. It follows that the action of
the R+ is given by

exp(tH0) · (ka · 0) = k exp
∑

(tj + t)Xj · 0 = k ·
r∑

j=1

tanh(tj + t)Ej .

The Lie algebra g is simple except for the aforementioned tube type cases and the case
gh = so(2, p + q), g = so(1, p) × so(1, q), p, q ≥ 2. If G/K itself is a bounded symmetric
domain in Cn, then Gh = G× G and G/K is embedded diagonally into Dh+ × Dh+ (Dh+

the conjugate structure). This is the only case where Gh is not simple.
Non-uniqueness of the bounded realization occurs if g = so(1, p), then one can take

gh = su(1, p) or gh = so(2, p + 1); while for g = sp(2, 2) one has the choices gh = su(4, 4)
or e6(−14).
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2.3. Boundary Orbits of D.
The G orbit of the basepoint, G · xo, is D, an open domain in Pc = Gc/LcN−. On the

other hand, the Bruhat cell N+ · xo is open and dense in Pc. As in the complex case, by
means of log one obtains an analytic isomorphism N+ · xo ≃ N+

∼= n+,

(2.7) D ≃ G/K ≃ D+ ⊂ n+,

the Harish-Chandra bounded realization of D.
There are two possible ways to consider the closure of D and the corresponding boundary

orbits: we can consider the closure in the generalized flag manifold Pc, or in the open dense
set exp n+ · x0 ≃ n+. As for the complex case, Lemma 1.7, the two agree.

Lemma 2.12. Denote by c(D) the closure of D in Pc. Then c(D) is also the closure of D
in Gh/KhPh− and the closure of expD+ · x0 in exp n+ · x0. In particular, the action of G
on D+ extends to the boundary of D+.

Proof. This follows from the fact that Pc is compact and hence closed in Gh/KhPh−. �

Remark 2.13. The above statement is also a consequence of the fact that Pc = (Gh/KhPh−)
η.

The rest then follows from Lemma 1.7 by taking η-fixed points.

Denote by ∂D = c(D) \ D the topological boundary of D.
Proposition 2.14. Let I ⊆ {1, . . . , r} and let ǫ ∈ {−1, 1}#I.

(1) If r = rh, then η̇(E(I, ǫ)) = E(I, ǫ) and η̇(Oh(I, ǫ)) = Oh(I, ǫ).
(2) If r 6= rh, then η̇(E(2I − 1, ǫ)) = E(2I, ǫ) and η̇(Oh(2I − 1, ǫ)) = Oh(2I, ǫ).
(3) Uniformly in all cases we have η̇(E ′(I ′, ǫ′)) = E ′(I ′, ǫ′) and η̇(Oh(I

′, ǫ′)) = Oh(I
′, ǫ′).

Proof. This follows from Lemma 2.9 and Lemma 2.10 as τ(Gh) = Gh. �

Clearly ∂D = (∂Dh+)
η̇ and each Oh(I

′, ǫ′)η̇ is G-invariant although the orbits are yet to
be determined. However from Theorem 1.6 we can conclude

Lemma 2.15.

(1) If r = rh, then ∂D =
⋃̇r

b=1
Oh(b)

η̇.

(2) If r 6= rh then, ∂D =
⋃̇r

b=1
Oh(2b)

η̇.

Indeed more can be said in both cases, but we start with some simple observations about
the strongly orthogonal roots γj and the maximal abelian subspace ac.

In the case r = rh we have γj ◦ τ = −γj and th =
⊕
RHj ⊂ ac (see (1.3) for notation).

Let αj = γj|ac . Then {α1, . . . , αr} is a maximal set of strongly orthogonal roots in Σcn.
In the case r = rh/2 we have dim th ∩ qc =

1
2
dim th and rh is even. We let αj = γ2j|ac =

γ2j−1|ac , j = 1, . . . , r. Then the set {α1, . . . , αr} is a maximal set of strongly orthogonal
roots in Σcn.

Lemma 2.16 ([NÓ00] Lemma 2.23). Let {β1, . . . , βr} ⊂ Σ+
cn be a maximal set of strongly

orthogonal roots. Then given a permutation βi → βσ(i) there is an element k ∈ K that
implements it, in particular Ad(k)(Hβi

) = Hβσ(i)
.
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Suppose that r = rh. Now γj ∈ Σ+
cn and Ej ∈ gcγj . Then E(b) = E1 + · · · + Eb with

Ej ∈ gcγj . It follows from Lemma 2.16 that dimR gcγj is independent of j, so denote it by a.
Also g2γj = 0 as can be seen from Lemma 2.16 and Moore’s Theorem. If a > 1 then ZKc(ac)
acts transitively on the unit sphere in gcγj ( [W73] Theorem 8.11.3, p. 265). But in this
case the unit sphere is connected so ZKc(ac)o acts transitively. We also know from Lemma
2.5 that the Lie algebra of ZKc(ac)o is contained in k. Hence ZKc(ac)o ⊂ K. It follows that
Ej and −Ej are conjugate under ZK(ac) ⊂ G. Now apply this argument to each of the
analytic subgroups of Gc corresponding to the Lie algebra generated by REj⊕RHj⊕RE−j

to see that we can find kj ∈ Gj such that Ad(kj)Ej = −Ej . But the groups Gi and Gj

commute if i 6= j, thus with k =
∏b

j k
(1+ǫj)/2
j we have Ad(k)E(b, ǫ) = Eb.

Lemma 2.17. The following are equivalent:

(1) there exists m ∈ NK(a) such that Ad(m)|a = −1;
(2) there exists m ∈ K such that Ad(m)E ′

j = −E ′
j , j = 1, . . . , r;

(3) there exists m ∈ K such that Ad(m)F ′
j = −F ′

j, j = 1, . . . , r.

Proof. As noted following Lemma 2.10, τ̇(E ′
j) = F ′

j . Since τ |K = id, it follows that (2)
and (3) are equivalent. Assume that there exists m ∈ K such that Ad(m)|a = −1. Then
Ad(m)(E ′

j + F ′
j) = −E ′

j − F ′
j , j = 1, . . . , r. As K ⊂ Lc we have Ad(m)n± = n±. Hence

Ad(m)E ′
j = −E ′

j and Ad(m)F ′
j = −F ′

j . On the other hand, if (2) and (3) hold then, as
X ′

j = E ′
j + F ′

j , Ad(m)X ′
j = −X ′

j . Since a =
⊕

j RX
′
j , the claim follows. �

Remark 2.18. It follows from Lemma 2.16 that it is enough to assume that (2) and (3)
above hold for one j.

Corollary 2.19. Assume that r = rh. If −1 is not in the Weyl group W = NK(a)/ZK(a),
then E(b, ǫ) is not conjugate to E(b, ǫ′) if ǫ 6= ǫ′.

Theorem 2.20. Assume that r = rh and let 1 ≤ b ≤ r.

(1) If −1 ∈ W then (Oh(b))
η̇ = G · E(b) =: O(b) is one G-orbit and

∂D =
⋃̇r

b=1
O(b) .

(2) If −1 6∈ W then (Oh(b))
η̇ =

⋃̇
ǫ∈{−1,1}b

G · E(b, ǫ) and

∂D =
⋃̇r

b=1

⋃̇
ǫ∈{−1,1}b

O(b, ǫ) with O(b, ǫ) := G · E(b, ǫ) .

Proof. Let z ∈ (Oh(b))
η̇ ⊆ ∂D. Using the familiar argument we can choose kj ∈ K and

aj ∈ A such that kjaj · 0→ z. Again, kj has a convergent subsequence, so we can assume
that kj → k ∈ K. Replace z by w = k−1z in the same G-orbit. Write aj = exp

∑r
ν=1 tν,jXν .

Then

aj · 0 =

r∑

j=1

tanh(tν,j)Ej .
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As aj · 0 → w it follows that there exists a set I such that tanh(tν,j) → ǫν ∈ {−1, 1} for
ν ∈ I and tanh(tν,j)→ xν ∈ (−1, 1) for ν 6∈ I. Hence

w =
∑

ν∈I

ǫνEν +
∑

ν 6∈I

xνEν .

If tν ∈ R is so that xν = tanh(tν) then exp(−∑
ν 6∈I tνXν) ·

∑
ν 6∈I xνEν = 0 so we can

assume that w =
∑

ν∈I ǫνEν . As Eν ∈ gcγν from Lemma 2.16 we can assume that there
exists a b and ǫ ∈ {−1, 1}b such that w = E(b, ǫ). The claim now follows from Lemma 2.17
and Corollary 2.19. �

Theorem 2.21. Assume that r 6= rh. Let 1 ≤ b ≤ r. Then O(2b)η̇ = G ·E(2b) = G ·E ′(b)
is one G-orbit. In particular, with O(b) = G · E ′(b) we have

∂D =
⋃̇r

b=1
O(b) .

Proof. Let z ∈ (O(2b))η̇. By replacing X2j−1 +X2j with X ′
j we see as above that we can

assume that z =
∑b

ν=1 ǫνE
′
ν for some b. As before let αi = γ2i−1|ac . Then αi ∈ Σ+

cn and

αi|ac = γ2i|ac = τ̇ ♯(γ2i−1)|ac .
It follows that dim gcαi

≥ 2. We also have 2αi 6∈ Σc. Thus ZK(ac) acts transitively
on spheres in gcαj

which implies that E ′
i and −E ′

i, which are both in gcαi
are conjugate

via ZK(ac). Thus we can take ǫi = 1 for all i. The roots αi and αj are conjugate by
s(αi−αj)/2 ∈ Wcc and E ′

ν ∈ gαν . It follows that we can assume that J = {1, . . . , b} for some
b ≤ r. �

2.4. Isotropy of E(b, ǫ).
In this section we describe the stabilizer in G of E(b, ǫ), respectively E(2b), on the

boundary of D. On the way we give some extra information about the structure of each
part in the stabilizer. Our notation for subgroups of G will be the same as that used for
Gh except we drop the subscript “h”and L = ZG(H0). Our standard homomorphism will
always been assumed to be of the form κI,ǫ for I = {1, . . . , b} ⊂ {1, . . . , r}. We define I ′ as
in the earlier subsection and then write κ instead of κI′,ǫ wherever the exact form does not
matter. As before, we write Eκ, Hκ, Xκ, O(κ) etc. for E(b, ǫ), H(b, ǫ), X(b, ǫ), O(I ′, ǫ).
We have η̇(Eκ) = Eκ. Hence if GEκ

h is the stabilizer of Eκ in Gh then the stabilizer GEκ
c of

Eκ in Gc is GEκ
c =

(
GEκ

h

)η
and the stabilizer GEκ in G is (GEκ

c )τ . Same argument holds
also for the Lie algebra of the stabilizers.

Basic Example. SU(1, 1) - cont.
We return to the prototype example, §1.3, and introduce an anti-holomorphic involution.

Consider the map τ̇1 : sl(2,C)→ sl(2,C) given by the matrix multiplication

τ̇1

((
x y
z −x

))
= X1

(
x y
z −x

)
X1 =

(
−x z
y x

)
where X1 =

(
0 1
1 0

)
.
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Clearly τ̇1 is complex linear, whereas for X ∈ su(1, 1) one has τ̇1(X) = X , in particular
τ̇1(su(1, 1)) = su(1, 1). Recall that the conjugate linear extension of τ̇1 from su(1, 1) to
sl(2,C)(= su(1, 1)C) is denoted η̇1, and so on su(1, 1) is also given by complex conjugation,
as is η1 on SU(1, 1). For the involution τ̇1, the Lie subalgebra of sl(2,C) denoted gc is
sl(2,R) ∼= su(1, 1). Thus for the subgroup G ⊂ SU(1, 1) ∩ SL(2,R) we have

G =

{(
cosh(t) sinh(t)
sinh(t) cosh(t)

) ∣∣∣∣ t ∈ R
}

and

D+ = Dσ+
h

h+ = (−1, 1) ⊂ Dh+ = D1 ⊂ ph+.

Since gh ∼= gc we know (cf. Table 4) that g has an R-factor and that r = rh (cf. Lemma
2.10). As regards compatibility of the involutions,

(2.8) κ ◦ τ1 = τ ◦ κ and κ ◦ θ1 = θ ◦ κ ,
consequently7

κ ◦ η1 = η ◦ κ.
Moreover, with κ̇′

I,ǫ := κ̇I′,ǫ′ we similarly have κ̇′
I,ǫ ◦ τ̇1 = τ̇ ◦ κ̇′

I,ǫ.

Earlier we recalled the decomposition obtained from πκ := ad ◦ κ̇:

(2.9) gh = g
[0]
h ⊕ g

[1]
h ⊕ g

[2]
h and gCh = g

C[0]
h ⊕ g

C[1]
h ⊕ g

C[2]
h .

Lemma 2.22. If π is a finite dimensional representation of sl(2,C) then π and π ◦ τ̇ are
equivalent.

Proof. This is well known. We assume that π is irreducible, then π is uniquely determined
by its dimension. As the dimension of π and π ◦ τ̇ are equal and π ◦ τ̇ is irreducible the
result follows. �

It follows from this Lemma that the decompositions in (2.9) are preserved under τ̇ and
η̇. In particular, where the superscript refers to η̇-fixed points, respectively intersection:

gc = g[0]c ⊕ g[1]c ⊕ g[2]c , g = g[0] ⊕ g[1] ⊕ g[2] and gh = g[0] ⊕ g[1] ⊕ g[2] ⊕ q
[0]
h ⊕ q

[1]
h ⊕ q

[2]
h .

Remark 2.23. Recall that we have defined κ such that it defines a homomorphism
su(1, 1) → gh. But as pointed out in 1.7 one can, by extending κ to sl(2,C) and then
restrict to sl(2,R), view κ as a homomorphism sl(2,R) into gc. Then the first decompo-
sition in (2.9) is the isotypic decomposition of the representation adgc ◦ κ of sl(2,R). The

second decomposition is then obtained by taking the τ̇ -fixed point in each of the spaces g
[j]
c .

We will discuss that in more details in the next section. Note that the spaces g[j], j = 1, 2,
are not necessarily κ(sl(2,R))-invariant.

7We remark that the results in this subsection are valid for all standard homomorphisms satisfying (2.8).
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As τ̇(Xκ) = η̇(Xκ) = Xκ it follows that the eigenspaces of adXκ are τ̇ and η̇ stable and
compatible with the decomposition gh = g⊕qh and gCh = gc⊕ igc. In short, all the essential
structure from the previous sections is invariant under τ̇ and η̇. In particular,
(2.10)
m0

hκ = m0
κ⊕m0

hκ∩qh, n1hκ = n1κ⊕n1hκ∩qh, n2hκ = n2κ⊕n2hκ∩qh, and qhκ = qκ⊕qhκ∩qh .

Let H0 and Zh be as before. Let Hκ = κ(H1) and H
(1)
κ = H0 − 1

2
Hκ and note that

Hκ, H
(1)
κ ∈ ac ⊂ qc ∩ sc. Complexifying the decomposition in (2.10) and then taking η̇ and

τ̇ fixed points we get

njcκ = n
jC
hκ ∩ gc = gc(adXκ; j), j = 1, 2,

and

njκ = n
j
hκ ∩ g = gc(adXκ; j)

τ̇ = g(adXκ; j), j = 1, 2.

For the complexification of the Levi factor of the maximal parabolic subalgebra qhκ and
its intersection with gc we also have with lcκ = zgc(Xκ) and with the obvious notation:

pcκ = lcκ ⊕ ncκ = (l(1)cκ ⊕ l(2)cκ )⊕ RXκ ⊕ (n1cκ ⊕ n2cκ)

and

pκ = lκ ⊕ nκ = (l(1)κ ⊕ l(2)κ )⊕ RXκ ⊕ (n1κ ⊕ n2κ)

semidirect products.

Let Lcκ = ZGc(Xκ) = L
(1)
cκ L

(2)
cκ Aκ where L

(1)
cκ is the analytic subgroup of Gc with Lie

algebra l
(1)
cκ , L

(2)
cκ = ZGc(Xκ, H0), and Aκ = expRXκ. We use analogous notation for g

and G dropping the index c. Up to connected components for L
(1)
κ , those Lie algebras,

respectively Lie groups, are obtained by taking τ̇ , respectively τ fixed points. Finally we
let

Pcκ = NGc(ncκ) = L0
cκAκNcκ and Pκ = NG(nκ) = L0

κANκ.

Theorem 1.10, parts (7) and (8) now imply:

Lemma 2.24. The following holds true

(1) Pcκ is a maximal parabolic subgroup of Gc.

(2) If H
(1)
κ 6= 0 then H

(1)
κ is central in l

(1)
κ ∩ sc and L

(1)
cκ /Lκ is, up to compact factors, a

split-Hermitian symmetric space.
(3) Pκ is a parabolic subgroup in G.

(4) If H(1) 6= 0 then L
(2)
κ /K ∩ L

(2)
κ is the fixed point set of the conjugation η in the

Hermitian symmetric space M
(1)
hκ /Kh ∩M

(1)
hκ and we have a fibration

L(1)
κ /K ∩ L(1)

κ → O(κ)→ K/K ∩ L(2)
κ .

(5) If H
(1)
κ = 0 then the stabilizer of Eκ in G is Pκ and O(κ) = G/Pκ = K/K ∩ L(2) is

a compact symmetric R-space.
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3. Finer Structure of Qκ

In this section we discuss the finer structure of the stabilizer of Eκ. This material will
not be used in this article but we still think it is worth including. Recall from §1.5 that

g
[0]
h = zgh(κ̇(su(1, 1)) is a subalgebra which has ideal ghκ =

⊕
ghj⊆g

[0]
h

, j≥1
ghj .

Lemma 3.1. Let V ⊂ g
[k]
h be an irreducible ghκ-module. Then exactly one of the following

holds:

(1) τ̇(V ) = V and τ̇ |V = id. In this case V ⊂ g and the action of ghκ is trivial.
(2) τ̇(V ) = V and τ̇ |V = −id. In this case V ⊂ qh and the action of ghκ is trivial..
(3) τ̇(V ) = V and τ̇ |V 6= ±id. Then dimV > 1 and dimV ∩ g = 1. If dimV = 2, then

V ∩ g ⊂ n1 or V ∩ g ⊂ n−1. If dim V = 3, then V ∩ g ⊂ g
[0]
h ∩ g.

(4) τ̇(V ) 6= V . Then dimV > 1 and V ∩τ̇ (V ) = {0} and τ̇ |V⊕τ̇(V ) : V⊕τ̇ (V )→ V⊕τ̇ (V )
is given by τ̇ (X, Y ) = (τ̇(Y ), τ̇(X)) and (V ⊕ τ̇(V )) ∩ g = {X + τ̇ (X) | X ∈ V } is
three dimensional.

Proof. It is clear that exactly one of the conditions (1) to (4) must hold. In the case where
dimV = 2 or dimV = 3 the action of ad|ghκ and ad ◦ τ̇ |ghκ on V are different as e and f
act differently on R2 and sl(2,R). Thus, if τ |V = ±id, we must have that the action of ghκ
is trivial as ad ◦ τ̇1 = τ ◦ ad. Then (1) and (2) follow.

Assume that τ(V ) = V and τ |V 6= ±id. Then clearly dimV > 1. Assume that dimV = 2.
Then V = Im (id+ τ̇)⊕ Im (id− τ) = V (τ̇ , 1)⊕V (τ̇ ,−1) and each of the eigenspaces is one
dimensional. As τ̇1(X1) = X1, R2 = R2(X1, 1)⊕R2(X1,−1). Since κ̇ ◦ τ̇1 = τ̇ ◦ κ̇, it follows
that adXκ|V (τ̇ ,1) = ±1. If dimV = 3, then the action is the standard su(1, 1) action on its
Lie algebra and

su(1, 1) ∩ g = RX1 = su(1, 1)(adX1, 0) = su(1, 1)τ̇1.

For (4) we note that V ∩ τ̇ (V ) is invariant. As V is assumed irreducible, we either have
V = τ̇(V ) or V ∩ τ̇(V ) = {0}. The rest is now obvious.

�

Lemma 3.2. Assume that (3) above holds and dimV = 2. Then θ(V ) ∩ V = {0}. Fur-
thermore,

(1) θ(V ) is ghκ-stable.
(2) θ(V (τ̇ ,±1)) = θ(V )(τ̇ ,±1).
(3) θ(V (adXκ,±1)) = θ(V )(adXκ,∓1).
(4) If 0 6= X ∈ V (adXκ,±1) then θ(X) ∈ V (adXκ,∓1) and [X, θX ] ∈ m0 ∩ p.

Proof. Fix v ∈ V (τ̇ , 1). If [Xκ, v] = v then [Xκ, θ̇(v)] = −θ̇(v), hence v and θ̇(v) are linearly

independent. As dimV (τ̇ , 1) = 1 it follows that θ̇(v) 6∈ V . Similarly, if [Xκ, v] = −v then

[Xκ, θ̇(v)] = v and v 6∈ V . It follows that V ∩ θ(V ) = {0}.
�

The conclusion from this is
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Corollary 3.3. If n1hκ 6= {0}, then n1κ 6= {0} and dim n1κ = 1
2
dim n1hκ. Furthermore, τ̇ |n1hκ

defines a conjugation on n1hκ so n1κ is a totally real subspace.

Remark 3.4. This follows also from the following observation. Lemma 1.9 states that
Io = −ad(Yκ) ◦ θ̇h defines a complex structure on n1hκ. τ̇ commutes with θ̇h and anti-
commutes with ad(Yκ). Hence Ioτ̇ = −τ̇ Io which shows that τ̇ |n1

hκ
is conjugate linear.

Hence n1κ = n1hκ ∩ g is a real form for n1hκ and n1hκ = n1κ ⊕ Ion
1
κ.

Lemma 3.5. Let V ⊂ gh be one dimensional or a simple ideal. Then either τ̇(V ) = V , or
τ̇(V ) ∩ V = {0} and we have the “group case” where V × τ̇(V ) is an ideal, V and τ̇ (V )
commute, and (V × τ̇(V ))τ̇ = {(X, τ̇(X)) | X ∈ V }.
Proof. If V ∩ τ̇ (V ) 6= {0} then V ∩ τ̇ (V ) is an ideal in V . As V is either one dimensional
or simple it follows that V = τ̇ (V ). The rest is obvious. �

Lemma 3.6. τ̇(l2) = l2 and l2 ∩ g is an ideal in m0
κ. Let L2 be the analytic subgroup of Gh

with Lie algebra l2. Then L2/G ∩ L2 is a compact symmetric space.

Proof. l2 is the maximal compact ideal of m0
hκ. As l2 + τ̇(l2) is a compact ideal it follows

that τ̇ (l2) = l2. The rest of the Lemma is now obvious. �

Lemma 3.7. Assume that g
(1)
h 6= {0}. We have τ̇ (g

(1)
h ) = g

(1)
h and τ̇ (Z1

κ) = −Z1
κ. Let G1

h

be the analytic subgroup of Gk with Lie algebra g
(1)
h . Then G1

h is θh and τ invariant. If
K1

h = (G1
h)

θh = Kh ∩ G1
h then K1

h is maximal compact in G1
h, G

1
h is a bounded domain,

τ defines a conjugation on G1
h/K

1
h and (G ∩ G1

h)/(G ∩K1
h) = (G1

h/K
1
h)

τ is a real form of
G1

h/K
1
h.

Lemma 3.8. g(1) := g ∩ g
(1)
h is an ideal in m0

κ.

Proof. We have [m0
κ, g

(1)] ⊂ g
(1)
h ∩ g = g(1). �

The next result follows easily from the above.

Lemma 3.9. τ̇(m
(2)
hκ ) = m

(2)
hκ and m

(2)
κ = m

(2)
hκ ∩ g is an ideal in m0

κ.

As τ̇(Xκ) = Xκ we have Fκ ⊂ Gh
τ . Let F̃κ := Fκ ∩G.

4. Lift from K to (L′
c)0

One of the results in the paper (§6) will be an extension of sections of homogeneous vector
bundles over G/K to its closure, and hence the boundary orbits. A key step in the proof
will be a lift of irreducible representations of K to Lc. In this section we will do the lift
from k to l′c, i.e. from K to (L′

c)o. Subsequently we will treat the full Lc. A glance at Table
5 shows the real forms G divided into three types. In subsequent subsections the proof of
the lift will be done for each type.
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4.1. The case OCCC.

We shall use the terminology of σ-normal system of roots for which a convenient reference
is [Wa-I] p. 21-24. For this subsection only we shall denote by G a non-compact connected
semisimple Lie group with Lie algebra g, later the results will be applied to (L′

c)o in Table
5. The Killing form on g induces a non-degenerate symmetric bilinear form on g∗ for which
we use 〈·, ·〉. Let θ be a Cartan involution and write g = k⊕s for the Cartan decomposition
of g. Let a be a maximal abelian subspace in s and, as usual, let m = zk(a), and extend a

to a Cartan subalgebra t = t+ ⊕ a of g. Denote by ∆ = ∆(gC, tC) the set of roots of tC in
gC. Clearly ∆ is a reduced system of roots. Our assumption in this subsection is that all
Cartan subalgebras in g are conjugate, to be denoted OCCC.

Lemma 4.1. t+ is a Cartan subalgebra of k and m.

Proof. For a Cartan subalgebra c of g let

cR = {X ∈ c | (∀α ∈ ∆(gC, cC)) α(X) ∈ R}
and

cI = {X ∈ c | (∀α ∈ ∆(gC, cC)) α(X) ∈ iR} .
Then c = cI ⊕ cR and the dimensions dim cI and dim cR are constant on each conjugacy
class. In particular, for c = t, tR = a and tI = t+.

If t+ is not a Cartan subalgebra of k, then t+ extends to a Cartan subalgebra t̃+ of k
which in turn extends to a Cartan subalgebra c̃ of g such that t+ is a proper subspace of
t̃+, or t+ ( c̃I which is not possible by the above discussion. �

It follows that t is a fundamental Cartan subalgebra as well as a maximally split Cartan
subalgebra. As t = t+ ⊕ a we can restrict roots from ∆ to either t+ or a. Denote by
Σ = Σ(g, a) the set of (restricted) roots of a in g, i.e. Σ = {β|a | β ∈ ∆} \ {0}. For α ∈ Σ
and ∆(α) := {β ∈ ∆ | β|a = α} we let gα ⊂ g be the restricted root space, and set

mα := dim gα = #∆(α) .

That g has one conjugacy class of Cartan subalgebra is equivalent to all multiplicities mα,
α ∈ Σ are even. Next we define the involution that will serve as the σ of the σ-normal
system. Let tR = it+ ⊕ a. For λ ∈ t∗R let

λθ := λ ◦ θ, λ♯ = −λθ, λ+ :=
1

2

(
λ+ λθ

)
=

1

2

(
λ− λ♯

)
,

and

λ− :=
1

2

(
λ− λθ

)
=

1

2

(
λ+ λ♯

)
.

We identify λ+ with λ|t+ and similarly write λ− for λ|a.
If α ∈ ∆ then αθ, α♯ are in ∆ because gCαθ = θ(gCα) and gCα♯ = θ(gC−α). Also θ and ♯ are

isometries for 〈·, ·〉.
It is also clear that

∆• := {α ∈ ∆ | αθ = α} = ∆(mC, tC+) = {α ∈ ∆|α− = 0}.
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Lemma 4.2. Assume OCCC. Then β♯ 6= β for all β ∈ ∆. In fact, βθ − β /∈ ∆.

Proof. Let β ∈ ∆. Suppose that β♯ = β. Then β+ = 0, hence β ∈ Σ. But then

∆(β) = {β} ∪ {γ ∈ ∆ | γ♯ 6= γ , γ|a = β}.
Hence mβ is odd which contradicts OCCC.

If βθ = β then βθ−β = 0, so is not a root. Assume that βθ 6= β and that γ = βθ−β ∈ ∆.
Then γθ = −γ so that γ+ = 0, i.e. γ is a real root. But t is fundamental so there are no
real roots. �

Corollary 4.3. (∆, θ) is a normal σ-system of roots per [Wa-I].

From this, various properties of the roots will follow. The OCCC condition will impose
some additional constraints which we will identify in the next few results.

Lemma 4.4. Let α ∈ ∆. Then α+ ∈ ∆(kC, tC+).

Proof. Let Xα = X+
α +X−

α ∈ gCα. Here X±
α = 1

2
(Xα ± θ(Xα)). If H ∈ a then

[H,Xα] = α(H)(X+
α +X−

α ) = [H,X+
α ] + [H,X−

α ] .

It follows that
[H,X±

α ] = α(H)X∓
α .

Thus X±
α 6= 0. But the same argument shows that for H ∈ t+ we have [H,X±

α ] = α(H)X±
α

and therefore kCα+ 6= {0}. �

Lemma 4.5. Assume OCCC. Let α ∈ ∆ \∆•. Then α and αθ are strongly orthogonal.

Proof. We have α − αθ = 2α−. By the above 2α− 6∈ ∆. Similarly we have α + αθ = 2α+.
We just saw that α+ ∈ ∆(kC, tC+). As tC+ is a Cartan subalgebra of kC it follows that
2α+ 6∈ ∆+. �

Corollary 4.6. Assume OCCC. If α ∈ ∆ \∆• = {α ∈ ∆ | α 6= αθ}. Then ‖α+‖ = ‖α−‖.
Proof. This follows from the last lemma which implies that α and αθ are orthogonal or
〈α, αθ〉 = ‖α+‖2 − ‖α−‖2 = 0. �

Lemma 4.7. Let ∆♯ = {α+ | αθ 6= α} (not counted with multiplicities). Then ∆(kC, tC+) =

∆♯

⋃̇
∆•.

Proof. It is clear that the union is disjoint. Let Σ+ be a set of positive roots in Σ and, as
usual, n =

⊕
γ∈Σ+ gγ. Then

kC = mC ⊕
⊕

γ∈Σ+

{Xγ + θ(Xγ) | Xγ ∈ gCγ } .

As Σ = {α|a | αθ 6= α} the claim follows now using the same argument as in the proof of
Lemma 4.4.

�
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The following set of simple roots is adapted from [Wa-I] p. 21-24 with slightly different
notation. Let ℓ+ := dim t+, ℓ2 := dim a and ℓ = ℓ+ + ℓ2 = dim tR. We choose a lexico-
graphical ordering in t∗R with respect to a basis H1, . . .Hℓ so that H1, . . . , Hℓ+ is a basis for
it+. Let ∆

+ be the corresponding set of positive roots and Π the set of simple roots. Then
by Lemma 4.2 and [Wa-I] there exists ℓ1 such that the following holds:

(1) Π• = {α1, . . . , αℓ1} is a set of simple roots for ∆• (contained in ∆+
• = ∆• ∩ ∆+).

Furthermore Π• = {α ∈ Π | αθ = α}.
(2) ℓ = ℓ1 + 2ℓ2.
(3) If 1 ≤ ν ≤ ℓ2 then αθ

ℓ1+ν = αℓ1+ℓ2+ν and αθ
ℓ1+ℓ2+ν = αℓ1+ν .

Lemma 4.8. Πc = {α1, . . . , αℓ1, α
+
ℓ1+1, . . . , α

+
ℓ1+ℓ2
} is a simple system in ∆+(kC, tC+).

Let Ψ = {µ1, . . . , µℓ} denote the set of fundamental weights for Π.

Lemma 4.9. Let Ψc := {µ+
j | j = 1, . . . , ℓ1 + ℓ2} (where we identify µj with µ+

j for
j = 1, . . . , ℓ1). Then Ψc is the set of fundamental weights corresponding to the simple
system Πc.

Proof. We have to show that
2〈µ+

ν , α
+
σ 〉

〈α+
σ , α

+
σ 〉

= δν,σ .

This is clear for ν = 1, . . . , ℓ1 as in this case µν = µ+
ν . Assume now that ℓ1+1 ≤ ν ≤ ℓ1+ℓ2.

Then for 1 ≤ σ ≤ ℓ1 we have

0 = 〈µν, ασ〉 = 〈µ+
ν , ασ〉 .

Assume ℓ1 + 1 ≤ σ ≤ ℓ1 + ℓ2 and write σ = ℓ1 + j, 1 ≤ j ≤ ℓ2. then

〈µ+
ν , α

+
σ 〉 = 〈µ+

ν ,
1

2
(ασ + αθ

σ)〉

=
1

2
〈µν , ασ + αθ

σ〉

because θ is an involution. As αθ
σ = αℓ1+ℓ2+j and ‖α+

σ ‖2 = 1
2
‖ασ‖2 = 1

2
‖αθ

σ‖2 we get

2〈µ+
ν , α

+
σ 〉

‖α+
σ ‖2

=
2〈µν ,

1
2

(
ασ + αθ

σ

)
〉

‖α+
σ ‖2

=
2〈µν ,

1
2
ασ〉

1
2
‖ασ‖2

+
2〈µν,

1
2
αℓ1+ℓ2+j〉

1
2
‖αℓ1+ℓ2+j‖2

= δν,σ

�

Denote by Λ+(K) the set of highest weights of irreducible representations of K and simi-
larly by Λ+(G) the space of highest weights of irreducible finite-dimensional representations
of G. If µ ∈ Λ+(K) then we denote the corresponding irreducible representation of K by
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σµ. If µ ∈ Λ+(G) then the corresponding irreducible representation of G with highest
weight µ is denoted by τµ.

Let G̃ be the universal covering of G and let K̃ denote the analytic subgroup of G̃
corresponding to the Lie algebra k. Then K̃ is simply connected and locally isomorphic to

K. Furthermore, the center of G̃, Z(G̃), is contained in K̃.

Theorem 4.10. Let µ =
∑ℓ1+ℓ2

j=1 kjµ
+
j ∈ Λ+(K). Set µ̃ :=

∑ℓ1+ℓ2
j=1 kjµj. Then µ̃ ∈ Λ+(G̃),

descends to be in Λ+(G). Moreover σµ is contained in τµ̃|K with multiplicity one.

Proof. It is clear that µ̃ ∈ Λ+(G̃) and µ ∈ Λ+(K̃). Denote by τ̃µ̃ respectively σ̃µ the

corresponding representation of G̃, respectively K̃. Clearly σ̃µ is contained in τ̃µ̃|K̃ . Let

Z̃ be the kernel of the canonical projection G̃ → G. Then Z̃ ⊂ K̃ and K ≃ K̃/Z̃. Since

µ ∈ Λ+(K) it follows that σ̃µ|Z̃ = id. As Z̃ is central in G̃ and τ̃µ̃ is irreducible one has
τ̃µ̃|Z̃ is a scalar. But σ̃µ is contained in τ̃µ̃|K̃ , it follows that τ̃µ̃|Z̃ = id. Hence τ̃µ̃ defines a
representation of G and µ̃ ∈ Λ+(G). The multiplicity one assertion is clear because there is
no way to write µ as a non-trivial linear combination (µ, 0)−∑

nα(α
+, α−)|t+ of positive

roots (α+, α−) and nα ≥ 0 (and at least one 6= 0). The rest is now obvious. �

4.2. The special cases.

We turn to the third type in Table 5. The technique is a variation of σ-systems from the
previous subsection. Here we use some results from [Kn96] on Vogan diagrams. The proce-
dure parallels that followed in the OCCC case. One begins with t = t+ ⊕ a a fundamental
Cartan subalgebra of g but here not a maximal split Cartan. Hence again there are no real
roots. Of course t determines a parabolic subalgebra which will play no direct role. We
have ∆ = ∆(gC, tC) the set of roots of tC in gC, W the Weyl group of ∆; let ∆(kC, tC+) be
the set of roots of tC+ in kC and WK its Weyl group. We choose a lexicographical ordering
in t∗R with respect to a basis H1, . . .Hℓ so that H1, . . . , Hℓ+ is a basis for it+. Let ∆+

be the corresponding set of positive roots and Π = {α1, · · · , αl} the set of simple roots.
Denote by Ψ = {µ1, . . . , µℓ} the set of fundamental weights for Π. As before, for λ ∈ t∗R let
λθ := λ ◦ θ. Then we have the restriction to t+, λ

+ := 1
2

(
λ+ λθ

)
, and the restriction to

a, λ− := 1
2

(
λ− λθ

)
. A different but important feature arises here in that imaginary roots

can be compact or noncompact. Thus we must examine Σ+, the restrictions of ∆+ to t+.
Also we make a choice of simple roots for ∆(kC, tC+) compatible with ∆+. To us it seemed
easiest to continue with the remaining details in each case separately.

Example 4.11. We start with g = so(5, 5) and k = sp(2)× sp(2) = so(5)× so(5). Using
standard notation and as presented in [Kn96] p. 359 we have Π = {α1 = e1 − e2, α2 =
e2−e4, α3 = e4−e5, α4 = e5−e3, α5 = e5+e3}, where t+ =< e1, e2, e4, e5 > and a =< e3 >.
Clearly θ : Π→ Π interchanges α4 and α5, so relative to the involution θ we have a normal
σ-system with a σ order for which Π is a σ-fundamental system. A computation using the
Cartan on [Kn96, p. 359] determines the set of restrictions, Σ+, of ∆+ to t+ which, from
[Wa-I], is a (non-reduced) root system and contains the positive roots of the Levi subalgebra
so(4, 4)⊕a. We let WΣ+ be its Weyl group. Now set Wθ = {w ∈ W |w◦θ = θ◦w}. Then Wθ
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induces a map on t+ and, from [Wa-I] p. 24, as there are no real roots we haveWθ|t+ = WΣ+ .
Finally with regard to Weyl groups (following [H10] p. 1016 and others) we will take a
distinguished set of representatives for Wθ/WK , viz. let D

+
t+

be the positive Weyl chamber

for ∆+(kC, tC+) and let D+
g be the projection of the positive chamber for ∆+ in t(= t+ ⊕ a)

to t+. Then set W 1 = {w ∈ Wθ|w|t+(D+
g ) ⊂ D+

t+
}. Then W 1 gives the required coset

representatives.
Yet another computation is necessary to obtain ∆+(kC, tC+) = {e1, α+

1 , α
+
2 +α+

3 +α+
4 , α

+
1 +

2α+
2 + 2α+

3 + 2α+
4 } ∪ {e4, α+

3 , α
+
4 , α

+
3 + 2α+

4 }, with compatible basis of simple roots {α+
1 =

e1− e2, α
+
2 +α+

3 +α+
4 = e2} ∪ {α+

3 = e4− e5, α
+
4 = e5}. As for the fundamental weights for

g, one gets

µ1 = e1, µ2 = e1 + e2, µ3 = e1 + e2 + e4,

µ4 =
e1 + e2 − e3 + e4 + e5

2
, µ5 =

e1 + e2 + e3 + e4 + e5
2

;

while for k,

µ+
1 = e1 = µ1, µ

+
2 = e1 + e2 = µ2, µ

+
3 = e4, µ

+
4 = e4 + e5.

In terms of the ei, for a highest weight µ̃ we have µ̃ =
∑5

1 miµi = (m1 + m2 + m3 +
m4+m5

2
)e1 + (m2 +m3 +

m4+m5

2
)e2 + (m4−m5

2
)e3 + (m3 +

m4+m5

2
)e4 + (m4+m5

2
)e5. So, similar

to the procedure in the Theorem above, to obtain µ̃ as a natural lift from t+ we take
m4 = m5 giving µ̃+ = µ̃ = M1e1 +M2e2 +M4e4 +M5e5 with M1 ≥ M2 ≥ M4 ≥ M5 ≥ 0.
Now take a candidate highest weight µ =

∑4
1 niµ

+
i of k to lift to µ̃. In terms of the ei

we have µ = (n1 + n2)e1 + n2e2 + (n3 + n4)e4 + n4e5 = N1e1 + N2e2 + N4e4 + N5e5 and
N1 ≥ N2 ≥ 0, N4 ≥ N5 ≥ 0. Clearly when N2 = m2 +N4, i.e. N2 ≥ N4, we have a µ to lift
to µ̃ . However this determines a chamber in t+ for the action of W 1. Now g = so(5, 5) is
type D5 so the Weyl group contains all permutations of the ei. We summarize in Table 1
Case 4.11 various possibilities for the chamber and an element ofW 1 that maps the chamber
to the original one. We use the abbreviation i←→ Ni and ei − ej ←→ sei−ej ∈ W 1.

µ w orbit
1 ≥ 2 ≥ 4 ≥ 5 id 1 2 4 5
1 ≥ 4 ≥ 2 ≥ 5 e2 − e4 1 2 4 5→ 1 4 2 5
1 ≥ 4 ≥ 5 ≥ 2 e2 − e4 ◦ e2 − e5 1 2 4 5→ 1 5 4 2→ 1 4 5 2
4 ≥ 1 ≥ 2 ≥ 5 e2 − e4 ◦ e1 − e4 1 2 4 5→ 4 2 1 5→ 4 1 2 5
4 ≥ 1 ≥ 5 ≥ 2 e2 − e4 ◦ e2 − e5 ◦ e1 − e4 1 2 4 5→ 4 2 1 5 → 4 5 1 2→ 4 1 5 2
4 ≥ 5 ≥ 1 ≥ 2 e2 − e5 ◦ e1 − e4 1 2 4 5→ 4 2 1 5→ 4 5 1 2

Table 1. Case 4.11

So given µ ∈ Λ+(K) one finds it in the first column, applies w−1 to it obtaining a highest

weight of the form 1 ≥ 2 ≥ 4 ≥ 5 which can be lifted to a natural µ̃ ∈ Λ+(G̃). It is clear the
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w−1 belongs to W 1 as it takes a chamber of dominant K-weights to another. The result
then follows from the multiplicity one Theorem in [H10] which says the K-type w(µ̃)|t+
occurs with multiplicity 1 in Vµ̃.

An alternative approach to the existence of the K-submodule is to use the generalization
of the PRV conjecture ([MPR11]), but this does not yet give multiplicity 1.

Example 4.12. Next we consider g = e6(6) and k = sp(4). We shall use the notation of
[Bo68] so that we have a basis {α1, α2, α3, α4, α5, α6} for ∆+(gC, tC). We use Table C p.
532 in [Kn96] for a compatible basis of the simple roots for k = sp(4) ⊂ e6(6). In particular,
node 2 is black, and under θ, nodes 3 ! 5 and 1 ! 6. This suggests the following basis
for ∆+(kC, tC+): {γ1 = α2 + α4 +

α3+α5

2
, γ2 =

α1+α6

2
, γ3 =

α3+α5

2
, γ4 = α4}. Note that we use

γ because these are not always the projections to t+, e.g. γ2 6= α+
2 .

From [Bo68] one computes that 〈αi, αi〉 = 2, and since the fundamental weights satisfy

2
〈µi,αj〉

〈αj ,αj〉
= δi,j we have that the fundamental weights µi are the dual basis to the simple

roots αi. Similarly one obtains that 1 = 〈γ1, γ1〉 = 〈γ2, γ2〉 = 〈γ3, γ3〉 while 〈γ4, γ4〉 = 2.
Then for the fundamental weights of ∆+(kC, tC+) we can take ω1 = µ2

2
, ω2 = µ1+µ6

2
, ω3 =

µ3+µ5−µ2

2
, ω4 = µ4 − µ2.

Let µ ∈ Λ+(K). Then µ =
∑4

1 niωi with ni ≥ 0 and integers. In terms of the µi we have

µ = n1
µ2

2
+ n2

µ1 + µ6

2
+ n3

µ3 + µ5 − µ2

2
+ n4(µ4 − µ2)(4.1)

µ = n2
µ1 + µ6

2
+ n3

µ3 + µ5

2
+ n4µ4 + (

n1 − n3

2
− n4)µ2

Here we must make the assumption that n1 − n3 is an even integer. Then, as before, we
are left with a few cases which will be handled using the Weyl group, i.e. W 1. We begin
with the case n1−n3−2n4 ≥ 0. Here we lift µ to µ̃ = n2µ1+n3µ3+n4µ4+(n1−n3

2
−n4)µ2.

Then µ̃+ = µ so we have a valid lift. In Table 2 Case 4.12, similar to that above, the first
column contains the various cases for µ, the second the sequence of roots whose reflections

give w, and the third the lift to Λ+(G̃) to which you apply w−1 and the restriction gives µ.

So here, given µ =
∑4

1 niωi ∈ Λ+(K̃) (n1 − n3 an even integer) one finds it in the first

column, applies w−1 to it obtaining a highest weight µ̃ ∈ Λ+(G̃). It is clear the w−1 belongs
to W 1 as it takes a chamber of dominant K-weights to another. The result then follows
from the multiplicity one Theorem in [H10] which says the K-type w−1(µ̃)|t+ occurs with
multiplicity 1 in Vµ̃. Life would be easier if one knew more about the action of W 1 on
the chambers D+

g ; unfortunately, we were unable to obtain the result we needed which
necessitated the lengthy computations. These computations were facilitated by having the
expressions of the simple roots of e6(6) expressed in terms of the fundamental weights.

Example 4.13. The next case g = so(1, n − 1) and k = so(n − 1) is elementary and
surely in several places in the literature. Assume that n − 1 ≥ 3 to avoid the Abelian
case. Base extend the Lie algebras to C. The fundamental representations of k are either
exterior powers of the standard representation or spin. All these are known to occur
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µ w Lift µ̃

n1 − n3 − 2n4 ≥ 0 id n2µ1 + n3µ3 + n4µ4 + (n1−n3

2
− n4)µ2

n1 − n3 − 2n4 < 0, n1 − n3 ≥ 0 α2 n2µ1 + n3µ3 +
n1−n3

2
µ4 − (n1−n3

2
− n4)µ2

n1 − n3 − 2n4 < 0, n1 − n3 < 0 α5 ◦ α4 ◦ α6 ◦ α5 ◦ α4 ◦ α2 n2µ1 + (n3 +
n1−n3

2
− n4)µ3

n3 ≥ n4 −
n1−n3

2
+n4µ5 + (− (n1−n3)

2
)µ6

n1 − n3 − 2n4 < 0, n1 − n3 < 0 α5 ◦ α4 ◦ α6 ◦ α5 ◦ α4 ◦ α2 [n2 + n3 + (n1−n3

2
− n4)]µ1 + (n1+n3

2
)µ5

n3 < n4 −
n1−n3

2
α2 ◦ α4 ◦ α3◦ −(n3 +

n1−n3

2
− n4)µ2 + (−n1−n3

2
)µ6

n2 + n3 ≥ n4 −
n1−n3

2

n1 − n3 − 2n4 < 0, n1 − n3 < 0 α5 ◦ α4 ◦ α6 ◦ α5 ◦ α4 ◦ α2 n2µ2 − [n2 + n3 + (n1−n3

2
− n4)]µ4

n3 < n4 −
n1−n3

2
α2 ◦ α4 ◦ α3◦ [n1 + n2 + n3 − n4]µ5 + (−n1−n3

2
)µ6

n2 + n3 < n4 −
n1−n3

2
α4 ◦ α3 ◦ α1◦

n1+n3

2
+ n2 + n3 ≥ n4 −

n1−n3

2

n1 − n3 − 2n4 < 0, n1 − n3 < 0 α5 ◦ α4 ◦ α6 ◦ α5 ◦ α4 ◦ α2 n2µ2 +
n1+n3

2
µ4

n3 < n4 −
n1−n3

2
α2 ◦ α4 ◦ α3◦ −[n1+n3

2
+ n2 + n3 − n4 +

n1−n3

2
]µ5

n2 + n3 < n4 −
n1−n3

2
α4 ◦ α3 ◦ α1◦ +[n2 + 2n3 − n4 +

n1−n3

2
]µ6

n1+n3

2
+ n2 + n3 < n4 −

n1−n3

2
α5◦

n2 + 2n3 − n4 +
n1−n3

2
≥ 0

n1 − n3 − 2n4 < 0, n1 − n3 < 0 α5 ◦ α4 ◦ α6 ◦ α5 ◦ α4 ◦ α2 n2µ2 +
n1+n3

2
µ4

n3 < n4 −
n1−n3

2
α2 ◦ α4 ◦ α3◦ −

n1−n3

2
µ5

n2 + n3 < n4 −
n1−n3

2
α4 ◦ α3 ◦ α1◦ −[n2 + 2n3 − n4 +

n1−n3

2
]µ6

n1+n3

2
+ n2 + n3 < n4 −

n1−n3

2
α6 ◦ α5◦

n2 + 2n3 − n4 +
n1−n3

2
< 0

Table 2. Case 4.12

with multiplicity one in the similar representation of g. Then define a length function on
highest weights in the usual way: l(µ) = l(

∑l
1 niωi) =

∑l
1 ni. Induction and using Cartan

composition provides a natural lift.
One can be more precise using standard material on highest weights and branching, e.g.

as in [GW98] p. 351. Say relative to a suitable Cartan subalgebra the highest weight of
gC is given by a decreasing sequence Λi while the highest weight of kC is given by a similar
sequence µi. Then depending on the parity of n − 1, i.e. n − 1 = 2k or n − 1 = 2k − 1,
either one takes Λi = µi, i < k and Λk = |µk|, or Λi = µi, i < k and Λk = 0.

For g = so(1, 2) ∼= sl(2,R) and k = so(2) the procedure is the same as in the previous
examples, viz., each irreducible unitary representation of so(2) occurs as the highest (lowest)
weight of an irreducible finite dimensional representation of sl(2,R).

Example 4.14. The remaining special case is g = so(p, q) k = so(p)× so(q) and p, q 6= 2.
If at least one of the factors in k has even parity then we have an equal rank situation.
Then we have in W 1 all reflections generated by noncompact roots, in particular we have
transpositions between ei, 1 ≤ i ≤ p, and ej, p + 1 ≤ j ≤ q. By means of these we can
arrange the highest weights of the factors to be in decreasing order for g and thus obtain
a lift for any highest weight of k. If both p, q are odd then we are not equal rank but g is
still of type Dl whose Weyl group contains enough reflections to accomplish the same goal.

4.3. The Isometries.
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We turn to the remaining type in Table 5. Here k is the Lie algebra of the isometries of
a standard representation on a finite dimensional vector space while g is the Lie algebra of
all automorphisms of the vector space. For the cases at hand we will have no need of the
spin representation of k. It is classical that all other such representations are obtainable
from exterior powers of the standard representation together with Cartan composition, all
of which have natural lifts to g.

5. Extension from (L′
c)0 to Lc

In the previous section we considered the extension of representations from K to (L′
c)0.

In this section first we discuss the extension from the connected group (L′
c)0 to L′

c. For
that we need more information about Lc/(Lc)0. Let P 0

min = M0
minA

0
cN

0 be a minimal
parabolic subgroup in (L′

c)0, where ac = a0c ⊕RH0, so that a0c is maximal abelian in l′c ∩ sc.
Then Pmin = MminAcNmin is a minimal parabolic subgroup in Gc where Nmin = N0N−,
A = expRH0, Ac = A0

cA and Mmin = ZKc(ac). Note that Mmin has the same Lie algebra
as M0

min and hence (Mmin)0 = (M0
min)0.

We now use well known results about the connected components of Mmin to describe the
connected components of Lc. As ac = a0c ⊕ RH0 where a0c is maximal abelian in l′c, the
roots Σcc can be identified with Σ(l′c, a

0
c) via restriction.

Lemma 5.1. We have L′
c = Mmin(L

′
c)0

Proof. This follows from [W88, Lem. 2.2.8]. �

Let F1 := exp(iac) ∩Kc. We note that if f ∈ F1 then

f = η(f) = η(exp iH) = exp(−iη̇H) = exp(−iH) = f−1.

Thus f 2 = e and F1 ≃ Zs
2 for some s. We remark that were F1 cyclic then the desired

extension can be found in [Kn86] Lemma 14.22. Choose generators f1, . . . , fu ∈ F1 so that
with F =

∏{e, fj} we have Mmin = F (Mmin)0 ≃ F × (Mmin)0, see [He78, Ch. VII] for
details, in particular Theorem 8.5. But we will not need the exact form of F1. The following
lemma now follows:

Lemma 5.2. Let F be as above. Then L′
c = F (L′

c)0.

Lemma 5.3. Let µ̃ ∈ Λ+((L′
c)0) and denote by (τµ̃, Vµ̃) the corresponding irreducible rep-

resentation. Let f ∈ F . Then the representations τµ̃ and f · τµ̃ : m 7→ τµ̃(fmf) are
equivalent.

Proof. Clearly f · τµ̃ is an irreducible representation of (L′
c)0. Let t = t+ ⊕ a0c be a Cartan

subalgebra of l′c. Then for H ∈ t we have

f · τµ̃(expH) = τµ̃(f expHf) = τµ̃(expAd(f)H) = τµ̃(expH).

Thus f · τµ̃ and τµ̃ have exactly the same weights. In particular the highest weights are the
same. Hence f · τµ̃ ≃ τµ̃. �
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It follows that for each f ∈ F there exists Tf ∈ GL(Vµ̃) such that for all m ∈ (L′
c)0,

Tfτµ̃(fmf) = τµ̃(m)Tf . If f = e we take Tf = id. Note that Tf is unique up to a scalar
λ ∈ T. Let Vµ̃(µ̃) be the highest-weight space. Then dim Vµ̃(µ̃) = 1. Hence there exists
0 6= vµ̃ such that Vµ̃(µ̃) = Cvµ̃.

Lemma 5.4. For f ∈ F let Tf be as above. Then we can choice Tf such that

(1) T 2
f = id,

(2) Tf(vµ̃) = vµ̃.

Tf is uniquely determined by (1) and (2).

Proof. We have for m ∈ (L′
c)0 by repeating the definition twice that

T 2
f τµ̃(m) = T 2

f τµ̃(f
2mf 2) = τµ̃(m)T 2

f .

As τµ̃ is irreducible there exists cf ∈ T such that T 2
f = cf id. (1) now follows by replacing

Tf by c
−1/2
f Tf . As dimVµ̃(µ̃) = 1 and Tf leaves the weight spaces invariant, it follows that

Tf |Vµ̃(µ̃) is scalar, say multiplication by df 6= 0. By (1) it follows that d2f = 1. Hence we can

replace Tf by d−1
f Tf to obtain (2) and (1). If Tf and Sf satisfy (1) and (2) then S−1

f = Sf

and SfTf = cid for some c ∈ C. But by (2) it follows that SfTf(vµ̃) = vµ̃ = cvµ̃. Hence
c = 1. �

From now on we always assume that Tf , ∈ F , satisfies (1) and (2).

Lemma 5.5. Let f, g ∈ F . Then TfTg = TgTf .

Proof. As fg = gf it follows that fgfg = f 2g2 = e. As above this implies that S =
TfTgTfTg = (TfTg)

2 is an τµ̃-intertwining operators. Hence there exists d ∈ C∗ such that
S = d id. But Tf |Vµ̃(µ̃) = Tg|Vµ̃(µ̃) = 1. Hence

d = S|Vµ(µ) = 1.

Thus d = 1 and S = id. As T 2
f = T 2

g = id it follows, by multiplying S first by Tf and then
by Tg that TfTg = TgTf . Hence, the claim. �

Corollary 5.6. Let f1, . . . , fu be generators for F and let f = f i1
1 · · · f iu

u , ij ∈ {0, 1}. Then
Tf = T i1

f1
· · ·T iu

fu
.

Proof. The operator Sf = T i1
f1
· · ·T iu

fu
satisfies Sτµ̃(fmf) = τµ̃(m)S as well as (1) and (2)

in Lemma 5.4. Hence Sf = Tf . �

Theorem 5.7. Let F be as above, let µ̃ ∈ Λ+((L′
c)0) and let Tf , f ∈ F , as in Lemma 5.4.

Define

τµ̃(fm) := Tfτµ̃(m), f ∈ F,m ∈ (L′
c)0.

Then τµ̃ is an irreducible representation of L′
c.
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Proof. We need only show that τµ̃ : L′
c → GL(Vµ̃) is a homomorphism, τµ̃(fmgn) =

τµ̃(fm)τµ̃(gn), f, g ∈ F and m,n ∈ (L′
c)0. But we have

τµ̃(fmgn) = τµ̃(fg(gmg)n)

= Tfgτµ̃(gmg)τµ̃(n)

= TfTgτµ̃(gmg)τµ̃(n)

= Tfτµ̃(m)Tgσ̃(n)

= τµ̃(fm)τµ̃(gn).

�

The final step, the extension to all of Lc is now easy. We use that Lc ≃ L′
c × A. Hence

we can take any character χ on A and define

τµ̃,χ(ma) = τµ̃(m)χ(a).

Remark 5.8. If one needs to extend τµ̃ to the complexification LCc of Lc, a common
compatibility issue arises. LCc is not the direct product L′C

c × AC, one needs to be more
careful with the choice of χ. Then the requirement is that each Tf has to be scalar c(f)
and c(f) = eiχ̇(H) where f = exp iH . For that one needs to use the exact form of F to
determine possible choices of χ.

On the other hand, since lc ⊗C ∼= kh ⊗C and we work with finite dimensional represen-
tations, a lift from k to lc gives a lift from k to kh.

6. Extension of sections of homogeneous vector bundles

We return to the notation of §2. We consider the generalized flag manifold Pc = Gc/LcN−

and a basepoint xo = eLcN−. The G orbit of the basepoint, G · xo, is D ∼= G/K, an open
domain in Gc/LcN−.

For a unitary representation (σ, V ) of K on the complex vector space V we let V de-
note the associated homogeneous vector bundle over D. Without loss of generality, we can
assume that σ is irreducible, in which case we shall denote by µ a highest weight and, as
before, by Vµ its representation space. In [Br07] and [Ka05] homogeneous vector bundles
over certain complex homogeneous spaces were shown to have an extension to natural com-
pactifications, e.g. the wonderful compactification. In [MSIII] again in the complex setting
in somewhat greater generality homogeneous holomorphic vector bundles over Hermitian
(locally) symmetric manifolds were extended to the Borel compactification and a detailed
analysis of their restriction to the boundary orbits was obtained. We shall give a version

of this for the real domain D ⊂ Gc/LcN−. Here, we just give the extension of V to Ṽ over
the compactification D ⊂ Gc/LcN−, subsequently we shall analyze the restriction to the
boundary orbits.

In the previous section for such (σµ, Vµ) we produced a natural lift (τµ̃, Vµ̃) from K
to Lc (with some minor exceptions). Then extending the representation trivially on N−

we have an irreducible finite dimensional representation of LcN−. Denote the associated
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homogeneous bundle over Pc = Gc/LcN− by Ṽµ̃. Since τµ̃ contains σµ with multiplicity

one we have that V is a subbundle of Ṽµ̃. In particular, Ṽµ̃ is defined over ∂D and gives
an extension of V to the boundary of D ∼= G/K.

7. Analytic extension of K-finite matrix coefficients of G to Gc

The first task is to construct a G-invariant domain in Gc that will serve as the domain
of ‘para’-analytic (or split-holomorphic) extension of K-finite matrix coefficients of G. In
[Ma03] he provides a general setup for cycle spaces. We shall show that this also gives the
target domain in Gc.

To prepare for this we recall some previous notation related to various involutions that
have played a role here; to simplify the notation we will omit the dot on involutions on
the Lie algebra as it will always be clear whether we are discussing the Lie algebra or the
group. Then we recall some facts about the crown of a semisimple Lie group, in particular
for Gh whose crown will be denoted by Ξh, see [AG90, KS04, KS05] and especially [KS05,
Sec. 7]. Once we recall the construction from [Ma03] of a real analytic cycle domain ΞM

for G/K inside Gc/Lc, we then show that ΞM = (Ξη
h)o is a totally real submanifold of Ξh.

We also discuss the connection between the crowns of Gh/Kh and G/K, in particular in
the case r = rh/2 we show that Ξ = (Ξτ

h)o. We conclude the section by proving analytic
extension of orbit maps of representations to the real analytic cycle space thereby justifying
the name real analytic crown.

The involution basic to this paper is τ : gh → gh, giving the real form g = gτh and
G = (Gh

τ )o. The eigenspace decomposition w.r.t. τ is gh = g ⊕ qh. Recall that the
complex linear extension of τ (or θh) is still denoted τ (or θh), while the conjugate linear
extension of τ to gCh is η = σh ◦ τ = τ ◦ σh. Then gc = (gCh)

η while Gc = Gη
h. gc is a

semisimple Lie algebra stable under τ and θh. The resulting eigenspace decompositions are
gc = g ⊕ qc = lc ⊕ g−θh

c , where lc = k ⊕ iqhk and g−θh
c = p ⊕ iqhp (see also the discussion

after Lemma 2.1). We have G = (Gh ∩ Gc)o. For the restrictions to gc, resp. Gc, we will
still use the notation τ but introduce τa = θh|gc . Notice that τ and τa commute (because
τ and θh do).

The involution θc = τ ◦θh|gc defines a Cartan involution on gc with corresponding Cartan
decomposition gc = kc⊕ sc. We have kc = k⊕ iqhp and sc = p⊕ iqhk showing that θc agrees
with the conjugate linear extension of θh restricted to gc. Then it is consistent to denote
this on gh by τa = τ ◦ θh. It should always be clear which involution is being discussed.

We have τa = θc ◦ τ so our notation agrees with the standard notation for the involution
on gc associated with τ . As is standard in this R-form setup lCc = kCh , lc = zgc(H0) and
τa = Ad(exp(πiH0)).

Let, as before, ah be a maximal abelian subgroup of ph. Let Σh = Σ(gh, ah), let Σ
+
h be a

positive system, and take the basepoint to be xo = eKh ∈ Gh/Kh. Define

Ωh =
{
X ∈ ah

∣∣∣ (∀α ∈ Σh) |α(X)| < π

2

}
, Ξ̃h = Gh exp(iΩh)Kh, and Ξh = Ξ̃h·xo .
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The Gh-invariant set Ξh was dubbed by Gindikhin the crown of Gh/Kh. Motivated by the

results in [KS04] we call Ξ̃h the crown of Gh. The set Ξ̃h is an open Gh-invariant complex

submanifold of Gh. Similarly, Ξh is a Gh-invariant complex domain in Gh/Kh. Ξ̃h and Ξh

are independent of the choice of ah as any two such are Kh conjugate. Write Ω, Ξ̃ and Ξ
for the corresponding sets obtained by this construction for G and G/K.

We denote by ∂Ξh, resp. ∂Ωh, the topological boundary of Ξh, resp. Ωh. Set

Ω+
h = Ωh ∩ a+h = {X ∈ Ωh | ∀α ∈ Σ+

h , α(X) > 0} and Ξ+
h = Gh exp iΩ

+
h · xo.

Then Ξ+
h is an open Gh-invariant subset of Ξh such that Ξh = (NKh

(ah)Ξ
+
h )o = (WhΞ

+
h )o.

For restricted roots we keep the notation from Lemma 2.10 and (2.6). Thus β1, . . . , βr ∈
Σ(gh, ah) are strongly orthogonal roots (up to sign they are the Cayley transform of the
strongly orthogonal roots αj , per the discussion after Theorem 2.21). We denote by Xj ,
j = 1, . . . , r, the dual basis and as usual we have ah =

⊕
RXj . We also define Yj ∈ qh ∩ ph

as in Lemma 2.9 and let then ahq =
⊕
RYj.

If r = rh then ah = a is maximal abelian in ph and p, and ahq is maximal abelian in ph
and qh ∩ ph.

If r = rh/2 we choose the ordering so that β2j = β2j−1 ◦ τ = τ tβ2j−1 and assume, as we
may, that τX2j−1 = X2j . Let X ′

j = X2j−1 +X2j , X
−
j = X2j−1 −X2j , a =

⊕r
j=1RX

′
j and

a
q
h =

⊕r
j=1RX

−
j . Then a is maximal abelian in p and a

q
h is maximal abelian in ph ∩ qh.

We let

γ2j−1 =
1

2
(β2j−1 + β2j) and γ2j =

1

2
(β2j−1 − β2j) , j = 1, . . . , r

and note, that according to Moore’s theorem γk ∈ Σ+(gh, ah). Note that previously the
notation γj was used for strongly orthogonal roots in ∆. We note that γ2j−1|a = β2j−1|a =
β2j |a 6= 0 and γ2j |aq

h
= β2j−1|aq

h
= −β2j |aq

h
6= 0.

Let’s recall that θh is inner, in particular θh = Ad(exp πZh). Then

τa = Ad(exp
π

2
Zh) ◦ τ ◦Ad(exp

π

2
Zh).

Thus g and gτ
a

h , resp. qh and g−τa

h , are conjugate. Statements that are formulated for τ
and its eigenspaces are therefore also valid for τa and its eigenspaces.

The next result can be gleaned from [KS05].

Theorem 7.1. Let the notation be as above. Then the following holds true:

(a) Ωh = {∑r
j=1 tjXj | (∀j ∈ {1, . . . , rh}) |tj | < π/2}.

(b) We have g1 exp iX1 · xo = g2 exp iX2 · xo for some g1, g2 ∈ Gh and Y1, Y2 ∈ Ωh, if
and only if there exists k ∈ ZKh

(Y1) and w ∈ NKk
(ah) such that g1 = g2wk and

Y1 = Ad(w−1)Y2.
(c) If g1 exp iX1 · xo = g2 exp iX2 · xo ∈ Ξ+

h then X1 = X2 and there exists m ∈ ZKh
(ah)

such that g1 = g2m.
(d) If xn = gn expYn · xo ∈ Ξh is a sequence such that xn → ∂Ξh ⊂ Gh/Kh then

Yn → Y ∈ ∂Ωh.
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(e) Ξ̃h ⊂ NhAhKh.

Proof. (a) is the comment after [KS05, Lem. 7.4] and follows easily from Moore’s Theorem;
(b) is [KS05, Prop. 3.1]; (c) is [KS05, Cor. 4.2]; (d) is [KS05, Lem. 2.3] and (e) is (1.1).

�

Next we recall the construction of the cycle space or Matsuki crown of G/K in Gc/Lc,
per [Ma03].

Remark 7.2. To assist the reader we give the correspondence between the notation in
[Ma03] with our setup. Here the left hand side lists Matsuki’s notation and the right hand
side the corresponding object in this article: g ↔ gc, h ↔ g, h′ ↔ lc, k ↔ kc, m ↔ sc,
q ↔ qc. Similarly for the groups. In particular G ↔ Gc and H ↔ G. As Lc = ZGc(H0)
might be disconnected, so H ′ ↔ Lc0.

Let t be a maximal abelian subspace of kc∩qc = iqhp. Denote by Σ̃(gCc , t
C) the roots of tC

in gCh
∼= gCc . As θc|tC = idtC, given a root space gCαc = gCc (t, α) we have θc(g

C
c (t, α)) = gCc (t, α)

and one decomposes it according to the eigenvalues of θc getting g
C
c (t, α) = kCc (t, α)⊕sCc (t, α).

Let Σ̃c(s
C
c , t) = {α ∈ it∗|sCc (t, α) 6= {0}}. Finally set

ΩM =
{
Y ∈ t

∣∣∣ (∀α ∈ Σ̃c(s
C
c , t

C)) |α(Y )| < π

2

}
.

As before we define Ω+
M as the intersection of ΩM with a positive Weyl chamber.

Let T (ΩM) = expΩM ⊂ T = exp t, T (Ωh) = exp iΩh, and define

Ξ̃M = GT (ΩM)Lc ⊂ Gc and ΞM = Ξ̃M · xo ⊂ Gc/Lc.

Theorem 7.3 (Matsuki). Ξ̃M is open in Gc and ΞM is connected and open in Gc/Lc.

Proof. This will follow from [Ma03, Prop. 1] using the dictionary above. For that we need
some material about τ = τa ◦ θc-stable parabolic subalgebras in gc. Let, as before, a ⊂ p

be maximal abelian. Let Σ = Σ(gc, a) denote the set of roots of a in gc and let Σ+ be a
set of positive roots. Define ñ =

⊕
α∈Σ+(gc,a)

gcα and m̃ = the orthogonal complement of a

in zgc(a). Then p̃c = m̃ ⊕ a ⊕ ñ is a minimal θc ◦ τa stable parabolic subalgebra in gc, see

[Ma79] or [vdB88]. Let P̃c = M̃cAÑc be the corresponding minimal θc ◦ τa stable parabolic

subgroup. That LcP̃c is open in Gc follows from [Ma79]. Hence by Matsuki duality [Ma79]

GP̃c is closed. Now compare this with the assumption on [Ma03, p. 565] and we see that

we can take P̃c for the parabolic P in [Ma03] or [vdB88], i.e. P ↔ P̃c. �

The main result in [Ma03] is

Theorem 7.4 (Matsuki). Set S = S(GcP̃c;LcP̃c) = {x ∈ Gc | x−1GP̃c ⊂ LcP̃c}. Then S is

open and if S0 denotes a connected component, we have Ξ̃M ⊆ S0.

We mention a slightly different interpretation of ΩM . We refer to [HÓ96, Chap. 5] for
a more detailed discussion. The abelian Lie algebra t is a maximal abelian subspace of
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kc ∩ qc = iqhp. But the generalized flag manifold Gc/LcN− is diffeomorphic to Kc/Kc ∩
Lc
∼= Kc/FK which is a Riemannian symmetric space. We have even more, LcN− is a

maximal parabolic subgroup with abelian nilradical, n−. Hence Kc/Kc∩Lc ≃ Gc/LcN− is a
symmetric R-space. Note that Ad(F ) normalizes k and hence FK is a group. Furthermore,
(FK) ∩ G = K. Since kc = k ⊕ iqhp we have the tangent space at eFK is given by iqhp.
Thus t is the Lie algebra of a maximal torus (an Iwasawa torus) in the tangent space.
But we have the open embedding D ≃ G/K ⊂ Gc/LcN− so the tangent space at eK
can be identified with p which has maximal abelian subalgebra a. On the other hand,
Gc/LcN− ≃ Kc/FK is, up to covering, the compact dual symmetric space to G/K. Thus
within gC there is an R-isomorphism φ : ac⊕ t→ aCc , i.e. between the split-complexification
and the complexification.

As η(Gh) = Gh, η(Kh) = Kh and we can choose ah so that η(ah) = ah it follows

that η(Ξ̃h) = Ξ̃h and η(Ξh) = Ξh. As Gc/Lc = Gc · xo it follows that we can view

Gc/Lc as a real form of Gh/Kh. We note that Ξ̃M is not connected unless Lc is, but

(Ξ̃M)o = Gc expΩM (Lc)o.

Remark 7.5. The Matsuki crown is defined with respect to Gc. To connect the notation
to gh we make some additional observations. First notice that if a1 is maximal abelian
in qh ∩ ph = pτ

a

h if and only if t = ia1 is maximal abelian in qc ∩ kc = i(qh ∩ ph). As

sc = i(qh ∩ kh)⊕ p we have Σ̃(sCc , t
C) = Σ(g−τa

h , a1) and

ΩM = iΩhq where Ωhq = {X ∈ a1 | (∀α ∈ Σ(g−τa

h , a1) |α(X)| < π/2},
quite analogous to the construction in the group case. This shows that there is a funda-
mental difference between the case r = rh/2 and r = rh. In the first case we can take
a =

⊕
RX ′

j as before, and a1 = a
q
h =

⊕
RX−

j . In particular a and t commute as in the
group case. For r = rh the space a is already maximal abelian so there is no way to chose
t so that a and t commute.

If r = rh we always have Σ(g, a) ⊆ Σ(gh, a) and Σ(g−τa

h , ahq) ⊆ Σ(gh, ahq) which implies
that Ωh ⊆ Ω. So if we define Ωh as a subset of ahq, Ωh ⊆ Ωhq. Similarly, if r = rh/2, as Ω
and Ωhq are defined by via restriction of roots in Σ(gh, ah) to a, resp. aqh, and because Ωh is
invariant under τ and−τ it follows that Ωh∩a = prg(Ωh) ⊆ Ω and Ωh∩aqh = prqh(Ωh) ⊆ Ωhq.
Here prg is the projection along qh onto g and prqh is the projection along g onto qh. This
clearly implies that we always have Ξ ⊆ (Ξτ

h)o and ΞM ⊆ (Ξη
h)o.

Lemma 7.6. Let the notation be as above.

(a) Assume that r = rh and Ωh = Ω. Then Ξ = (Ξτ
h)o.

(b) Assume that r = rh and Ωh = Ωhq ⊂ ahq. Then ΞM = (Ξη
h)o.

(c) Assume that r = rh/2 and Ωh ∩ a = Ω. Then Ξ = (Ξτ
h)o.

(d) Assume that r = rh/2 and Ωh ∩ a
q
h = Ωhq. Then ΞM = (Ξη

h)o.

Proof. We prove only (c) and (d). The proofs of (a) and (b) are simpler following the same
line of argument.
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(c): We have Ξ = G exp(Ω) · xo ⊂ Gh expΩh · xo = Ξh ⊂ Gh/Kh. Taking τ fixed points
implies the inclusion Ξ ⊆ (Ξτ

h)o. As Gh is simply connected it follows that G = Gτ
h. Hence

(Ξτ
h)o = (Ξh ∩G/K)o. As Ξ is open in G/K it follows that Ξ is open in (Ξτ

h)o. Assume that
Ξ is not closed in (Ξτ

h)o. Then there exists a sequence ξj = gj exp Yj · xo, gj ∈ G, Yj ∈ Ω,
such that ξj → ξ ∈ ∂Ξ ∩ (Ξτ

h)o. According to Theorem 7.1 part (d) there exists Y ∈ ∂Ω
such that Yj → Y . Hence there exists α ∈ Σ(g, a) such that |α(Yj)| → π/2. Let

ghα = {X ∈ gh | (∀H ∈ a) [H,X ] = α(H)X} 6= {0} .

Then ghα is ad(ah) invariant. It follows that there exists β̃ ∈ Σ(gh, ah) such that β̃a = α.
Thus Y ∈ ∂Ξh contradicting the assumption that ξ ∈ Ξh. Thus Ξ is closed in (Ξτ

h)o.
Part (d) follows in the same way replacing τ by η and in the last argument replacing a

by a
q
h. �

Lemma 7.7. Assume that r = rh/2. Write ah = a⊕ a
q
h and let β ∈ Σ(gh, ah). If β|aqh 6= 0

and H ∈ a
q
h is so that β(H) = 1 then adH : prg(ghβ) → prqh(ghβ) is an isomorphism. In

particular, if β|a 6= 0, then {0} 6= prg(ghβ) ⊆ gβ|a and {0} 6= prqh(ghβ) ⊆ (g−τa

h )β|
a
q
h

.

Proof. Let X = Xg +Xq ∈ ghα with Xg = prg(ghβ) and Xq = prqh(ghβ). Then adH(X) =
X = [H,Xg] + [H,Xq]. As [H,Xg] ∈ q and [H,Xq] ∈ g it follows that [H,Xg] = Xq and
[H,Xq] = Xg. The last part follows by replacing τ by τa which interchanges the role of a
and a

q
h. �

Lemma 7.8. We have the following.

(a) Assume that r = rh then we have:
(a-i) If βj ∈ Σ(g, a) for all j = 1, . . . , r then Ω = Ωh.

(a-ii) If βj ∈ Σ̃(g−τa , ahq) then ΩM = iΩhq.
(b) If r = rh/2 then we have:

(b-i) If γ2j|a = β2j |a ∈ Σ(g, α), j = 1, . . . , r then Ω = Ωh ∩ a.

(b-ii) If γ2j−1|aqh = β2j |aqh ∈ Σ̃(g−τa

h , aqh) then ΩM = iΩhq.

Proof. This follows directly from Moore’s Theorem. For example consider (b-ii). We only
have to show that Ωh ∩ aqh ⊆ Ωhq. Let X =

∑rh
j=1 tjXj ∈ Ωh ∩ aqh. Then |tj| < π/2 for all j.

Furthermore X = −τX . Hence X =
∑r

j=1 t2j−1(X2j−1−X2j) and hence |β2j−1(X)| < π/2.

The claim now follows from Moore’s Theorem as all the roots in Σ̃(g−τa

h , aqh) are restrictions
of roots in Σ(gh, ah) �

Finally we come to the relationship of various crowns.

Theorem 7.9. Let the notation be as above. Then the following holds:

(a) If r = rh then Ωh = Ωhq and ΞM = (Ξη
h)o.

(b) If r = rh/2. Then Ω = Ωh ∩ a and ΩM = Ωh ∩ a
q
h, Furthermore ΞM = (Ξη

h)o and
Ξ = (Ξτ

h)o.
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Proof. Lemma 7.6 and Lemma 7.8 imply that we have to show that βj |a ∈ Σ(g, a) respec-

tively βj |aq
h
∈ Σ̃(g−τa

h , aqh), for j = 1, . . . , rh. For (a) we use su(1, 1)-reduction for τa to

show that βj ∈ Σ̃(g−τa

h , ahq). For (b) this follows from Lemma 7.7 as each βj has a non-zero
restriction to a and a

q
h. �

Basic Example. SU(1, 1) - cont.
Recall that gh = su(1, 1) = kh ⊕ ph = g⊕ qh, where

kh = R
(
i 0
0 −i

)
, ph = R

(
0 1
1 0

)
⊕ R

(
0 i
−i 0

)
= R ·X ⊕ R · Y,

while g = R ·X and qh = kh⊕R ·Y . As before, SU(1, 1) has two natural choices of Iwasawa:
A = expRX or Ahq = expRY.

From [KS04] we know that either choice gives, with the obvious notation,

Gh expΩKh ⊂ NAKh and

Gh exp iΩhq Kh ⊂ NhqAhqKh.

Also from before we have T (Ω) = exp iΩ = exp iΩhq. Since a and ahq are conjugate via
Kh we have

Gh exp iΩKh = Gh exp iΩhq Kh = GhT (Ω)Kh.

Taking fixed points of the conjugate linear η gives

GT (Ω)Lc ⊂ (GhT (Ω)Kh)
η ⊂ (NAKh)

η ⊂ Gc,

where

N = expR
(
i −i
i −i

)
=

{(
1 + iv −iv
iv 1− iv

) ∣∣∣∣ v ∈ R
}
.

Now GT (Ω)(Lc)0 is connected and contains the identity.
Take nak ∈ NAKh. Then

nak =

(
1 + iv −iv
iv 1− iv

)(
cosh(z) sinh(z)
sinh(z) cosh(z)

)(
w 0
0 w−1

)
, v, z ∈ C, w ∈ C∗.

Multiplication gives

nak =

(
w cosh(z) + wive−z w−1 sinh(z)− w−1ive−z

wive−z + w sinh(z) w−1 cosh(z)− w−1ive−z

)
=

(
a b
c d

)
.

On the other hand, if gtl ∈ GT (Ω)(Lc)0 then

gtl =

(
cosh(t) sinh(t)
sinh(t) cosh(t)

)(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
er 0
0 e−r

)
.

Since in this example G = A and Lc ⊂ Kh it suffices to express t in terms of nak. An
elementary, though tedious, computation gives the following solutions provided 0 ≤ |θ| < π

4
:

e−2u = cos(2θ), z = u ∈ R
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ex =
cos(θ) + sin(θ)

cos(2θ)
1
2

, w = ex ∈ R

iv = s = − eu sin(2θ)

2 cos(2θ)
1
2

, s ∈ R.

With these substitutions it is straightforward to verify that t = nak with n ∈ N∩Gc, a ∈
A, k ∈ (Lc)0. Also notice that [Y,

(
i −i
i −i

)
] = 2

(
i −i
i −i

)
, thus |θ| < π

4
is the full range to

describe T (Ω). Thus GT (Ω)Lc ⊂ (N ∩Gc)ALc.

Example 7.10 (Cayley Type Spaces). There are examples where r = rh and Ω = Ωh. The
simplest case is the rank one case (so(1, n), so(1, n − 1)) with n ≥ 3. But the following
example shows that we have no general statement in this case. Assume that g = g′ ⊕RH0

is not simple with g′ = [g, g] simple. Then ah = a = a′⊕RH0 with a′ = a∩ g′. We have by
Moore’s Theorem, Theorem 1.5, we have

Σ(g, a) = {1
2
(βi−βj) | i 6= j} and Σ(g−τ

h , a) = ±{1
2
(βi+βj) | i, j = 1, . . . , r = rh}.

Let again X1, . . . , Xr be so that αi(Xj) = δij and use those as coordinate axes. Then
Ωh = (−π/2, π/2)r. On the other hand the condition for Ω is 1

2
|xi − xj | < π/2. Thus

Ωh $ Ω. Interchanging τ and τa we see that Ωh = Ω which again leads to Ξ = Ξη
h.

Given (π, E) an irreducible Banach representation of G and a K-finite vector v ∈ E
Theorem 3.1 in [KS04] states that the orbit map g → π(g)v has a holomorphic extension to

the domain Ξ̃ ⊂ G. There is an analogous result here with the domain Ξ̃M just constructed
and the group Gc in place of G.

Theorem 7.11. Let (π, E) be an irreducible Banach representation of G, and let v ∈ E

be a K-finite vector. Then the map g → π(g)v has an analytic extension to (Ξ̃M)0 =
GT (ΩM)(Lc)0 ⊂ Gc.

Proof. The key to the result is that (Lc)0 and G have the same maximal compact sub-
group K. First we consider the case r = rh. Then ah and ahq are Kh conjugate, so
Gh exp(iΩh)Kh = Gh exp iΩhq Kh = GhT (Ω)Kh. From [KS04], GhT (Ωh)Kh ⊂ NhAhKh is

open and the projection maps to Ah and Kh are holomorphic. Now Ξ̃M0 = GT (ΩM)Lc0 ⊂
S0 ⊂ [(GhT (ΩhKh))

η]0 ⊂ Gc. The restriction of the projection maps to Ah and Kh gives

analytic maps to A = (Ah)
η and Lc0 = (Kh)

η but as Ξ̃M is connected, to Lc0. Since r = rh,
a ∼= ah is also an Iwasawa for G, Denote the map to Lc0 by ℓ. Since both Lc0 and G have the
same maximal compact subgroup, K, composition of ℓ with the usual κ projection of Lc0

to K gives an analytic map from Ξ̃M0 = GT (ΩM)Lc0 ⊂ [(GhT (Ω)Kh)
η]0 to K. With these

analytic maps from Ξ̃M0 to A and K we are now in the position of the proof of Theorem
3.1 in [KS04] and can continue it verbatim to obtain the result.

If r 6= rh then as we have seen r = rh
2
. As in Lemma 2.12 ah = a⊕ ahq as a Lie algebra

direct sum, i.e. a, ahq are abelian and [a, ahq ] = 0. Also from the Lemma we have η, restricted
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to ah, is one on a and −1 on ahq . Then the conjugate linear extension η is one on a⊕ iahq , i.e.

Aη
h = A exp iahq with A ⊂ G. Thus Ξ̃M0 = GT (ΩM)Lc0 ⊂ [(GhT (ΩhKh)

η]0 ⊂ Gc Again has

the restriction of the holomorphic projection maps taking values in K and exp iahq with the
latter isomorphic to exp ia. Thus here to we are in the position of Theorem 3.1 of [KS04].

�

Remark 7.12. In the Basic Example G ∼= R∗, the representations of G are just char-
acters, so from the above expression the continuation of the characters to GT+Lc as just
translation in the variable by −1

2
log cos(2θ).

Example 7.13 (The case of SU(m, 1)). We will show that the computations for SU(m,1)
reduce to those of the Basic Example. Here gh = su(m, 1) = kh ⊕ ph = g⊕ qh, where

kh =

(
A 0
0 −tr(A)

)
, (withA = −A∗), ph =

(
0 Z
Z∗ 0

)
(withZ ∈ Cm)

and g = so(m, 1). Using obvious block matrices let

X =



0 0 0
0 0 1
0 1 0


 , Y =



0 0 0
0 0 i
0 −i 0


 .

As before, SU(m, 1) has two natural choices of Iwasawa:

A = expRX(X ∈ g) or Ahq = expRY (Y ∈ qh).

We will do the computations for SU(3,1) for then the procedure for SU(m,1) will be
clear. Either choice of Iwasawa gives

Gh exp iΩKh ⊂ NAKh and

Gh exp iΩhq Kh ⊂ NhqAhqKh,

moreover Gh exp iΩKh = Gh exp iΩhq Kh = GhT (Ω)Kh

where T (Ω) = exp iΩ = exp iΩhq. Taking fixed points of the conjugate linear η gives

GT (Ω)Lc ⊂ (GhT (Ω)Kh)
η ⊂ (NAKh)

η ⊂ Gc,

where

N = exp








0 0 −Z1 Z1

0 0 −Z2 Z2

Z1 Z2 iv −iv
Z1 Z2 iv −iv








=








1 0 −Z1 Z1

0 1 −Z2 Z2

Z1 Z2 1 + iv − 1
2
(|Z1|2 + |Z2|2) −iv + 1

2
(|Z1|2 + |Z2|2)

Z1 Z2 iv − 1
2
(|Z1|2 + |Z2|2) 1− iv + 1

2
(|Z!|2 + |Z2|2)








,
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(Zi ∈ C, v ∈ R) while Lc =

(
GL(3,R) 0

0 1/det

)
. Again in GT+Lc it suffices to consider

only the t term. Now in (GhT
+Kh)

η the right action by Lc has the effect of multiplying
the last column by det−1, but

t =




1 0 0 0
0 1 0 0
0 0 cos(θ) − sin(θ)
0 0 sin(θ) cos(θ)


 .

Consequently we must have Z1 = 0 = Z2, reducing the computations to the case SU(1,1)
thus obtaining essentially the same formulae for t = nak as before. In particular, GT (Ω)Lc ⊂
(N ∩Gc)ALc ⊂ (NAKh)

η.

Appendix A. The Classification

In the following tables we set gl+(n,C) = sl(n,C)⊕Rid and t = iR = the Lie algebra of
the torus T = {z ∈ C | |z| = 1}.

gc gh g

sl(p+ q,C) su(p, q)× su(p, q) su(p, q)
so(2n,C) so∗(2n)× so∗(2n) so∗(2n)

so(n + 2,C) so(2, n)× so(2, n) so(2, n)
sp(n,C) sp(n,R)× sp(n,R) sp(n,R)

e6 e6(−14) × e6(−14) e6(−14)

e7 e7(−25) × e7(−25) e7(−25)

Table 3. g with complex structure (group case)

In Table 4 the items listed below the line are those where Gh/Kh is a tube type domain
and gc ∼= gh. That happens if and only if g ≃ lc if and only if g has a one-dimensional center.
We denote the compact real form of E6 by e6. We also note that sl(n,R)×R = gl(n,R) but
we write it using sl(n,R)×R so that it fits better into the general picture. Same comments
hold for u(n) and su(n)× t.

In Table 4 and Table 5 we can assume the q ≥ p because interchanging the role of p and
q leads to isomorphic cases. The case gh = so(2, q) ⊃ g = so(1, q) corresponds to the case
p = 0, and the case p = 1 corresponds to the case gh = so(2, n) ⊃ g = so(1, n − 1) × R.
The case gh = so(2, 2) is excluded because so(2, 2) is not simple.

In Table 5 we have reorganized Table 4 into three groups. The first group consists of
those g for which the lc has one conjugacy class of Cartan subalgebra (denoted OCCC).
The second group consists of those g for which lc consists of automorphisms of a vector
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gc gh g lc kh
sl(p+ q,R) su(p, q) so(p, q) s(gl(p,R)× gl(q,R)) s(u(p)× u(q))
su∗(2(p+ q)) su(2p, 2q) sp(p, q) su∗(2p)× su∗(2q)× R s(u(2p)× u(2q))

so(n, n) so∗(2n) so(n,C) sl(n,R)× R su(n)× t

so(1, q + 1)(q ≥ 3) so(2, q) so(1, q) so(q)× R s(so(2)× so(q))
so(p+ 1, q + 1)(q ≥ p ≥ 2) so(2, p+ q) so(1, p)× so(1, q) so(p, q)× R so(2)× so(p+ q)

sp(n, n) sp(2n,R) sp(n,C) su∗(2n) × R u(2n) = su(2n) × t

e6(6) e6(−14) sp(2, 2) so(5, 5) × R so(10) × t

e6(−26) e6(−14) f4(−20) so(1, 9) × R so(10) × t

e7(7) e7(−25) su∗(8) e6(6) × R e6 × t

su(n, n) su(n, n) sl(n,C)× R sl(n,C)× R s(u(n)× u(n))
so∗(4n) so∗(4n) su∗(2n) × R su∗(2n) × R su(2n) × t

so(2, n) so(2, n) so(1, n− 1) × R so(1, n− 1) × R so(n) × t

sp(n,R) sp(n,R) sl(n,R)× R sl(n,R)× R su(n)× t

e7(−25) e7(−25) e6(−26) × R e6(−26) × R e6 × t

Table 4. g without complex structure

gc gh g lc k

su(n, n) su(n, n) sl(n,C)× R sl(n,C)× R u(n)
su∗(2(p+ q)) su(2p, 2q) sp(p, q) su∗(2p)× su∗(2q) × R (sp(p)× sp(q))

so∗(4n) so∗(4n) su∗(2n)× R su∗(2n)× R sp(n)
sp(n, n) sp(2n,R) sp(n,C) su∗(2n)× R sp(n)

so(1, q + 1)(q ≥ 3) so(2, q) so(1, q) so(q)× R so(q)
so(2, n), (n = 2k) so(2, n) so(1, n− 1)× R so(1, n− 1)× R so(n− 1)

e6(−26) e6(−14) f4(−20) so(1, 9)× R so(9)
e7(−25) e7(−25) e6(−26) × R e6(−26) × R f4

sl(p+ q,R) su(p, q) so(p, q) s(gl(p,R)× gl(q,R)) so(p)× so(q))
so(n, n) so∗(2n) so(n,C) sl(n,R)× R so(n)
sp(n,R) sp(n,R) sl(n,R)× R sl(n,R)× R so(n)

so(2, n), (n = 2k + 1) so(2, n) so(1, n− 1)× R so(1, n− 1)× R so(n− 1)
so(p+ 1, q + 1)(q ≥ p ≥ 2) so(2, p+ q) so(1, p)× so(1, q) so(p, q)× R so(p)× so(q)

e6(6) e6(−14) sp(2, 2) so(5, 5)× R sp(2)× sp(2)
e7(7) e7(−25) su∗(8) e6(6) × R sp(4)

Table 5. g by type

space while the maximal compact, k, of g corresponds to isometries of the space. The third
group consists of exceptions that will be treated individually. Of course there are ways, say
using the octonions, to incorporate some of the third group into the second but we prefer
this way. Notice that in all groups k is the maximal compact for both g and lc.
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The research by Ólafsson was partially supported by NSF grants DMS-0801010 and
DMS-1101337; both authors are grateful for support provided by the Max-Planck-Institut
für Mathematik, Bonn



EXTENSIONS OF REAL BOUNDED SYMMETRIC DOMAINS 45

References

[AG90] D.N.Akhiezer and S. Gindikin,On Stein extensions of real symmetric spaces, Math. Ann. 286,
(1990) p. 1–12.

[vdB88] E. P. van den Ban, The principal series for a reductive symmetric space. I. H-fixed distribution
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XXXIV, Hermann, Paris 1968.

[Br07] M. Brion, Construction of equivariant vector bundles. Algebraic groups and homogeneous spaces,
p. 83-111, Tata Inst. Fund. Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007.

[GW98] Roe Goodman and Nolan R. Wallach, Representations and Invariants of the Classical Groups,
Encyclopedia of Mathematics v.68, Cambridge University Press, United Kingdom 1998.

[H10] G. Han, Fundamental involutory root systems and a branching Theorem for symmetric pairs. Comm.
in Algebra, 38 (2010), p. 1012–1018.

[He78] S. Helgason, Differential geometry, Lie groups and symmetric spaces. Academic Press. New York
London, 1978
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[Ra74] P. K. Raševskǐi, A theorem on the connectedness of the subgroup of a simply connected Lie group
that commutes with one of its automorphisms. (Russian) Trudy Moskov. Mat. Ob. 30 (1974), 3–22.

[Sa80] I. Satake, Algebraic Structures of Symmetric Domains, Iwamani Shoten and Princeton University
Press, 1980.

[S75] W. Schmid, On the characters of the discrete series: The Hermitian symmetric case. Invent. Math.
30 (1975). 47–144.

[V77] V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Lecture Note in Math. 576.
Springer Verlag 1977.

[W73] N. R. Wallach, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, 1973.
[W88] N. R. Wallach, Real Reductive Groups I. Academic press, 1988.
[Wa-I] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups I, Springer-Verlag Die Grundlehren der

mathematischen Wissenschaften Band 188, 1972.
[W69] J. A. Wolf, The action of a real semisimple Lie group on a complex flag manifold, I: Orbit structure

and holomorphic arc components. Bull. Amer. Math. Soc. 75 (1969), 1121–1237.
[W72] J. A. Wolf, The fine structure of hermitian symmetric spaces. In: W. Boothby and G. Weiss, Eds.,

Symmetric Spaces, Marcel Dekker, New York, 1972.

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803

E-mail address : olafsson@math.lsu.edu

1937 Beverly Rd, Columbus, OH 43221

E-mail address : stanton.2@osu.edu


	Introduction
	1. Bounded Symmetric Domains: Complex Case
	1.1. Notation
	1.2. Essential Structure Theory - C forms
	1.3. Boundary orbits
	1.4. Isotropy of boundary orbits

	2. Bounded Symmetric Domains: Real Case
	2.1. Real Bounded Symmetric Domains and Related Subgroups of Gh
	2.2. Essential Structure Theory - R forms
	2.3. Boundary Orbits of D
	2.4. Isotropy of E(b,)

	3. Finer Structure of Q
	4. Lift from K to (L'c)0
	4.1. The case OCCC
	4.2. The special cases
	4.3. The Isometries

	5. Extension from (Lc)0 to Lc
	6. Extension of sections of homogeneous vector bundles
	7. Analytic extension of K-finite matrix coefficients of G to Gc
	Appendix A. The Classification
	Acknowledgements
	References

