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Asymptotic trace formula for the Hecke operators

Junehyuk Jung Naser T. Sardari
(With an appendix by Simon Marshall)

Abstract

Given integers m, n and k, we give an explicit formula with an optimal error term
(with square root cancelation) for the Petersson trace formula involving the mth and
nth Fourier coefficients of an orthonormal basis of Sk (N)∗ (the weight k newforms

with fixed square-free level N ) provided that |4π√mn − k| = o
(

k
1

3

)

. Moreover,

we establish an explicit formula with a power saving error term for the trace of the
Hecke operator T ∗

n on Sk (N)∗ averaged over k in a short interval. By bounding the
second moment of the trace of Tn over a larger interval, we show that the trace of Tn
is unusually large in the range |4π√n−k| = o

(

n
1

6

)

. As an application, for any fixed

prime p coprime to N , we show that there exists a sequence {kn} of weights such
that the error term of Weyl’s law for Tp is unusually large and violates the prediction
of arithmetic quantum chaos. In particular, this generalizes the result of Gamburd,
Jakobson and Sarnak [GJS99, Theorem 1.4] with an improved exponent.
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1 Introduction

In this paper, we give bounds for the error term of Weyl’s law for the Hecke eigenvalues of

the family of classical holomorphic modular forms with a fixed level. We briefly describe
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this family, its Weyl’s law, and known bounds and predictions on its error term. Next, we

explain our results and compare them with the previous results and predictions.

Let

Γ0 (N) :=

{(

a b
c d

)

∈ SL2 (Z) : c ≡ 0 (mod N)

}

be the Hecke congruence subgroup of level N . Let Sk (N) be the space of even weight

k ∈ Z modular forms of level N . It is the space of the holomorphic functions f such that

f

(

az + b

cz + d

)

= (cz + d)k f (z)

for every

(

a b
c d

)

∈ Γ0 (N), and f converges to zero as it approaches each cusp (we have

finitely many cusps for Γ0 (N) that are associated to the orbits of Γ0 (N) acting by Möbius

transformations on P1 (Q)) [Sar90]. It is well-known that Sk (N) is a finite dimensional

vector space over C, and is equipped with the Petersson inner product

〈f, g〉 :=
∫

Γ0(N)\H
f (z) g (z)yk

dxdy

y2
.

Assume that n is fixed and is coprime to N . Then the nth (normalized) Hecke operator

Tn acting on Sk (N) is given by

Tn (f) (z) := n
k−1

2

∑

ad=n

d−k
∑

b (mod d)

f

(

az + b

d

)

. (1.1)

The Hecke operators form a commuting family of self-adjoint operators with respect to

the Petersson inner product, and therefore Sk (N) admits an orthonormal basis Bk,N con-

sisting only of joint eigenfunctions of the Hecke operators. Any form f belonging toBk,N

is referred as a (Petersson normalized) holomorphic Hecke cusp form.

Let

f (z) =

∞
∑

n=1

ρf (n)n
k−1

2 e (nz)

be the Fourier expansion of f ∈ Bk,N at the cusp ∞. For gcd(n,N) = 1, we denote by

λf(n) the nth (normalized) Hecke eigenvalue of f , i.e.,

Tnf = λf(n)f,

and we have ρf(n) = ρf(1)λf(n) [Iwa97, p. 107]. By the celebrated result due to Deligne

[Del74], we have

|λf (n) | ≤ σ(n), (1.2)

for all n, where σ is the divisor function. 3

3We use the divisor function parameterized by t, defined by σt (n) =
∑

d|n d
t. When t = 0, we drop 0,

and use σ instead of σ0.
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Under Langlands’ philosophy, the Hecke operator Tp is the p-adic analogue of the

Laplace operator, in the following sense. The eigenvalues of Tp determine the Satake pa-

rameters of the associated local representation πp of GL2 (Qp) just as the Laplace eigen-

value of the Maass form determines the associated local representation π∞ of GL2 (R).

Now fix a rational prime p that is coprime to N , and let

µk,N :=
1

dim (Sk (N))

∑

f∈Bk,N

δλf (p)

be the spectral probability measure associated to Tp acting on Sk (N). Using the Eichler–

Selberg trace formula, Serre [Ser97] proved that µk,N converges weakly to µp as k+N →
∞ with gcd(N, p) = 1, where µp is the Plancherel measure of GL2 (Qp) given by

µp (x) :=
p+ 1

π

(

1− x2

4

) 1

2

(

p
1

2 + p−
1

2

)2

− x2
dx.

Moreover, if we let

νk,N :=
Γ(k − 1)

(4π)k−1

∑

f∈Bk,N

|ρf (1)|2δλf (p),

then it follows from the Petersson trace formula (see Section 2) that νk,N converges

weakly to the semi-circle law

µ∞ (x) :=
1

π

√

1− x2

4
dx,

as k +N → ∞ with gcd(N, p) = 1.

1.1 Quantitative rate of convergence

Given two probability measures µ1 and µ2 on R, we denote the discrepancy between them

by D (µ1, µ2) , where

D (µ1, µ2) := sup{|µ1 (I)− µ2 (I) | : I = [a, b] ⊂ R}.

In [GJS99], Gamburd, Jakobson and Sarnak studied the spectrum of the elements in the

group ring of SU (2), and proved

D (µk,2, µp) = O

(

1

log k

)

. (1.3)

Moreover, [GJS99, Theorem 1.4] is equivalent to the existence of a sequence of integers

kn → ∞ such that

D (µkn,2, µp) ≫
1

k
1

2
n (log kn)2

. (1.4)

This is a corollary of their lower bound for the variance of the trace of the Hecke operators

by varying the weight k (Theorem 1.6).
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1.2 Bounds for the error term of Weyl’s law

We now present some details regarding the philosophical analogy between Weyl’s law and

µk,N → µp. To this end, we first review Weyl’s law. Let X ⊂ Rd be a bounded domain

with smooth boundary. Let T be a positive real number, and let N (T ) be the number

of Dirichlet Laplacian eigenvalues of X less than T 2 (counted with multiplicity). It was

conjectured independently by Sommerfeld and Lorentz, based on the work of Rayleigh

on the theory of sound, and proved by Weyl [Wey11] shortly after, that

N (T ) = cdvol (X) T d (1 + o (1)) as λ→ ∞,

where cd is a constant depending only on d and vol (X) is the volume of X in Rd. This

gives the distribution of the eigenvalues of the Laplace–Beltrami operator as T → ∞. As

in Langlands’ philosophy, this is analogous to the convergence of µk,N → µp giving the

distribution of the Hecke eigenvalues as k → ∞.

More generally, let
(

Md, g
)

be a compact smooth Riemannian manifold of dimension

d. Let N(T ) be the number of eigenvalues of the Laplace–Beltrami operator −∆g less

than T 2, counted with multiplicity. Then Hörmander [Hör68] proved that

N (T ) = cdvol (M) T d +RM (T ) ,

where RM (T ) = O
(

T d−1
)

. In fact, this general estimate is sharp for the round sphere

M = Sd. However, given a manifold M the question of finding the optimal bound for the

error term RM (T ) is a very difficult problem. An analogue of Rm(T ) for µk,N → µp is

the discrepancy D(µk,N , µp).

Remark. If M is a symmetric space, then Weyl’s law is formulated and expected to hold

in great generality for families of automorphic forms [SST16, Conjecture 1].

We now restrict to the case d = 2, and discuss the relation between the size of RM (T )

and the geodesic flow on the unit cotangent bundle S∗M , predicted by the correspondence

principle. The two extreme behaviors that the geodesic flow can have are being chaotic

or completely integrable, and in these two cases the correspondence principle predicts

the distribution of eigenvalues to be modeled by a large random matrix, and a Poisson

process, respectively [Ber85, Ber86].

In particular, we expect that for a generic 2 dimensional flat torus or a compact arith-

metic hyperbolic surface [Sar95, Figure 1.3 and Section 3]4, the set of eigenvalues inside

the universal interval
[

T 2,
(

T + 1
L

)2
]

, where log T ≪ L = o (T ),5 is modeled by Pois-

son process. For details, we refer the readers to the very interesting work of Rudnick

4The geodesic flow in this case is chaotic, but Sarnak explains that one expects to see Poisson behavior
due to the high multiplicity of the geodesic length spectrum.

5Here and elsewhere we write A ≪τ B when |A| ≤ C(τ)B holds with some constant C(τ) depending
only on τ .
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[Rud05] and Sarnak’s letter [Sar02] explaining the critical window log T ≪ L = o (T )

using Kuznetsov’s trace formula. This suggests that these surfaces satisfy RM (T ) =

Oǫ

(

T
1

2
+ǫ
)

. In fact, Petridis and Toth proved that the average order of the error term

in Weyl’s law for a random torus chosen in a compact part of the moduli space of two di-

mensional tori is R (T ) = Oǫ

(

T
1

2
+ǫ
)

[PT02]. Moreover, for compact arithmetic surfaces

it was proved by Selberg [Hej76, p.315] that R (T ) = Ω
(

T
1

2/ log T
)

. This bound is the

analogue of (1.4).

For the rational torus T = R2/Z2, boundingRT (T ) is equivalent to the classical Gauss

circle problem. It was conjectured by Hardy that RT (T ) = Oǫ

(

T
1

2
+ǫ
)

, and it is known

by Hardy and Landau [HL24] that RT (T ) = Ω
(

T
1

2 (log T )
1

4

)

. Note that the eigenvalue

distribution here is known not to be Poisson [Sar97].

As mentioned above, for generic compact hyperbolic surfaces, we expect the set of

eigenvalues inside the interval
[

T 2,
(

T + 1
L

)2
]

to follow the eigenvalue distribution of a

large symmetric matrix, which has a rigid structure. As a result, it is conjectured that these

surfaces satisfy RM (T ) = Oǫ (T
ǫ).

Proving an optimal upper bound for RM (T ) is extremely difficult, and we do not have

any explicit example of M other than the sphere where the optimal bound is known! The

best known upper bound for hyperbolic manifolds is RM (T ) = O
(

T d−1/ log T
)

, due

to Bérard [Bér77]. As pointed out by Sarnak [Sar02, p. 2], even improving the constant

and showing that R (T ) = o (T/ log T ) for the cuspidal spectrum of SL2 (Z) \H (after

removing the contribution of the Eisenstein series) is very difficult (Remark 1.3.1). This

bound is the analogue of (1.3).

1.3 Main results

1.3.1 Large discrepancy for µ∗
k,N

Let Sk (N)∗ be the subspace of Sk(N) consisting only of newforms of weight k and fixed

level N . Let T ∗
p be the restriction of Tp from Sk (N) to Sk (N)∗. We denote by µ∗

k,N and

ν∗k,N the spectral probability measures associated to T ∗
p , defined analogously to µk,N and

νk,N .

The main theorem of this paper is a generalization of (1.4) to µ∗
k,N with any squarefree

level N and an improved exponent of k in the lower bound.

Theorem 1.1. Let N ≥ 1 be a fixed square-free integer. Then there exists an infinite

sequence of weights {kn} with kn → ∞ such that

D
(

µ∗
kn,N , µp

)

≫ 1

k
1

3
n (log kn)2

.
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Remark. As mentioned in the introduction the best known upper bound for D
(

µ∗
k,N , µp

)

is

D
(

µ∗
k,N , µp

)

= O

(

1

log k

)

, (1.5)

by Murty and Sinha [MS09]. The standard method for giving an upper bound for the dis-

crepancy of a sequence of points is the Erdős–Turán inequality [ET48]. Even to improve

the implied constant in (1.5) using the Erdős–Turán inequality, one needs to obtain a non-

trivial upper bound for the trace of the Hecke operator Tn for n ≫ kA, where A > 0

is an arbitrarily large constant. But the error term in the Selberg trace formula is very

hard to bound non-trivially in this range and this makes the problem very difficult by this

approach.

Theorem 1.1 follows from an explicit asymptotic formula for the weighted average of

the trace of the Hecke operator in a short interval. More precisely, let ψ be a non-negative

smooth function supported in [−1, 1] that satisfies
∫ 1

−1
ψ (t) dt = 1. Let Tr Tn (k,N)∗ be

the trace of the Hecke operator T ∗
n on Sk (N)∗.

Theorem 1.2. Let N ≥ 1 be a fixed square-free integer, and 1
5
< δ < 1

3
be a fixed

constant. Let K be an integer satisfying K = 4π
√
n + o

(

n
1

6

)

. Then we have

1

Kδ

∑

k∈2N
ψ

(

k −K

Kδ

)

(−1)
k
2Tr Tn (k,N)∗

=
µ (N)K

2π

σ (n)

n
JK
(

4π
√
n
)

(1 + oδ,ψ (1)) ,

where JK is the J-Bessel function (the Bessel function of the first kind) and µ is the

Möbius function.

Remark. By the asymptotic of the J-Bessel function in the transition range (2.3) (see

also §2.1.1), we have |JK (4π
√
n) | ≫ K− 1

3 . Hence, we have |Tr Tn (k,N)∗ | ≫ k
2

3

for some k ∈ [K − Kδ, K + Kδ]. This lower bound violates the naive expected square

root cancelation for the eigenvalues of the Hecke operator Tn (k,N)∗. However, we show

that almost all k in the range [3π
√
n, 5π

√
n] satisfy Tr Tn (k,N)∗ = Oǫ

(

k
1

2
+ǫ
)

; see

Theorem 1.3.

We give the proof of the above theorem in Section 3. The proof is based on the Pe-

tersson trace formula and the proof of Theorem 1.7 that we give in Section 2. The main

term of the above formula comes from the J-Bessel function in the transition range. Next,

we simplify the error term by using bounds on the J-Bessel function outside the transi-

tion range. For the remaining error terms, we average over weights and apply the Poisson

summation formula and obtain a sum of the Kloosterman sums twisted by oscillatory inte-

grals. Theorem 1.2 subsequently follows by using Weil’s bound for the Kloosterman sums



Asymptotic trace formula 7

and by exploiting the cancellation coming from the summation over the Bessel functions

(Section 3.1). There are some similarities between our method and the circle method,

especially the version developed by Heath-Brown [HB96].

1.3.2 Variance of the trace

If we consider the variance of the trace of the Hecke operator over k ∼ √
n, the largeness

of the trace in Theorem 1.2 is no longer present. To be precise, we have the following

results.

Theorem 1.3. Let N > 1 be a squarefree integer. For any positive integer n, we have

∑

k∈2Z
3π

√
n<k<5π

√
n

∣

∣

∣

∣

Tr Tn (k,N)∗ − k − 1

12
ϕ (N)

δ (n,�)√
n

∣

∣

∣

∣

2

≪N n (log n)2 (log logn)4 ,

where δ (n,�) = 1 if n is a square, and 0 otherwise. Here ϕ is Euler’s totient function.

In particular, almost all k in the range [3π
√
n, 5π

√
n] satisfy

Tr Tn (k,N)∗ = Oǫ

(

k
1

2
+ǫ
)

.

We also prove a lower bound for the variance of the trace of the Hecke operator. To

make a precise statement, let φ be a positive even rapidly decaying function whose Fourier

transform φ̂ is supported in
[

− 1
100
, 1
100

]

.

Theorem 1.4. Let N > 1 be a squarefree integer and let n = pm, where p is an odd

prime. There exists a sufficiently large fixed constant A > 0 such that for any K > A
√
n,

we have

1
∑

k∈2Z φ
(

k−1
K

)

∑

k>0,k∈2Z
φ

(

k − 1

K

) ∣

∣

∣

∣

Tr Tn (k,N)∗ − k − 1

12
ϕ (N)

δ (n,�)√
n

∣

∣

∣

∣

2

≫N n
1

2 .

(1.6)

This immediately implies the following weaker version of Theorem 1.1.

Corollary 1.5. Let N > 1 be a fixed square-free integer and let p be an odd prime. Then

we have

D
(

µ∗
k,N , µp

)

= Ω

(

1

k
1

2 (log k)2

)

.

Remark. Note that this generalizes [GJS99] to any square-free level N > 1.
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Theorem 1.3 and 1.4 are consequences of the following asymptotic formula, which we

derive from the Eichler–Selberg trace formula for T ≥ √
n and N > 1 (Lemma 4.6):

∑

k>0,k∈2Z
φ

(

k − 1

T

) ∣

∣

∣

∣

Tr Tn (k,N)∗ − k − 1

12
ϕ (N)

δ (n,�)√
n

∣

∣

∣

∣

2

= 2
∑

k∈2Z
φ

(

k − 1

T

)

∑

t2<4n

|DN (t, n) |2 − φ

(

1

T

)

σ1 (n)
2

n
+O

(

n
1

2
+ǫ
)

. (1.7)

Here DN (t, n) is a weighted sum of class numbers:

DN (t, n) =
i

2
√
4n− t2

∑

f

hw

(

t2 − 4n

f 2

)

µ̃ (t, f, n,N) ,

with weights |µ̃ (t, f, n,N) | = ON (1) (for the precise definition, see Lemma 4.2).

The upper bound (Theorem 1.3) then follows by applying a standard upper bound for

the class numbers of imaginary quadratic fields.

Note that inputting the sharp lower bound for the class numbers of imaginary quadratic

fields,

hw (−d) ≫ǫ d
1

2
−ǫ,

to (1.7) is not sufficient to prove the lower bound in Theorem 1.4. Therefore we relate the

problem of estimating the sparse sum of sums of class numbers

∑

t2<4n

|DN (t, n) |2

to the problem of counting integral lattice points on 3-spheres, under certain congruence

conditions on the coordinates. This can be done by following the circle method developed

by Kloosterman [Klo27], and we are able to show that

∑

t2<4n

|DN (t, n) |2 ≫N

√
n,

under the assumption that n is odd (Theorem 4.7). Now if n = pm for a fixed odd prime

p, and if T > A
√
n for some large A, we see that

2
∑

k∈2Z
φ

(

k − 1

T

)

∑

t2<4n

|DN (t, n) |2

is larger than φ
(

1
T

)

σ1(n)
2

n
≫ n, from which Theorem 1.4 follows. These steps are carried

out in Section 4.
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1.3.3 Large discrepancy for the measure with harmonic weights

Next, we give our results on the error term of the Weyl law associated to the measures

ν∗k,N as k → ∞.

Theorem 1.6. Let N ≥ 1 be a fixed square-free integer. There exists an infinite sequence

of weights {kn} with kn → ∞ such that

D
(

ν∗kn,N , µ∞
)

≫ 1

k
1

3
n (log kn)2

. (1.8)

Remark. The above exceptional sequence of weights is very explicit and is given by

kn = ⌊4πpn⌋. Based on heuristics stemming from arithmetic quantum chaos, numerical

evidence [GJS99, Figure 5 and Figure 6], and the random model described in the intro-

duction for the eigenvalues of the Hecke operator, it is expected that

D
(

µ∗
k,N , µp

)

= Oǫ,N

(

k−
1

2
+ǫ
)

and D
(

ν∗k,N , µ∞
)

= Oǫ,N

(

k−
1

2
+ǫ
)

(1.9)

for a density 1 set of k. In this context, the exponent 1
3

in Theorem 1.6 (and Theorem 1.1)

shows that one can not achieve (1.9) for every even weight k.

Theorem 1.6 is an immediate consequence of an explicit asymptotic formula for the

Petersson trace formula. More precisely, let B∗
k,N be the orthonormal basis of Sk(N)∗

consists of holomorphic Hecke cusp forms, and let

∆∗
k,N (m,n) :=

Γ(k − 1)

(4π)k−1

∑

f∈B∗
k,N

ρf (m) ρf (n).

Theorem 1.7. LetN ≥ 1 be a fixed square-free integer. Assume that |4π√mn−k| < 2k
1

3

and gcd (mn,N) = 1. Then

∆∗
k,N (m,n) =

ϕ (N)

N
δ (m,n)+2πi−k

µ (N)

N

∏

p|N

(

1− 1

p2

)

Jk−1

(

4π
√
mn
)

+ON

(

k−
1

2

)

,

where δ (m,n) = 1 if m = n and δ (m,n) = 0 otherwise.

Remark. Since |4π√mn−k| < 2k
1

3 , by the asymptotic behavior of the J-Bessel function

in the transition range (2.3), we have |Jk−1 (4π
√
mn) | ≫ 1

k
1
3

. It follows that

2πi−k
µ (N)

N

∏

p|N

(

1− 1

p2

)

Jk−1

(

4π
√
mn
)

is the main term, and

|∆∗
k,N (m,n)− δ (m,n) | ≫ 1

k
1

3

.
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The above lower bound violates the naive expected square root cancelation in the sum of

the normalized Fourier coefficients of the newforms in this range. More generally, one

can generalize Theorem 1.7 if
∣

∣

∣

4π
√
mn
q

− k
∣

∣

∣
< 2k

1

3 for any fixed integer q > 0. In the

appendix by Simon Marshall, the existence of this asymptotic trace formula is explained

via the geometric side of the Petersson trace formula.

We prove Theorem 1.7 in Section 2 by applying the Petersson trace formula and parti-

tioning the geometric side of this formula into three parts according to the various behav-

ior of the J-Bessel function in different ranges. This partition is explained in the appendix

according to the incidence of the associated pairs of horocycles.

Theorem 1.2 follows from Theorem 1.7 upon averaging over the parameters m and k.

In fact we expect that a stronger version of Theorem 1.2 to be true, namely

Tr Tn (k,N)∗ = (−1)k/2
µ (N) k

π

σ (n)

n
Jk
(

4π
√
n
)

(1 + o (1)) ,

where k = 4π
√
n + o

(

n
1

6

)

. However, removing the harmonic weights in Kuznetsov’s

formula by only averaging over m in our context is equivalent to a very strong unproven

bound for the L-functions, namely:

Hypothesis 1.8. Let n = O (k2) and N be a fixed square free integer. Then

Γ(k − 1)

(4π)k−1

∑

f∈B∗
k,N

|ρf (1)|2 λf (n)L
(

1

2
+ it, sym2f

)

= Oδ

(

k−
1

6
−δ
)

, (1.10)

where t = O
(

log kA
)

for some A > 0 and δ > 0.

We overcome this problem by averaging over k in a very short interval.

2 Large discrepancy

In this section, we deal with the lower bounds for the discrepancies

D
(

µ∗
k,N , µp

)

,

and

D
(

ν∗k,N , µ∞

)

.

The main technical input for the lower bounds that we prove is an explicit asymptotic

formula for the Petersson trace formula, Theorem 1.7. Before we go into the details, we

review some preliminary facts that are going to be used in the subsequent sections.
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2.1 Preliminary

2.1.1 J-Bessel function

We first collect here estimates for the J-Bessel function from [DLMF].

When α ≥ 0 and 0 < x ≤ 1, we have [DLMF, 10.14.7]

1 ≤ Jα (αx)

xαJα (α)
≤ eα(1−x). (2.1)

Note that xe1−x < 1 for 0 < x < 1, and 0 < Jα (α) ≪ 1

α
1
3

as α→ +∞; see (2.3). Hence,

(2.1) implies that Jα(αx) is positive and exponentially small in α for any fixed 0 < x < 1

as α→ +∞.

The transition range of the J-Bessel function Jα(y) is the range where y is close to α,

i.e.,

α− cα
1

3 < y < α + cα
1

3

is satisfied for some fixed constant c > 0. In this range, we write y = α + aα
1

3 , and the

J-Bessel function has an asymptotic in terms of the Airy functionAi [Kra14, Theorem 1]

Jα

(

α + aα
1

3

)

=
2

1

3

α
1

3

Ai
(

−2
1

3a
)

(

1 +O

(

1

α
2

3

))

, (2.2)

where a = O(1) and α→ ∞. (See [DLMF, 10.19.8] for the full asymptotic expansion of

Jα(x) in this range.) Note that all zeros of Airy function Ai(x) are negative, and the first

zero is approximately −2.33811 . . . [AS64]. This implies that for |a| < 1, we have

1

α
1

3

≪ Jα

(

α + aα
1

3

)

≪ 1

α
1

3

. (2.3)

We also have the following uniform upper bound for 1
2
≤ x < 1,

|Jα (αx) | ≪
1

(1− x2)
1

4 α
1

2

, (2.4)

and for x ≥ 1,

|Jα (αx) | ≪
1

(x2 − 1)
1

4 α
1

2

. (2.5)

If we combine (2.1), (2.3), (2.4), and (2.5), we have

|Jα(y)| ≪
1

α
1

3

. (2.6)
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2.1.2 Kloosterman sum

For integers m, n, and c ≥ 1, the Kloosterman sum S(m,n; c) is defined by

S(m,n; c) =
∑

x (mod c)
gcd(x,c)=1

e

(

mx+ nx∗

c

)

,

where e(x) = exp(2πix), and x∗ is the multiplicative inverse of x modulo c. We fre-

quently use the following bound for the Kloosterman sum

|S (m,n; c) | ≤ σ (c)
√

gcd (m,n, c)
√
c, (2.7)

which is often referred as Weil’s bound.

2.1.3 Petersson trace formula

The Petersson trace formula [Pet32] is given by

∆k,N (m,n) :=
Γ (k − 1)

(4π)k−1

∑

f∈Bk,N

ρf (m) ρf (n)

= δ (m,n) + 2πi−k
∑

c≡0 (mod N)

S (m,n; c)

c
Jk−1

(

4π
√
mn

c

)

. (2.8)

For M |N , each newform f of level M gives rise to σ
(

N
M

)

old forms in Sk (N) [AL70].

By choosing a special orthonormal basis of Sk (N), one may deduce the Petersson trace

formula only for the newforms of squarefree level N [ILS00, Proposition 2.9]

∆∗
k,N (m,n) :=

Γ (k − 1)

(4π)k−1

∑

f∈B∗
k,N

ρf (m) ρf (n)

=
∑

LM=N

µ (L)

L

∑

l|L∞

1

l
∆k,M

(

ml2, n
)

, (2.9)

where gcd(mn,N) = 1. Henceforth, we assume that gcd (mn,N) = 1 and

|4π
√
mn− k| < 2k

1

3 . (2.10)

2.2 Proof of Theorem 1.7.

Proof. We apply the identity (2.9) and obtain

∆∗
k,N(m,n) =

∑

LM=N

µ(L)

L

∑

l|L∞

1

l
∆k,M(ml2, n).
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First, we analyze the contribution from δ (ml2, n) which occurs when we apply the Peters-

son trace formula (2.8) to (2.9). Since l|N∞ and gcd (N,mn) = 1, the conditionml2 = n

can only be met if l = 1 and m = n. By summing over l, we obtain

∑

LM=N

µ (L)

L

∑

l|L∞

1

l
δ
(

ml2, n
)

=
∑

LM=N

µ (L)

L
δ (m,n) =

ϕ (N)

N
δ (m,n) .

Therefore

∆∗
k,N (m,n) =

ϕ (N)

N
δ (m,n) + S1 + S2,

where

S1 := 2πi−k
µ (N)

N

∏

p|N

(

1− 1

p2

)

Jk−1

(

4π
√
mn
)

, (2.11)

S2 := 2πi−k
∑

LM=N

µ (L)

L

∑

l|L∞

1

l

∑

c≡0 (mod M)
c 6=l

S (ml2, n; c)

c
Jk−1

(

4πl
√
mn

c

)

.

We have broken up the sum over c ≡ 0 (mod N) into the terms S1, for which c = l,

and S2, for which c 6= l. The term S1 has been simplified using the fact that the condition

c = l restricts the summation over LM = N to L = N and M = 1, since M |c, l|L, and

gcd (L,M) = 1, together with the fact that S (ml2;n; l) = S (0;n; l) = µ (l).

By the estimate (2.3) and the assumption (2.10), we have |S1| ≫N
1

k
1
3

. Next, we give

an upper bound for S2. For δ > 0 to be chosen, let

S2,δ := 2πi−k
∑

LM=N

µ (L)

L

∑

l>kδ

l|L∞

1

l

∑

c≡0 (mod M)
c 6=l

S (ml2, n; c)

c
Jk−1

(

4πl
√
mn

c

)

.

For kδ > N , it follows from (2.9) and (2.11) that

S2,δ =
∑

LM=N

µ (L)

L

∑

l>kδ

l|L∞

1

l

(

∆k,M

(

ml2, n
)

− δ
(

ml2, n
))

.

By [ILS00, Corollary 2.2], we have

∆k,M

(

ml2, n
)

− δ
(

ml2, n
)

= ON,ǫ

(

(mn)
1

4
+ǫ l

1

2
+ǫ

k
5

6

)

.

Therefore

|S2,δ| ≪N,ǫ

∑

l>kδ

l|N∞

1

l

(mn)
1

4
+ǫ l

1

2
+ǫ

k
5

6

.

By (2.10), we have

|S2,δ| ≪N,ǫ k
− 1

3
+ǫ
∑

l>kδ

l|N∞

l−
1

2
+ǫ = ON,ǫ

(

k−
1

3
− δ

2
+2ǫ
)

. (2.12)
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Finally, we give an upper bound for S (δ) := S2 − S2,δ. We split S (δ) into three parts,

each of which has a restriction on the sum over c ≡ 0 (mod M). We write Si (δ) for the

sum S (δ) subjected to the ith condition listed below.

1. 2l < c

2. l < c < 2l

3. c < l

By (2.1), (2.3) and (2.7), we first have

|S1 (δ) | ≪

∣

∣

∣

∣

∣

∣

∣

∣

∑

LM=N

µ (L)

L

∑

l<kδ

l|L∞

1

l

∑

c≡0 (mod M)
c>2l

S (ml2, n; c)

c
Jk−1

(

4πl
√
mn

c

)

∣

∣

∣

∣

∣

∣

∣

∣

≪N

∑

l|N∞

l<kδ

1

l

∑

c>2l

∣

∣

∣

∣

S (ml2, n; c)

c
Jk−1

(

4πl
√
mn

c

)∣

∣

∣

∣

≪N

∑

l|N∞

l<kδ

1

l

∑

c>2l

ek(1−
l
c
+log( l

c))

k
1

3

≪N

∑

l|N∞

l<kδ

ek(1−
1

2
−log(2))

k
1

3

≪N,δ e
−(0.19)k. (2.13)

Next, we give an upper bound for S2 (δ) and S3 (δ). Assume that l < c < 2l < 2kδ. By

the inequality (2.4), (2.10) and (2.7)

|S2 (δ) | ≪

∣

∣

∣

∣

∣

∣

∣

∣

∑

LM=N

µ (L)

L

∑

l<kδ

l|L∞

1

l

∑

c≡0 (mod M)
c<2l

S (ml2, n; c)

c
Jk−1

(

4πl
√
mn

c

)

∣

∣

∣

∣

∣

∣

∣

∣

≪N,ǫ

∑

l|N∞

l<kδ

1

l

∑

l<c<2l

√

gcd (m,n, c)c−
1

2
+ǫ

∣

∣

∣

∣

Jk−1

(

4πl
√
mn

c

)∣

∣

∣

∣

≪N,ǫ

∑

l|N∞

l<kδ

1

l

∑

l<c<2l

√

gcd (m,n, c)c−
1

2
+ǫk−

1

2

1
(

1− l2

c2

)
1

4

≪N,ǫ k
− 1

2

∑

l|N∞

l<kδ

l−
5

4
+ǫ
∑

l<c<2l

√

gcd (m,n, c)

(c− l)
1

4

≪N,ǫ k
− 1

2

∑

l|N∞

l<kδ

l−
1

2
+ǫ ≪N k−

1

2 , (2.14)
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where we let ǫ = 1/100 in the last estimate. Finally, assume that c < l < kδ. Then by

(2.5) and (2.7)

|S3 (δ) | ≪

∣

∣

∣

∣

∣

∣

∣

∣

∑

LM=N

µ (L)

L

∑

l<kδ

l|L∞

1

l

∑

c≡0 (mod M)
c<l

S (ml2, n; c)

c
Jk−1

(

4πl
√
mn

c

)

∣

∣

∣

∣

∣

∣

∣

∣

≪N,ǫ

∑

l|N∞

l<kδ

1

l

∑

c<l

√

gcd (m,n, c)c−
1

2
+ǫ

∣

∣

∣

∣

Jk−1

(

4πl
√
mn

c

)∣

∣

∣

∣

≪N,ǫ

∑

l|N∞

l<kδ

1

l

∑

c<l

√

gcd (m,n, c)c−
1

2
+ǫk−

1

2

1
(

l2

c2
− 1
)

1

4

≪N,ǫ k
− 1

2

∑

l|N∞

l<kδ

l−
5

4

∑

c<l

√

gcd (m,n, c)c−
1

2
+ǫ c

1

2

(l − c)
1

4

≪N,ǫ k
− 1

2

∑

l|N∞

l<kδ

l−
1

2
+ǫ ≪N k−

1

2 , (2.15)

again, where we let ǫ = 1/100 in the last estimate.

Now let δ = 1 and combine (2.12), (2.13), (2.14) and (2.15) to obtain

∆∗
k,N (m,n) =

ϕ (N)

N
δ (m,n)+2πi−k

µ (N)

N

∏

p|N

(

1− 1

p2

)

Jk−1

(

4π
√
mn
)

+ON

(

k−
1

2

)

.

2.3 Proof of Theorem 1.6.

Proof. Recall that

ν∗k,N :=
(4π)k−1

Γ (k − 1)

∑

f∈B∗
k,N

|ρf(1)|2δλf (p).

Since |λf (p) | ≤ 2, we can write λf (p) = 2 cos (θf (p)) for a unique 0 ≤ θf (p) ≤ π.

Let Un (cos θ) = sin(n+1)θ
sin θ

for n ≥ 0 be the nth Chebyshev polynomial of the second

kind. Recall from [CDF97, Lemma 3] that λf (pn) = Un

(

λf (p)

2

)

. In order to give a lower

bound for the discrepancy between ν∗kn,N and µ∞ for kn := ⌊4π√pn⌋, we compute the

difference between the expected value of Un
(

x
2

)

with respect to these measures. Note

that {Un(x2 )}∞n=0 is an orthogonal set of polynomials with respect to µ∞ [GR15, 7.343.2].

Hence for n ≥ 1,
∫ 2

−2

Un

(x

2

)

dµ∞ (x) = 0.
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On the other hand, by Theorem 1.7, since |kn − 4π
√
pn| < 1 we have

∫ 2

−2

Un

(x

2

)

dν∗k,N (x) = ∆∗
kn,N (1, pn)

= 2πi−k
µ (N)

N

∏

p|N

(

1− 1

p2

)

Jkn−1

(

4π
√
pn
)

+ON

(

k−
1

2

)

.

As pointed out in Remark 1.2, since |kn − 4π
√
pn| < 1 then by (2.3), we have

∫ 2

−2

Un

(x

2

)

dν∗k,N (x) ≫N k
− 1

3
n .

By integration by parts and the upper bound |U ′
n

(

x
2

)

| ≪ n2, it follows that

D
(

ν∗kn,N , µ∞
)

≫ 1

n2k
1

3
n

. (2.16)

Since kn = ⌊4π√pn⌋, we conclude that

D
(

ν∗kn,N , µ∞
)

≫ 1

k
1

3
n (log kn)2

.

3 Removing the weights

In this section we give the proof of Theorem 1.2, from which Theorem 1.1 follows as a

corollary. Note that the trace of the Hecke operator Tn (N, k)∗ is obtained by removing the

arithmetic weights |ρf (1)|2 from the Petersson trace formula (2.9) with m = 1. The usual

trick for removing these weights is to average the Petersson trace formula (2.9) smoothly

over m2 where gcd (m,N) = 1. Unfortunately, once summed over m2, it is difficult to

prove a bound for the contribution coming from S2 (δ) and S3 (δ) that is smaller than the

contribution from the main term. We therefore sum the trace formula as k varies inside a

short interval of size ∼ kδ for some 1
5
< δ < 1

3
and exploit the cancellation coming from

the summation of J-Bessel function over the order k (Lemma 3.1). We note here that

δ < 1
5

is not large enough to bound the error term and δ > 1
3

makes the main term smaller

than the error term! Theorem 1.2 then follows from Weil’s bound for the Kloosterman

sum and Lemma 3.1.

3.1 Averaging over the weight

Recall that ψ is a positive smooth function supported in [−1, 1] and
∫ 1

−1
ψ (t) dt = 1. Let

K > 0 be a positive real number.



Asymptotic trace formula 17

Lemma 3.1. Fix 0 < δ < 1
3

and η > 1− 3δ > 0. Let x > 0. If |x−K| > Kη+δ , then

∑

l≡1 mod 2

ψ

(

l −K

Kδ

)

Jl (x) ≪A,ψ,η,δ K
−A. (3.1)

If |x−K| < Kη+δ, we have

1

Kδ

∑

l≡1 mod 2

ψ

(

l −K

Kδ

)

Jl (x) ≪ K− 1

3 . (3.2)

Moreover, if x = K + o
(

K
1

3

)

then

1

Kδ

∑

l≡1 mod 2

ψ

(

l −K

Kδ

)

Jl (x) = JK (x)

(

1

2
+ oψ(1)

)

≫ψ K
− 1

3 . (3.3)

Proof. As done in [Iwa97, §5.5], we use the integral representation of the J-Bessel func-

tion

Jl (x) =

∫ 1

2

− 1

2

e−2πilte−ix sin 2πtdt,

from [GR15, 8.411.1]. By the Poisson summation formula, it follows that

∑

l≡1 mod 2

ψ

(

l −K

Kδ

)

Jl (x) =

∫ ∞

−∞
ψ̂ (u) e−2πiuK1−δ

(

e−ix sin(
2πu

Kδ ) − eix sin(
2πu

Kδ )
)

du.

Because ψ̂(u) ≪A |u|−A, we may assume that the integral is taken over |u| < Kκ with

some κ that satisfies

0 < κ < min

{

δ,
1

2
(η − (1− 3δ))

}

.

Since the remaining portion of the integral contributes a negligible amount. Let

f±(u) = −uK1−δ ± x

2π
sin

(

2πu

Kδ

)

,

and then we have

f±(u)
′ = −K1−δ ± x

Kδ
cos

(

2πu

Kδ

)

=
−K ± x

Kδ
+O

(

xu2

K3δ

)

.

Now assume that x > 0 and that |K − x| > Kδ+η . If x > 2K, then

|f±(u)′| ≫ xK−δ +O(xK−δ−2(δ−η)) ≫ K1−δ.

If 0 < x < 2K, then

|f±(u)′| ≫ Kη +O(K1+2κ−3δ),
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and because 1 + 2κ− 3δ < 1− 3δ + (η − (1− 3δ)) = η, we have

|f±(u)′| ≫ Kη.

Therefore, by repeated integration by parts, we have
∫ Kκ

−Kκ

ψ̂ (u) e−2πiuK1−δ
(

e−ix sin(
2πu

Kδ ) − eix sin(
2πu

Kδ )
)

du≪A,ψ,η,δ K
−A,

for any A > 0. This completes the proof of (3.1).

The inequality (3.2) follows from the upper bound (2.6), and the fact that ψ is sup-

ported in [−1, 1]. Finally, (3.3) follows from the asymptotic of the J-Bessel function in

the transition range. More precisely, recall (2.2) and (2.3)

Jα

(

α+ aα
1

3

)

=
2

1

3

α
1

3

Ai
(

−2
1

3a
)

(

1 +Oδ

(

1

α
2

3

))

≫ 1

α
1

3

,

where |a| < 2. Hence, for x = K + o
(

K
1

3

)

and 0 < δ < 1
3

1

Kδ

∑

l≡1 mod 2

ψ

(

l −K

Kδ

)

Jl (x) = JK (x)

(

1

2
+ oψ(1)

)

≫ψ K
− 1

3 .

First, we cite some identities from [ILS00] that we use in the proof. Let f be a newform

of Sk (N) of level M . Then by [ILS00, Lemma 2.5], we have

ρf(m)ρf (n) =
(4π)k−1

Γ(k)

12Mλf (m)λf(n)

ν(N)ϕ(M)Z(1, f)
, (3.4)

where Z (s, f) :=
∑∞

n=1 λf (n
2)n−s. Note that Z (s, f) is related to L (s, sym2f) by

L
(

s, sym2f
)

=
ζ (2s)

ζN (2s)
Z (s, f) ,

where ζN (2s) =
∏

p|N (1− p−2s)
−1

[ILS00, (3.14)]. Let

ZN (s, f) :=
∞
∑

m=1
gcd(m,N)=1

λf (m
2)

ms
.

Then by [ILS00, (3.16)],

ZN (s, f) = L
(

s, sym2f
) ζN (2s)

ζ (2s) ζN (s+ 1)
. (3.5)

By the celebrated result of Shimura [Shi75], L (s, sym2f) is an entire function. Hence

ZN (s, f) is holomorphic for ℜ (s) > 1
2

and has a meromorphic continuation to the com-

plex plane. Let w (x) = exp (−x). Note that the Mellin transform of w is the Gamma

function

ŵ (s) :=

∫ ∞

0

xs−1w (x) dx = Γ (s) .
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3.2 Proof of Theorem 1.2

Proof. Assume that k ∈ [K−Kδ, K+Kδ] where δ < 1
3
. By the Petersson formula (2.9),

Γ(k − 1)

(4π)k−1

∑

f∈B∗
k,N

ρf
(

m2
)

ρf (n) =
∑

LM=N

µ (L)

L

∑

l|L∞

1

l
∆k,M

(

m2l2, n
)

. (3.6)

Let T = Kα for some fixed 0 < α < 1 that we choose at the end of the proof. We average

the left-hand side of the above by the smooth function 1
x
w
(

x
T

)

and use (3.4) to obtain

Γ(k − 1)

(4π)k−1

∑

m≥1
gcd(m,N)=1

1

m
w
(m

T

)

∑

f∈B∗
k,N

ρf
(

m2
)

ρf (n)

=
∑

f∈B∗
k,N

∑

m≥1
gcd(m,N)=1

w
(m

T

) 12λf (n) λf (m
2) ζN (2)

m (k − 1)NZ (1, f)

=
12

(k − 1)N

∑

f∈B∗
k,N

λf (n)
ζN (2)

Z (1, f)

∑

m≥1
gcd(m,N)=1

w
(m

T

) λf (m
2)

m
. (3.7)

By the Mellin inversion formula, we have w
(

x
T

)

= 1
2πi

∫ 2+i∞
2−i∞ Γ (s) T sx−sds and this

implies

∑

m≥1
gcd(m,N)=1

w
(m

T

) λf (m
2)

m
=

1

2πi

∫ 2+i∞

2−i∞
ZN (s+ 1, f)T sΓ (s) ds.

We shift the contour to the line ℜ (s) = −1
2

and pick up the pole of Γ (s) at s = 0 with

residue ZN (1, f) = Z(1,f)
ζN (2)

, and hence

∑

m≥1
gcd(m,N)=1

w
(m

T

) λf (m
2)

m
=
Z (1, f)

ζN (2)
+

1

2πi

∫ − 1

2
+i∞

− 1

2
−i∞

ZN (s + 1, f)T sΓ (s) ds. (3.8)

By (3.5),

1

2πi

∫ − 1

2
+i∞

− 1

2
−i∞

ZN (s+ 1, f)T sΓ (s) ds

=
1

2πi

∫ ∞

−∞
L

(

1

2
+ it, sym2f

)

ζN (1 + 2it)

ζ (1 + 2it) ζN
(

3
2
+ it

)T− 1

2
+itΓ

(

−1

2
+ it

)

dt.

First, we bound the portion of the integral for which |t| > (log k)2. By Stirling’s formula

[DLMF, 5.11.9],

Γ

(

−1

2
+ it

)

= O
(

(1 + |t|)−1 e−
π|t|
2

)

.
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By using the above bound, the convexity bound [IS00, (34)]

L

(

1

2
+ it, sym2f

)

≪ǫ,N k
1

2
+ǫ(|t|+ 1)

3

4
+ǫ,

the well-known bound ζ (1 + 2it)−1 = O (log(|t|+ 1)), the fact that ζN (2s) ζN (s+ 1)−1

is bounded on ℜ (s) = 1
2

and |T− 1

2
+it| ≤ T− 1

2 ≤ k−
α
2 , it follows that

(

∫ −(log k)2

−∞
+

∫ ∞

(log k)2

)

L
(

1
2
+ it, sym2f

)

ζN (1 + 2it)

ζ (1 + 2it) ζN
(

3
2
+ it

) T− 1

2
+itΓ

(

−1

2
+ it

)

dt

= OA

(

k−A
)

for any A > 0. By the above, (3.7) and (3.8), we obtain

Γ(k − 1)

(4π)k−1

∑

m≥1
gcd(m,N)=1

1

m
w
(m

T

)

∑

f∈B∗
k,N

ρf
(

m2
)

ρf (n) =
12

(k − 1)N
Tr Tn (N, k)∗

+
1

2πi

∫ (log k)2

−(log k)2





∑

f∈B∗
k,N

12ζN(2)

(k − 1)NZ(1, f)
λf (n)L

(

1

2
+ it, sym2f

)





× ζN (1 + 2it) T− 1

2
+itΓ

(

−1
2
+ it

)

ζ (1 + 2it) ζN
(

3
2
+ it

) dt+O
(

k−A
)

. (3.9)

From (1.2), we have |λf (n) | ≤ σ(n) ≪ǫ n
ǫ ≪ǫ k

ǫ, and we also have Z(1, f)−1 ≪ǫ k
ǫ

[HL94, Theorem 0.2]. Therefore we have

1

2πi

∫ (log k)2

−(log k)2





∑

f∈B∗
k,N

12ζN(2)

(k − 1)NZ(1, f)
λf (n)L

(

1

2
+ it, sym2f

)





× ζN (1 + 2it) T− 1

2
+itΓ

(

−1
2
+ it

)

ζ (1 + 2it) ζN
(

3
2
+ it

) dt

≪ǫ k
−1+ǫT− 1

2

∫ (log k)2

−(log k)2

∑

f∈B∗
k,N

∣

∣

∣

∣

L

(

1

2
+ it, sym2f

)∣

∣

∣

∣

dt.

To simplify the notation, we let

M1(k) =

∫ (log k)2

−(log k)2

∑

f∈B∗
k,N

∣

∣

∣

∣

L

(

1

2
+ it, sym2f

)∣

∣

∣

∣

dt.

By the above and (3.9), we have

Γ(k − 1)

(4π)k−1

∑

m≥1
gcd(m,N)=1

1

m
w
(m

T

)

∑

f∈B∗
k,N

ρf
(

m2
)

ρf (n)

=
12

(k − 1)N
Tr Tn (N, k)∗ +Oǫ

(

T− 1

2k−1+ǫM1(k)
)

. (3.10)
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Finally, we average the right-hand side of (3.6) with the same weights 1
m
w
(

m
T

)

. Let

S :=
∑

m≥1
gcd(m,N)=1

1

m
w
(m

T

)

∑

LM=N

µ (L)

L

∑

l|L∞,

1

l
∆k,M

(

m2l2, n
)

.

We analyze the contribution of δ (m2l2, n) by applying the Petersson formula (2.8). Since

l|N∞ and gcd (N,mn) = 1, then the condition m2l2 = n can only be met when l = 1

and m2 = n. Therefore,

∑

m≥1
gcd(m,N)=1

1

m
w
(m

T

)

∑

LM=N

µ (L)

L

∑

l|L∞

1

l
δ
(

m2l2, n
)

=
1√
n
w

(√
n

T

)

∑

LM=N

µ (L)

L
δ (n,�) =

ϕ (N)w
(√

n
T

)

N
√
n

δ (n,�) .

Note that by our choice of w, if T ≪ n
1

2
−ǫ, then

ϕ (N)w
(√

n
T

)

N
√
n

δ (n,�) = OA

(

k−A
)

. (3.11)

Let

ST :=
∑

m>T 1+ǫ

gcd(m,N)=1

1

m
w
(m

T

)

∑

LM=N

µ (L)

L

∑

l|L∞,

1

l

(

∆k,M

(

m2l2, n
)

− δ
(

m2l2, n
))

.

By [ILS00, Corollary 2.2], we have

∆k,M

(

m2l2, n
)

− δ
(

m2l2, n
)

= ON,ǫ

(

n
1

4
+ǫ (ml)

1

2
+ǫ

k
5

6

)

.

It follows from the above and the choice of w and T that ST = OA

(

k−A
)

. Hence

S = S1 + S2 +OA

(

k−A
)

, (3.12)

where

S1 := 2πi−k
∑

LM=N

µ (L)

L

∑

l|L∞

∑

m<T 1+ǫ

gcd(m,N)=1

1

ml
w
(m

T

)

×
∑

c≡0 (mod M)

δ(c,ml)
S (m2l2, n; c)

c
Jk−1

(

4πml
√
n

c

)

,
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and

S2 := 2πi−k
∑

LM=N

µ (L)

L

∑

l|L∞

∑

m<T 1+ǫ

gcd(m,N)=1

1

ml
w
(m

T

)

×
∑

c≡0 (mod M)
c 6=ml

S (m2l2, n; c)

c
Jk−1

(

4πml
√
n

c

)

.

In what follows, we give an asymptotic formula for S1, which is the sum over the diagonal

terms ml = c where gcd (m,N) = 1 and l|L∞. Observe that the condition ml = c can

only be met if M = 1 and L = N and so we have

S
(

m2l2, n; c
)

= S (0, n; c) =
∑

d| gcd(c,n)
µ
( c

d

)

d.

Hence,

S1 = 2πi−kJk−1

(

4π
√
n
) µ (N)

N

∑

l|N∞

∑

m<T 1+ǫ

gcd(m,N)=1

1

(ml)2
w
(m

T

)

∑

d| gcd(ml,n)
µ

(

ml

d

)

d

= 2πi−kJk−1

(

4π
√
n
) µ (N)

N

∑

l|N∞

µ (l)

l2









∑

m<T 1+ǫ

gcd(m,N)=1

1

m2
w
(m

T

)

∑

d| gcd(m,n)
µ
(m

d

)

d









= 2πi−kJk−1

(

4π
√
n
) µ (N)

N
ζN (2)−1









∑

d|n

1

d

∑

h<T 1+ǫ/d
gcd(h,N)=1

1

h2
w

(

hd

T

)

µ (h)









= 2πi−kJk−1

(

4π
√
n
) µ (N)

N

1

ζ (2)

(

σ (n)

n
+O

(

σ(n)

T

))

. (3.13)

Next, we give an upper bound for S2. Let β > 0 be some positive real number and S2,β

be the same sum as S2 but subjected to Kβ < l, namely

S2,β := 2πi−k
∑

LM=N

µ (L)

L

∑

l>Kβ

l|L∞

∑

m<T 1+ǫ

gcd(m,N)=1

1

ml
w
(m

T

)

×
∑

c≡0 (mod M)
c 6=ml

S (m2l2, n; c)

c
Jk−1

(

4πml
√
n

c

)

.

Since N is fixed and S1 is supported on l|N∞ and µ (l) 6= 0, it follows from (2.9) that for

sufficiently large k (e.g., Kβ > N),

S2,β = 2πi−k
∑

m<T 1+ǫ

gcd(m,N)=1

1

m
w
(m

T

)

∑

LM=N

µ (L)

L

∑

l>Kβ

l|L∞

1

l

(

∆k,M

(

m2l2, n
)

− δ
(

ml2, n
))

.
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By [ILS00, Corollary 2.2], we have

∆k,M

(

m2l2, n
)

− δ
(

m2l2, n
)

= ON,ǫ

(

n
1

4
+ǫ (ml)

1

2
+ǫ

k
5

6

)

.

Therefore,

S2,β ≪N,ǫ

∑

m<T 1+ǫ

gcd(m,N)=1

1

m
w
(m

T

)

∑

l>Kβ

l|N∞

1

l

n
1

4
+ǫ (ml)

1

2
+ǫ

k
5

6

.

By (2.10), we have

S2,β ≪N,ǫ k
− 1

3
+ǫ

∑

m<T 1+ǫ

∑

l>Kβ

l|N∞

(ml)−
1

2
+ǫ = ON,ǫ

(

T
1

2k−
1

3
−β

2
+ǫ
)

. (3.14)

Finally, we give an upper bound for S (β) := S2 − S2,β. We split S (β) into two ranges,

each of which has a restriction on the sum over c ≡ 0 (mod M):

1. 2ml < c,

2. c < 2ml and c 6= ml,

and we write Si (β) for the sum S (β) subjected to the ith condition listed above. First,

we give an upper bound for S1 (β). Assume that 2ml < c. Then by (2.1), (2.3), and (2.7),

we have

S1 (β)

≪

∣

∣

∣

∣

∣

∣

∣

∣

∑

LM=N

µ (L)

L

∑

l<Kβ

l|L∞

∑

m<T 1+ǫ

gcd(m,N)=1

1

ml
w
(m

T

)

∑

c>2ml
M |c

S (m2l2, n; c)

c
Jk−1

(

4πml
√
n

c

)

∣

∣

∣

∣

∣

∣

∣

∣

≪
∑

l<Kβ

l|L∞

∑

m<T 1+ǫ

gcd(m,N)=1

1

ml
w
(m

T

)

∑

c>2ml

∣

∣

∣

∣

S (m2l2, n; c)

c

∣

∣

∣

∣

∣

∣

∣

∣

Jk−1

(

4πml
√
n

c

)∣

∣

∣

∣

≪
∑

h<KβM1+ǫ

1

h

∑

c>2h

∣

∣

∣

∣

∣

ek(1−
h
c
+log(h

c ))

k
1

3

∣

∣

∣

∣

∣

≪ e−(0.19)k. (3.15)

By inequalities (3.10), (3.11), (3.12), (3.13), (3.14), and (3.15), we have

12

(k − 1)N
Tr Tn (N, k)∗ = 2πi−kJk−1

(

4π
√
n
) µ (N)

N

1

ζ (2)

σ (n)

n
+ S2 (β)

+O
(

σ(n)k−
1

3T−1
)

+Oǫ

(

T− 1

2k−1+ǫM1(k) + T
1

2k−
1

3
−β

2
+ǫ
)

.
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We use σ(n) ≪ǫ k
ǫ to make the first error term Oǫ

(

k−
1

3
+ǫT−1

)

. We then multiply the

above identity by ik = (−1)
k
2 and take a smooth average by

1

Kδ

∑

k>0,k∈2Z
ψ

(

k − 1−K

Kδ

)

,

yielding

1

Kδ

∑

k>0,k∈2Z
ψ

(

k − 1−K

Kδ

)

12(−1)
k
2

(k − 1)N
Tr Tn (N, k)∗

= πJK
(

4π
√
n
) µ (N)

N

1

ζ (2)

σ (n)

n
(1 + o(1)) +

1

Kδ

∑

k>0,k∈2Z
ψ

(

k − 1−K

Kδ

)

ikS2 (β)

+Oǫ



T− 1

2K−1−δ+ǫ
∑

|k−1−K|<Kδ

M1(k)



+Oǫ

(

T
1

2K− 1

3
−β

2
+ǫ + T−1K− 1

3
+ǫ
)

, (3.16)

where we applied (3.3) in Lemma 3.1 to the main term.

Next, we give an upper bound for the average of ikS2 (β). We first have

1

Kδ

∑

k>0,k∈2Z
ψ

(

k − 1−K

Kδ

)

ikS2 (β) = 2π
∑

LM=N

µ (L)

L

∑

l<Kβ

l|L∞

∑

m<T 1+ǫ

gcd(m,N)=1

1

ml
w
(m

T

)

×
∑

c<2ml
M |c, c 6=ml

S (m2l2, n; c)

c

1

Kδ

∑

k>0,k∈2Z
ψ

(

k − 1−K

Kδ

)

Jk−1

(

4πml
√
n

c

)

. (3.17)

Let x := 4πml
√
n

c
. Then we have x > 2π

√
n≫ K, because we assumed thatK−4π

√
n =

o
(

n
1

6

)

. Let η > 1− 3δ > 0 be a constant to be chosen later. Note that

|x−K| < Kη+δ

implies that
∣

∣

∣

∣

ml

c
− 1

∣

∣

∣

∣

< 2Kη+δ−1.

We assume that η is chosen sufficiently close to 1 − 3δ so that the exponent η + δ − 1 is

negative. In order to apply Lemma 3.1, we now split the sum (3.17) into two ranges

1. c < 2ml and |ml
c
− 1| > 2Kη+δ−1, and

2. c < 2ml and |ml
c
− 1| < 2Kη+δ−1,



Asymptotic trace formula 25

each of which has a restriction on the sum over c ≡ 0 (mod M). We denote the sums by

S2,1 and S2,2 respectively, so that (3.17) is equal to S2,1 +S2,2. By (3.1), (3.17), and (2.7),

we have

S2,1 ≪A,η,δ

∑

l<Kβ

l|N∞

∑

m<T 1+ǫ

gcd(m,N)=1

1

ml

∑

c<2ml

∣

∣

∣

∣

S (m2l2, n; c)

c

∣

∣

∣

∣

K−A

≪A,η,δ,ǫ K
−A
∑

l<Kβ

l|N∞

∑

m<T 1+ǫ

gcd(m,N)=1

1

ml

∑

c<2ml

√

gcd (m,n, c)c−
1

2
+ǫ

≪A,η,δ,ǫ T
1

2
+ǫK−A. (3.18)

For S2,2, we apply (2.7) and (3.2), yielding

S2,2 ≪
∑

l<Kβ

l|N∞

∑

m<T 1+ǫ

gcd(m,N)=1

1

ml

∑

|ml
c
−1|<2Kη+δ−1

c 6=ml

∣

∣

∣

∣

S (m2l2, n; c)

c

∣

∣

∣

∣

K− 1

3

≪ǫ,N K− 1

3

∑

l<Kβ

l|N∞

∑

m<T 1+ǫ

1

ml

√

gcd (m,n)
∑

|ml
c
−1|<2Kη+δ−1

c 6=ml

c−
1

2
+ǫ

≪ǫ,N K− 1

3

∑

l<Kβ

l|N∞

∑

m<T 1+ǫ

1

ml

√

gcd (m,n)
(ml)

1

2
+ǫ

K1−η−δ

≪ǫ,N K− 1

3

∑

l<Kβ

l|N∞

∑

m<T 1+ǫ

√

gcd (m,n)
(ml)−

1

2
+ǫ

K1−η−δ

≪ǫ,N T
1

2
+ǫK− 1

3
−1+η+δ. (3.19)

Therefore, by inequalities (3.16), (3.18), and (3.19), we have

1

Kδ

∑

k>0,k∈2Z
ψ

(

k − 1−K

Kδ

)

12(−1)
k
2

(k − 1)N
Tr Tn (N, k)∗

= πJK
(

4π
√
n
) µ (N)

N

1

ζ (2)

σ (n)

n
(1 + o(1))

+OA,η,δ,ǫ



T− 1

2K−1−δ+ǫ
∑

|k−K|<Kδ

M1(k) + T
1

2K− 1

3
−β

2
+ǫ + T

1

2
+ǫK− 1

3
−1+η+δ + T−1K− 1

3
+ǫ



 .

In order to bound the contribution from
∑M1(k), we recall from [LS03] that

∑

|k−K|<Kθ

∫ (log k)2

−(log k)2

∑

f∈B∗
k,N

∣

∣

∣

∣

L

(

1

2
+ it, sym2f

)∣

∣

∣

∣

2

dt≪ǫ,θ K
1+θ+ǫ
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provided that θ > 1/3. This in particular implies that





∑

|k−K|<Kδ

M1(k)





2

≤
∑

|k−K|<Kδ

∑

f∈B∗
k,N

∫ (log k)2

−(log k)2
dt

∑

|k−K|<Kθ

∫ (log k)2

−(log k)2

∑

f∈B∗
k,N

∣

∣

∣

∣

L

(

1

2
+ it, sym2f

)∣

∣

∣

∣

2

dt

≪ǫ,θ K
2+θ+δ+ǫ,

by the Cauchy–Schwarz inequality. We therefore have
∑

|k−K|<Kδ

M1(k) ≪ǫ K
7

6
+ δ

2
+ǫ,

and so by choosing β large enough, T = K
1

2
+ 3

2
δ, and η = 1− 3δ + ǫ, we conclude that

1

Kδ

∑

k>0,k∈2Z

1

k − 1
ψ

(

k − 1−K

Kδ

)

12(−1)
k
2

N
Tr Tn (N, k)∗

= πJK
(

4π
√
n
) µ (N)

N

1

ζ (2)

σ (n)

n
(1 + o(1)) +Oǫ,δ(K

− 1

12
− 5

4
δ+ǫ).

In order to complete the proof, note that

1

k − 1
− 1

K
=
K − k + 1

(k − 1)K
= O(Kδ−2),

and that

Tr Tn (N, k)∗ ≪ σ(n)K.

So the error that occurs when replacing 1
k−1

by 1
K

in the left hand side of the equation is

≪ σ(n)Kδ−1.

Assuming that 1
5
< δ < 1

3
and rearranging lead to the final expression in Theorem 1.2.

3.3 Proof of Theorem 1.1

Proof. The method of the proof is similar to the proof of Theorem 1.6. Let Un (x) be the

nth Chebyshev polynomial of the second kind. A quick computation shows that

∫ 2

−2

Un

(x

2

)

dµp (x) =

{

1

p
n
2

if n is even

0 otherwise.

By Theorem 1.2, there exists kn ∈ [⌊4π√pn⌋ − p
n
6 , ⌊4π√pn⌋+ p

n
6 ] such that

∫ 2

−2

Un

(x

2

)

dµp (x)−
∫ 2

−2

Un

(x

2

)

dµ∗
kn,N ≫ k

− 1

3
n .
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By the above inequality and by integration by parts with the upper bound |U ′
n(x)| ≪ n2,

we have

D
(

µ∗
kn,N , µp

)

≫ 1

n2k
1

3
n

.

We complete the proof of Theorem 1.1 by observing that n≪ log kn.

4 The Eichler–Selberg trace formula

The main purpose of this section is to prove Theorem 1.3 and Theorem 1.4. We first recall

the Eichler–Selberg trace formula. We use the version from [MS09, Theorem 10] (see

also [Ser97]).

Theorem 4.1 (The Eichler–Selberg trace formula). For every positive integer n ≥ 1, the

trace Tr of Tn = Tn (k,N) acting on Sk (N) is given by

Tr Tn = A1 (n, k,N) + A2 (n, k,N) + A3 (n, k,N) + A4 (n, k) ,

where Ai (n, k)’s are as follows:

A1 (n, k,N) =

{

k−1
12
ν (N) 1√

n
if n is a square

0 otherwise
where ν (N) = N

∏

p|N

(

1 +
1

p

)

.

A2 (n, k,N) = −1

2
n− k−1

2

∑

t∈Z, t2<4n

ρk−1
t,n − ρ̄k−1

t,n

ρt,n − ρ̄t,n

∑

f

hw

(

t2 − 4n

f 2

)

µ (t, f, n,N) ,

where ρt,n and ρ̄t,n are zeros of x2 − tx + n, and the inner sum runs over all positive

divisors f of t2 − 4n such that (t2 − 4n) /f 2 ∈ Z is congruent to 0 or 1 (mod 4). The

function µ (t, f, n,N) is given by

µ (t, f, n,N) =
ν (N)

ν (N/Nf)
M (t, n,NNf ) ,

where Nf = gcd (N, f) and M (t, n,K) denotes the number of solutions of the congru-

ence x2 − tx+ n ≡ 0 (mod K). Next,

A3 (n, k,N) = −n− k−1

2

∑

d|n, 0<d≤√
n

dk−1
∑

c|N,gcd(c,Nc )| gcd(N,
n
d
−d)

ϕ

(

gcd

(

c,
N

c

))

.

Here, ϕ is Euler’s totient function, and in the first summation, if there is a contribution

from the term d =
√
n, it should be multiplied by 1

2
. Finally,

A4 (n, k) =

{

n− 1

2

∑

t|n t if k = 2,

0 otherwise.
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To relate the trace of Tn acting on Sk (N) and the trace of its restriction T ∗
n to Sk (N)∗,

one may use Atkin–Lehner decomposition for squarefree integers N to derive (see for

instance, [Ham98, Equation (2)])

Tr Tn (k,N) =
∑

d|N
σ (N/d) Tr T ∗

n (d, k) ,

and by Möbius inversion, this implies that

Tr T ∗
n (N, k) =

∑

d|N
σ (N/d)µ (N/d)Tr Tn (d, k) . (4.1)

Therefore we have the following.

Lemma 4.2. Assume that N is a squarefree integer. For every positive integer n ≥ 1, the

trace Tr of Tn = Tn (k,N) restricted to Sk (N)∗ is given by

Tr T ∗
n = B1 (n, k,N) +B2 (n, k,N) +B3 (n, k,N) +B4 (n, k,N) ,

where Bi (n, k)’s are as follows:

B1 (n, k,N) =

{

k−1
12
ϕ (N) 1√

n
if n is a square,

0 otherwise.

B2 (n, k,N) = −1

2
n− k−1

2

∑

t∈Z, t2<4n

ρk−1
t,n − ρ̄k−1

t,n

ρt,n − ρ̄t,n

∑

f

hw

(

t2 − 4n

f 2

)

µ̃ (t, f, n,N) ,

where ρt,n and ρ̄t,n are zeros of x2 − tx + n, and the inner sum runs over all positive

divisors of t2 − 4n such that (t2 − 4n) /f 2 ∈ Z is congruent to 0 or 1 (mod 4). The

function µ̃ (t, f, n,N) is given by

µ̃ (t, f, n,N) =
∑

d|N
σ (N/d)µ (N/d)µ (t, f, n, d) .

B3 (n, k,N) =

{

−n− k−1

2

∑

d|n, 0<d≤√
n d

k−1 if N = 1,

0 otherwise.

In the first summation, if there is a contribution from the term d =
√
n, it should be

multiplied by 1
2
.

B4 (n, k,N) =

{

µ (N)n− 1

2

∑

t|n t if k = 2,

0 otherwise.

Proof. This follows from Theorem 4.1 and (4.1).
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4.1 Analytic setup

Let φ be a positive even rapidly decaying function whose Fourier transform φ̂ is supported

in
[

− 1
100
, 1
100

]

. In this section, we study the second moment of B2:

∑

k>0,k∈2Z
φ

(

k − 1

T

)

|B2 (n, k,N)|2 = 1

2

∑

k∈2Z
φ

(

k − 1

T

)

|B2 (n, k,N)|2 , (4.2)

where we used B2 (n, k,N) = −B2 (n, 2− k,N).

We first collect some preliminary estimates.

Lemma 4.3. We have

|Sk (N)∗ | = k − 1

12
ϕ (N) +ON (1) , (4.3)

and

B2 (n, k,N) ≪N σ1 (n) . (4.4)

Proof. The asymptotic (4.3) follows from [MS09, Theorem 13] and (4.1).

To prove (4.4), note that
∣

∣

∣

∣

∣

n− k−1

2

ρk−1
t,n − ρ̄k−1

t,n

ρt,n − ρ̄t,n

∣

∣

∣

∣

∣

≤ 2

|ρt,n − ρ̄t,n|
=

2√
4n− t2

≤ 2.

Therefore

|B2 (n, k,N) | ≤ 2
∑

t2<4n

∑

f

hw

(

t2 − 4n

f 2

)

µ̃ (t, f, n,N) ≪N σ1 (n) ,

where we combined Lemma 16 [MS09] and the trivial upper bound µ̃ (t, f, n,N) ≪N 1

in the last estimate.

For t ∈ Z such that t2 < 4n, define 0 < θt,n < π by

√
neiθt,n =

1

2

(

t+ i
√
4n− t2

)

.

We record some trivial estimates regarding θt,n’s.

Lemma 4.4. For an integer t such that t2 < n, we have

π − 1

2
√
n
θt,n ≥ 1

2
√
n
,

and

θt,n − θt+1,n ≥ 1

2
√
n
.
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Proof. We have

sin θt,n =

√
4n− t2

2
√
n

≥ 1

2
√
n
.

Also,

ei(θt,n−θt+1,n) =
1

4n

(

t+ i
√
4n− t2

)

(

t+ 1− i

√

4n− (t+ 1)2
)

,

so

sin (θt,n − θt+1,n) =
1

4n

(

(t + 1)
√
4n− t2 − t

√

4n− (t+ 1)2
)

=
1

4n

(t+ 1)2 (4n− t2)− t2
(

4n− (t + 1)2
)

(t + 1)
√
4n− t2 + t

√

4n− (t + 1)2

=
2t+ 1

(t+ 1)
√
4n− t2 + t

√

4n− (t + 1)2

≥ 1√
4n
.

We define DN (t, n) by

DN (t, n) =
i

2
√
4n− t2

∑

f

hw

(

t2 − 4n

f 2

)

µ̃ (t, f, n,N) ,

where the inner sum runs over all positive divisors f of t2−4n such that (t2 − 4n) /f 2 ∈ Z

is congruent to 0 or 1 (mod 4). Then we may write B2 (n, k,N) as

B2 (n, k,N) =
∑

t∈Z, t2<4n

(

ei(k−1)θt,n − e−i(k−1)θt,n
)

DN (t, n) .

Then expanding (4.2) and using DN (t, n) = −DN (−t, n), we get

∑

k∈2Z
φ

(

k − 1

T

)

|B2 (n, k,N)|2

=4
∑

k∈2Z
φ

(

k − 1

T

)

∑

t2<4n

|DN (t, n) |2

+
∑

t1 6=t2

∑

k∈2Z
φ

(

k − 1

T

)

e±i(k−1)(θt1,n−θt2,n)DN (t1, n)DN (t2, n)

−
∑

t1 6=−t2

∑

k∈2Z
φ

(

k − 1

T

)

e±i(k−1)(θt1,n+θt2,n)DN (t1, n)DN (t2, n)

=D +OD, (4.5)

where the diagonal part D comes from θt1,n+ θt2,n = π and from θt1,n = θt2,n, and the off

diagonal part OD amounts to remaining terms. Note from Lemma 4.4 that, unless it is an
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integer multiple of π, θt1,n ± θt2,n are contained in
[

1
2
√
n
, π − 1

2
√
n

]

modulo π. Therefore

we have

OD ≪ sup
θ∈

[

1

2
√

n
,π− 1

2
√

n

]

∣

∣

∣

∣

∣

∑

k∈2Z
φ

(

k − 1

T

)

ei(k−1)θ

∣

∣

∣

∣

∣

∑

t1,t2

|DN (t1, n)DN (t2, n) |

≪N sup
θ∈

[

1

2
√

n
,π− 1

2
√

n

]

∣

∣

∣

∣

∣

∑

k∈2Z
φ

(

k − 1

T

)

ei(k−1)θ

∣

∣

∣

∣

∣

σ1 (n)
2 . (4.6)

Lemma 4.5. Let T ≥ √
n. Then for any θ that satisfies θ ∈

[

1
2
√
n
, π − 1

2
√
n

]

, we have

∑

k∈2Z
φ

(

k − 1

T

)

ei(k−1)θ = 0,

and as a result

∑

k∈2Z
φ

(

k − 1

T

)

|B2 (n, k,N)|2 = 4
∑

k∈2Z
φ

(

k − 1

T

)

∑

t2<4n

|DN (t, n) |2.

Proof. From the Poisson summation formula we have

∑

k∈2Z
φ

(

k − 1

T

)

ei(k−1)θ =
∑

n∈Z
φ

(

2n− 1

T

)

ei(2n−1)θ =
∑

m∈Z
Φ (m) , (4.7)

where

Φ (y) =
T

2
e−πiyφ̂

(

T (πy − θ)

2π

)

.

In the last expression, for any m ∈ Z, we have
∣

∣

∣

∣

T (πm− θ)

2π

∣

∣

∣

∣

≥ 1

4π
,

and since φ̂ is assumed to be supported in
[

− 1
100
, 1
100

]

, the right-hand side of (4.7) van-

ishes.

We are ready to prove the following.

Lemma 4.6. Let N > 1 be a fixed square-free integer. Let φ be a positive even rapidly

decaying function whose Fourier transform φ̂ is supported in
[

− 1
100
, 1
100

]

. Let T ≥ √
n.

Then we have

∑

k>0,k∈2Z
φ

(

k − 1

T

) ∣

∣

∣

∣

Tr T ∗
n − k − 1

12
ϕ (N)

δ (n,�)√
n

∣

∣

∣

∣

2

= 2
∑

k∈2Z
φ

(

k − 1

T

)

∑

t2<4n

|DN (t, n) |2 − φ

(

1

T

)

σ1 (n)
2

n
+Oǫ

(

n
1

2
+ǫ
)

. (4.8)
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Proof. By Lemma 4.2, for N > 1 we have

B3 (n, k,N) = 0.

The summand of the left-hand side of (4.8) agrees with B2 (n, k,N) unless k = 2, so

from (4.2), (4.5), (4.6), and Lemma 4.5, we have

∑

k>0,k∈2Z
φ

(

k − 1

T

) ∣

∣

∣

∣

Tr T ∗
n − k − 1

12
ϕ (N)

δ (n,�)√
n

∣

∣

∣

∣

2

= 2
∑

k∈2Z
φ

(

k − 1

T

)

∑

t2<4n

|DN (t, n) |2

+ φ

(

1

T

)

(

∣

∣

∣

∣

Tr T ∗
n − 1

12
ϕ (N)

δ (n,�)√
n

∣

∣

∣

∣

2

− |B2 (n, 2, N) |2
)

+Oǫ

(

n
1

2
+ǫ
)

.

By Lemma 4.2, for k = 2 and N > 1 we have

B2 (n, 2, N) = Tr T ∗
n − 1

12
ϕ (N)

δ (n,�)√
n

− µ (N)
σ1 (n)√

n
.

By the Ramanujan bound for weight 2 modular forms, we have

Tr T ∗
n ≪ǫ,N nǫ.

Hence,

∣

∣

∣

∣

Tr T ∗
n − 1

12
ϕ (N)

δ (n,�)√
n

∣

∣

∣

∣

2

− |B2 (n, 2, N) |2 = −σ1 (n)
2

n
+Oǫ

(

n
1

2
+ǫ
)

.

4.2 Arithmetic sum

In this section, we estimate the arithmetic part of (4.8):

∑

t2<4n

|DN (t, n) |2.

Theorem 4.7. Assume that n is odd. Then we have

√
n≪N

∑

t2<4n

|DN (t, n) |2 ≪N

√
n (log n)2 (log log n)4 .

Recall that

DN (t, n) =
i

2
√
4n− t2

∑

f

hw

(

t2 − 4n

f 2

)

µ̃ (t, f, n,N) ,
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where the inner sum runs over all positive divisors f of t2−4n such that (t2 − 4n) /f 2 ∈ Z

is congruent to 0 or 1 (mod 4). µ̃ (t, f, n,N) is given by

µ̃ (t, f, n,N) =
∑

d|N
σ (N/d)µ (N/d)µ (t, f, n, d) ,

and µ (t, f, n,N) is given by

µ (t, f, n,N) =
ν (N)

ν (N/Nf)
M (t, n,NNf ) ,

where Nf = gcd (N, f) and M (t, n,K) denotes the number of solutions of the congru-

ence x2 − tx+ n ≡ 0 (mod K).

Denote byH (n) =
∑

f2|n hw (−n/f 2) the Hurwitz class number. For the upper bound

for the arithmetic sum, we write
∑

t2<4n

DN (t, n)2 ≪N

∑

t2<4n

1

4n− t2
H2
(

t2 − 4n
)

, (4.9)

using the estimate µ (t, f, n,N) ≪N 1.

For the lower bound, we first prove the following.

Lemma 4.8. Assume that n is odd. Fix an odd integer 0 < n0 < 2N such that
(

n2
0
−4n

p

)

=

−1 for all odd primes p|N . Then µ̃ (t, f, n,N) = σ (N)µ (N) for any t ≡ n0 (mod 2N).

Proof. For such t, we have µ (t, f, n, d) = 0 unless d = 1 or 2. So for an odd N ,

µ̃ (t, f, n,N) = σ (N) µ (N) .

When N is even, we have

µ̃ (t, f, n,N) = σ (N)µ (N) + σ (N/2)µ (N/2)µ (t, f, n, 2)

= σ (N/2)µ (N/2) (µ (t, f, n, 2)− 2) ,

where

µ (t, f, n, 2) =M (t, n, 2) ,

because gcd (N, f) | gcd (N, t2 − 4n) = 1. Then M (t, n, 2) = 0 since both n and t are

assumed to be odd, and therefore

µ̃ (t, f, n,N) = σ (N/2)µ (N/2)× (−2) = σ (N)µ (N) .

Using this lemma, we bound the arithmetic sum from the below under the assumption

that n is odd as follows:

∑

t2<4n

DN (t, n)2 ≥
∑

t2<4n
t≡n0 (mod 2N)

DN (t, n)2 =
∑

t2<4n
t≡n0 (mod 2N)

σ (N)2

4n− t2
H2
(

t2 − 4n
)

≥
∑

t2<4n
t≡n0 (mod 2N)

1

4n− t2
H2
(

t2 − 4n
)

. (4.10)
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We now handle the right-hand sides of (4.9) and (4.10) separately.

4.2.1 Upper bound

We first recall from [Coh75, p.273, c)] that for n = Df 2 < 0,

H (n) =
h (D)

w (D)

∑

d|f
µ (d)χD (d)σ1

(

f

d

)

, (4.11)

where 2w (D) is the number of units in Q
(√

−D
)

. Note that

∑

d|f
µ (d)χD (d)σ1

(

f

d

)

is multiplicative in f , and

∑

d|pk
µ (d)χD (d)σ1

(

pk

d

)

= σ1
(

pk
)

− χD (p) σ1
(

pk−1
)

≤ σ1
(

pk
)

+ σ1
(

pk−1
)

<

(

1 +
1

p

)

σ1
(

pk
)

.

Therefore

∑

d|f
µ (d)χD (d)σ1

(

f

d

)

< σ1 (f)
∏

p|f

(

1 +
1

p

)

≪ f (log log f)2 ,

where we used Grönwall’s theorem in the last inequality. Using a standard upper bound

h (D) ≪
√
D logD yields

H (n) ≪
√
Df logD (log log f)2 ≪

√
n log n (log log n)2 .

Now we apply this to (4.9) to conclude that
∑

t2<4n

DN (t, n)2 ≪N

√
n (log n)2 (log logn)4 .

4.2.2 Lower bound

From the Cauchy–Schwarz inequality,

∑

t2<4n
t≡n0 (mod 2N)

1

4n− t2
H2
(

t2 − 4n
)

∑

t2<4n
t≡n0 (mod 2N)

(

4n− t2
)

≥









∑

t2<4n
t≡n0 (mod 2N)

H
(

t2 − 4n
)









2

,
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and so we have

∑

t2<4n
t≡n0 (mod 2N)

1

4n− t2
H2
(

t2 − 4n
)

≫ n− 3

2





∑

t2<4n, t≡n0 (mod 2N)

H
(

t2 − 4n
)





2

.

Let r3 (n) be the number of ways of representing n as a sum of three squares. Then Gauss’

formula (see for instance, [KO99, Equation (1)]) asserts that

r3 (n) =



















12H (−4n) n ≡ 1, 2 (mod 4)

24H (−n) n ≡ 3 (mod 8)

r
(

n
4

)

n ≡ 0 (mod 4)

0 n ≡ 7 (mod 8)

.

Observe from (4.11) that if 4 ∤ m, then

H
(

4km
)

= H (m)
(

σ1
(

2k
)

− χD (2) σ1
(

2k−1
))

,

and so

2kH (m) ≤ H
(

4km
)

≤
(

2k+1 + 2k − 2
)

H (m) .

Combining all these, we conclude that

r3 (n) ≤ 48H (−n) .

Therefore we have

48
∑

t2<4n, t≡n0 (mod 2N)

H
(

t2 − 4n
)

≥
∑

t2<4n, t≡n0 (mod 2N)

r3
(

4n− t2
)

,

and observe that the last sum is equal to the number of elements in the following set:

A2N (n) := {(x, y, z, t) ∈ Z4 : 4n = t2 + x2 + y2 + z2, t ≡ n0 (mod 2N)}. (4.12)

Note that we assume that n is odd and N is fixed. Kloosterman [Klo27] developed a

version of the classical circle method with no minor arcs for quadratic forms in four

variables. Based on the work of Kloosterman, we have [Sar19, Theorem 1.6]

AN (n) ≫N n.

The work of the second author [Sar19, Theorem 1.6] gives the optimal exponent for strong

approximation for quadratic forms in five and more variables. For quadratic forms in four

variables, it implies the above lower bound with an explicit dependence on N .

This completes the proof of the lower bound in Theorem 4.7.
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4.3 Completion of proofs

In this section, we prove Theorem 1.3, 1.4, and Corollary 1.5.

Proof of Theorem 1.3. This is a simple consequence of combining Lemma 4.6 and Theo-

rem 4.7.

Proof of Theorem 1.4. From Lemma 4.6 and Theorem 4.7, we see that the left-hand side

of (1.6) is

> cN
√
n− σ1 (n)

2

An
√
n

for some constant cN > 0 depending only on N . If n = pm, then σ1 (n) = pm+1−1
p−1

<

2pm = 2n, which implies that

cN
√
n− σ1 (n)

2

An
√
n
>

(

cN − 4

A

)√
n.

Proof of Corollary 1.5. We first note that from [GJS99, (61)] that for n = pm,
∣

∣

∣

∣

Tr Tn (k,N)∗ − |B∗
k,N |

δ (n,�)√
n

∣

∣

∣

∣

≤ 2m2|B∗
k,N |D

(

µ∗
k,N , µp

)

.

By (4.3) and Young’s inequality 2x2 + 2y2 ≥ (x+ y)2,

2

∣

∣

∣

∣

Tr Tn (k,N)∗ − |B∗
k,N |

δ (n,�)√
n

∣

∣

∣

∣

2

≥
∣

∣

∣

∣

Tr Tn (k,N)∗ − k − 1

12
ϕ (N)

δ (n,�)√
n

∣

∣

∣

∣

2

+O
(

n−1
)

.

Now from Theorem 1.4, we have

1
∑

k∈2Z φ
(

k−1
K

)

∑

k>0,k∈2Z
φ

(

k − 1

K

)

m4|B∗
k,N |2D

(

µ∗
k,N , µp

)2 ≫N n
1

2 , (4.13)

where K = A
√
n for some fixed sufficiently large A. Suppose in order to obtain a con-

tradiction that

D
(

µ∗
k,N , µp

)

= o

(

1

k
1

2 (log k)2

)

. (4.14)

Then from (4.13), we have

n
1

2 ≪ 1
∑

k∈2Z φ
(

k−1
K

)

∑

k>0,k∈2Z
φ

(

k − 1

K

)

m4|B∗
k,N |2D

(

µ∗
k,N , µp

)2

= o

(

1

K

∑

k>0,k∈2Z
φ

(

k − 1

K

)

m4 k

(log k)4

)

.
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However,
1

K

∑

k>0,k∈2Z
φ

(

k − 1

K

)

m4 k

(log k)4
≪ m4 K

(logK)4
≪

√
n

contradicting the assumption (4.14).

5 Appendix: By Simon Marshall

The purpose of this appendix is to illustrate the geometric origin of the transition behavior

of the J-Bessel function, by recalling the derivation of the Petersson trace formula as a

relative trace formula following [KL06]. Let G = PSL2 (R), and Γ = PSL2 (Z). Let

k ≥ 2 be even, and define f ∈ C∞ (G) by

f (g) =
k − 1

4π

(2i)k

(−b + c+ (a+ d) i)k
, g =

(

a b
c d

)

.

This is the L2-normalized matrix coefficient of the lowest weight vector in the weight k

discrete series [KL06, Section 3.1]. We form the function

KΓ (x, y) =
∑

γ∈Γ
f
(

x−1γy
)

on (Γ\G)2. The Petersson trace formula can be proved by integrating KΓ (x, y) against

characters over two horocycles on Γ\G, and comparing the geometric and spectral expan-

sions of KΓ. More precisely, if m,n ≥ 1 and we define

σn =

(

k/4πn
1

)

,

and likewise for σm, then the integral we wish to expand is

∫ 1

0

∫ 1

0

KΓ

((

1 x
1

)

σn,

(

1 y
1

)

σm

)

e (−nx +my) dxdy.

Note that the heights we have chosen for our horocycles are optimal for picking up the

nth and mth Fourier coefficients on the spectral side.

We shall analyze the geometric side of this integral, which is

∫ 1

0

∫ 1

0

∑

γ∈Γ
f

(

σ−1
n

(

1 −x
1

)

γ

(

1 y
1

)

σm

)

e (−nx +my) dxdy.

We break the sum over γ into double cosets NηN , which gives

∑

η∈N\Γ/N

∫ 1

0

∫ 1

0

∑

γ∈NηN
f

(

σ−1
n

(

1 −x
1

)

γ

(

1 y
1

)

σm

)

e (−nx +my) dxdy.
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The contribution from the identity coset is

∫ 1

0

∫ 1

0

∑

γ∈N
f

(

σ−1
n

(

1 −x
1

)

γ

(

1 y
1

)

σm

)

e (−nx+my) dxdy.

This vanishes unless m = n, in which case it is

4πn

k

∫ ∞

−∞
f

((

1 x
1

))

dx,

i.e., the integral of f over the horocycle of height 1. If η 6= 1, there is no repetition among

the elements n1γn2, and so we may unfold the two integrals to obtain

Iη =

∫ ∞

−∞

∫ ∞

−∞
f

(

σ−1
n

(

1 −x
1

)

η

(

1 y
1

)

σm

)

e (−nx +my) dxdy. (5.1)

This integral has a simple geometric meaning, as the integral of the kernel K (x, y) =

f (x−1y) against characters over the two horocycles Nσn and ηNσm. If we write η =
(

a b
c d

)

with c > 0, then c corresponds to the index of summation on the geometric side

of the Petersson formula. Moreover, the ranges c < 4π
√
mn/k, c = 4π

√
mn/k, and

c > 4π
√
mn/k correspond to the oscillation, transition, and decay range of the J-Bessel

function in the following way. We shall use the fact that the kernelK concentrates near the

diagonal in H2 × H2. If c < 4π
√
mn/k, then the two horocycles intersect transversally.

The integrand is roughly supported on two balls of radius k−
1

2 and has magnitude k, and

we have Iη ∼ 1 as expected. If c > 4π
√
mn/k then the horocycles do not intersect, and

Iη ≪N k−N . The case c = 4π
√
mn/k is where the horocycles are tangent, and so the

integral is roughly supported on a ball of radius k−
1

4 . One might expect Iη ∼ k
1

2 from

this, but in fact it is of size k
1

6 . As we shall see below, the point is that the phase in (5.1)

has a cubic degeneracy, and this (rather than the support) determines the size of Iη.

We now explicate the relation between Iη and the geometric side of the Petersson

formula, and analyze the phase of the integral in the transition range. Writing η =

(

a b
c d

)

with c > 0, the double coset NηN is determined by c and the residue class of a mod c.

Moreover, we have
(

a b
c d

)

=

(

1 a/c
1

)(

−1/c
c

)(

1 d/c
1

)

.

Changing variable in x and y by a translation, we have

Iη = e (− (na+md) /c)

×
∫ ∞

−∞

∫ ∞

−∞
f

(

σ−1
n

(

1 −x
1

)(

−1/c
c

)(

1 y
1

)

σm

)

e (−nx+my) dxdy.
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Conjugating the matrices σn and σm though to the middle and changing variable gives

Iη = e (− (na+md) /c)
k2

(4π)2mn
∫ ∞

−∞

∫ ∞

−∞
f

((

1 −x
1

)(

−4πn/kc
kc/4πm

)(

1 y
1

))

e (k (−x+ y) /4π) dxdy.

If we define

A (t, k) =

∫ ∞

−∞

∫ ∞

−∞
f

((

1 −x
1

)(

−1/t
t

)(

1 y
1

))

e (k (−x+ y) /4π) dxdy,

then the contribution from all η with a given value of c is

k2

(4π)2mn
S (m,n, c)A

(

kc/4π
√
mn, k

)

.

In [KL06, Prop. 3.6], Knightly and Li calculate

A (t, k) =
e−kik4πkk−1

2t (k − 2)!
Jk−1 (k/t) ∼

k
1

2

t
Jk−1 (k/t) ,

which gives the required appearance of Jk−1 on the geometric side.

One again sees the geometric meaning of A (t, k). It is an integral of K (x, y) against

characters over a horocycle of height 1, and a horocycle corresponding to the point 0 ∈
∂H2 and whose highest point is at i/t2. One therefore expects a transition of A (t, k) at

t = 1, and this corresponds to c = 4π
√
mn/k as claimed above. We now write A (1, k)

as an oscillatory integral (with non-imaginary phase function), and examine its critical

point. Using our formula for f gives

f

((

1 −x
1

)(

−1
1

)(

1 y
1

))

= f

((

−x −1− xy
1 y

))

=
k − 1

4π
ik
(

1 +
xy

2
+ i

(y − x)

2

)−k

=
k − 1

4π
ik exp

(

−k log
(

1 +
xy

2
+ i

(y − x)

2

))

.

Computing the Taylor expansion of log
(

1 + xy
2
+ i (y−x)

2

)

gives

log

(

1 +
xy

2
+ i

(y − x)

2

)

=
xy

2
+ i

(y − x)

2
− 1

2

(

−(y − x)2

4
+ i

xy (y − x)

2

)

− 4i (y − x)
3

2 +O
(

x4 + y4
)

=
(x+ y)2

8
+ i

(

(y − x)

2
− xy (y − x)

4
− 4 (y − x)

3

2

)

+O
(

x4 + y4
)

.
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Substituting this into A (1, k) gives

A (1, k) =
k − 1

4π
ik×

∫∫

R2

exp

(

−k (x+ y)2

8
+ ik

(

xy (y − x)

4
+

(y − x)3

24

)

+ kO
(

x4 + y4
)

)

dxdy.

The leading term −k (x+ y)2 /8 in the phase truncates the integral to the line x + y = 0

at scale k−
1

2 , and along this line the leading term in the phase is imaginary with a cubic

degeneracy. This is why one has A (1, k) ∼ k
1

6 compared to A (t, k) ∼ 1 for t < 1.
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