
A REMARK ON CONNECTIVE K-THEORY

NIKITA A. KARPENKO

Abstract. Let X be a smooth algebraic variety over an arbitrary field. Let φX be the
canonical surjective homomorphism of the Chow ring of X onto the ring associated with
the Chow filtration on the Grothendieck ring K(X). We remark that φX is injective
if and only if the connective K-theory CK(X) coincides with the terms of the Chow
filtration on K(X). As a consequence, CK(X) turns out to be computed for numerous
flag varieties (under semisimple algebraic groups) for which the injectivity of φX had
already been established. This especially applies to the so-called generic flag varieties
X of many different types, identifying for them CK(X) with the terms of the explicit
Chern filtration on K(X).
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1. Introduction

Let F be an arbitrary field, let G be a split semisimple algebraic group over F , and let
P be one of its parabolic subgroups. For any G-torsor E over any extension field of F ,
the quotient X := E/P is a variety of parabolic subgroups (a flag variety for short) in the
(possibly non-split) semisimple group AutGE, a twisted form of G over the extension. We
call the flag variety X generic, provided that E is a (standard) generic G-torsor, i.e., the
generic fiber of the quotient map GL(n) → GL(n)/G for an embedding of G into GL(n).

Assume that P is special, i.e., all P -torsors over all extension fields of F are trivial.
(For instance, P can be a Borel subgroup of G.) The following conjecture appears first
in [6, §1] in form of a question. It deals with the canonical (surjective) homomorphism of
graded rings

φX : CH(X) → ChowK(X),
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where CH(X) is the Chow ring, K(X) is the Grothendieck ring of X, and ChowK(X) is
the ring associated with the Chow filtration (i.e., the filtration by codimension of supports
of coherent sheaves) on K(X).

Conjecture 1.1 ([5, Conjecture 1.1]). The homomorphism φX is an isomorphism.

Being recently disproved for G = Spin(17) by Yagita in [10] (see also [4]), Conjecture
1.1 has been confirmed for many other G. (For instance, the 2-local version for G of type
E7 is proved in the very [4].) An overview of some positive cases is given in [5]. (On the
other hand, for many G it is still unknown if the above conjecture holds or fails.)

For an arbitrary smooth varietyX, the homomorphism φX provides a sort of connection
between the Chow theory of X and its K-theory. Another standard way to connect those
two theories goes through the connective K-theory CK(X) (see §2). In this note we
remark that Conjecture 1.1 can be expressed in terms of CK(X). Namely, we prove (see
Theorem 2.2) that the injectivity of φX actually means CK(X) coincides with the terms
of the Chow filtration on K(X).

Note that K(X) is computed for arbitrary flag variety X, but not the Chow filtration,
which is a finer invariant and remains quite mysterious. However, for a generic flag variety
X given by a special parabolic P , as in Conjecture 1.1, the Chow filtration coincides
with the explicitly computable Chern filtration (more known under the name of gamma
filtration), introduced by Grothendieck (see §3). So, Conjecture 1.1 for a given X turns
out to be equivalent to the complete computation of CK(X).

2. The remark

For any smooth algebraic variety X over an arbitrary field F (of arbitrary character-
istic), we write CK(X) =

⊕
i∈ZCK

i(X) for the connective K-theory ring of X, graded
by codimension. Our main reference for the connective K-theory is [2] (see also [1]) and
our CKi(X) is the group CKi,−i(X) of [2, §6.4]. (We only work with small cohomology
theories and, in particular, do not use the higher connective K-theory groups here.) To
recall the definition of CKi(X), let M i(X) be the Grothendieck group of the category of
coherent sheaves on X with codimension of support ≥ i. Then CKi(X) is defined as the
image of the homomorphismM i(X) →M i−1(X) mapping the class of a sheaf to the class
of itself.

Since M i(X) is the Grothendeick group K(X) for i ≤ 0, CKi(X) is identified with
K(X) for such i. Also note that CKi(X) = 0 for i > dimX.

The Grothendieck group K(X) is actually also a ring (with multiplication given by
tensor product of locally-free sheaves) and it is endowed with the Chow filtration (see
[8]), i.e., the filtration by codimension of supports of coherent sheaves:

K(X) = · · · = K(−1)(X) = K(X)(0) ⊃ K(1)(X) ⊃ . . . .

Since K(i)(X) ·K(j)(X) ⊂ Ki+j(X) for any i, j ∈ Z, we may consider a graded ring

K()(X) :=
⊕
i∈Z

K(i)(X),

where K(i)(X) = 0 for i > dimX. Note that, unlike CK, the localization sequence

K(− dimY )(Y ) → K()(X) → K()(U) → 0
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for the theory K(), relating the theory of X with the theory of a smooth closed subvariety
Y ⊂ X and its open complement U , is not always exact at the term K()(X). (Exactness
of the localization sequence for the connective K-theory is a part of [2, Theorem 5.1].)

Finally, we are considering the Chow ring CH(X) =
⊕

i∈ZCH
i(X) of rational equiva-

lence classes of algebraic cycles on X, graded by codimension of cycles. Here we also have
CHi(X) = 0 for i > dimX. Besides, CHi(X) = 0 for i < 0.
The connective K-theory “connects” CH(X) with K(X), or, more precisely, with

K()(X) by means of canonical surjective homomorphisms of graded rings

CK(X) → CH(X) and ψX : CK(X) → K()(X).

By [2, Theorem 7.1], the kernel of the first one is generated by the Bott element β ∈
CK−1(X) defined as the unit of the ring K(X), considered as an element of K(−1)(X) =
CK−1(X).

Abusing notation, let us consider the Laurent polynomial ring K(X)[β±1] in one vari-
able β (which we continue to call Bott element). The ring K()(X) can be defined as the
subring of K(X)[β±1] consisting of the polynomials

∑
i∈Z aiβ

i with ai ∈ K(−i)(X) for all

i. Since β is invertible in K(X)[β±1], it is not a zero divisor in K()(X).
Again by [2, Theorem 7.1], the composition

CK(X)
ψX−−−→ K()(X) ↪→ K(X)[β±1]

is the localization of the ring CK(X) with respect to the element β ∈ CK(X). In partic-
ular, ψX is an isomorphism if and only if β is not a zero divisor in CK(X).
The quotientK()(X)/βK()(X) is the graded ring ChowK(X) associated with the Chow

filtration on K(X). The canonical surjective homomorphism of graded rings

φX : CH(X) → ChowK(X),

mapping the class of a closed subvariety to the class of its structure sheaf, fits into the
commutative square

(2.1)

CK(X)
ψX−−−→ K()(X)y y

CH(X)
φX−−−→ ChowK(X).

We recall that the kernel of φX consists of elements of finite order. More precisely, the
kernel on CHi(X) is trivial for i ≤ 2 and is killed by (i−1)! for i ≥ 1, [3, Example 15.3.6].

Theorem 2.2. For any given smooth algebraic variety X (over an arbitrary field), the
homomorphism ψX is an isomorphism if and only if φX is.

Proof. The homomorphism ψX induces φX by modding out the ideals in CK(X) and in
K()(X) generated by the Bott element. So, φX is an isomorphism provided that ψX is.
Conversely, let us assume that Ker(φX) = 0 and let us take an element x0 ∈ CK(X)

vanishing in K()(X) under ψX . Note that x0 is concentrated in positive degrees:

x0 ∈ CK>0(X) :=
⊕
i>0

CKi(X).
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(We do not need to assume it to be homogeneous.) From the commutative square (2.1),
we conclude that x vanishes also in CH(X), so that x0 = βx1 for some x1 ∈ CK>1(X).
Since β ∈ K()(X) is not a zero divisor, x1 also vanishes in K()(X) under ψX so that
x1 = βx2 and x0 = β2x2 for some x2 ∈ CK>2(X). Continuing this was, we manage to
write x0 as x0 = βixi with some xi ∈ CK>i(X) for any i ≥ 0. But CK>i(X) is trivial for
i = dimX. It follows that x0 and Ker(ψX) are trivial. �
Remark 2.3. Replacing the integer coefficients by rational coefficients for the cohomology
theories in the above considerations, we come to the situation, where φX is an isomorphism
for any X. It follows that ψX with rational coefficients is always an isomorphism as well.
Turning back to the integer coefficients, we see that every element in the kernel of ψX is
of finite order.

3. Applications to flag varieties

Now we fix a semisimple algebraic group G over F and consider a projective homo-
geneous variety (flag variety for short) X under G. In other terms, X is a variety of
parabolic subgroups in G. We fix an algebraic closure F̄ of F and write X̄ for XF̄ . Let
us write down an extended version of Theorem 2.2 which holds for such X:

Theorem 3.1. The following conditions on X are equivalent.

(1) The homomorphism φX is an isomorphism.
(2) The homomorphism ψX is an isomorphism.
(3) The group CK(X) is torsion-free.
(4) The change of field homomorphism CK(X) → CK(X̄) is injective.

Proof. We already know by Theorem 2.2 that (1) and (2) are equivalent. By Remark 2.3,
(3) implies (2). Since the group K()(X) is torsion-free (by [9]), (2) implies (3) as well.
By transfer argument, (3) implies (4). Finally, the group CK(X̄) is torsion-free (e.g.,
because CH(X̄) is torsion-free), implying that φX̄ and ψX̄ are isomorphisms; consequently
(4) implies (3) as well. �

To get the most from Theorem 3.1, let us put more restrictions on X: assume that X
is a generic flag variety (as defined in the introduction) given by a split semisimple group
G and a special parabolic subgroup P ⊂ G. By [7, Corollary 7.4], the Chow filtration on
K(X) coincides in this case with the Chern filtration. Therefore CK(X) is given by the
terms of the Chern filtration as long as Conjecture 1.1 holds for G.

On the other hand, the counter-example of [10] (see also [4]) provides by Theorem 3.1
a generic flag variety X (given by the spinor group Spin(17)) with non-trivial torsion in
CK(X).

Acknowledgements. Theorem 3.1 has been inspired by [10, Lemma 7.5]. I thank
Alexander Merkurjev for useful comments.
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