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Central values of L-functions of cubic twists

Eugenia Rosu

Abstract

We are interested in finding for which positive integers D we have rational solutions for

the equation x3 ` y3 “ D. The aim of this paper is to compute the value of the L-function

LpED, 1q for the elliptic curves ED : x3 ` y3 “ D. For the case of p prime p ” 1 mod 9, two

formulas have been computed by Rodriguez-Villegas and Zagier in [20]. We have computed

formulas that relate LpED, 1q to the square of a trace of a modular function at a CM point.

This offers a criterion for when the integer D is the sum of two rational cubes. Furthermore,

when LpED, 1q is nonzero we get a formula for the number of elements in the Tate-Shafarevich

group and we show that this number is a square when D is a norm in Qr
?

´3s.

1 Introduction

In the current paper we are interested in finding which positive integers D can be written as the

sum of two rational cubes:

x3 ` y3 “ D, x, y P Q. (1)

Despite the simplicity of the problem, an elementary approach to solving the Diophantine

equation fails. However, we can restate the problem in the language of elliptic curves. After

making the equation homogeneous, we get the equation x3 ` y3 “ Dz3 that has a rational point

at 8 “ r1 : ´1 : 0s. Moreover, after a change of coordinates X “ 12D
z

x` y
, Y “ 36D

x´ y

x` y
the

equation becomes:

ED : Y 2 “ X3 ´ 432D2,

which defines an elliptic curve over Q written in its Weierstrass affine form.

Thus the problem reduces to finding if the group of rational points EDpQq of the elliptic curve

ED is non-trivial. We assume D cube free and D ‰ 1, 2 throughout the paper. In this case

EDpQq has trivial torsion (see [23]), thus (1) has a solution iff EDpQq has positive rank. From the

Birch and Swinnerton-Dyer(BSD) conjecture, this is conjecturally equivalent to the vanishing of

LpED, 1q.
Without assuming BSD, from the work of Coates-Wiles [2] (or more generally Gross-Zagier [8]

and Kolyvagin [14]), when LpED, 1q ‰ 0 the rank of EDpQq is 0, thus we have no rational solutions

in p1q.
In the case of prime numbers, Sylvester conjectured that we have solutions in (1) in the case of

D ” 4, 7, 8 mod 9. In the cases of D prime with D ” 2, 5 mod 9, D is not the sum of two cubes.

This follows from a 3-descent argument (given in the 19th century by Sylvester, Lucas and Pepin).

We define the invariant

SD “ LpED, 1q
c3DΩD

,

1

http://arxiv.org/abs/1711.03200v2


where ΩD “
?
3

6π
3
?
D
Γ

ˆ
1

3

˙3

is the real period and c3D “ ś
p|3D

cp is the product of the Tamagawa

numbers cp corresponding to the elliptic curve ED at the unramified places p|3D. The definition

is made such that in the case of LpED, 1q ‰ 0 we expect to get from the full BSD conjecture:

SD “ #XpEDq, (2)

where #X is the order of the Tate-Shafarevich group.

From the work of Rubin [21], LpED, 1q ‰ 0 implies the order of XpEDq is finite. Furthermore,

using the Cassels-Tate pairing, Cassels proved in [1] that when X is finite the order #X is a

square. We actually show that, when D is a norm in Qr
?

´3s, SD is an integer square up to an

even power of 3. Current work in Iwasawa theory shows that for semistable elliptic curves at the

good primes p we have ordpp#Xrp8sq “ ordppSDq, where Xrp8s is the p8-torsion part of X (see

[12]). However, this cannot be applied at the place 3 in our case.

By computing the value of SD, one can determine when we have solutions in (1) and, assuming

the full BSD conjecture, one can find in certain cases the order of X:

(i) SD ‰ 0 ùñ no solutions in (1)

(ii) SD ‰ 0
BSDùùùñ SD “ #X integer square

(iii) SD “ 0
BSDùùùñ have solutions in (1).

The goal of the current paper is to compute several formulas for SD. In [20], Rodriguez-Villegas

and Zagier computed formulas for LpEp, 1q in the case of primes p ” 1 mod 9. In the current

paper we are extending on their results and compute similar formulas for all integers D.

Our main theorem is the following:

Theorem 1.1. For D “ ś
pi”1p3q

peii , SD is an integer square up to an even power of 3.

Theorem 1.1 above follows from the formula for SD presented below. Let K “ Qr
?

´3s. For D

a norm in Qr
?

´3s, we write D “ D1D
2
2 such that D0 “ D1D2 is the radical of D. Let π1, π2 ” 1

mod 3 be elements of norm D1 and D2 respectively. Let σpDq the number of distinct primes

dividing D and ϕ Euler’s totient function.

Theorem 1.2. Using the above notation, let D “ ś
pi”1p3q

peii be a positive integer that is a product

of split primes in K and D0 “ ś
p|D p be its radical. Then SD is an integer square up to an even

power of 3 and we have:

SD “ T 2
D

1

p´3q2`σpDq , (3)

where the term TD{3 is an integer if σpDq is even and TD{
?

´3 is an integer if σpDq is odd.

Moreover, we have the formula:

TD “ 1

ϕpD0q TrHO{K

ˆ
θ1pτq
θ0pτqω

k0π1
´2{3π1{3

2

˙
,

where:
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• θrpzq “
ř
nPZ

p´1qneπipn` r
D

´ 1

6 q2
z, for r “ 0, 1 are theta functions of weight 1{2,

• τ “ ´b`
?

´3
2

is a CM point such that b2 ” ´3 mod 12D2 and pπ1π2q2 divides pτq,

• HO is the ray class field of modulus 3D0,

• ωk0 is the unique cube root of unity that makes TD{3 or TD{
?

´3 an integer.

This theorem follows from a more general result for all integers D prime to 6 that is proved

using automorphic methods:

Theorem 1.3. For all integers D prime to 6, 3c3DSD is an integer and we have the formula:

SD “ 1

3c3D
TrH3D{K

ˆ
D1{3ΘKpDωq

ΘKpωq

˙
, (4)

where ΘKpzq “
ÿ

a,bPZ
e2πizpa2`b2´abq is the theta function of weight one associated to the number

field K “ Qr
?

´3s, ω “ ´1`
?

´3
2

is a third root of unity, and and H3D is the ring class field

associated to the order O3D “ Z ` 3DOK.

Note that each of the elliptic curves ED is a cubic twist of E1. In the case of quadratic twists

of elliptic curves, an important tool in computing the values of the L-functions is the work of

Waldspurger [28]. For example, this is used to obtain Tunnell’s theorem for congruent numbers

in [26]. However, the cubic twist case proves to be significantly more difficult. We instead take

advantage of the fact that ED is an elliptic curve with complex multiplication by OK “ Zrωs the

ring of integers of the number field K “ Qr
?

´3s. Then from CM theory there is a Hecke character

χED
: Aˆ

K{Kˆ Ñ Cˆ such that LpED, sq “ Lfps, χED
q and we compute the value of Lf ps, χED

q
using automorphic methods.

We present now an outline of the proof of Theorem 1.3. To compute the value of Lps, χED
q

we look at the Hecke character adelically and using Tate’s thesis we compute Tate’s zeta function

Zps, χED
,ΦKq for ΦK a Schwartz-Bruhat function in SpAKq. After integrating we get a linear

combination of Eisenstein series. By evaluation at s “ 1, we write LpED, 1q as a linear combination

of theta functions at CM-points. We further show using Shimura’s reciprocity law that the terms

are all Galois conjugates over K.

The idea of the proof of Theorem 1.2 is based on factoring each weight one theta function

ΘKpzq into a product of theta functions of weight 1{2. The method we are using is a factorization

lemma of Rodriguez-Villegas and Zagier from [19] applied to the formula in Theorem 1.3. This

gives us the square of a linear combination of theta functions evaluated at CM points. Finally,

using Shimura reciprocity law, we show that all the factors are Galois conjugates to each other

and recover an integer square.

Note that using the formula (4) we can show that an integer D cannot be written as the sum

of two cubes by computationally checking whether LpED, 1q ‰ 0. Furthermore, assuming BSD,

SD “ #X and thus we can compute the expected order of X explicitly.

Acknowledgements. The author would like to thank Xinyi Yuan for suggesting the problem

and for valuable insights. We would also like to thank Don Zagier for encouragement to finish the
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result in the current form, very helpful discussions and for help with using PARI for computational

purposes. We would also like to thank Max Planck Institute in Bonn and Tsinghua University in

Beijing for their hospitality.

2 Background

LetK “ Qr
?

´3s and denote OK “ Zrωs its ring of integers, where ω “ ´1`
?

´3
2

is a fixed cube root

of unity. We will denote by Kv the localization of K at the place v, and Kp “ ś
v|p
Kv – Qpr

?
´3s.

Note that Zprωs – ś
v|p

OKv
.

2.1 The L-function

Our goal is to compute several formulas for the central value of the L-function LpED, 1q of the

elliptic curve ED : x3 ` y3 “ Dz3. The elliptic curve ED has complex multiplication (CM) by

OK . Then from CM theory we can find a Hecke character χ : Aˆ
K{Kˆ Ñ C corresponding to the

elliptic curve ED such that LpED, sq “ Lf ps, χDϕq. We can compute explicitly χ “ χDϕ (see

Ireland and Rosen [11] for more details), where ϕ is the Hecke character corresponding to E1 and

χD is the Hecke character corresponding to the cubic twist. More precisely, writing the characters

classically, we have:

• ϕ : Ip3q Ñ Kˆ is defined on the set of ideals prime to 3 by taking ϕpAq “ α, where α is the

unique generator of the ideal A such that α ” 1 mod 3.

• χD : ClpO3Dq Ñ t1, ω, ω2u is the cubic character defined below in Section 2.2; it is defined

over ClpO3Dq the ring class group corresponding to the order O3D “ Z ` 3DOK .

Note that the L-function can be expanded as LpED, sq “
ÿ

αPOK

α”1pmod 3q

χDpαqα
Nmαs

.

2.2 The cubic character

We define the cubic character χD and recall some of its properties following Ireland and Rosen

[11]. Let ω “ ´1`
?

´3
2

and for α P Zrωs prime to 3, we define the cubic residue character
`
α
¨
˘
3
:

Ip3αq Ñ t1, ω, ω2u, where Ip3αq is the set of fractional ideals of K prime to 3α. For a prime ideal

p of K, we define
´

α
p

¯
3

“ ωj, for 0 ď j ď 2 such that

αpNm p´1q{3 ” ωj mod p.

It is further defined multiplicatively on the fractional ideals of Ip3αq.
It is easy to check that the definition makes sense, as the group pZrωs{pZrωsqˆ has Nm p ´ 1

elements, thus αNm p´1 ” 1 mod p. As Nm p ” 1 mod 3, we can factor out αNm p´1 ´ 1 “
pαpNm p´1q{3 ´ 1qpαpNm p´1q{3 ´ωqpαpNm p´1q{3 ´ω2q and as K is an UFD, p divides exactly one of

these terms, exactly αpNm p´1q{3 ´
´

α
p

¯
3
.
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The character χD is defined following [11] to be:

χDpAq “
ˆ
D

A

˙

3

.

We also define χπpAq “
`
π
A

˘
3

where π is a generator of an ideal of norm D. Note that χπpAq “
χπpAq.

An important result is the cubic reciprocity law (see [11] for more details):

Theorem 2.1. (Cubic reciprocity law). For π1, π2 ” 2 mod 3 generators of the prime ideals

p1, p2 prime to 3, we have

ˆ
π1

π2

˙

3

“
ˆ
π2

π1

˙

3

.

It follows immediately from the cubic reciprocity law that for α ” ˘1 mod 3, we have χDpαq “
χαpDq. Also from the cubic reciprocity it follows that χDppαqq “ 1 for α ” a mod 3D, where

a is an integer prime to 3D. Thus χD is invariant on the ideals of PZ,3D “ tpαq: α P K such

that α ” a mod 3D for some integer a such that pa, 3Dq “ 1}. The ring class group of the order

O3D “ Z ` 3DOK is defined to be ClpO3Dq “ Ip3Dq{PZ,3D, where Ip3Dq is the set of fractional

ideals prime to 3D, and thus χD is invariant on ClpO3Dq.

Finally, we can relate the cubic character to the Galois conjugates of D1{3:

Lemma 2.2. Let D be an integer prime to 3 and π a generator of an ideal of norm D. Then for

an ideal A of K prime to 3D, we have:

π1{3χπpAq “ pπ1{3qσ´1

A ,

where σA P GalpC{Kq is the Galois action corresponding to the ideal A in the Artin correspondence.

Note that this immediately implies D1{3χDpAq “ pD1{3qσ´1

A .

Proof. It is enough to show the result for a prime ideal p of K, p prime to 3D. Let σp “
´

L{K
p

¯
be

the Frobenius element corresponding to the prime ideal p of OK , where L “ Krπ1{3s. Then from

the definition of the Frobenius, element for π1{3 P L, we get pπ1{3qσp ” pπ1{3qNm p mod pOL.

Furthermore, note that pπ1{3qNm p “ π1{3πpNm p´1q{3 ” π1{3χπppq mod pOL. Since the Galois

conjugates of π1{3 are the roots of x3 ´ π, the Galois conjugates of π1{3 must be pπ1{3qσp P
tπ1{3, π1{3ω, π1{3ω2u, and from the congruences above we get pπ1{3qσp “ π1{3χπppq. Changing p to

p´1 we get the result.

2.3 Hecke characters

A classical Hecke character rχ : Ipfq Ñ Cˆ of conductor f can be expressed on the set of principal

ideals P pfq prime to f in the form rχppαqq “ rǫpαqrχ´1
0 pαq, where rε : pOK{fOKqˆ Ñ T is a character

taking values in a finite group T and rχ0 is an infinity type continuous character, meaning that

rχ0 : Cˆ Ñ Cˆ is a continuous character.

The idelic Hecke character is a continuous character χ : Aˆ{Kˆ Ñ Cˆ. There is a unique

correspondence between the idelic and the classical Hecke characters defined as follows: at 8 for

z P C we define χ8pzq “ rχ´1
0 pzq for z P Cˆ and at the places v ∤ f we define χpOˆ

v ̟vq :“ rχppvq,
for ̟v a uniformizer of OKv

and pv the prime corresponding to the place v. At the places v|f , the

value of χv can be determined using the Weak Approximation Theorem.
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We are interested in the character χ “ χDϕ defined before. By abuse of notation, we will use

ϕ, χD both for the classical and the adelic Hecke characters.

Recall ϕ : Ip3q Ñ Cˆ is the Hecke character defined by χppαqq “ α for α ” 1 mod 3. For the

place v ∤ 3, denote by ̟v a uniformizer of OKv
such that ̟v ” 1 mod 3. Then for ϕ : Aˆ

K Ñ Cˆ,

we can define:

• ϕvppq “ ´p, ϕvpOˆ
Kv

q “ 1, for v “ p, p ” 2 mod 3,

• ϕvp̟vq “ ̟v, ϕvpOˆ
Kv

q “ 1, for v|p, p ” 1 mod 3,

• ϕ8px8q “ x´1
8 , at v “ 8.

Recall χD : Ip3Dq Ñ t1, ω, ω2u is the cubic character and we showed that it is well-defined on

ClpO3Dq, the ring class group for the order O3D “ Z`3DOK . We define the character χD adelically

over KˆzAˆ
K,f{Up3Dq » ClpO3Dq, where Up3Dq “ p1 ` 3Z3rωsq ś

p|D
pZ `DZprωsqˆ ś

p∤3D

pZprωsqˆ.

Note that we can rewrite lf P Aˆ
K,f in the form lf “ kl1 with k P Kˆ and l1 P

ś
v∤8

Oˆ
Kv

. We

can find k1 P OK such that k1 ” l1 mod 3DOKv
and we define χD,f plq “ χD,f pl1q “ χDppk1qq.

More precisely, we get:

• χD,vp̟vq “ χDppvq and χD,vpOˆ
Kv

q “ 1, if v ∤ 3D,

• χD,8px8q “ 1, at v “ 8.

The values of χD and ϕ at the ramified places can be computed using the Weak approximation

theorem.

3 LpED, 1q and Tate’s zeta function

In this section we will compute the value of LpED, 1q “ Lp1, χDϕq, working with χD, ϕ as auto-

morphic Hecke characters. Let K “ Qr
?

´3s and ω “ ´1`
?

´3
2

a fixed cube root of unity as before.

We will show the following result:

Theorem 3.1. For SD “ 2
?
3πD´1{3

c3DΓ
`
1
3

˘3 LpED, 1q, we have 3c3DSD P Z and

SD “ 1

3c3D
TrH3D{K

ˆ
D1{3ΘKpDωq

ΘKpωq

˙
, (5)

where ΘKpzq “ ř
m,nPZ

e2πipm
2`n2´mnqz, H3D is the ring class field for the order O3D “ Z` 3DOK

and c3D “
ś
p|3D

cp is the product of the Tamagawa numbers cp of ED.

We will compute the formula (5) using Tate’s zeta function. We start by recalling some back-

ground and notation.
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3.1 Haar measure

We take V “ K as a quadratic vector space over Q with the norm as its quadratic form. We

take dxv to be the the self-dual additive Haar measure and dˆαv the multiplicative Haar measure

dˆ
v xv “ dxv

|xv|v normalized such that volpOˆ
Kv

q “ 1, if v ∤ 8, and dˆz “ dz
|z|8

where dz is the usual

Lebesgue measure, and |z|8 “ |z|2C is the square of the usual absolute value over C.

3.2 Schwartz-Bruhat functions

We choose the Schwartz-Bruhat function Φf P SpAK,f q such that Tate’s zeta function Zps,Φ, χDϕq
defined below to be nonzero. More precisely, Φf “

ś
v∤8

Φv, where:

• Φv “ charOKv
for v ∤ 3D,

• Φp “ ř
pa,Dq“1

charpa`DZprωsq for p|D,

• Φv “ charp1`3OKv q for v “
?

´3.

3.3 Tate’s zeta function

We recall Tate’s zeta function. For a Hecke character χ : Aˆ
K{Kˆ Ñ Cˆ and a Schwartz-Bruhat

function Φ P SpAKq, Tate’s zeta function is defined locally as Zvps, χv,Φvq “
ż

K
ˆ
v

χvpαvq|αv|svΦvpαvqdˆαv,

and globally as Zps, χ,Φq “
ś
v

Zvps, χv,Φvq. As a global integral this is

Zps, χ,Φq “
ż

Aˆ
K

χpαq|α|sΦpαqdˆα.

It has meromorphic continuation to all s P C and in our case it is entire. We will compute

Zfps, χf ,Φf q for χ “ χDϕ and the Schwartz-Bruhat function Φf chosen above.

From Tate’s thesis, we have the equality of local factors Lvps, χDϕq “ Zvps, χDϕq at all

the unramified places, and thus Lfps, χDϕq “ Zfps, χDϕq
ź

p|3D

Lpps, χD,pϕpq
Zpps, χD,pϕp,Φpq . As ϕ, χD and

| ¨ | are trivial when Φp is nonzero for p|3D, we can compute easily
ś

p|3D
Zpps, χD,pϕp,Φpq “

ś
p|D

vol pZ ` 3DZprωsqˆ
vol p1 ` 3Z3rωsqˆ

and this equals 1
6

ś
p|Dpp´

`
p
3

˘
q´1. The terms Lpps, χDϕq “

1 for p|3D by definition. Thus for all s and for Φ the Schwartz-Bruhat function chosen above, we

have:

Lf ps, χDϕq “ Zf ps, χDϕ,ΦqV3D , (6)

where V3D “ 1

6

ź

p|D
pp ´

´p
3

¯
q´1.

Next we compute the value of Zf ps, χD,fϕf ,Φf q as a linear combination of Hecke characters

and use (6) to get the value of Lfps, χD,fϕf q:
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Lemma 3.2. For all s P C and the Schwartz-Bruhat function Φf P SpAK,f q chosen above, we

have:

Lfps, χDϕq “
ÿ

αfPUp3DqzAˆ
K,f

{Kˆ

Ips, αf ,Φf qχDpαqϕpαq,

where Ips, αf ,Φf q “
ÿ

kPKˆ

k

|k|2sC
Φf pkαf q and Up3Dq “ p1 ` 3Z3rωsq

ś
v|D

pZ `DZprωsqˆ ś
v∤3D

Oˆ
Kv

.

Proof. We first take the quotient by Kˆ in the integral defining Zf ps, χDϕ,Φf q and get:

Zf ps, χDϕ,Φf q “
ż

Aˆ
K,f

{Kˆ

ÿ

kPKˆ

χD,f pkα1
f qϕf pkα1

f q|kαf |sfΦf pkα1
f qdˆα1

f .

We have χD,fpkα1
f q “ χ´1

D,8pkqχD,f pα1
f q “ χD,f pα1

f q, ϕf pkα1
f q “ ϕ´1

8 pkqϕf pα1
f q “ kϕf pα1

f q and

|kα1
f |sf “ |k|´s

8 |αf |sf “ |k|´2s
C |α1

f |sf , where | ¨ |C is the usual absolute value over C. Then the integral

reduces to:

Zfps, χDϕ,Φf q “
ż

Aˆ
K,f

{Kˆ

˜ ÿ

kPKˆ

k

|k|2sC
χD,f pα1

f qΦf pkα1
f q

¸
ϕf pα1

f q|α1
f |sf dˆα1

f .

Furthermore, our Schwartz-Bruhat functions Φf pkα1
f q are invariant on Up3Dq. Similarly, | ¨ |f is

trivial on units, thus on Up3Dq, while χD is invariant on Up3Dq by definition. Moreover, ϕ is

trivial on all the units at all the unramified places, while, at 3, ϕ is invariant under 1 ` 3Z3rωs,
thus it is trivial on all of Up3Dq. Thus we can take the quotient by Up3Dq as well. Note that the

integral is now a finite sum:

Zf ps, χDϕ,Φf q “ volpUp3Dqq
ÿ

α2
f

PUp3DqzAˆ
K,f

{Kˆ

˜ ÿ

kPKˆ

k

|k|2sC
Φf pkα2

f q
¸
χD,f pα2

f qϕf pα2
f q|α2

f |sf .

We compute volpUp3Dqq “ volp1 ` 3Z3ωq
ś
p|D

volpZ ` DZprωsq “ V3D and, changing notation, we

get:

Zf ps, χD,fϕf ,Φf q “ V3D
ÿ

αfPUp3DqzAˆ
K,f

{Kˆ

Ips, αf ,ΦfqχD,f pαqϕf pαq.

Finally together with (6) we get the result of the lemma.

3.4 Representative classes of ClpO3Dq

We will use the following lemma (see [18]) that is easy to show:

Lemma 3.3. Any primitive ideal of OK can be be written in the form A “ ra, ´b`
?

´3
2

sZ as a

Z-module, where b is an integer (determined only modulo 2a) such that b2 ” ´3 mod 4a and

NmA “ a.

Conversely, given an integer satisfying the above congruence and A defined as above, we get

that A is an ideal in OK of norm a.

We will use the notation kA for the generator kA ” 1 mod 3 of a primitive ideal A in OK . If we

choose a lattice such that A “ ra, ´b`
?

´3
2

sZ, we denote the corresponding CM point τA “ ´b`
?

´3
2a

.
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We can write adelically ClpO3Dq » Up3DqzAˆ
K,f{Kˆ. This follows from the Strong ap-

proximation theorem, as K is a PID and thus we have Up3DqzAˆ
K,f{Kˆ – p

ź

p|3D
pZprωsqˆ{pZ `

3DZprωsqˆq{ 〈´ω〉 . Then we can define the map
ź

p|3D
pZprωsqˆ{pZ`3DZprωsqˆ{ 〈´ω〉 Ñ Ip3Dq{PZ,3D

given by

pαvqv|3D Ñ pkαq,

where we choose the representative ˘αωk, such that α3 ” 1 mod 3, and kα is an element of OK

such that kα ” αv mod 3D. Note that this is well defined as pkαq gives us a unique class in

ClpO3Dq, and two elements α1, α2 get sent to the same class in ClpO3Dq only if α1 ” α2 mod 3D.

Thus for αf P pOK we can choose a class rAαs in ClpO3Dq by taking a representative Aαf
“ pkαq,

for kα P OK such that kα ” αp mod 3DZprωs for p|3D. Note that this choice is not unique.

However, we can pick the representatives Aα to be primitive ideals.

Thus we can further write Aα as a Z-lattice Aα “ ra, ´b`
?

´3
2

sZ, where a “ NmAα and b

is chosen (not uniquely) such that b2 ” ´3 mod 4a. We define the corresponding CM point

τAα
“ ´b`

?
´3

2a
.

3.5 Eisenstein series of weight 1

We will now connect Ips, αf ,Φf q “ ř
kPKˆ

k
|k|2sC

Φf pkαf q to an Eisenstein series. We define the

following classical Eisenstein series of weight 1:

Eεps, zq “
ÿ

m,n

1 εpnq
p3mz ` nq|3mz ` n|s .

Here the sum is taken over all m,n P Z except for the pair p0, 0q, and ε “
` ¨
3

˘
is the quadratic

character associated to the field extension K{Q. The Eisenstein series Eεps, zq does not converge

absolutely for s “ 0, but we can still compute its value using the Hecke trick (see [9]). We compute

its Fourier expansion at s “ 0 in the following section.

Using this notation, we have the following equality:

Lemma 3.4. For αf P ś
v∤8

Oˆ
Kv

, let Aαf
“ pkαq be a choice of an ideal in the corresponding class

of ClpO3Dq. We write Aα “ raα, ´b`
?

´3
2

sZ and take τAα
“ ´b`

?
´3

2aα
the corresponding CM point.

Then we have:

Ips, αf ,Φf q “ 1

2

pNmAαq1´s

kα
Eεps,Dτ

Aα
q.

Remark 3.5. Note that the variable τ
Aα

on the left hand side is not uniquely defined. However,

the function is going to be invariant on the class rAαs in ClpO3Dq.

Proof. Recall that Ips, αf ,Φf q “
ÿ

kPKˆ

k

|k|2sC
Φf pkαf q. We need to compute Φf pkαf q. Note that

Φvpkαvq ‰ 0 only for kαv P OKv
at all places v, and since αv P Oˆ

Kv
, we must have k P OKv

as

9



well for all v. This implies k P OK and for all places v ∤ 3D we get Φvpkαvq “ 1 for k P OK . Thus

we can rewrite:

Ips, αf ,Φf q “
ÿ

kPOK

k

|k|2sC
Φ3Dpkα3Dq,

where Φ3D “ ś
v|3D Φv and α3D “ pαvqv|3D.

We can further compute Φvpkαvq for v|3D. Recall that we defined Φp “ charpZ`3DZprωsqˆ for

p|D and Φ3 “ charp1`3Z3rωsqˆ . Then we have Φ3Dpkα3Dq ‰ 0 iff kαp P a ` 3DZprωs for some

integer a, pa, pq “ 1 and, for p “ 3, kα3 P 1 ` 3OK3
.

Recall that we defined kα such that kα ” αp mod 3DZprωs for all p|3D. Then kkα P
a ` 3DZprωs for pa, pq “ 1 and kkα P 1 ` 3Z3rωs. Furthermore, for k P OK we actually

have Φ3Dpkα3Dq “ Φ3Dpkkαq. Then we can rewrite Ips, αf ,Φf q using kα as Ips, αf ,Φf q “
ÿ

kPOK

k

|k|2sC
Φ3Dpkkαq. We can rewrite this further:

Ips, αf ,Φf q “ |kα|2sC
kα

ÿ

kPOK

kkα

|kkα|2sC
Φ3Dpkkαq,

Finally, we will make this explicit. Note that we must have kkα P Aα, where Aα “ pkαq,
as well as kkα P ap ` DZprωs for some integer ap, pap, pq “ 1, and kkα P 1 ` 3Z3rωs. By the

Chinese remainder theorem, we can find an integer a such that a ” ap mod D and a ” 1 mod 3.

Then kkα P pa ` D
ś

p|3D
Zprωsq X OK , thus kkα P PZ,3D X P1,3. Here PZ,3D “ tk P K : k ” a

mod 3DOK for some integer a, pa, 3Dq “ 1u and P1,3 “ tk P K : k ” 1 mod 3u. We rewrite:

Ips, αf ,Φf q “ |kα|2sC
kα

ÿ

kPAαXPZ,DXP1,3

k

|k|2sC
.

Finally, we want to write the elements of Aα XPZ,D XP1,3 explicitly. Recall that we can write

Aα as a Z-lattice Aα “ ra, ´b`
?

´3
2

sZ. Then all of the elements of A are of the form ma`n´b`
?

´3
2

for some integers m,n P Z. Moreover, note that the intersection of A and PZ,3D “ tk P OK : k ” n

mod 3D, for some integer n, pn, 3Dq “ 1u is tma ` 3Dn´b`
?

´3
2

: m,n P Zu. Further taking the

intersection with P1,3, we must have ma ” 1, thus, as a is norm in OK , m ” 1 mod 3, and we

can rewrite Ips, αf ,Φf q in the form:

Ips, αf ,Φf q “ as

kα

ÿ

m,nPZ,m”1pmod 3q

ma ` n´b`
?

´3
2

|ma` 3nD´b`
?

´3
2

|2sC
.

By changing n Ñ ´n and taking out a factor of a1´2s, we have:

Ips, αf ,Φf q “ a1´s

kα

ÿ

m,nPZ,
m”1pmod 3q

1

pm` n b`
?

´3
2a

q|m ` 3nD b`
?

´3
2a

|2s´2
C

.

Note that for Repsq ą 1 the integral converges absolutely, and we can rewrite the sum as:

Ips, αf ,Φf q “ 1

2

a1´s

kα

ÿ

m,nPZ

εpmq
pm` 3nD b`

?
´3

2a
q|m ` 3nD b`

?
´3

2a
|2s´2
C

,
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where εpmq “
`
m
3

˘
is the usual quadratic character. On the right hand side we recognize the

Eisenstein series Eεp2s ´ 2, τ
Aα

q and we get Ips, αf ,Φf q “ 1
2
a1´s

kα
Eεp2s ´ 2, Dτ

Aα
q. By analytic

continuation, we can extend the equality to all s P C.

Now we can rewrite the linear combination in Lemma 3.2 by taking representatives A for the

classes of ClpO3Dq. Note that for α P pOˆ
K with α ” 1 mod 3 we have ϕf pαf q “ 1 and

χDpαf q “ χDppαqp|3Dq “ χDppkαqp|3Dq “ χ´1
D ppkαqp∤3Dq “ χDpAαq.

Using the lemma above and after inverting each class A Ñ A in ClpO3Dq, we get:

Corollary 3.6. For all s, taking representative ideals A “ ra, ´b`
?

´3
2

sZ for the classes in the ring

class group ClpO3Dq, we have:

Lf ps, χDϕq “ 1

2

ÿ

rAsPClpO3Dq
Eεp2s´ 2, DτAqχDpAq pNmAq1´s

k
A

,

where A “ pkAq with kA ” 1 mod 3 and τA “ ´b`
?

´3
2a

the associated CM points.

3.6 Fourier expansion of Eεps, zq at s “ 0

We want to connect the Eisenstein series Eεps, zq “
ÿ

c,d

1 εpdq
p3cz ` dq|3cz ` d|2s to the theta function

ΘKpzq “
ÿ

m,nPZ
e2πipm

2`n2´mnqz

associated to the number field K. It is a modular form of weight 1 for the congruence group Γ1p3q.
Note that this differs from the theta function ΘK chosen by Rodriguez-Villegas and Zagier in [20]

by a factor of 1{2.
More precisely, we are going to show the following version of the Siegel-Weil theorem:

Theorem 3.7. Eεp0, zq “ 2Lp1, εqΘKpzq.

Proof. We will show this by computing the Fourier expansion of Eεps, zq at s “ 0 using

the Hecke trick and comparing it to the Fourier expansion of ΘKpzq. We will follow closely the

exposition of Pacetti [16]. This is also done by Hecke in [9]. We first rewrite Eεps, zq in the form:

Eεpz, sq “
ÿ

d

1 εpdq
d1`2s

` 2

8ÿ

c“1

2ÿ

r“0

εprq
32s`1

ÿ

dPZ

εprq
p3cz`r

3
` dq|3cz`r

3
` d|2s .

We define for z in the upper-half plane Hpz, sq “
ř
mPZ

1
pz`mq|z`m|2s and then we can rewrite the

form above as:

Eεps, zq “ 2Lpε, sq ` 2

8ÿ

c“1

2ÿ

r“0

εprq
32s`1

H

ˆ
3dz ` r

3
, s

˙
.

Pacetti ([16]), following Shimura (Lemma 1, p. 84, [24]), computed the Fourier expansion of
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Hpz, sq when s Ñ 0 to be lim
sÑ0

Hps, zq “ ´πi´ 2πi
8ř

n“1

qn. It gives us in the relation above:

Eεp0, zq “ 2Lpε, 1q ` 2

8ÿ

c“1

2ÿ

r“0

εprq
3

p´πi ´ 2πi

8ÿ

n“1

e2πinzcωnrq.

We compute separately the inner sum and get:

2ÿ

r“0

εprq
3

p´πi`
8ÿ

n“1

e2πinzcωnrq “ ´2πi

3
Gpεq

8ÿ

n“1

e2πinzcεpnq,

where Gpεq “
2ř

r“0

εprqωr “
?

´3 is the quadratic Gauss sum corresponding to ε. Then we can

rewrite:

Eεp0, zq “ 2Lpε, 1q ` 4π
?
3

3

8ÿ

N“1

p
ÿ

m|N
εpmqqe2πiNz .

Since ε is a quadratic character, we compute Lp1, εq “ π
?
3

9
(see Kowalski [15]) and this gives us

the Fourier expansion:

Eεp0, zq “ 2π
?
3

9
p1 ` 6

8ÿ

N“1

p
ÿ

m|N
εpmqqe2πiNzq. (7)

It is actually easy to show that
ÿ

m|n
εpmq represents the number of ideals of norm n in OK

and we can recognize the sum in the bracket on the RHS of (7) to equal the theta function

ΘKpzq “ 1 ` 6
ř
A

e2πipNmAqz, which finishes the proof.

3.7 Formula for Lp1, χDϕq

Applying Corollary 3.6 for s “ 1 we get Lf p1, χDϕq “ 1

2

ÿ

rAsPClpO3Dq

1

k̄A
Eεp0, DτAqχDpAq. Fur-

thermore, from Theorem 3.7, this is the same as:

Lf p1, χDϕq “ π
?
3

9

ÿ

rAsPClpO3Dq

1

k̄A
ΘKpDτAqχDpAq. (8)

We need one more step before rewriting the formula as a trace. We will use the following

lemma:

Lemma 3.8. For A “ ra, ´b`
?

´3
2

sZ a primitive ideal of norm NmA “ a, with generator A “ pkAq,
where kA ” 1 mod 3 and τA “ ´b`

?
´3

2
, we have:

ΘK pτAq “ kAΘK pωq .

Proof. Since A “ ra, ´b`
?

´3
2

sZ as a Z-lattice, we can write its generator kA in the form kA “
ma ` 3n´b`

?
´3

2
for some integers m,n such that m ” 1p3q and gcdpm, 3nq “ 1. Then we can
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find integers A,B such that mA` 3nB “ 1, and thus p A B
3n m q is a matrix in Γ1p3q. Since Θpzq is a

modular form of weight 1 for Γ1p3q, we have ΘK pp A B
3n m q τAq “ pm` 3nτAqΘK pτAq.

Noting that 3nτA `m “ kA{a “ 1{kA, we can compute the term on the LHS to be ΘKppAτA `
BqkAq and, after expanding, we are evaluating ΘK at ´3nA b2`3

4a
`abB` bp´mA`3nBq

2
`

?
´3
2

. Note

that mA´3nB “ 1 implies that mA and 3nB have different parities. Also, b is odd and b2 `3 ” 0

mod 4a. Then ´3nA b2`3
4a

` abB ` bp´mA`3nBq`1

2
P Z and thus using the period 1 of ΘK we get

ΘK pp A B
3n m q τAq “ ΘK pωq. This finishes the proof.

Using the Lemma above we can rewrite (8) as:

Lfp1, ϕχDq “ π
?
3

9
ΘK pωq

ÿ

rAsPClpO3Dq

ΘKpDτAq
ΘKpτAq χDpAq. (9)

Now we will rewrite the formula (9) as a trace. We can define fpzq “ ΘKpDzq
ΘKpzq and this is a

modular function for Γ0p3Dq. We will prove in Section 5 in Proposition 5.5 that fpωq P H3D, the

ring class field of corresponding to the order O3D. Moreover, we show in the same proposition

that, for A “ ra, ´b`
?

´3
2

sZ a primitive ideal in OK , we have the Galois conjugate:

fpωqσ´1

A “ fpτAq,

where σA is the Galois action corresponding to the ideal A via the Artin map.

Furthermore, from Corollary 2.2 we have pD1{3qσ´1

A “ D1{3χDpAq and then formula (9) be-

comes:

LpED, 1q “ π
?
3

9
D´1{3ΘKpωq

ÿ

rAsPClpO3Dq

ˆ
D1{3ΘKpDωq

ΘKpωq

˙σ
A´1

(10)

Moreover, D1{3 P H3D (see for example Cohn [3]). Thus we can rewrite the sum on the left

hand side as TrH3D{K
´
D1{3 ΘKpDωq

ΘKpωq

¯
. We can compute the extra terms as well. Rodriguez-Villegas

and Zagier in [20] cite ΘK

´
´9`

?
´3

18

¯
“ ´6Γ

`
1
3

˘3 {p2πq2. Using several of the properties of ΘK

proved in the Appendix, we can compute Θ pωq “ Γ
`
1
3

˘3 {p2π2q.
As the real period ΩD of the elliptic curve ED is ΩD “ D´1{3

?
3Γp 1

3 q3

6π
, we get the formula of

Theorem 3.1:

LpED, 1q “ ΩD

1

3
TrH3D{K

ˆ
D1{3ΘKpDωq

ΘKpωq

˙
. (11)

Note that this implies SD P K. Moreover, as D1{3ΘpDωq{Θpωq is invariant under complex

conjugation, we get SD P R which furthermore implies SD P Q. We will show in Section 4.5 that

actually 3c3DSD P Z.

Remark 3.9. If we take D “ D1D
2
2 such that D0 “ D1D2 is square-free, note that the character

χD “ χD1
χD2

is well defined on the class group ClpO3D0
q. Then the above computations work for

D0 and the character χD “ χD1
χD2

instead of χD0
“ χD1

χD2
and we get:

Lp1, χDϕq “ π
?
3

9
ΘK pωq

ÿ

rAsPClpO3D0
q

ΘKpD0τAq
ΘKpτAq χDpAq. (12)
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Note that, for D “ D1D
2
2, LpED, sq “ Lps, χD1

χD2
ϕq and thus we have:

SD “ 1

3

ÿ

rAsPClpO3D0
q

ΘKpD0τAq
ΘKpτAq χDpAqD1{3. (13)

As before from Corollary 2.2 we have pD1{3
1 D

2{3
2 qσ´1

A “ D
1{3
1 χD1

pAqD2{3
2 χD2

pAq and finally we

can write the expression above as:

LpED, 1q “ ΩD

3
TrH3D0

{K

ˆ
D1{3ΘKpD0ωq

ΘKpωq

˙
.

4 Second formula for SD

For r P Z, µ P t1{2, 1{6u, we define the theta functions of weight 1{2:

θr,µpzq “
ÿ

nPZ
eπipn`r{D´µq2zp´1qn.

Throughout the paper we will use the notation r P Z{DZ to mean any family of representatives

for the residues r mod D. We denote θ0 “ θ0,1{6. Note that θ0pzq “ ηpz{3q, where η is the

Dedekind eta function, while
ř

rPZ{DZ
r”1p6q

θr,1{6pzq “ η
`

z
3D2

˘
.

In this section we will use a Factorization formula of Rodriguez-Villegas and Zagier from [19]

to show the following theorem:

Theorem 4.1. In the case of D “ ś
pi”1p3q

peii , let D0 “ ś
pi|D

pi be the radical of D and σpDq the

number of distinct prime divisors of D. Then SD is an integer square up to an even power of 3

and we have:

SD “ p´1qσpDq

3σpDq`2
T 2
D, (14)

where TD{3 P Z if σpDq is even and TD{
?

´3 P Z if σpDq is odd. We have the exact formula:

TD “ ωk0

ϕpD0q TrHO{K

ˆ
θ1,1{6pτq
θ0pτq π1

´2{3π1{3
2

˙
.

Here τ “ ´b`
?

´3
2

is a CM-point, with b2 ” ´3 mod 12D2, π1, π2 are elements in OK such

that π1, π2 ” 1 mod 3, π1π2 has norm D0 and π1π
2
2 has norm D, and such that pπ1π2q2 divides

the ideal
´

´b`
?

´3
2

¯
, HO is the ray class field of modulus 3D0 and ωk0 is the unique cube root of

unity that makes TD real or purely imaginary.

Below we discuss the details of D square-free. All definitions and proofs can be easily extended

to all D. We do that in Section 4.6.

Take τ “ ´b`
?

´3
2

a CM point such that b2 ” ´3 mod 12D2 and an element π ” 1 mod 3 of

norm D in OK such that π2 divides the ideal p ´b`
?

´3
2

q.

We will use the notation:
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• Θµpτq “
#

3
2
ΘK pτq ´ 1

2
ΘK pτ{3q , for µ “ 1{6

ΘK pτ{3q , for µ “ 1{2.

• Sµ “ 2

3

ÿ

rAsPClpO3Dq

ΘµpDτAq
ΘKpτAq χDpAqD1{3.

In Theorem 1.3 we have proved that 3c3DSD “ S1{6 ` 1{2S1{2. We are actually going to show

in Corollary 4.10 that S1{2 “ 0, thus it is enough to compute the formula (14) for S1{6.

Using a Factorization formula of Rodriguez-Villegas and Zagier from [19] we will write the theta

functions Θµ of weight 1 as linear combinations of products of theta functions of weight 1{2 in

Proposition 4.4. We define:

RD,µpzq “
ÿ

rPpZ{DZqˆ

r”1p6q

θr,µp3zq
θ0p3zq χπprq.

We show in Lemma 4.13 that S1{6 “ |RD,1{6pτqD´1{3|2. Moreover, if we denote

TD “ RD,1{6pτ{3qπ´2{3ωk0 ,

for a cubic root of unity ωk0 , then S1{6 “ |TD,1{6pτq|2.

We show in Lemma 4.17 that TD “ 1

ϕpDq TrHO{K
θ1,1{6pτq
θ0pτq π´2{3ωk0 and that TD P K. Fur-

thermore, we show in proposition 4.12 that TD “ p´1qσpDqTD and thus TD P Q or TD{
?

´3 P Q

and thus

SD “ p´1qσpDq

3c3D
T 2
D.

Moreover, in Section 4.5 we show that 3c3DSD is an integer, hence TD{3 P Z for σpDq even

and TD{
?

´3 P Z for σpDq odd.

Finally, for D a product of split primes, we have SD ‰ 0 only for D ” 1 mod 9. In this case

the Tamagawa numbers equal c3D “ 31`σpDq, thus we have:

SD “
#

pTD{3σpDq{2`1q2, for σpDq even,

ppTD{
?

´3q{3pσpDq`1q{2q2, for σpDq odd.

Hence SD is an integer square up to an even power of 3 and this finishes the proof of Theorem 4.1.

4.1 Factorization lemma

As in the previous section, we write a primitive ideal A as a lattice A “ ra, ´b`
?

´3
2

sZ for a “
NmpAq and b2 ” ´3 mod 4a. We also define the CM point τA “ ´b`

?
´3

2a
corresponding to the

Z-lattice. We also denote by kA the generator of A such that kA ” 1p3q and we write the generator

in the form kA “ naa`maτA.

We start by recalling the Factorization Formula of Rodriguez-Villegas and Zagier ([19], Theo-

rem, page 7) in the simplified case of α “ p “ 0:
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Theorem 4.2. (Factorization formula.) For a P Zą0, µ, ν P Q, z “ x` yi P C, we have:

ÿ

m,nPZ
e2πipmν`nµqeπpimn´ |mz´n|2

2y
q{a “

a
2ayθ

„
aµ

ν


pa´1zq ¨ θ

„
µ

´aν


p´az̄q, (15)

where θ

„
µ

ν


pzq “ ř

nPZ`µ

eπin
2z`2πiνn is a theta function of weight 1{2.

A direct application of this is the following:

Lemma 4.3. With notation as above, we have:

ÿ

rPZ{DZ

?
2ay?
D

θ

„
aµ` ar

D

ν

 ´
D
z

a

¯
θ

„
µ` r

D

´aν


p´aDzq “

ÿ

m,nPZ
e2πipmν`nDµqeπpmni´ |n´mz|2

2y
q D

a

Proof. Plugging in µ :“ µ ` r
D

, z :“ Dz in (15) and summing up for r in Z{DZ, we get:

ÿ

rPZ{DZ

a
2aDyθ

„
aµ` ar

D

ν

 ˆ
Dz

a

˙
θ

„
µ` r

D

´aν

 `
´aDz

˘
“

ÿ

rPZ{DZ

ÿ

m,nPZ
e2πipmν`nµ`nr{Dqeπpmni´ |n´mDz|2

2Dy
q 1

a

Exchanging the two sums on the RHS we get
ÿ

m,nPZ
e2πipmν`nµqeπpmni´ |n´mDz|2

2Dy
q 1

a

ÿ

rPZ{DZ

e2πinr{D.

The inner sum
ř

rPZ{DZ

e2πinr{D equals D when D|n, and 0 otherwise, thus we are only summing

over the integers n that are multiples of D. Rewriting n “ Dn1, after simplifying we get the result

of the lemma.

Using the lemma above and the notation θr,µpzq “
ÿ

nPZ
p´1qneπipn` r

D
´µq2

z , we show:

Proposition 4.4. For ideals A “ ra, ´b`
?

´3
2

sZ,A1 “ ra1, ´b`
?

´3
2

sZ and b such that b2 ” ´3

mod 4D2a2a1, we have:

Θµ pDτAq “
4
?
3eπipa´1q{6

D
?
a1

ÿ

rPZ{DZ

θar,µ pτA2A1
q θr,µ pτA1

q.

Proof. We apply Lemma 4.3 for µ “ ´1{6 and ν “ 1{2, D odd, z “ ´b`
?

´3
2Daa1

. It is easy

to see on the LHS of the equation that we have θ
”

´1{6` r
D

´a{2

ı
pzq “ e´aπir{Deaπi{6θr,µpzq, and, as

a ” 1pmod 6q, also θ
”

´a{6` ar
D

1{2

ı
pzq “ eπiar{De´πi{6θar,µpzq. Moreover, since D ” 1pmod 6q we

simplify the term e´2πinD{6 “ e´2πin{6 and we can also compute

?
2ay?
D

“
4
?
3

D
?
a1

. We get:

4
?
3

D
?
a1eπipa´1q{6

ÿ

rPZ{DZ

θar,µ pτA2A1
q θr,µ pτA1

q “
ÿ

m,nPZ
e2πipm{2´n{6qe

πpmni´ |nDaa1´m
´b`?´3

2
|2

Daa1

?
3

q D
a .

(16)
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Now we only have to show that the RHS equals ΘµpDτAq. We claim:

e2πipm{2`n{2qe
πpmni´ |naa1D´m

´b`?´3

2
|2

aa1D
?

3
q D

a “ e
2πi

|naa1D´m
´b`?´3

2
|2

aa1D
D

´b`?´3

6a .

Since the absolute values of the two sides already agree, we only need to show that the argu-

ments agree as well, meaning 2πi
`
m
2

` n
2

` Dmn
2a

˘
” ´2πi

|naa1D´m ´b`?´3

2
|2

aa1D
D b

6a
mod 2πiZ. This

is equivalent to showing that
´

m2

2
` n2

2

¯
´

´
m2

2
Db

pb2`3q
12a2a1

´Dmn
pb2`3q

6a
`D n2

2
b
3

¯
P Z, and this

follows easily from the conditions on a, a1, b and D.

Finally, we claim that Θµpzq “
ÿ

m,nPZ
e2πinpµ`1{2qe2πi

|m¨ b`?´3

2
`naa1|2

aa1
z , which would finish the

proof. This is immediate for µ “ 1{2. For µ “ 1{6 denoteE˚,kpzq “
ÿ

m,nPZ
n”kp3q

e2πin{3e2πi
|m¨ b`?´3

2
`naa1|2

aa1
z
.

Then we can write

ÿ

m,nPZ
e2πin{3e2πi

|m¨ b`?´3

2
`naa1|2

aa1
z “ E˚,0pzq ` ωE˚,1pzq ` ω2E˚,2pzq.

Note that E˚,0pzq “ ΘKp3zq and E˚,1 “ E˚,2, as we can change n Ñ ´n,m Ñ ´m in the

Fourier expansion. Thus we get on the RHS the term Θp3zq ` pω`ω2qE˚,1pzq “ Θp3zq ´E˚,1pzq.
Furthermore Θpzq “ E˚,1pzq `E˚,2pzq `E˚,0pzq, thus we get E˚,1pzq “ 1

2
pΘpzq ´Θp3zqq. Plugging

in E˚,1pzq above we get the result of the proposition.

A particular case of Lemma 4.4 is for D “ 1. As Θ pτA{3q “ 0 from Lemma 6.3 from the

Appendix, we get:

Corollary 4.5. For b2 ” ´3 mod 12a2a1 and A,A1 as above, we have

ΘK pτAq “ 2

3

4
?
3?
a1
eπipa´1q 1

6 θ0 pτA2A1
q θ0 pτA1

q.

Let fr,µpzq “ θr,µpzq
θ0pzq . Taking the ratios of the theta functions in Proposition 4.4 and Corollary

4.5 we get:

Corollary 4.6. Under the same conditions as above, we have:

ΘµpDτAq
Θ pτAq “ 3{2

D

ÿ

rPZ{DZ

far,µ pτA2A1
q fr,µ pτA1

q. (17)

We are interested in the Galois conjugates of fr,µpτq for τ “ ´b`
?

´3
2

such that b2 ” ´3

mod 12D2. For A “ ra, ´b`
?

´3
2

sZ a primitive ideal and kA ” 1 mod 3 its generator, we write

kA in the form kA “ naa ` ma
´b`

?
´3

2
with 3|ma and na ” 1p3q. In Section 5.2 we will show in

Proposition 5.6 that

fr,µpτqσ´1

A “ fn1
ar,µ

pτq,

17



where σA is the Galois action corresponding to the ideal A via the Artin map and n1
a ” nap3Dq

with n1
a odd. We also show in Lemma 5.4 in the same section that we have we have pfr,µpτqqσ´1

A “
fr,µpτAq, thus we get the following lemma:

Lemma 4.7. For an ideal A “ ra, ´b`
?

´3
2

s generated by naa ` ma
´b`

?
´3

2
such that ma ” 0

mod 3, na ” 1 mod 3 and b2 ” ´3 mod 12aD2, we have:

fr,µpτqσ´1

A “ fr,µ pτAq “ fn1
ar,µ

pτq

for n1
a ” nap3Dq with n1

a odd.

Using the lemma above, we can rewrite Corollary 4.6:

Corollary 4.8. Under the same conditions as above, for A “ pnaa`ma
´b`

?
´3

2
q, A1 “ pna1

a1 `
ma1

´b`
?

´3
2

q with b2 ” ´3 mod 12a2a1D
2, we have:

Θµ pDτAq
Θ pτAq “ 3{2

D

ÿ

rPZ{DZ

fn12
a n1

a1
ar,µfna1

1

r,µ pτq,

where n1
a ” nap3Dq, n1

a1
” na1

p3Dq and n1
a, n

1
a1

odd.

4.2 SD as an absolute value

In the following we will use Corollary 4.8 for a choice of representative ideals for the classes of the

ring class group ClpO3Dq. We show first:

Proposition 4.9. For τ “ ´b`
?

´3
2

such that b2 ” ´3 mod 12D2 and π ” 1 mod 3 an element

of norm of D such that pπq2 divides p ´b`
?

´3
2

q, we have:

Sµ “ D´2{3|
ÿ

sPpZ{DZqˆ

s”1p6q

fs,µ pτqχπpsq|2.

Proof. The structure of the ring class group of conductor 3D for D “ ś
pi”1 mod 3

pi is given by

ClpO3Dq – pZ{DZqˆ (see for example Cox [4]). We will choose as representatives for the classes

of ClpO3Dq ideals As such that NmAs ” s mod D. For b fixed, b2 ” ´3 mod 12D, we take:

As “ pnsas `ms

´b`
?

´3

2
q,

where as “ NmpAsq ” s mod D, ns ” 1 mod 3D, ms ” 0 mod 3. Note that this gives us

m ” b´1ps´ 1q mod 3D. Moreover, it is easy to check that the ideals As for s P pZ{DZqˆ are in

different classes in ClpO3Dq.
We take as before π the element of norm D such that pπq2 divides the ideal pτq “ p ´b`

?
´3

2
q.

Then note that χDpαq “ χπpα
α

q “ χπp α2

|α|2 q. As b ”
?

´3 mod π, we get αs “ nsas`ms
´b`

?
´3

2
”

s mod π and thus χπppαsqq “ χπps2{sq “ χπpsq.
Taking representatives s P Z{DZ, s ” 1 mod 6, we get ms ” 0 mod 6 and ns ” 1 mod 6.

Summing up over r P Z{DZ with r ” 1 mod 6 and taking A1 “ p1q in Corollary 4.8, we get:

18



Θµ pDτAs
q

Θ pτAs
q “ 3{2

D

ÿ

rPZ{DZ
r”1p6q

fsr,µ pτq fr,µ pτq, (18)

Summing up for all ts P pZ{DZqˆ, s ” 1p6qu and rearranging the terms, we get:

Sµ “ D´2{3
ÿ

sPpZ{DZqˆ

s”1p6q

ÿ

rPZ{DZ,
r”1p6q

fsr,µ pτqχπprsq ¨ fr,µ pτqχπprq.

Finally, we will further modify the sums on the RHS in order to sum up over r P pZ{DZqˆ

as well. In order to emphasize the dependence of θr,µ on D we will use the notation fr{Dpzq “

θr,µpzq
θ0pzq “

ř
nPZ

e
πipn` r

D
´µq2zp´1qn

θ0pzq . Moreover, for pi1 . . . pik |D, denote:

Spi1
...pik

“
ÿ

sPpZ{DZqˆ

s”1p6q

χDpAsqD´2{3
ÿ

rPZ{DZ
r”1p6q

pi1
...pik

|r

fsr{Dpτqfr{Dpτq.

We claim that for k ě 1 we have Spi1
...pik

“ 0. Note that we can rewrite

Sµ “
ÿ

pi|D
Spi

´
ÿ

pipj |D
Spipj

`¨ ¨ ¨`p´1qn´1Sp1,...,pn
`

ÿ

sPpZ{DZqˆ

s”1pmod 6q

ÿ

rPpZ{DZqˆ,
r”1pmod 6q

fsr{Dpτqfr{DpτqχDpAsqD´2{3,

thus showing Spi1
...pik

“ 0 for k ě 1 proves our result.

To see that Spi1
...pik

“ 0, let D1 “ D{ppi1 . . . pikq. We recognize each of the inner sums
ÿ

r1PZ{D1Z
r”1pmod 6q

fsr1{D1 pτqfr1{D1 pτq of Spi1
...pik

to be equal to
D1

3{2
Θµ pD1τAs

q
Θ pτAs

q from (18) for D :“ D1.

Denote m “ D{D1. From the properties of the cubic character, we have χD “ χmχD1 . More-

over, from our choice of ideals, we have
Θµ pD1τAs

q
Θ pτAs

q “ Θµ

`
D1τAs1

˘

Θ
`
τAs1

˘ for s ” s1 mod 3D1, as As

and As1 are in the same class in ClpO3D1 q. Then we can rewrite the sum as:

Spi1
...pik

“
ÿ

s1PpZ{D1Zqˆ,

s1”1pmod 6q

D1

3{2
Θµ pD1τAs

q
Θ pτAs

q χD1 pAsq
ÿ

sPpZ{DZqˆ,

s,s1”1pmod 6q
s”s1pmod D1q

χmpAsq.

In the inner sum we are summing over s modulo m for all s in pZ{mZqˆ. Moreover, χmpAsq
is a nontrivial character as a function of s, as m1{3χmpAsq “ pm1{3qσAs “ m1{3 for all As iff

m1{3 P Qr
?

´3s. As we are summing a non-trivial character over a group, the sum is 0. This

finishes the proof.

Using the above proposition now it is easy to see:

Corollary 4.10. SD “ 1
3c3D

S1{6 and S1{2 “ 0.

Proof. As 3c3DSD “ S1{6 ` 1{2S1{2, if S1{2 “ 0 we have 3SDc3D “ S1{6. Thus it is enough to
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show S1{2 “ 0. More precisely we will show that Rpzq :“
ÿ

rPpZ{DZqˆ

r”1p6q

θr,1{2pzqχπprq equals 0 for any

z, in particular for z “ τ . Since we showed that S1{2 “ D´2{3|Rpτq|2 in Proposition 4.9, we get

S1{2 “ 0.

To show Rpzq “ 0, note that θr,1{2pzq “ ´θ2D´r,1{2pzq, while χπp2D ´ rq “ χπprq. As both

r, 2D´ r ” 1 mod 6 and D odd, the terms cancel each other out in the sum and we get Rpzq “ 0.

Finally, from Proposition 4.9 and Corollary 4.10 we get:

Proposition 4.11. For τ “ ´b`
?

´3
2

such that b2 ” ´3 mod 12D2, we have SD “ 1
3c3D

S1{6 and

SD “ D´2{3

3c3D
|

ÿ

sPpZ{DZqˆ

s”1p6q

fs,1{6 pτqχπpsq|2.

4.3 SD as a square

In the following we will rewrite Proposition 4.11 so that we get a square. Define Fr,µpzq “ fr,µp3zq
and take:

RD,µpzq “
ÿ

rPpZ{DZqˆ

r”1p6q

Fr,µpzqχπprq.

With this notation, we have showed in Proposition 4.9 that S1{6 “ |RD,1{6pτ{3qD´1{3|2. One can

show that R3
D,1{6pτ{3q P K and actually RD,1{6pτ{3q is really close to being an integer. We will

show in this section the following:

Proposition 4.12. For σpDq the number of prime divisors of D, we have:

SD “ p´1qσpDq

3c3D
T 2
D,

where TD “ RD,1{6pτ{3qπ´2{3ωk0 and TD “ p´1qσpDqTD and thus TD is real or purely imaginary.

Here ωk0 is the unique cube root that makes TD real or purely imaginary.

We are going to show first in Lemma 4.13 that RD,1{6pτq and RD,1{6pτ{3q differ only by a

cubic root of unity ωk, and thus S1{6 “ |RD,1{6pτqD´1{3|2. In Proposition 4.14 we show that

RD,1{6pτq “ p´1qσpDqπ
2{3

π2{3RD,1{6pτqωk1
. Defining TD “ RD,1{6pτ{3qπ´2{3ωk0 for k0 “ k ` k1, this

is equivalent to TD “ p´1qσpDqTD and thus

S1{6 “ p´1qσpDqT 2
D,

which is the result of Proposition 4.12 above.

4.3.1 Relating SD to RD,1{6pτq

We will first show that S1{6 “ |RD,1{6pτqD´1{3|2 in Lemma 4.13. Define the theta function

θprq,µpzq “
ÿ

nPZ
eπipn´µq2zp´1qne2πinr{D and the ratio F prq,µpzq “ θprq,µp3zq

θ0p3zq . We introduce this
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notation, as we will use the transformation mentioned in Lemma 6.8 in the Appendix:

θr,1{6p3zq “ p´1qr p´1qD´1

6 ω?
´3

?
´iz pθp3rq,1{6p´3{zq ´ ωθp´3rq,1{6p´3{zq ´ ω2θp´3rq,1{2p´3{zqq. (19)

Using also θ0p3zq “ 1?
´iz

θ0p´3{zq and taking the ratio with (19) we get:

Fr,1{6pzq “ p´1qr p´1qD´1

6 ω?
´3

pF p3rq,1{6p´1{zq ´ ωF p´3rq,1{6p´1{zq ´ ω2F p´3rq,1{2p´1{zqq. (20)

Then, using (20), we are ready to show:

Lemma 4.13. For τ “ ´b`
?

´3
2

such that b2 ” ´3 mod 12D2, we have:

RD,1{6pτq “ ωkRD,1{6pτ{3q,

where ωk is a cubic root of unity. Furthermore, this implies S1{6 “ |RD,1{6pτqD´1{3|2.

Proof. Let b1 ” b mod 4D2, and b1 ı 0 mod 3. Without loss of generality we can actually

pick b, b1 such that pb2 ` 3q{12D2 and pb12 ` 3q{4D2 are prime to 3D. Let π ” 1p3q be an element

of norm D such tht pπq2 divides pτq. Then we can find ideals A,A1 prime to 3D such that:

p
?

´3qpπq2A “
ˆ´b`

?
´3

2

˙
, pπq2A1 “

ˆ´b1 `
?

´3

2

˙
.

We can write the generators kA, kA1 ” 1 mod 3 of A and A1, respectively, in the form ka “
ana ` ma

´b`
?

´3
2

, ka1 “ a1na1 ` ma1
´b`

?
´3

2
, where ma,m

1
a ” 0 mod 3, and na, n

1
a ” 1 mod 3.

Let τA “ ´b`
?

´3
2a

, τA1 “ ´b1`
?

´3
2a1 .

We are going to show that:

(i) RD,1{6pτA1 q “ RD,1{6pτA{3q

(ii) RD,1{6pτA{3q “ χπpnaqRD,1{6pτ{3q
These two relations will imply:

(iii) RD,1{6pτq “ χπpnaqχπpna1 qRD,1{6pτ{3q.

In order to show RD,1{6pτA1 q “ RD,1{6pτA{3q, note that it is enough to show that Fr,1{6pτA1 q “
Fr,1{6pτA{3q. We have ´1{pτA{3q “ ´τ{D2 and ´1{τA1 “ ´τ{D2 as well and we will use (20) for

both τA{3 and τA1 {3. First for z “ τA{3 we get:

Fr,1{6pτA{3q “ p´1qr p´1qD´1

6 ω?
´3

pF p3rq,1{6p´τ{D2q ´ ωF p´3rq,1{6p´τ{D2q ´ ω2F p3rq,1{2p´τ{D2qq.

Applying (20) also for τA1 we get similarly

Fr,1{6pτA1 q “ p´1qr p´1qD´1

6 ω?
´3

pF p3rq,1{6p´τ 1{D2q ´ ωF p´3rq,1{6p´τ 1{D2q ´ ω2F p3rq,1{2p´τ 1{D2qq,

where τ 1 “ ´b1`
?

´3
2

.
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Finally, note that F psq,1{6pz ` 8D2q “ F psq,1{6pzq, thus since b ” b1 mod 8D2 we also have

F psq,1{6p´τ 1{D2q “ F psq,1{6p´τ{D2q for s “ ˘3r. Similarly F p´3rq,1{2p´τ 1{D2q “ F p´3rq,1{2p´τ{D2q,
thus Fr,1{6pτA{3q “ Fr,1{6pτA1 q as claimed.

To show (ii), as frpzq “ Frpz{3q, note that from Lemma 4.7 we have Fr,1{6pτ{3qσ´1

A “ Fr,1{6pτA{3q “
Fn1

ar,1{6pτ{3q where na ” n1
a mod 3D and n1

a odd. This further implies that RD,1{6pτA{3q “
χπpnaqRD,1{6pτ{3q.

To show (iii), note that we are in the conditions of Lemma 5.4 from Section 5, as Fr,1{6 is a

modular function of level 18D2. Then Fr,1{6pτqσ
´1

A1 “ Fr,1{6pτA1 q and thus we get RD,1{6pτA1 q “
pRD,1{6pτqqσ

´1

A1 .

We can rewrite this as pRD,1{6pτA1 qqσA1 “ RD,1{6pτq and using piq, we get RD,1{6pτq “
RD,1{6pτA{3qσA1 . From piiq, this is RD,1{6pτq “ χπpnaqRD,1{6pτ{3qσA1 . Using Lemma 4.7, we

have Fr,1{6pτ{3qσ
´1

A1 “ Fna1r,1{6pτ{3q, thus RD,1{6pτ{3qσA1 “ χπpna1 qRD,1{6pτ{3q. Finally this im-

plies RD,1{6pτq “ χπpnaqχπpna1 qRD,1{6pτ{3q and we take ωk “ χπpnaqχπpna1 q to get the result.

4.3.2 Relating RD,1{6pτq to its complex conjugate

Now we want to show that RD,1{6pτq equals RD,1{6pτq up to a nice factor. As before we let

τ “ ´b`
?

´3
2

and π such that pπq2 divides pτq. We will show:

Proposition 4.14. For some cubic root of unity ωk1
, we have:

RD,1{6pτq “ p´1qσpDqωk1 π2{3

π2{3RD,1{6pτq.

Using the notation TD “ RD,1{6pτqπ´2{3ωk1
this is equivalent to TD “ p´1qσpDqTD.

Note that we can think of ωk1
as the unique root of unity which makes RD,1{6pτqωk1

π´2{3 either

real or purely imaginary. We actually give a formula for ωk1
in the proof of Proposition 4.14.

We first define the linear combination:

RpDq,µpzq “
ÿ

rPpZ{DZqˆ

r”1p6q

F prq,µpzqχπprq.

Note that we use χπ, unlike in RD,µ.

We choose b ” b1 mod 4D2 such that 3 ∤ b1 and we can findA1 as in the proof of Lemma

4.13 such that A1pπq2 “
´

´b1`
?

´3
2

¯
. Then from the transformation (20) we have Fr,1{6pτA1 q “

p´1qr p´1q
D´1

6 ω?
´3

pF p3rq,1{6p´τ{D2q ´ ωF p´3rq,1{6p´τ{D2q ´ ω2F p´3rq,1{2p´τ{D2qq. Writing the full

linear combination for r P pZ{DZqˆ, r ” 1p6q and multiplying by χπp3q, we get:

p´1qD`1

2 χπp3qRD,1{6pτA1 q “ RpDq,1{6pτ{D2q ´ ω2RpDq,1{2pτ{D2q{
?

´3. (21)

Note that above we related RD,1{6pτq to RpDq,µ for µ P t1{2, 1{6u. In order to show Proposition

4.14 we also want to relate RpDq,µ back to RD,µ, and we do that in the lemma below:

22



Lemma 4.15. RpDq,µpτ{D2q “ p´1qpD`1q{2Gpχπq
π

RD,µpτq.

Proof. RecallRpDq,µpz{D2q “
ÿ

rPpZ{DZqˆ

F prq,µpz{D2qχπprq, where F prq,µpz{D2q “ θprq,µp3z{D2q
θ0p3z{D2q .

We show first that, for r odd, we can rewrite the terms θprq,µp3z{D2q as:

θprq,µp3z{D2q “ ´
ÿ

sPpZ{DZq
s”1p6q

θs,µp3zqe2πirs{D. (22)

From the definition, we have θprq,µp3zq “
ÿ

nPZ
eπipn´Dµq23zp´1qne2πinr{D. Choosing as before

s P Z{DZ such that s ” 1 mod 6, we sum over all n modulo D:

θprq,µp3zq “
ÿ

sPZ{DZ
s”1p6q

ÿ

nPZ
eπipDn`s´Dµq23zp´1qDn`se2πipDn`sqr{D.

We can rewrite this as θprq,µp3zq “ ´
ÿ

sPZ{DZ
s”1p6q

θs,µpD23zqe2πisr{D and changing z Ñ z{3D2 we get

(22).

Plugging in z “ τ{D2 in (22) and dividing by θ0p3τq we have further
θprq,µp3τ{D2q

θ0p3τq “

´
ÿ

sPZ{DZ
s”1p6q

Fs,µpτqe2πirs{D . Moreover from Lemma 6.4 in the Appendix
θ0p3τ{D2q
θ0p3τq “ ηpτ{D2q

ηpτq “

p´1qpD´1q{6π, thus we get:

F prq,µpτ{D2q “ p´1qpD`1q{2

π

ÿ

sPZ{DZ
s”1p6q

Fs,µpτqe2πirs{D. (23)

Going back to the linear combination, we getRpDq,µpτ{D2q “ ´ 1

π

ÿ

rPpZ{DZqˆ

r”1p6q

ÿ

sPZ{DZ
s”1p6q

Fs,µ pτq e2πisr{Dχπprq.

We switch the two sums and get:

RpDq,µpz{D2q “ p´1qpD`1q{2

π

ÿ

psPZ{DZqˆ

s”1p6q

Fs,µ pτq
ÿ

rPpZ{DZqˆ

e2πisr{Dχπprq.

Note that if gcdps,Dq “ D1 ą 1, then the inner sum equals 0. This is easily seen by writing

s “ D1s1, D2 “ D{D1, and rewriting
ÿ

rPpZ{DZqˆ

e2πisr{Dχπprq “ χπps1q
ÿ

rPpZ{DZqˆ

e2πir{D1χπprq “
ÿ

rPpZ{D2Zqˆ

χπ2
prqGpχπ1

q “ 0, where π “ π1π2 and Nmpπiq “ Di, for i “ 1, 2. Thus we are left in
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our sum only with s prime to D, and we can rewrite:

RpDq,µpz{D2q “ p´1qpD`1q{2

π

ÿ

psPZ{DZqˆ

Fs,µpτqχπpsq
ÿ

rPpZ{DZqˆ

e2πisr{Dχπprsq.

This is exactlyRpDq,µpτ{D2q “ p´1qpD`1q{2

π

ÿ

psPZ{DZqˆ

s”1p6q

Fs,µ pτqχπpsqGpχπq “ p´1qpD`1q{2Gpχπq
π

RD,µpτq,

and thus we got the result of our lemma.

Proof of Proposition 4.14: Recall from equation (21), we have p´1qD´1

2 χπp3qRD,1{6pτA1 q “
RpDq,1{6pτ{D2q´ω2RpDq,1{2pτ{D2q{

?
´3. Rewriting the RHS using Lemma 4.15, then χπp3qRD,1{6pτA1 q “

Gpχπq
π

pRD,1{6pτq ´ ω2RD,1{2pτq{
?

´3q. Finally, since we noted that RD,1{2pzq “ 0 in the proof of

Lemma 4.10, for any z, then we get RD,1{6pτA1 q “ χπp3qGpχπq
π

RD,1{6pτq.
Now using the details of the proof of Lemma 4.13, recall that RD,1{6pτA1 q “ RD,1{6pτA{3q “

χπpnaqRD,1{6pτ{3q “ χπpna1 qRD,1{6pτq, thus

RD,1{6pτq “ χπpna1 qχπp3qGpχπq
π

RD,1{6pτq. (24)

To actually compute the term on the RHS, we recall a few facts about cubic Gauss sums. We

can write π “ ś
pi|D

πi, where πi is a generator of norm pi with πi ” 1p3q. Then:

Gpχπq “
ź

pi|D
χπ{πi

pπiqGpχπi
q.

Moreover, we can actually compute each Gpχπi
q up to a cubic root of unity. Following [11], we

have Gpχπi
q3 “ Jpχπi

, χπi
q, where Jpχπi

, χπi
q is the Jacobi sum for the character χπi

. Moreover,

we can compute Jpχπi
, χπi

q “ ´pπi for πi ” 1 mod 3 (also see [11]). Thus we get Gpχπi
q “

´πi2{3π1{3
i ωki for some ki P t0, 1, 2u,

Then
Gpχπq
π

“ p´1qσpDqωkD
π2{3

π2{3 , where kD “ ř
ki, which together with (24) gives us Propo-

sition 4.14 for ωk1 “ χπpna1 qχπp3qωkD .

From Lemma 4.13 and Proposition 4.14, we get TD “ RD,1{6pτ{3qπ´2{3ωk0 for k0 “ k`k1, and

thus:

Corollary 4.16. SD “ p´1qσpDqT 2
D.

4.4 Invariance under the Galois action

Define

MD “ RD,1{6pτ{3qπ´2{3.

We will write below MD as a trace.
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Lemma 4.17. MD P K and we can write it as a trace:

MD “ 1

ϕpDq TrHO{Kpf1,1{6pτqπ´2{3q,

where HO is the ray class field of modulus 3D, ϕ is Euler’s totient function and f1,1{6pτq “
θ1,1{6pτq{θ0pτq

Recall we defined TD “ RD,1{6pτqπ´2{3ωk1
and from Lemma 4.13 we have TD “ RD,1{6pτ{3qπ´2{3ωk0

for k0 “ k ` k1. As TD “ p´1qσTD from Proposition 4.14, we get immediately from Lemma 4.17:

Corollary 4.18. TD P Q when σpDq even and TD{
?

´3 P Q when σpDq odd and we have the

formula:

TD “ ωk0

ϕpDq TrHO{Kpf1,1{6pτqπ´2{3q.

Proof of Lemma 4.17: We can write explicitly MD “
ř

rPpZ{DZqˆ
frpτqχπprqπ´2{3. For an

ideal A “ ra, ´b`
?

´3
2

sZ with generator ka “
´
naa`ma

´b`
?

´3
2

¯
with 6|ma, na ” 1p6q, we are

going to have the Galois transformation:

pfr,1{6pτqχπprqπ´2{3qσ´1

A “ fnar,1{6pτqχπpnarqπ´2{3.

To show this, note that from Lemma 4.7 we have fr,1{6pτqσ´1

A “ frna,1{6pτq. We compute pπ1{3qσ´1

A “
χπpAqπ1{3. Furthermore, χπpAq “

`
π
A

˘
3

“
´

π

A

¯
3

“
´

π
naa`mab

¯
3

and napnaa`mabq2 ” a mod π,

so we have
´

π
naa`mab

¯
3

“
´

π

n
´1

a

¯
3

“
´

π
na

¯
3

“ χπpnaq.

Moreover, taking the ideals A˝
r “

´
1 ` b˚p1 ´ r˚q ´b`

?
´3

2

¯
, where b˚ ” b´1 mod D and r˚ ”

r´1 mod D, we have NmAr “ aA˝
r

” r´1 mod 3D and nA˝
r

” r mod 3D, and then:

MD “
ÿ

rPpZ{DZqˆ

r”1p6q

pf1pτqπ´2{3qσ
´1

Ar̋ .

Define the group G0 “ trA˝
rs, r P pZ{DZqˆu. It is a subgroup of GalpHO{Kq and G0 isomorphic

to pZ{DZqˆ. We define the fixed field of G0 in GalpHO{Kq to be H0 “ th P HO : σphq “ h,@σ P
G0u and from Galois theory this implies GalpHO{H0q – G0. Then we can rewrite the relation

above as

MD “ TrHO{H0
pf1pτqπ´2{3q.

Moreover, if we take the trace further toK, we get TrHO{Kpf1pτqπ´2{3q “ #GalpHO{Kq
#GalpHO{H0q TrHO{H0

pf1pτqπ´2{3q “
ś
p|D

pp´ 1qTrHO{H0
pf1pτqπ´2{3q.

Remark 4.19. Using the notation from the proof of Lemma 4.17, one can actually show similarly

that κ “ RD,1{6D
´1{3 equals:

κ “ TrHO{H0
pf1pτqD´1{3q

and κ3 P K. However, κ R K.
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4.5 Integrality

In Section 3 we have showed that SD P Q. We will show below that S1{6 P Z, thus 3c3DSD P Z.

Recall that S1{6 “ 3c3DSD “ TrH3D{K
ΘpDωq
Θpωq D

1{3. Note that it is enough to show that

D1{3ΘpDωq{Θpωq is an algebraic integer, as its trace would be a rational number as well as an

algebraic integer, thus an integer. Moreover, it is enough to show that ΘpDωq{Θpωq is an algebraic

integer.

We will use the following Lemma:

Lemma 4.20. Let fpzq be a modular function for ΓpNq such that for all γ P SL2pZq we have

f ˝ γ holomorphic on the upper half plane H and f has Fourier coefficients at 8 that are algebraic

integers. Then, for τ a CM point, fpτq is an algebraic integer

Proof. Define the polynomial P pXq “ ś
γPΓpNqzSL2pZq

pX ´ fpγzqq and note that all its coefficients

are modular functions that are invariant under SL2pZq. Moreover they are holomorphic functions

on the upper half plane and have Fourier coefficients at 8 that are algebraic integers. Then we

can write each coefficient cpzq as a polynomial in jpzq with coefficients that are algebraic integers.

Then, for z “ τ , since jpτq is an algebraic integer, we get that fpτq is the root of a polynomial

with coefficients that are algebraic integers, and thus fpτq is an algebraic integer as well.

First we will show that 2
ΘpDωq
Θpωq is an algebraic integer. We have showed that

3

2
Θpωq “

4
?
3|θ0pτq|2. Then 2

ΘpDωq
Θpωq “ 33{4 ΘpDωq

|θ0pτq|2. “ 33{4e´2πi{24Θp´Dτq
θ0p´τq2.

Since e´2πi{2433{4 is an algebraic integer, it is enough to show that Θp´Dτq
θ0p´τq2 is one as well. Recall

that θ0pzq “ ηpz{3q and take f0pzq “ ΘpDzq
ηpz{3q2 .

Note that:

• f0 is a modular function for Γp36Dq;

• f0pγzq is holomorphic on H for all γ P SL2pZq;

• f0pγzq has Fourier coefficients that are algebraic integers in its Fourier expansion at 8 for

all γ P SL2pZq.
These properties can be checked using the properties of ΘK from the Appendix as well as the

properties of ηpzq. Note that we are in the conditions of Lemma 4.20, thus fpτq is an algebraic

integer. This implies that 2
ΘpDωq
Θpωq is an algebraic integer, hence 2S1{6 is an integer.

Now we will show that DS1{6 is an integer as well by showing that D 2
3

Θ1{6pDωq
Θpωq is an algebraic

integer. Using Lemma 4.3 for µ P t´1{2,´1{6u, ν “ 1{2, a “ 1, z “ D´3`
?

´3
2

, we can rewrite:

Θ1{6pDτq “
4
?
3

D

D´1ÿ

r“0

|θr,1{6pτq|2, τ “ ´3 `
?

´3

2
.

Taking the quotient by 3
2
Θpτq “ 4

?
3|θ0pτq|2, we get:

2

3

Θ1{6pDωq
Θpωq “ 1

D

D´1ÿ

r“0

ˇ̌
ˇ̌θr,1{6pτq
θ0pτq

ˇ̌
ˇ̌
2

.
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Recall fr,µpzq “ θr,µpzq
θ0pzq for µ P t1{2, 1{6u and note that:

• fr,µ is a modular function for Γp18D2q;

• fr,µpγzq is holomorphic on H for all γ P SL2pZq;

• fr,µpγzq has Fourier coefficients that are algebraic integers in its Fourier expansion at 8 for

all γ P SL2pZq.

To show the last property we can use the automorphic definitions of both θr,µ and θ0. We get

a Fourier expansion with coefficients in OKrζ24, ζD2 s. Thus we are in the conditions of Lemma

4.20, hence fr,µpτq is an algebraic integer. This implies that D
Θ1{6pDωq

Θpωq is an algebraic integer, and

thus the trace DS1{6 “ DTrH3D{K
Θ1{6pDωq

Θpωq D1{3, which is a rational number, is indeed an integer.

Since we already showed that 2S1{6 is an integer, we get S1{6 P Z when D is odd.

If we note that |θ0pτq|2 “ |ηpτ{3q|2 “
?
3|ηpτq|2, then we can also show similarly that

θr,µpτq
ηpτq

is an algebraic integer, and thus DS1{6{
?
3 is an algebraic integer. Since S1{6 P Z, this implies 3

divides S1{6.
Finally, since S1{6 “ p´1qσDT 2

D and S1{6 is an integer, from Corollary 4.18 we get:

Corollary 4.21. TD{3 P Z when σpDq even and TD{
?

´3 P Z when σpDq odd.

Note that this implies that ωk0 is the unique choice for a cube root of unity such that TD or

TD{
?

´3 is an integer.

4.6 Case of D not square free

We present below the case of D not square free. We write D “ D1D
2
2 such that D1D2 square free.

In this case we use the formula (13):

SD “
ÿ

APClpO3D0
q

ΘKpD0τAq
ΘKpτAq χDpAqD1{3.

for D0 “ D1D2. All the details of the proof for the square-free case will follow through and we

only briefly mention the steps. We apply the factorization formula and obtain the factorization

from Corollary 4.6:
ΘµpD0τAq
Θ pτAq “ 3{2

D0

ÿ

rPZ{D0Z

far,µ pτA2A1
q fr,µ pτA1

q, (25)

We use this to show similarly to the proof of Proposition 4.11 that:

SD “ D
1{3
2 D

´2{3
1

3c3D
|

ÿ

sPpZ{D0Zqˆ

s”1p6q

fs,1{6 pτqχDpAsq|2,

where As “ ras, ´b`
?

´3
2

s with Nmpasq ” s mod D1D2. Take π1 a generator of D1 and π2 is the

generator of D2 such that
´

´b`
?

´3
2

¯
is divisible by pπ1π2q2. Then χDpAsq “ χπ1

psqχπ2
psq.
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The main difference is when we compute the complex conjugate of

RD,1{6pτq “
ÿ

rPpZ{D0Zqˆ

r”1p6q

fr,1{6pτqχπ1
psqχπ2

psq,

as we getRD,1{6pτq “ Gpχπ1
χπ2

q
π1π2

RD,1{6pτq and this equalsRD,1{6pτq “ p´1qσpDqωk1 π1
1{3π2

2{3

π
1{3
1

π
1{3
2

RD,1{6pτq
for a cubic root of unity ωk1

. Then we can rewrite:

SD “ p´1qσpDq

3c3D
T 2
D,

where TD “
ř

sPpZ{D1D2Zqˆ

s”1p6q

fs,1{6 pτqχπ1
psqχπ2

psqπ1´2{3π1{3
2 ωk0 , and we can show that this is the

trace:

TD “ 1

ϕpD0q TrHO{K f1pτqπ1´2{3π
1{3
2 ωk0 ,

where HO is the ray class field for the modulus D0 and ωk0 is a cubic root of unity. Moreover, we

can further show as in Section 4.5 that TD{3 P Z when σpDq even and TD{
?

´3 P Z when σpDq
odd.

Finally, we have SD ‰ 0 for D split only for D ” 1 mod 9 and in this case the Tamagawa

number c3D equals 31`σpDq, thus SD is an integer square up to an even power of 3 and it equals:

SD “
ˆ

TD

p
?

´3q2`σpDq

˙2

.

5 Shimura reciprocity law

We present below some background on Shimura’s reciprocity law following the exposition of Steven-

hagen [25]. For more details also see Gee [6].

Let F be the field of modular functions over Q. From CM theory (see for example [25]), it

is known that if τ P K X H and f P F , then we have fpτq P Kab, where Kab is the maximal

abelian extension of K. Shimura’s reciprocity law gives us a way to compute the Galois conjugates

fpτqσ of fpτq when acting with σ P GalpKab{Kq. We recall that F “ Ť
Ně1 FN , where FN is

the space of modular functions of level N . Moreover, FN is the function field of the modular

curve XpNq “ ΓpNqzH˚ over QpζN q, where ζN “ e2πi{N and H˚ “ H Y P1pQq. We can compute

explicitly FN “ Qpj, jN q, where j is the j-invariant and jN pzq “ jpNzq. In particular, we have

F1 “ Qpjq.
When working over Q, one has an isomorphism GalpFN{F1q – GL2pZ{NZq{t˘1u. More pre-

cisely, if we denote by gσ the Galois action corresponding to the matrix g P GL2pZ{NZq un-

der the isomorphism above, it is enough to define the Galois action for SL2pZ{NZq and for

GN “
!

p 1 0
0 d q , d P pZ{NZqˆu. We state explicitly the two actions below:

• Action of α P SL2pZ{NZq on FN . We have pfpτqqσα “ fαpτq :“ fpατq, where α is acting

on the upper half plane via fractional linear transformations.

• Action of p 1 0
0 d q P pZ{NZqˆ on FN . Note that for f P FN we have a Fourier expansion
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fpzq “
ř
ně0

anq
n{N with coefficients an P QpζN q, q “ e2πiz. If we denote ud “ p 1 0

0 d q, then the

action of σud
is given by pfpτqqσud “ fudpτq :“ ř

ně0

aσd
n qn{N , where σd is the Galois action

in GalpQpζN q{Qq that sends ζN Ñ ζdN .

As the restriction maps between the fields FN are in correspondence with the natural maps

between the groups GL2pZ{NZq{t˘1u, we can take the projective limit to get the isomorphism:

GalpF{F1q – GL2ppZq{t˘1u.

Note that the maps on FN are given by projecting GL2ppZq{t˘1u Ñ GL2pZ{NZq{t˘1u. To

further get all the automorphisms of F we need to consider the action of GL2pAQ,f q. We get the

exact sequence:

1 Ñ t˘1u Ñ GL2pAQ,f q Ñ AutpFq Ñ 1.

For this to make sense, we need to extend the action from GL2ppZq to GL2pAQ,f q. We do this

by defining the action of GL2pQq` on F :

• Action of α P GL2pQq` on F . We define fαpτq “ fpατq, where α acts by fractional linear

transformations.

We extend the action of GL2ppZq to GL2pAQq by writing the elements g P GL2pAQq in the form

g “ uα, where u P GL2ppZq and α P GL2pQq`. Note that this decomposition is not uniquely

determined. However, by combining the two actions of u and α, a well defined action is given by:

fuα “ pfuqα.

We want to look at the action of GalpKab{Kq inside AutpFq. From class field theory we have the

exact sequence:

1 Ñ Kˆ Ñ Aˆ
K,f

r¨,KsÝÝÝÑ GalpKab{Kq Ñ 1,

where r¨,Ks is the Artin map.

We are going to embed Aˆ
K,f into GL2pAQ,f q such that the Galois action of Aˆ

K,f through the

Artin map and the action of the matrices in GL2pAQ,f q are compatible. We do this by constructing

a matrix gτ pxq for the idele x P Aˆ
K,f .

Let O be the order of K generated by τ i.e. O “ Zrτ s. We define the matrix gτ pxq to be the

unique matrix in GL2pAQq such that x

ˆ
τ

1

˙
“ gτ pxq

ˆ
τ

1

˙
. We can compute it explicitly. To do

that, consider the minimal polynomial of τ to be ppXq “ X2 `BX `C. Then if we write xp P Qˆ
p

in the form xp “ spτ ` tp P Qˆ
p with sp, tp P Qp, we can compute gτ pxpq “

ˆ
tp ´ spB ´spC

sp tp

˙
.

Using the map gτ above, we have:

Theorem 5.1. (Shimura’s reciprocity law) For f P F and x P Aˆ
K,f , we have:

pfpτqqσx “ fgτ px´1qpτq,

where σx is the Galois action corresponding to the idele x via the Artin map, gτ is defined above

and the action of gτ pxq is the action in GL2pAQ,f q.
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Note that the elements of Kˆ have trivial action. This can be easily seen by embedding

Kˆ
ãÑ GL2pQq` via k ãÑ gτ pkq. Noting that τ is fixed by the action of the torus Kˆ, we have

fgτ pk´1qpτq “ fpgτ pk´1qτq “ fpτq.
We can also rewrite the theorem for ideals in K. Let f P FN and O “ Zrτ s of conductor M .

Going through the Artin map, we can restate Shimura’s reciprocity in this case in the form:

fpτqσA “ fgτ pAq´1pτq, (26)

where A is an ideal prime to MN , σA is the Galois action corresponding to the ideal A through

the Artin map, and gτ pAq :“ gτ ppαqp| NmpAqq. Note that gτ pAq is unique up to multiplication by

roots of unity in K. However, these have trivial action on f at the unramified places p|NmpAq.

5.1 Galois conjugates of fpωq

We denote fpzq “ ΘKpDzq
ΘKpzq . We are interested in finding the Galois conjugates of fpωq. First we

show that fpzq is a modular function:

Lemma 5.2. The function f(z) is a modular function of level 3D with integer Fourier coefficients

at the cusp 8.

Proof. Since ΘKpzq is a modular form of weight 1 for Γ1p3q, it can be easily seen that ΘpDzq is

a modular form of weight 1 for Γp3Dq. Furthermore, their ratio is modular function for Γ0p3Dq.
To check this let g “

`
a b
c d

˘
P Γp3Dq, and then it is easy to see that fpgzq “ ΘppD 0

0 1 qgzq
Θpgzq “

Θ
´´

a bD
c{D d

¯
pDzq

¯

Θ
´´

a b
c d

¯
z

¯ “ fpzq.

To find the Fourier expansion of fpzq at 8, it is enough to write the Fourier expansions of

ΘpDzq and Θpzq: ΘpDzq
Θpzq “

1`
ř

Ně1

cNqND

1`
ř

Ně1

cNqN
“ ř

Mě0

aMq
M . We can compute the Fourier coefficients

explicitly from the equality: a0 “ 1 and aM “ ´aM´1c1 ´aM´2c2 ´ ¨ ¨ ¨ ´a1cM´1 ´a0cM if D ∤M

and aM “ cM{D ´ aM´1c1 ´ aM´2c2 ´ ¨ ¨ ¨ ´ a1cM´1 ´ a0cM if D|M . By induction, since cN P Z,

we get all the coefficients aM P Z.

From CM-theory, if f P F3D and τ a generator of OK , we have fpτq P HO the ray class field

of modulus 3D. Recall H3D is the ring class field for the the order O3D “ Z ` 3DOK , and we

actually have:

Lemma 5.3. fpωq P H3D.

Proof. We need to show that fpωq is invariant under GalpKab{H3Dq. Recall that we haveGalpH3D{Kq –
Up3DqzAˆ

K,f{Kˆ for Up3Dq “ p1 ` 3Z3rωsq ś
v|D

pZ `DZprωsqˆ ś
v∤3D

Oˆ
Kv

. We check that fpωq is

invariant under the action of KˆUp3Dq. Using Shimura’s reciprocity law, we want to show:

fpωq “ fgωpsqpωq,

for all s P KˆUp3Dq. We noted before that the action of Kˆ is trivial. Thus it is enough to show

the result for all elements l “ pAp `Bpωqp P Up3Dq. By the definition of Up3Dq, this implies that

Ap ` Bpω P pZprωsqˆ for all p and A3 ” 1 mod 3, B3 ” 1 mod 3, Bp ” 0 mod D for all p|D.
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Since the action for p ∤ 3D is trivial, l has the same Galois action as lD “ pAp `Bpωqp|3D P Up3Dq.
Moreover, this has the same action as l0 “ pA ` Bωqp|3D, where A ` Bω P OK and A ” Ap

mod 3DZp and B ” Bp mod 3DZp for all p|3D.

Note further that we can pick A,B such that pA ` Bωq generates a primitive ideal A in OK .

Moreover, from above we have 3D|B and A ” 1 mod 3. Recall that we can rewrite any primitive

ideal in the form A “ ra, ´b`
?

´3
2

sZ, where a “ NmA and b2 ” ´3 mod 4a. Then the generator

of the ideal A is A`Bω “ ta` s´b`
?

´3
2

for t, s P Z and 3D|s.
Now note that fpωq “ fpτq, where τ “ ´b`

?
´3

2
. Thus from Shimura’s reciprocity law, we

have:

pfpτqqσl´1 “ fgτ plp|3Dqpτq “ fgτ pl0qpτq.

Here gτ pl0q “
`
ta´sb ´sca

s ta

˘
p|3D, where ca “ b2`3

4
. Then we can rewrite the action of gτ pl0q

explicitly as:

fgτ pl0qpτq “ f

´
ta´sb ´sc

s t

¯
p|3D

p 1 0
0 a q

p|3D pτq “ f
p 1 0
0 a q

p|3D p
`
ta´sb ´sc

s t

˘
τq.

Since 3D|s, the matrix
`
ta´sb ´sc

s t

˘
P Γ0p3Dq and fpzq is invariant under its action. Finally, since

pa, 3Dq “ 1 and f has rational Fourier coefficients at 8, the action of p 1 0
0 a q

p|3D is trivial. Thus

fpωq is invariant under the Galois action coming from Up3Dq and this finishes the proof.

Now we would like to compute the Galois conjugates of fpωq under the action of GalpH3D{Kq.
We will first show the following general result:

Lemma 5.4. Let F P FN be a modular function of level N with rational Fourier coefficients in its

Fourier expansion at 8. Let τ “ ´b`
?

´3
2

be a CM point and let A “
”
a, ´b`

?
´3

2

ı
Z

be a primitive

ideal prime to N . Then we have the Galois action:

F pτqσ´1

A “ F pτ{aq.

Proof. From Shimura’s reciprocity law, we have F pτqσ´1

A “ F gτ pAqpτq. Note that the minimal

polynomial of τ is pτ pXq “ X2 ` bX ` b2`3
4

. Let α be a generator of A. Then we can write α in

the form α “ ta ` sτ and we have gτ pAq “
´

ta´sb ´s b2`3

4

´s ta

¯
p|a

. We can rewrite the matrix in the

form gτ pAq “
´

ta´sb b2`3

4a

´s t

¯
p|a

p 1 0
0 a q

p|a . As
´

ta´sb ´ b2`3

4a

´s t

¯
p|a

is an element of SL2pZpq for p ∤ N , it

has trivial action. Then we have F gτ pAqpτq “ F
p 1 0
0 a q

p|apτq.
We rewrite the matrix p 1 0

0 a q
p|a “

`
1 0
0 1{a

˘
p∤a

p 1 0
0 a qQ, where

`
1 0
0 1{a

˘
p∤a

P GL2ppZq and p 1 0
0 a qQ P

GL2pQq`. Note that the action of
`
1 0
0 1{a

˘
p∤a

is the same as the action of
`
1 0
0 1{a

˘
p|N . However,

since F has rational Fourier coefficients in its Fourier expansion, this action is trivial. Thus we are

left with F gτ pAqpτq “ F
p 1 0
0 a q

Qpτq “ F pτ{aq, which finishes the proof.

We apply the lemma above to our case:

Proposition 5.5. Take the primitive ideals A “
”
a, ´b`

?
´3

2

ı
Z

to be the representatives of the

classes of the ring class group ClpO3Dq such that all norms a “ NmA are relatively prime to each

other and b2 ” ´3 mod 4a for all the norms a.
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Then the Galois conjugates of fpωq “ ΘKpDωq
ΘKpωq are the terms

´
ΘKpDωq
ΘKpωq

¯σ
´1

A “ ΘKpDτAq
ΘKpτAq .

Proof. We note that ΘKpDωq
ΘKpωq “ ΘKpDτq

ΘKpτq and apply Lemma 5.4 to τ “ ´b`
?

´3
2

and fpzq “ ΘKpDzq
ΘKpzq .

These are the only Galois conjugates, as we showed that fpτq P H3D.

5.2 Galois conjugates of fr,µpτq

Recall that we defined fr,µpzq “ θr,µpzq
θ0pzq . This is a modular function for Γp18D2q when µ “ 1{2

and for Γp9D2q when µ “ 1{6. From CM-theory then fr,µpτq P HO1 , where HO1 is the ray class

field of modulus 18D2 for µ “ 1{2 and of modulus 9D2 for µ “ 1{6. In order to compute the

Galois conjugates of fr,µpτq over K we can use Shimura’s reciprocity law.

In our case we want to compute the Galois conjugates of fr,µpτq for τ “ ´b`
?

´3
2

, with b2 ” ´3

mod 12D2. Note that τ has the minimum polynomial X2 ` bX ` b2`3
4

. Thus we have to compute

the action of all gτ ppxpqpq “
ź

p

´
tp´spb ´sp

b2`3

4

sp tp

¯
p

on fr,µpτq. We will prove that the Galois action

from Shimura’s reciprocity law is given by the following:

Proposition 5.6. For A “ ra, ´b`
?

´3
2

sZ an ideal prime to 6D such that b2 ” ´3 mod 12Da2.

Let kA “ naa ` ma
´b`

?
´3

2
be the generator of A such that 3|ma and na ” 1 mod 3, then for

τ “ ´b`
?

´3
2

we have:

fr,µpτqσ´1

A “ fn1
ar,µ

pτq,

where na ” n1
a mod 3D and na1 odd. Moreover, these are all the Galois conjugates of fr,µpτq and

fr,µpτq is in HO the ray class field of modulus 3D.

Proof. We will compute the Galois conjugates of fr,µpτq using Shimura’s reciprocity law. As

we noted before, it is enough to look at the action of Kˆ ś
v∤8

Oˆ
Kv

. Moreover, we also noted that

the action of Kˆ is trivial.

To compute the action of
ś

v O
ˆ
Kv

note first that for all v ∤ 6D the action is trivial. For v|6D we

project the action of pgτ pxvqqv to gτ px1q P GL2pZ{18D2Zq. From the Chinese remainder theorem,

we can find k0 P K such that k0 ” xp mod 72D2Zp for all p|6D. Note that k0 is independent of

the choice of τ and gτ pxq ” gτ pk0q in GL2pZ{18D2Zq.
Moreover, p˘ωiqp ãÑ Aˆ

Kf
acts trivially, thus we can consider the action of k0p˘ωjq instead,

for j P t0, 1, 2u. We pick k0 “ A ` Bω such that v3pBq ě 1. Moreover, by eventually changing b

to b` 18D2, we can pick b1 ” b mod 18D2Nm k0 such that k0 “ ta` s´b1`
?

´3
2

with ta´ sb1 ” 1

mod 6. Let τ 1 “ ´b1`
?

´3
2 and we have:

pfr,µpτqqσpk0 q6D “ pfr,µpτ 1qqσpk0q6D “ fgτ1 ppk0q6Dq
r,µ pτ 1q.

We have gτ 1 ppk0q6Dq “
`
ta´sb1 ´sc1a

s ta

˘
, where c1a “ b12`3

4
.

We will now compute f
gτ pxqp|6D
r,µ pτq. We write the matrix gτ 1ppk0q6Dq as a product gτ 1ppk0q6Dq “`

ta´sb ´sc1

s t

˘
p|6D p 1 0

0 a q
p|6D. Note that p 1 0

0 a q
p|6D acts trivially on fr,µ as the functions θr,µpzq and

θ0pzq have rational Fourier coefficients in its Fourier expansion at 8, and thus so does fr,µpzq.

Thus we need to compute the action f

´
ta´sb ´sc1

s t

¯
p|6D

r,µ pτ 1q. Note that this is a matrix in SL2pZq
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and it acts as:

f

´
ta´sb1 ´sc1

s t

¯
p|6D

r,µ pτ 1q “ fr,µp
`
ta´sb1 ´sc1

s t

˘
τ 1q.

We can further compute this transformation and we will do this explicitly in Lemma 6.5. As

we have 3D2|s and ta ´ sb ” 1 mod 6 we are in the conditions of this lemma. Applying the

transformation for θr,µ and θ0 and moreover noting that 9|sc1 we get precisely:

fr,µp
`
ta´sb1 ´sc1

s t

˘
τ 1q “

θr
``

ta´sb1 ´sc1

s t

˘
τ 1˘

θ0
``

ta´sb1 ´sc1

s t

˘
τ 1

˘ “ fpta´sb1qr,µpτ 1q.

Since pta ´ sb1qt ” 1 mod D2, we can rewrite this as ft1´1r,µpτ 1q for t ” t mod D and t1 ” 1

mod 6. Note that t is prime to D. Thus we have showed so far that the Galois conjugates of

fr,µpτq are the terms fs,µpτq, where gcdps,Dq “ gcdpr,Dq. Moreover, we have nontrivial Galois

action only for k0 “ ta ` s´b`
?

´3
2

with t ı 1 mod D. Furthermore, it implies that fpτq P HO,

the ray class field of modulus 3D.

Finally, we would like to express the Galois action using ideals. For A “ ra, ´b`
?

´3
2

sZ a

primitive ideal prime to 6D with a generator pkAq “ pnaa `ma
´b`

?
´3

2
q with na ” 1 mod 6 and

3|ma, we have the correspondence map between ideles and ideals given by x “ pkAqp∤6D Ø A “
pkAq. Picking the representatives kA as above, we have:

fr,µpτqσA “ f
g´1

τ pkAqp∤6D
r,µ pτq “ f

gτ pkAqp|6D
r,µ pτq “ fn1´1

a r,µpτq,

where na ” n1
a mod 3D and n1

a odd. After changing r Ñ n1´1
a r, we get the result of the Galois

action from the proposition.

6 Appendix: Properties of theta functions

6.1 Properties of ΘK and η

We have a functional equation for the theta function (see [13]):

ΘKp´1{3zq “ 3?
´3

zΘKpzq. (27)

Furthermore, we can compute the transformation of ΘKpz ˘ 1{3q in the lemma below:

Lemma 6.1. Θ pz ` k{3q “ p1 ´ ω2kqΘp3zq ` ω2kΘpzq for k P Z.

Proof. For k “ 1, we can split the sum Θ
`
z ` 1

3

˘
“ ř

m,nPZ
e2πipm

2`n2´mnqpz` 1

3 q in two parts,

depending on whether or not the ideal pm`nωq is prime to p
?

´3q. The part of the sum for which

p
?

´3q|pm ` nωq gives us
ř

m,nPZ
e2πipm

2`n2´mnqp3z`1q “ Θp3z ` 1q “ Θp3zq.

The part of the sum for which p
?

´3q ∤ pm`nωq can be rewritten as ω
ř

m,nPZ,
p
?

´3q∤pm`nωq

e2πipm
2`n2´mnqz

as m2 ` n2 ´mn ” 1p3q. We rewrite this sum as the sum of two terms ω
ř

m,nPZ
e2πipm

2`n2´mnqz ´

ω
ř

m,nPZ,
p
?

´3q|pm`nωq

e2πipm
2`n2´mnqz. Finally we recognize the two terms as ωΘpzq ´ ωΘp3zq.
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Going back to our initial computation, we get Θ pz ` 1{3q “ Θp3zq ` ωΘpzq ´ ωΘp3zq “
p1´ωqΘp3zq `ωΘpzq, and this finishes the proof of the first formula. We can show the case k “ 2

by applying the equality for k “ 1 and z :“ z ´ 1{3.

By applying the functional equation (27) for z “ ´3`
?

´3
6

we get the following easy lemma:

Lemma 6.2. ΘK

´
´3`

?
´3

6

¯
“ 0.

We have further:

Lemma 6.3. For a primitive ideal A “ ra, ´b`
?

´3
2

sZ prime to 3 such that b2 ” ´3 mod 12a, we

have ΘK

´
´b`

?
´3

6a

¯
“ 0.

Proof. The proof is similar to that of Lemma 3.8. We can write the generator of primitive ideal

A “
”
a, ´b`

?
´3

2

ı
in the form kA “ ma`n

´b`
?

´3

2
for some integers m,n and following similar

steps as in Lemma 3.8, we get ΘK

´
´b`

?
´3

6

¯
“ pm´n´b`

?
´3

2a
qΘK

´
´b`

?
´3

6a

¯
. From the previous

lemma, we know the LHS equals 0, thus ΘK

´
´b`

?
´3

6a

¯
“ 0 as well.

We have also used the following lemma in the proof of Proposition 4.14:

Lemma 6.4. For b2 ” ´3 mod 12D2 and π of norm D such that the ideal pπq2 divides
´

´b`
?

´3
2

¯
,

we have for τ “ ´b`
?

´3
2

:

η
`
τ{D2

˘

η pτq “ p´1qD´1

6 π

Proof. We apply Corollary 4.5 twice to get: p´1qD´1

6

θ0pτ{D2q
θ0pτq

θ0 pτq
θ0 pτq “ ΘK pτ{Dq

ΘK pτq .

Then from Lemma 3.8, we have the RHS equal to π. Furthermore, we can pick b ” b1 mod 8D2,

b ” 0 mod 3 and b1 ” 1 mod 3. Denote τ 1 “ ´b1`
?

´3
2

. We can pick without loss of generality

b, b1 such that pb2 `3q{D2 and pb12 `3q{D2 are prime to D. Then we can find ideals A,A1 prime to

D such that Apπq2p
?

´3q “ pτq and A1pπq2 “ pτ 1q. Let a “ NmA, a1 “ NmA1 and then we have:

θ0
`
τ{D2

˘

θ0 pτq “
˜
θ0

`
τ{D2

˘

θ0 pτq

¸σ
´1

A

“ θ0
`

τ
aD2

˘

θ0 pτ{aq “ η
`

τ
3aD2

˘

η
`

τ
3a

˘ “ η pτ q
η pτ{D2q .

Similarly we compute
ηpτ q

η pτ{D2q “ ηpτ 1q
η

`
τ 1{D2

˘ “
η

´
τ 1

a1D2

¯

η
`
τ 1
a1

˘ “
˜
η

`
τ 1{D2

˘

η pτ 1q

¸σ
´1

A1

.

Note that we also have
η

´
τ1
D2

¯

ηpτ 1q “ ηp τ

D2 q
ηpτq , and thus we have

η
`

τ
D2

˘

η pτq “ p´1qD´1

6 π.

6.2 Properties of θr,µ

Recall that for r P Z, µ P t1{2, 1{6u, we have defined the theta function θr,µpzq “
ÿ

nPZ
eπipn`r{D´µq2zp´1qn.
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We will write θr,µ as an automorphic theta function. Using the standard notation:

mpaq “
ˆ
a 0

0 a´1

˙
, npbq “

ˆ
1 b

0 1

˙
, w “

ˆ
0 1

´1 0

˙
,

for φ P SpAQq a Schwartz-Bruhat function the Weil representation r for SL2pAQq is defined by:

• r pmpaqqφpxq “ χ0paq|a|1{2φpaxq

• r pnpbqqφpxq “ ψpbx2qφpxq

• r pwqφpxq “ γpφpxq,

where ψppxq “ e´2πiFracppxq and ψ8pxq “ e2πix, γ is an 8th root of unity, and χ0 is a quadratic

character. We chose the self-dual Haar measure such that
ppφp´xq “ φpxq.

We define the Schwartz-Bruhat functions φr,µ “ ś
v

φr,µv for θr,µ by taking φr,µ8 pxq “ e´2πx2

,

φr,µp “ charZp` r
D

´µ for p ‰ 2 and φr,µ2 pxq “ eπiFrac2pxq charZ2´1{2pxq. Then for the theta function

θpg, φr,µq “
ÿ

xPQ
rpgqφr,µpxq,

for gz “
´

y1{2 y´1{2x

0 y´1{2

¯
, we can compute θpgz , φr,µq “ e´πiFrac2 µp´1qry1{4θr,µp2zq.

Using the properties of the Weil representation and the definition above for θr,µ, after a straight-

forward computation we get the following lemma:

Lemma 6.5. For
`
a b
c d

˘
P SL2pZq such that 3D2|b and a ” 1 mod 6, we have the transformation:

θr,µ

ˆ
az ` b

cz ` d

˙
“ sgnpdqeπipa´1q{2χ0,6paqe2πiFrac2p ba´c{a

8
qe2πiFrac3ptµ ba{2

9
q?
cz ` dθar,µpzq.

where t1{2 “ 0 and t1{6 “ 1.

Proof. Let φ “ φµ,r . Recall that θpgz{2, φq “ e´πiFrac2 µp´1qrpy{2q1{2θr,µpzq.. Note thatmp
?
2q´1

`
a b
c d

˘
“´

a b{2
2c d

¯
mp

?
2q´1. As θpg, φq is invariant under the action of SL2pQq, we have

θpmp
?
2q´1

`
a b
c d

˘
gz, 1f , φq “ θpmp

?
2q´1gz,

´
a b{2
2c d

¯´1

f
, φq. (28)

We will compute separately the LHS and the RHS using the definition of the Weil represen-

tation. We compute first the RHS. In order to do this, we rewrite the matrix
´

d ´b{2
´2c a

¯
“

mpa´1qnp´ba{2qmp´1qw ¨ np2c{aq ¨ w.

At p ∤ 6D, the action of
´

d ´b{2
´2c a

¯
is trivial. For p|D, we can easily compute the Fourier

transforms xφppxq “ e´2πiFracpp2rx{Dq charZp
pxq using vppc{aq ě 0 we get rpmp´1qw¨np2c{aq¨wqφp “

φp. Furthermore using vppba{2q ě 2, we get rpmpa´1qnp´ba{2qqφppxq “ φppx{aq “ charZp` ar
D

pxq.
For p “ 3, the computation is similar. For µ “ 1{2 we get χ0,3paqφ3pxq, while for µ “ 1{6 we

get χ0,3paqe´2πiFrac3p ba{2
9

qφ3pxq.
For p “ 2, we have the Fourier transform xφ2pxq “ eπi{2e´2πiFrac2pxq char 1

2
pZ2`1{2qpxq. Us-

ing v2p2c{aq ě 1 we get rpnp2c{aqqxφ2pxq “ e´2πiFrac2p c{a
8

qxφ2pxq and as v2pbaq ě 0 we have
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rpnp´ba{2qqφ2pxq “ e2πiFrac2p ba
8

qφ2pxq. Thus we get χ0,2paqe2πiFrac2p ba´c{a
8

qφ2px{aq which equals

χ0,2paqeπipa´1q{2e2πiFrac2p ba´c{a
8

qφ2pxq.
This finishes the computation as we got θpmp

?
2q´1gz,

´
a b{2
2c d

¯´1

f
, φq to equal:

cp´1qre´πiFrac2 µpy{2q1{4θar,µpzq, (29)

where c “ χ0,6paqeπipa´1q{2e2πiFrac2p ba´c{a
8

qe2πitµ Frac3p ba{2
9

q.

We will compute now the LHS of (28). We have rpgzqφ8pmq “ y1{4e2πizm
2

. We rewrite the

matrix
`
a b
c d

˘
“ npb{dqmpd´1qmp´1qwnp´c{dqw. We compute the Weil representation action and

get

rpmp
?
2q´1qr

`
a b
c d

˘
rpgzqφ8pxq “ py{2q1{4 sgnpdq

c
1

cz ` d
eπip az`b

cz`dqx2

,

and thus we have:

θ
´
mp

?
2q´1

`
a b
c d

˘
gz, 1f , φ

¯
“ p´1qre´πiFrac2 µpy{2q1{4 sgnpdq

c
1

cz ` d
θr

ˆ
az ` b

cz ` d

˙
(30)

From (29) and (30) we get the result of the lemma.

It follows immediately by applying the lemma above for θr,µ and θ0 that:

Lemma 6.6. fr,1{2 is a modular function for Γp18D2q and fr,1{6 is a modular function for Γp6D2q.

Remark 6.7. Also from Lemma 6.5 it is easy to see that fr,µpz ` 9D2q “ fr,µpzq.

We can also compute the transformation under w “
`

0 1
´1 0

˘
of θr,µ. This is also done by

straightforward computation. We get:

Lemma 6.8. We have the transformation:

θr,1{6p3zq “ p´1qr ωeπi
D´1

6?
´3

?
´iz

´
θp´3rq,1{6p3p´1{zqq ´ ωθp3rq,1{6p3p´1{zqq ´ ω2θp´3rq,1{2p3p´1{zqq

¯

where θprq,µpzq “
ÿ

nPZ
eπipn´µq2zp´1qne2πinr{D.

Proof. Denote φ “ φr,1{6. Then for gZ{2 “
´

pY {2q1{2 pY {2q´1{2pX{2q
0 pY {2q´1{2

¯
and w “

`
0 1

´1 0

˘
we have

θpgZ{2, φq “ θpwgZ{2, wφq. On the LHS we have θpgZ{2, φq “ ip´1qrpY {2q1{4θrpZq. We compute

θpwgZ{2, wφq below:

• At 8, we have rpwgZ{2qφ8pxq “ γ8pY {2q1{2
ż

R

e2πix
12Z{2e2πip2xx

1qdx1 “ γ8pY {2q1{2e4πix
2p´1{Zq 1?

´iZ
.

• At p|D, we have rpwφpq “ γp

ż

Zp`r{D

e´2πiFracpp2xyqdy “ γpe
´2πiFracpp2xr{Dq charZp

pxq.

• At p “ 3, we have rpwφ3q “ γ3

ż

Z3`1{3

e´2πiFrac3p2xyqdy “ γ3e
´2πiFrac3p2x{3q charZ3

pxq.
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• At p “ 2, we have rpwφ2q “ γ2

ż

Z2´1{2

eπiFrac2pyqe´2πiFrac2p2xyqdy “ γ2e
´πi{2e2πiFrac2pxq char 1

2
pZ2`1{2qpxq.

Writing all these together, we get:

θpwgZ{2, wφq “ ω
pY {2q1{4
?

´iZ
ÿ

nPZ
eπipn`1{2q2p´1{Zqp´1qne´2πiFrac3pn{3qe2πiFracDppn`1{2qr{Dq.

Changing n Ñ ´n´ D´1
2

we get:

e2πi
D´1

3 p´1qD´1

2 ω
pY {2q1{4
?

´iZ
ÿ

nPZ
eπipn´D{2q2p´1{Zqp´1qne2πiFrac3pn{3qe´2πiFracDpnr{Dq.

We take the separate sums depending on n mod 3.

•
ÿ

nPZ
eπip3n´D{2q2p´1{Zqp´1qne´2πiFracpp3nr{Dq “ θp´3rq,1{6p9p´1{Zqq

• ´ω
ÿ

nPZ
eπip3n`D{2q2p´1{Zqp´1qne2πiFracDpp3nr{Dq “ ´ωθp3rq,1{6p9p´1{Zqq.

• ´ω2
ÿ

nPZ
eπip3n´3D{2q2p´1{Zqp´1qne´2πiFracDp3nr{Dq “ ´ω2θp´3rq,1{2p9p´1{Zqq.

Thus we got:

e2πi
D´1

3 p´1qD´1

2 ω
pY {2q1{4
?

´iZ
pθp´3rq,1{6p9p´1{Zqq´ωθp3rq,1{6p9p´1{Zqq´ω2θp´3rq,1{2p9p´1{Zqqq.

Taking Z “ 3z we get the result of the lemma.
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