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Abstract
We are interested in finding for which positive integers D we have rational solutions
for the equation x3 + y3 = D. The aim of this paper is to compute the value of the
L-function L(ED, 1) for the elliptic curves ED : x3+ y3 = D. For the case of p prime
p ≡ 1 mod 9, two formulas have been computed by Rodriguez-Villegas and Zagier.
We have computed formulas that relate L(ED, 1) to the square of a trace of a modular
function at a CM point. This offers a criterion for when the integer D is the sum of
two rational cubes. Furthermore, when L(ED, 1) is nonzero we get a formula for the
number of elements in the Tate–Shafarevich group and we show that this number is a
square when D is a norm in Q[√−3].

Mathematics Subject Classification Primary 11G40 · 11F67; Secondary 14H52

1 Introduction

In the current paper we are interested in finding which positive integers D can be
written as the sum of two rational cubes:

x3 + y3 = D, x, y ∈ Q. (1)

Despite the simplicity of the problem, an elementary approach to solving the Dio-
phantine equation fails. However, we can restate the problem in the language of elliptic
curves. After making the equation homogeneous, we get the equation x3 + y3 = Dz3

that has a rational point at ∞ = [1 : −1 : 0]. Moreover, after a change of coordinates
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1328 E. Rosu

X = 12D z
x+y , Y = 36D x−y

x+y the equation becomes:

ED : Y 2 = X3 − 432D2,

which defines an elliptic curve over Q written in its Weierstrass affine form.
Thus the problem reduces to finding if the group of rational points ED(Q) of the

elliptic curve ED is non-trivial. We assume D cube free and D �= 1, 2 throughout
the paper. In this case ED(Q) has trivial torsion (see [27]), thus (1) has a solution iff
ED(Q) has positive rank. From the Birch and Swinnerton-Dyer (BSD) conjecture, this
is conjecturally equivalent to the vanishing of L(ED, 1).

Without assuming BSD, from the work of Coates–Wiles [3] (or more generally
Gross–Zagier [9] and Kolyvagin [17]), when L(ED, 1) �= 0 the rank of ED(Q) is 0,
thus we have no rational solutions in (1).

In the case of prime numbers, Sylvester conjectured that we have solutions in (1)
in the case of D ≡ 4, 7, 8 mod 9. In the cases of D prime with D ≡ 2, 5 mod 9,
D is not the sum of two cubes. This follows from a 3-descent argument (given in the
19th century by Sylvester, Lucas and Pepin).

We define the invariant

SD = L(ED, 1)

c3DΩD
,

where ΩD =
√
3

6π 3√D
Γ

( 1
3

)3
is the real period and c3D = ∏

p|3D cp is the product of

the Tamagawa numbers cp corresponding to the elliptic curve ED at the unramified
places p|3D. The definition is made such that in the case of L(ED, 1) �= 0 we expect
to get from the full BSD conjecture:

SD = #X(ED), (2)

where #X is the order of the Tate–Shafarevich group.
From the work of Rubin [25], L(ED, 1) �= 0 implies the order of X(ED) is

finite. Furthermore, using the Cassels–Tate pairing, Cassels proved in [2] that when
X is finite the order #X is a square. We actually show that, when D is a norm
in Q[√−3], SD is an integer square up to an even power of 3. Current work in
Iwasawa theory shows that for semistable elliptic curves at the good primes p we have
ordp(#X[p∞]) = ordp(SD), whereX[p∞] is the p∞-torsion part ofX (see [14]).
However, this cannot be applied at the place 3 in our case, as this is a prime of bad
reduction for ED .

By computing the value of SD , one can determine when we have solutions in (1)
and, assuming the full BSD conjecture, one can find in certain cases the order ofX:

(i) SD �= 0 �⇒ no solutions in (1)

(ii) SD �= 0
BSD��⇒ SD = #X integer square

(iii) SD = 0
BSD��⇒ have solutions in (1).
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Central values of L-functions of cubic twists 1329

The goal of the current paper is to compute several formulas for SD . In [24],
Rodriguez-Villegas and Zagier computed formulas for L(E p, 1) in the case of primes
p ≡ 1 mod 9. In the current paper we are extending on their results and compute
similar formulas for all integers D.

Our main theorem is the following:

Theorem 1 For D = ∏
pi ≡1(3) pei

i , SD is an integer square up to an even power of 3.

Theorem 1 above follows from the formula for SD presented below. Let K =
Q[√−3]. For D a norm in K , we write D = D1D2

2 such that D0 = D1D2 is the
radical of D. Let π1, π2 ≡ 1 mod 3 be elements of norm D1 and D2 respectively.
Let σ(D) the number of distinct primes dividing D and ϕ Euler’s totient function.

Theorem 2 Using the above notation, let D = ∏
pi ≡1(3) pei

i be a positive integer that
is a product of split primes in K and D0 = ∏

p|D p be its radical. Then SD is an
integer square up to an even power of 3 and we have:

SD = T 2
D

1

(−3)2+σ(D)
, (3)

where the term TD/3 is an integer if σ(D) is even and TD/
√−3 is an integer if σ(D)

is odd. Moreover, we have the formula:

TD = 1

ϕ(D0)
TrHO /K

(
θ1(τ )

θ0(τ )
ωk0π1

−2/3π
1/3
2

)
,

where:

– θr (z) = ∑
n∈Z

(−1)ne
π i

(
n+ r

D − 1
6

)2
z
, for r = 0, 1 are theta functions of weight

1/2,

– τ = −b+√−3
2 is a CM point such that b2 ≡ −3 mod 12D2 and (π1π2)

2 divides
(τ ),

– HO is the ray class field of modulus 3D0,
– ωk0 is the unique cube root of unity that makes TD/3 or TD/

√−3 an integer.

This theorem follows from a more general result for all integers D prime to 6 that
is proved using automorphic methods:

Theorem 3 For all integers D prime to 6, 3c3D SD is an integer and we have the
formula:

SD = 1

3c3D
TrH3D/K

(
D1/3ΘK (Dω)

ΘK (ω)

)
, (4)

where ΘK (z) = ∑
a,b∈Z

e2π i z(a2+b2−ab) is the theta function of weight one associated

to the number field K , ω = −1+√−3
2 is a third root of unity, and H3D is the ring class

field associated to the order O3D = Z + 3DOK .
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1330 E. Rosu

Note that each of the elliptic curves ED is a cubic twist of E1. In the case of quadratic
twists of elliptic curves, an important tool in computing the values of the L-functions
is the work of Waldspurger [32]. For example, this is used to obtain Tunnell’s theorem
for congruent numbers in [31]. However, the cubic twist case proves to be significantly
more difficult. We instead take advantage of the fact that ED is an elliptic curve with
complex multiplication by OK = Z[ω] the ring of integers of the number field K .
Then from CM theory there is a Hecke character χED : A×

K /K × → C× such that
L(ED, s) = L(s, χED ) and we compute the value of L(s, χED ) using automorphic
methods.

We present now an outline of the proof of Theorem 3. To compute the value of
L(s, χED )we look at theHecke character adelically andusingTate’s thesiswe compute
Tate’s zeta function Z(s, χED , ΦK ) for ΦK a Schwartz–Bruhat function in S (AK ).
After integrating we get a linear combination of Eisenstein series. By evaluation at
s = 1, we write L(ED, 1) as a linear combination of theta functions at CM-points. We
further show using Shimura’s reciprocity law that the terms are all Galois conjugates
over K .

The idea of the proof of Theorem 2 is based on factoring each weight one theta
function ΘK (z) into a product of theta functions of weight 1/2. The method we are
using is a factorization lemma of Rodriguez-Villegas and Zagier from [23] applied to
the formula in Theorem 3. This gives us the square of a linear combination of theta
functions evaluated at CM points. Finally, using Shimura reciprocity law, we show
that all the factors are Galois conjugates to each other and recover an integer square.

Note that using the formula (4) we can show that an integer D cannot be written as
the sum of two cubes by computationally checking whether L(ED, 1) �= 0. Further-
more, assuming BSD, SD = #X and thus we can compute the expected order of X
explicitly. We provide below some examples when SD �= 0 that we computed using
PARI:

D #X D #X D #X

19 · 37 1 37 · 73 1 13 · 19 · 79 1
31 · 43 1 43 · 67 1 13 · 19 · 61 1
31 · 79 1 43 · 193 4 13 · 37 · 61 1
31 · 97 1 61 · 67 1 13 · 43 · 73 1
61 · 103 1 61 · 139 1 31 · 37 · 43 1

2 Background

Let K = Q[√−3] and denote OK = Z[ω] its ring of integers, where ω = −1+√−3
2

is a fixed cube root of unity. We will denote by Kv the completion of K at the place
v, OKv the ring of integers of Kv , and for a prime p in Z we define K p = K ⊗Q Qp

and OK p = OK ⊗Z Zp the semilocal ring of integers. Note that K p = ∏
v|p Kv

∼=
Qp[x]/(x2 − 3) and OK p

∼= ∏
v|p OKv .
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Central values of L-functions of cubic twists 1331

2.1 The L-function

Our goal is to compute several formulas for the central value of the L-function
L(ED, 1) of the elliptic curve ED : x3 + y3 = Dz3. The elliptic curve ED has
complex multiplication (CM) by OK . Then from CM theory (see [27, Chapter II]) we
can find a Hecke character χ : A×

K /K × → C corresponding to the elliptic curve ED

such that L(ED, s) = L(s, χ). We can compute explicitly χ = χDϕ (see Ireland and
Rosen [13, Chapter 18], for more details), where ϕ is the Hecke character of infinity
type (1, 0) corresponding to E1 and χD is the Hecke character corresponding to the
cubic twist. More precisely, writing the characters classically, we have:

– ϕ : I (3) → K × is defined on the set of ideals prime to 3 by ϕ(A ) = α, where α

is the unique generator of the ideal A such that α ≡ 1 mod 3.
– χD : Cl(O3D) → {1, ω, ω2} is the cubic character defined below in Sect. 2.2; it
is defined over Cl(O3D) the ring class group corresponding to the order O3D =
Z + 3DOK .

Note that, for Re(s) > 1, the L-function can be expanded as

L(ED, s) =
∑

α∈OK
α≡1(mod 3)

χD(α)α

(Nm α)s
.

2.2 The cubic character

We define the cubic character χD and recall some of its properties following Ireland
and Rosen [13]. For α ∈ OK prime to 3, we define the cubic residue character

(
α
·
)
3 :

I (3α) → {1, ω, ω2}, where I (3α) is the set of fractional ideals of K prime to 3α. For

a prime ideal p of K , we define
(

α
p

)

3
= ω j , for 0 ≤ j ≤ 2 such that

α(Nm p−1)/3 ≡ ω j mod p.

It is extended multiplicatively on the fractional ideals of I (3α).
The character χD is defined following [13] to be:

χD(A ) =
(

D

A

)

3
.

We also define χπ(A ) = (
π
A

)
3 where π is a generator of an ideal of norm D. Note

that χπ(A ) = χπ(A ).
An important result is the cubic reciprocity law (see [13] for more details):

Theorem 4 (Cubic reciprocity law) For π1, π2 ≡ 2 mod 3 generators of the prime

ideals p1, p2 prime to 3, we have
(

π1
π2

)

3
=

(
π2
π1

)

3
.
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1332 E. Rosu

It follows immediately from the cubic reciprocity law that for α ≡ ±1 mod 3, we
have χD(α) = χα(D). Also from the cubic reciprocity it follows that χD((α)) = 1
for α ≡ a mod 3D, where a is an integer prime to 3D. Thus χD is trivial on the
ideals of PZ,3D = {(α): α ∈ K such that α ≡ a mod 3D for some integer a
such that (a, 3D) = 1}. The ring class group of the order O3D = Z + 3DOK is
Cl(O3D) = I (3D)/PZ,3D , where I (3D) is the set of fractional ideals prime to 3D,
and thus χD is invariant on Cl(O3D).

2.3 Hecke characters

A classical Hecke character χ̃ : I ( f ) → C× of conductor f can be expressed on the
set of principal ideals P( f ) prime to f in the form χ̃ ((α)) = ε̃(α)χ̃−1

0 (α), where
ε̃ : (OK / f OK )× → T is a character taking values in a finite group T and χ̃0 is
an infinity type continuous character, meaning that χ̃0 : C× → C× is a continuous
character.

The idelic Hecke character is a continuous character χ : A×/K × → C×. There is
a unique correspondence between the idelic and the classical Hecke characters defined
as follows: at ∞ for z ∈ C we define χ∞(z) = χ̃−1

0 (z) for z ∈ C× and at the places
v � f we define χ(O×

v �v) = χ̃(pv), for �v a uniformizer of OKv and pv the prime
corresponding to the place v. At the places v| f , the value of χv can be determined
using the Weak Approximation Theorem.

We are interested in the character χ = χDϕ defined before. By abuse of notation,
we will use ϕ, χD both for the classical and the adelic Hecke characters.

Recall ϕ : I (3) → C× is the Hecke character defined by χ((α)) = α for α ≡ 1
mod 3. For the place v � 3, denote by �v a uniformizer of OKv such that �v ≡ 1
mod 3. Then for ϕ : A×

K → C×, we have:

– ϕv(p) = −p, ϕv(O
×
Kv

) = 1, for v = p, p ≡ 2 mod 3,

– ϕv(�v) = �v , ϕv(O
×
Kv

) = 1, for v|p, p ≡ 1 mod 3,

– ϕ∞(x∞) = x−1∞ , at v = ∞.

Recall χD : I (3D) → {1, ω, ω2} is the cubic character and we showed that it
is well-defined on Cl(O3D), the ring class group for the order O3D = Z + 3DOK .
We define the character χD adelically over K × \ A×

K , f /U (3D) 
 Cl(O3D), where

U (3D) = (1 + 3Z3[ω])∏
p|D (Z + DOK p )

× ∏
p�3D (OK p )

×.
Note that we can rewrite l f ∈ A×

K , f in the form l f = kl1 with k ∈ K × and

l1 ∈ ∏
v�∞ O×

Kv
. We can find k1 ∈ OK such that k1 ≡ l1 mod 3DOKv and we define

χD, f (l) = χD, f (l1) = χD((k1)). More precisely, we get:

– χD,v(�v) = χD(pv) and χD,v(O
×
Kv

) = 1, if v � 3D,
– χD,∞(x∞) = 1, at v = ∞.

The values of χD and ϕ at the ramified places can be computed using the Weak
approximation theorem.
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Central values of L-functions of cubic twists 1333

3 L(ED, 1) and Tate’s zeta function

In this section we will compute the value of L(ED, 1) = L(1, χDϕ), working with

χD, ϕ as automorphic Hecke characters. Let K = Q[√−3] and ω = −1+√−3
2 a fixed

cube root of unity as before. We will show the following result:

Theorem 5 For SD = 2
√
3π D−1/3

c3DΓ
(
1
3

)3 L(ED, 1), we have 3c3D SD ∈ Z and

SD = 1

3c3D
TrH3D/K

(
D1/3ΘK (Dω)

ΘK (ω)

)
, (5)

where ΘK (z) = ∑
m,n∈Z

e2π i(m2+n2−mn)z , H3D is the ring class field for the order
O3D = Z + 3DOK and c3D = ∏

p|3D cp is the product of the Tamagawa numbers cp

of ED.

We will compute the formula (5) using Tate’s zeta function. We start by recalling
some background and notation.

3.1 Haar measure

We take V = K as a quadratic vector space overQwith the norm as its quadratic form.
We take dxv to be the self-dual additive Haar measure and d×αv the multiplicative
Haar measure d×

v xv = dxv|xv |v normalized such that vol(O×
Kv

) = 1, if v � ∞, and

d×z = dz
|z|∞ where dz is the usual Lebesgue measure, and |z|∞ = |z|2

C
is the square of

the usual absolute value over C. We use the same normalization for the Haar measure
as in Tate’s thesis (see [1, Section 3.1]).

3.2 Schwartz–Bruhat functions

Wechoose the Schwartz–Bruhat functionΦ f ∈ S(AK , f ) such that Tate’s zeta function
Z(s, Φ, χDϕ) defined below to be nonzero. More precisely, Φ f = ∏

v�∞ Φv , where:

– Φv = charOKv
for v � 3D,

– Φp = ∑
(a,D)=1 char(a+DOK p ) for p|D,

– Φv = char(1+3OKv ) for v = √−3.

3.3 Tate’s zeta function

We recall Tate’s zeta function. For a Hecke character χ : A×
K /K × → C× and

a Schwartz–Bruhat function Φ ∈ S (AK ), Tate’s zeta function is defined locally
as Zv(s, χv,Φv) = ∫

K ×
v

χv(αv)|αv|svΦv(αv)d×αv , and globally as Z(s, χ,Φ) =
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1334 E. Rosu

∏
v Zv(s, χv,Φv). As a global integral this is

Z(s, χ,Φ) =
∫

A
×
K

χ(α)|α|sΦ(α)d×α.

It has meromorphic continuation to all s ∈ C and in our case it is entire. We will
compute Z f (s, χ f , Φ f ) for χ = χDϕ and the Schwartz–Bruhat function Φ f chosen
above.

From Tate’s thesis (see [1, Proposition 3.1.4]), we have the equality of local fac-
tors Lv(s, χDϕ) = Zv(s, χDϕ) at all the unramified places, and thus L(s, χDϕ) =
Z f (s, χDϕ)

∏
p|3D

L p(s,χD,pϕp)

Z p(s,χD,pϕp,Φp)
. As ϕ, χD and | · | are trivial when Φp is nonzero

for p|3D, we can compute easily

∏

p|3D

Z p(s, χD,pϕp, Φp) =
∏

p|D
vol(

(
Z + 3DOK p

)×
) vol (1 + 3Z3[ω]) ,

and this equals 1
6

∏
p|D(p − ( p

3

)
)−1. The terms L p(s, χDϕ) = 1 for p|3D by def-

inition. Thus for all s and for Φ the Schwartz–Bruhat function chosen above, we
have:

L(s, χDϕ) = Z f (s, χDϕ,Φ)V3D, (6)

where V3D = 1
6

∏
p|D(p − ( p

3

)
)−1.

Next we compute the value of Z f (s, χD, f ϕ f , Φ f ) as a linear combination ofHecke
characters and use (6) to get the value of L(s, χD, f ϕ f ):

Lemma 6 For all s ∈ C and the Schwartz–Bruhat function Φ f ∈ S (AK , f ) chosen
above, we have:

L(s, χDϕ) =
∑

α f ∈U (3D)\A
×
K , f /K ×

I (s, α f , Φ f )χD(α)ϕ(α),

where I (s, α f , Φ f ) = ∑
k∈K × k

|k|2s
C

Φ f (kα f ) and U (3D) = (1 + 3Z3[ω])∏
v|D

(Z + DOK p )
× ∏

v�3D O×
Kv

.

Proof We first take the quotient by K × in the integral defining Z f (s, χDϕ,Φ f ) and
get:

Z f (s, χDϕ,Φ f ) =
∫

A
×
K , f /K ×

∑

k∈K ×
χD, f (kα′

f )ϕ f (kα′
f )|kα f |sf Φ f (kα′

f )d
×α′

f .

WehaveχD, f (kα′
f ) = χ−1

D,∞(k)χD, f (α
′
f ) = χD, f (α

′
f ), ϕ f (kα′

f ) = ϕ−1∞ (k)ϕ f (α
′
f ) =

kϕ f (α
′
f ) and |kα′

f |sf = |k|−s∞ |α f |sf = |k|−2s
C

|α′
f |sf , where | · |C is the usual absolute
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Central values of L-functions of cubic twists 1335

value over C. Then the integral reduces to:

Z f (s, χDϕ,Φ f ) =
∫

A
×
K , f /K ×

⎛

⎝
∑

k∈K ×

k

|k|2s
C

χD, f (α
′
f )Φ f (kα′

f )

⎞

⎠ ϕ f (α
′
f )|α′

f |sf d×α′
f .

Furthermore, our Schwartz–Bruhat functions Φ f (kα′
f ) are invariant on U (3D). Sim-

ilarly, | · | f is trivial on units, thus on U (3D), while χD is invariant on U (3D) by
definition. Moreover, ϕ is trivial on all the units at all the unramified places, while, at
3, ϕ is invariant under 1+ 3Z3[ω], thus it is trivial on all of U (3D). Thus we can take
the quotient by U (3D) as well. Note that the integral is now a finite sum:

Z f (s, χDϕ,Φ f )

= vol(U (3D))
∑

α′′
f ∈U (3D)\A

×
K , f /K ×

⎛

⎝
∑

k∈K ×

k

|k|2s
C

Φ f (kα′′
f )

⎞

⎠χD, f (α
′′
f )ϕ f (α

′′
f )|α′′

f |sf .

We compute vol(U (3D)) = vol(1 + 3Z3[ω])∏
p|D vol(Z + DOK p ) = V3D and,

changing notation, we get:

Z f (s, χD, f ϕ f , Φ f ) = V3D

∑

α f ∈U (3D)\A
×
K , f /K ×

I (s, α f , Φ f )χD, f (α)ϕ f (α).

Finally together with (6) we get the result of the lemma. ��

3.4 Representative classes of Cl(O3D)

We will use the following lemma (see [22]) that is easy to show:

Lemma 7 Any primitive ideal of OK can be written in the form A = [a, −b+√−3
2 ]Z

as a Z-module, where b is an integer (determined only modulo 2a) such that b2 ≡ −3
mod 4a and NmA = a.

Conversely, given an integer satisfying the above congruence and A defined as
above, we get that A is an ideal in OK of norm a.

We will use the notation kA for the generator kA ≡ 1 mod 3 of a primitive

ideal A in OK . If we choose a lattice such that A = [a, −b+√−3
2 ]Z, we denote the

corresponding CM point τA = −b+√−3
2a .

We can write adelically Cl(O3D) 
 U (3D) \ A×
K , f /K ×. This follows from the

Strong approximation theorem, as K is a PID and thus we haveU (3D)\A×
K , f /K × ∼=

(
∏

p|3D(OK p )
×/(Z + 3DOK p )

×)/ 〈−ω〉 . Then we can define the map

∏

p|3D

(OK p )
×/(Z + 3DOK p )

×/ 〈−ω〉 → I (3D)/PZ,3D

123



1336 E. Rosu

given by

(αv)v|3D → (kα),

where we choose the representative ±αωk , such that α3 ≡ 1 mod 3, and kα is an
element of OK such that kα ≡ αv mod 3D. Note that this is well defined as (kα)

gives us a unique class in Cl(O3D), and two elements α1, α2 get sent to the same class
in Cl(O3D) only if α1 ≡ α2 mod 3D.

Thus forα f ∈ ÔK we can choose a class [Aα] in Cl(O3D) by taking a representative
Aα f = (kα), for kα ∈ OK such that kα ≡ αp mod 3DOK p for p|3D. Note that this
choice is not unique. However, we can pick the representatives Aα to be primitive
ideals.

Thus we can further write Aα as a Z-lattice Aα = [a, −b+√−3
2 ]Z, where a =

NmAα and b is chosen (not uniquely) such that b2 ≡ −3 mod 4a. We define the

corresponding CM point τAα
= −b+√−3

2a .

3.5 Eisenstein series of weight 1

We will now connect I (s, α f , Φ f ) = ∑
k∈K × k

|k|2s
C

Φ f (kα f ) to an Eisenstein series.

We define the following classical Eisenstein series of weight 1:

Eε(s, z) =
∑

m,n

′ ε(n)

(3mz + n)|3mz + n|s .

Here the sum is taken over all m, n ∈ Z except for the pair (0, 0), and ε = ( ·
3

)
is

the quadratic character associated to the field extension K/Q. Note also that from
quadratic reciprocity we have

(−3
·

) = ( ·
3

)
.

The Eisenstein series Eε(s, z) does not converge absolutely for s = 0, but we
can still compute its value using the Hecke trick (see [11]). We compute its Fourier
expansion at s = 0 in the following section.

Using this notation, we have the following equality:

Lemma 8 For α f ∈ ∏
v�∞ O×

Kv
, let Aα f = (kα) be a choice of an ideal in the corre-

sponding class of Cl(O3D). We write Aα = [aα, −b+√−3
2 ]Z and take τAα

= −b+√−3
2aα

the corresponding CM point. Then we have:

I (s, α f , Φ f ) = 1

2

(NmAα)1−s

kα

Eε(s, DτAα
).

Remark 9 Note that the variable τAα
on the left hand side is not uniquely defined.

However, the right-hand side depends only on the class [Aα] in Cl(O3D).

Proof Recall that I (s, α f , Φ f ) = ∑
k∈K × k

|k|2s
C

Φ f (kα f ). We need to compute

Φ f (kα f ). Note that Φv(kαv) �= 0 only for kαv ∈ OKv at all places v, and since
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αv ∈ O×
Kv
, we must have k ∈ OKv as well for all v. This implies k ∈ OK and for all

places v � 3D we get Φv(kαv) = 1 for k ∈ OK . Thus we can rewrite:

I (s, α f , Φ f ) =
∑

k∈OK

k

|k|2s
C

Φ3D(kα3D),

where Φ3D = ∏
v|3D Φv and α3D = (αv)v|3D .

We can further compute Φv(kαv) for v|3D. Recall that we defined the Schwartz–
Bruhat functions Φp = char(Z+3DOK p )× for p|D and Φ3 = char(1+3Z3[ω]). Then we
have Φ3D(kα3D) �= 0 iff kαp ∈ a + 3DOK p for some integer a, (a, p) = 1 and, for
p = 3, kα3 ∈ 1 + 3OK3 .

Recall that we defined kα such that kα ≡ αp mod 3DOK p for all p|3D. Then
kkα ∈ a + 3DOK p for (a, p) = 1 and kkα ∈ 1 + 3Z3[ω]. Furthermore, for k ∈ OK

we actually have Φ3D(kα3D) = Φ3D(kkα). Then we can rewrite I (s, α f , Φ f ) using
kα as I (s, α f , Φ f ) = ∑

k∈OK
k

|k|2s
C

Φ3D(kkα). We can rewrite this further:

I (s, α f , Φ f ) = |kα|2s
C

kα

∑

k∈OK

kkα

|kkα|2s
C

Φ3D(kkα),

Finally, we will make this explicit. Note that we must have kkα ∈ Aα , whereAα =
(kα), as well as kkα ∈ ap + DOK p for some integer ap, (ap, p) = 1, and kkα ∈ 1 +
3Z3[ω]. By the Chinese remainder theorem, we can find an integer a such that a ≡ ap

mod D and a ≡ 1 mod 3. Then kkα ∈ (a+D
∏

p|3D OK p )∩OK , thus kkα ∈ PZ,3D∩
P1,3. Here PZ,3D = {k ∈ K : k ≡ a mod 3DOK for some integer a, (a, 3D) = 1}
and P1,3 = {k ∈ K : k ≡ 1 mod 3}. We rewrite:

I (s, α f , Φ f ) = |kα|2s
C

kα

∑

k∈Aα∩PZ,D∩P1,3

k

|k|2s
C

.

Finally, we want to write the elements ofAα ∩ PZ,D ∩ P1,3 explicitly. Recall that we

can writeAα as a Z-latticeAα = [a, −b+√−3
2 ]Z. Then all of the elements ofA are of

the formma+n −b+√−3
2 for some integers m, n ∈ Z. Moreover, note that the intersec-

tion ofA and PZ,3D = {k ∈ OK : k ≡ n mod 3D, for some integer n, (n, 3D) = 1}
is {ma + 3Dn −b+√−3

2 : m, n ∈ Z}. Further taking the intersection with P1,3, we
must have ma ≡ 1, thus, as a is norm in OK , m ≡ 1 mod 3, and we can rewrite
I (s, α f , Φ f ) in the form:

I (s, α f , Φ f ) = as

kα

∑

m,n∈Z,m≡1(mod 3)

ma + n −b+√−3
2

|ma + 3nD −b+√−3
2 |2s

C

.
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1338 E. Rosu

By changing n → −n and taking out a factor of a1−2s , we have:

I (s, α f , Φ f ) = a1−s

kα

∑

m,n∈Z,
m≡1(mod 3)

1

(m + n b+√−3
2a )|m + 3nD b+√−3

2a |2s−2
C

.

Note that for Re(s) > 1 the integral converges absolutely, and we can rewrite the
sum as:

I (s, α f , Φ f ) = 1

2

a1−s

kα

∑

m,n∈Z

ε(m)

(m + 3nD b+√−3
2a )|m + 3nD b+√−3

2a |2s−2
C

,

where ε(m) = (m
3

)
is the usual quadratic character.On the right hand sidewe recognize

the Eisenstein series Eε(2s − 2, τAα
) and we get I (s, α f , Φ f ) = 1

2
a1−s

kα
Eε(2s −

2, DτAα
). By analytic continuation, we can extend the equality to all s ∈ C. ��

Now we can rewrite the linear combination in Lemma 6 by taking representatives
A for the classes of Cl(O3D). Note that for α ∈ Ô×

K with α ≡ 1 mod 3 we have
ϕ f (α f ) = 1 and

χD(α f ) = χD((α)p|3D) = χD((kα)p|3D) = χ−1
D ((kα)p�3D) = χD(Aα).

Using the lemma above and after inverting each class A → A in Cl(O3D), we get:

Corollary 10 For all s, taking representative idealsA = [a, −b+√−3
2 ]Z for the classes

in the ring class group Cl(O3D), we have:

L(s, χDϕ) = 1

2

∑

[A ]∈Cl(O3D)

Eε(2s − 2, DτA )χD(A )
(NmA )1−s

kA
,

whereA = (kA ) with kA ≡ 1 mod 3 and τA = −b+√−3
2a the associated CM points.

3.6 Fourier expansion of E"(s, z) at s = 0

We want to connect the Eisenstein series Eε(s, z) = ∑
c,d

′ ε(d)

(3cz+d)|3cz+d|2s , where∑
c,d

′ denotes the sum over all c, d ∈ Z with (c, d) �= (0, 0), to the theta function

ΘK (z) =
∑

m,n∈Z

e2π i(m2+n2−mn)z

associated to the number field K . It is a modular form of weight 1 for the congruence
group Γ1(3). Note that this differs from the theta function ΘK chosen by Rodriguez-
Villegas and Zagier in [24] by a factor of 1/2.
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Central values of L-functions of cubic twists 1339

More precisely, we are going to show the following version of the Siegel–Weil
theorem:

Theorem 11 Eε(0, z) = 2L(1, ε)ΘK (z).

Proof We will show this by computing the Fourier expansion of Eε(s, z) at s = 0
using the Hecke trick and comparing it to the Fourier expansion of ΘK (z). We will
follow closely the exposition of Pacetti [20]. This is also done by Hecke in [11]. We
first rewrite Eε(s, z) in the form:

Eε(z, s) =
∑

d

′ ε(d)

d1+2s
+ 2

∞∑

c=1

2∑

r=0

ε(r)

32s+1

∑

d∈Z

ε(r)

( 3cz+r
3 + d)| 3cz+r

3 + d|2s
,

where
∑

d
′ denotes the sum over all d ∈ Z, d �= 0. We define for z in the upper-half

plane H(z, s) = ∑
m∈Z

1
(z+m)|z+m|2s and then we can rewrite the form above as:

Eε(s, z) = 2L(1 + 2s, ε) + 2
∞∑

c=1

2∑

r=0

ε(r)

32s+1 H

(
3dz + r

3
, s

)
.

Pacetti [20], following Shimura [29, Lemma 1, p. 84], computed the Fourier expan-
sion of H(z, s) when s → 0 to be lims→0 H(s, z) = −π i − 2π i

∑∞
n=1 qn . It gives

us in the relation above:

Eε(0, z) = 2L(1, ε) + 2
∞∑

c=1

2∑

r=0

ε(r)

3
(−π i − 2π i

∞∑

n=1

e2π inzcωnr ).

We compute separately the inner sum and get:

2∑

r=0

ε(r)

3

(

−π i +
∞∑

n=1

e2π inzcωnr

)

= −2π i

3
G(ε)

∞∑

n=1

e2π inzcε(n),

where G(ε) = ∑2
r=0 ε(r)ωr = √−3 is the quadratic Gauss sum corresponding to ε.

Then we can rewrite:

Eε(0, z) = 2L(1, ε) + 4π
√
3

3

∑∞
N=1

⎛

⎝
∑

m|N
ε(m)

⎞

⎠ e2π i N z .

Since ε is a quadratic character, we compute L(1, ε) = π
√
3

9 (see Kowalski [18]) and
this gives us the Fourier expansion:

Eε(0, z) = 2π
√
3

9

⎛

⎝1 + 6
∞∑

N=1

⎛

⎝
∑

m|N
ε(m)

⎞

⎠ e2π i N z

⎞

⎠ . (7)
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It is easy to show that
∑

m|n ε(m) represents the number of ideals of norm n inOK ,

thus we got 2π
√
3

9 (1 + 6
∑

A e2π i(NmA )z). Moreover |O×
K | = 6 and NmK/Q(m +

nω) = m2 + n2 − mn and thus we can recognize the sum in the bracket on the RHS
of (7) to equal the theta function ΘK (z), which finishes the proof. ��

3.7 Formula for L(1,�D')

Applying Corollary 10 for s = 1 we get

L(1, χDϕ) = 1

2

∑

[A ]∈Cl(O3D)

1

k̄A
Eε(0, DτA )χD(A ).

Furthermore, from Theorem 11, this is the same as:

L(1, χDϕ) = π
√
3

9

∑

[A ]∈Cl(O3D)

1

k̄A
ΘK (DτA )χD(A ). (8)

We need one more step before rewriting the formula as a trace. We will use the
following lemma:

Lemma 12 For A = [a, −b+√−3
2 ]Z a primitive ideal of norm NmA = a, with

generator A = (kA ), where kA ≡ 1 mod 3 and τA = −b+√−3
2 , we have:

ΘK (τA ) = kA ΘK (ω) .

Proof Since A = [a, −b+√−3
2 ]Z as a Z-lattice, we can write its generator kA in

the form kA = ma + 3n −b+√−3
2 for some integers m, n such that m ≡ 1(3) and

gcd(m, 3n) = 1. Then we can find integers A, B such that m A + 3nB = 1, and thus(
A B
3n m

)
is a matrix in Γ1(3). Since Θ(z) is a modular form of weight 1 for Γ1(3), we

have ΘK
((

A B
3n m

)
τA

) = (m + 3nτA ) ΘK (τA ).
Noting that 3nτA + m = kA /a = 1/kA , we can compute the term on the LHS to

be ΘK ((AτA + B)kA ) and, after expanding, we are evaluating ΘK at −3n A b2+3
4a +

abB + b(−m A+3nB)
2 +

√−3
2 . Note that m A − 3nB = 1 implies that m A and 3nB have

different parities. Also, b is odd and b2 + 3 ≡ 0 mod 4a. Then −3n A b2+3
4a + abB +

b(−m A+3nB)+1
2 ∈ Z and thus using the period 1 of ΘK we get ΘK

((
A B
3n m

)
τA

) =
ΘK (ω). This finishes the proof. ��

Using the Lemma above we can rewrite (8) as:

L(1, ϕχD) = π
√
3

9
ΘK (ω)

∑

[A ]∈Cl(O3D)

ΘK (DτA )

ΘK (τA )
χD(A ). (9)
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Now we will rewrite the formula (9) as a trace. We can define f (z) = ΘK (Dz)
ΘK (z) and

this is a modular function for Γ0(3D). We will prove in Sect. 5 in Proposition 39 that
f (ω) ∈ H3D , the ring class field of corresponding to the order O3D = Z + 3DOK .

Moreover, we show in the same proposition that, for A = [a, −b+√−3
2 ]Z a primitive

ideal in OK , we have the Galois conjugate:

f (ω)σ
−1
A = f (τA ),

where σA is the Galois action corresponding to the ideal A via the Artin map.

Furthermore, from we have (D1/3)σ
−1
A = D1/3χD(A ) and then formula (9)

becomes:

L(ED, 1) = π
√
3

9
D−1/3ΘK (ω)

∑

[A ]∈Cl(O3D)

(
D1/3ΘK (Dω)

ΘK (ω)

)σA −1

(10)

Moreover, D1/3 ∈ H3D (see for example Cohn [4]). Thus we can rewrite the sum

on the left hand side as TrH3D/K

(
D1/3 ΘK (Dω)

ΘK (ω)

)
. We can compute the extra terms as

well. Rodriguez-Villegas and Zagier in [24] citeΘK

(−9+√−3
18

)
= −6Γ

( 1
3

)3
/(2π)2.

Using several of the properties of ΘK proved in the Appendix ((27) and Lemma 41),

we can compute Θ (ω) = Γ
( 1
3

)3
/(2π2).

As the real period ΩD of the elliptic curve ED is ΩD = D−1/3

√
3Γ

(
1
3

)3

6π , we get
the formula of Theorem 5:

L(ED, 1) = ΩD

3
TrH3D/K

(
D1/3ΘK (Dω)

ΘK (ω)

)
. (11)

Note that this implies SD ∈ K . Moreover, as D1/3Θ(Dω)/Θ(ω) is invariant under
complex conjugation, we get SD ∈ R. Since K ∩ R = Q, this furthermore implies
SD ∈ Q. We will show in Sect. 4.5 that actually 3c3D SD ∈ Z.

Remark 13 If we take D = D1D2
2 such that D0 = D1D2 is square-free, note that the

character χD = χD1χD2 is well defined on the class group Cl(O3D0). Then the above
computations work for D0 and the character χD = χD1χD2 instead of χD0 = χD1χD2

and we get:

L(1, χDϕ) = π
√
3

9
ΘK (ω)

∑

[A ]∈Cl(O3D0 )

ΘK (D0τA )

ΘK (τA )
χD(A ). (12)

Note that, for D = D1D2
2, L(ED, s) = L(s, χD1χD2ϕ) and thus we have:

SD = 1

3

∑

[A ]∈Cl(O3D0 )

ΘK (D0τA )

ΘK (τA )
χD(A )D1/3. (13)
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As before we have (D1/3
1 D2/3

2 )σ
−1
A = D1/3

1 χD1(A )D2/3
2 χD2(A ) and finally we

can write the expression above as:

L(ED, 1) = ΩD

3
TrH3D0/K

(
D1/3ΘK (D0ω)

ΘK (ω)

)
.

4 Second formula for SD

For r ∈ Z, μ ∈ {1/2, 1/6}, we define the theta functions of weight 1/2:

θr ,μ(z) =
∑

n∈Z

eπ i(n+r/D−μ)2z(−1)n .

Throughout the paper we will use the notation r ∈ Z/DZ to mean any family of
representatives for the residues r mod D. We denote θ0 = θ0,1/6. Note that θ0(z) =
η(z/3), where η is the Dedekind eta function, while

∑
r∈Z/DZ

r≡1(6)
θr ,1/6(z) = η

(
z

3D2

)
.

In this sectionwewill use a Factorization formula of Rodriguez-Villegas and Zagier
from [23] to show the following theorem, that is a restatement of Theorem 2 from the
Introduction:

Theorem 14 In the case of D = ∏
pi ≡1(3) pei

i , let D0 = ∏
pi |D pi be the radical of D

and σ(D) the number of distinct prime divisors of D. Then SD is an integer square
up to an even power of 3 and we have:

SD = (−1)σ(D)

3σ(D)+2
T 2

D, (14)

where TD/3 ∈ Z if σ(D) is even and TD/
√−3 ∈ Z if σ(D) is odd. We have the exact

formula:

TD = ωk0

ϕ(D0)
TrHO /K

(
θ1,1/6(τ )

θ0(τ )
π1

−2/3π
1/3
2

)
.

Here τ = −b+√−3
2 is a CM-point, with b2 ≡ −3 mod 12D2, π1, π2 are elements

in OK such that π1, π2 ≡ 1 mod 3, π1π2 has norm D0 and π1π
2
2 has norm D, and

such that (π1π2)
2 divides the ideal

(−b+√−3
2

)
, HO is the ray class field of modulus

3D0 and ωk0 is the unique cube root of unity that makes TD real or purely imaginary.

Below we discuss the details of D square-free. All definitions and proofs can be
easily extended to all D = D1D2

2 by using the formula (13) with D0 = D1D2 square-
free. We do this in Sect. 4.6.

Take τ = −b+√−3
2 a CM point such that b2 ≡ −3 mod 12D2 and an element

π ≡ 1 mod 3 of norm D in OK such that π2 divides the ideal (−b+√−3
2 ).

We will use the notation:
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– Θμ(τ) =
{

3
2ΘK (τ ) − 1

2ΘK (τ/3) , for μ = 1/6

ΘK (τ/3) , for μ = 1/2.

– Sμ = 2
3

∑
[A ]∈Cl(O3D)

Θμ(DτA )

ΘK (τA )
χD(A )D1/3.

In Theorem 3 we have proved that 3c3D SD = S1/6 + 1/2S1/2. We are actually
going to show in Corollary 23 that S1/2 = 0, thus it is enough to compute the formula
(14) for S1/6.

Using a Factorization formula of Rodriguez-Villegas and Zagier from [23] we will
write the theta functions Θμ of weight 1 as linear combinations of products of theta
functions of weight 1/2 in Proposition 17. We define:

RD,μ(z) =
∑

r∈(Z/DZ)×
r≡1(6)

θr ,μ(3z)

θ0(3z)
χπ(r).

We show in Lemma 26 that S1/6 = |RD,1/6(τ )D−1/3|2. Moreover, if we denote

TD = RD,1/6(τ/3)π−2/3ωk0 ,

for a cubic root of unity ωk0 , then S1/6 = |TD,1/6(τ )|2.
We show in Lemma 30 that TD = 1

ϕ(D)
TrHO /K

θ1,1/6(τ )

θ0(τ )
π−2/3ωk0 and that TD ∈ K .

Furthermore, we show in proposition 25 that TD = (−1)σ(D)TD and thus TD ∈ Q or
TD/

√−3 ∈ Q and thus

SD = (−1)σ(D)

3c3D
T 2

D.

Moreover, in Sect. 4.5 we show that 3c3D SD is an integer, hence TD/3 ∈ Z for
σ(D) even and TD/

√−3 ∈ Z for σ(D) odd.
Finally, for D a product of split primes, we have SD �= 0 only for D ≡ 1 mod 9.

In this case we can compute the Tamagawa numbers to be c3D = 31+σ(D) using Tate’s
algorithm (see [28, Chapter IV.9]). Thus we have:

SD =
{

(TD/3σ(D)/2+1)2, for σ(D) even,

((TD/
√−3)/3(σ (D)+1)/2)2, for σ(D) odd.

Hence SD is an integer square up to an even power of 3 and this finishes the proof of
Theorem 14.

For the reader’s convenience, we summarize the notations used in the whole chapter
in the table below:
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Sums Theta functions and ratios

SD = 1
3

∑
[A ]∈Cl(O3D0 )

ΘK (D0τA )
ΘK (τA )

χD(A )D1/3 ΘK (z) = ∑
a,b∈Z

e2π i z(a2+b2−ab)

Sμ = 2
3

∑
[A ]∈Cl(O3D )

Θμ(DτA )

ΘK (τA )
χD(A )D1/3t

{
Θ1/2(τ ) = ΘK (τ/3) ,

Θ1/6(τ ) = 3
2ΘK (τ ) − 1

2ΘK (τ/3) ,

RD,μ(z) = ∑
r∈(Z/DZ)×

r≡1(6)

θr ,μ(3z)
θ0(3z) χπ (r) θr ,μ(z) = ∑

n∈Z
(−1)ne

π i
(

n+ r
D − 1

2

)2
z

θ0(z) = θ0,1/6(z) = η(z/3)

= ∑
r∈(Z/DZ)×

r≡1(6)

Fr ,μ(z)χπ (r) fr ,μ(z) = θr ,μ(z)
θ0(z)

, Fr ,μ(z) = fr ,μ(3z)

R(D),μ(z) = ∑
r∈(Z/DZ)×

r≡1(6)

F(r),μ(z)χπ (r) θ(r),μ(z) = ∑
n∈Z

eπ i(n−μ)2z(−1)ne2π inr/D

F(r),μ(z) = θ(r),μ(3z)
θ0(3z)

TD = RD,1/6(τ/3)π−2/3ωk0

MD = RD,1/6(τ/3)π−2/3

4.1 Factorization lemma

As in the previous section,wewrite a primitive idealA as a latticeA = [a, −b+√−3
2 ]Z

for a = Nm(A ) and b2 ≡ −3 mod 4a. We also define the CM point τA = −b+√−3
2a

corresponding to the Z-lattice. We also denote by kA the generator of A such that
kA ≡ 1(3) and we write the generator in the form kA = naa + maτA .

We start by recalling the Factorization Formula of Rodriguez-Villegas and Zagier
from [23]. It is used to decompose theta functions of weight 1 evaluated at CM points
as sums of products of theta functions of weight 1/2 also evaluated at CM points.

Below we recall from [23, Theorem, page 7] for the simplified case of α = p = 0:

Theorem 15 (Factorization formula) For a ∈ Z>0, μ, ν ∈ Q, z = x + yi ∈ C, we
have:

∑

m,n∈Z

e2π i(mν+nμ)eπ(imn− |mz−n|2
2y )/a = √

2ayθ

[
aμ

ν

]
(a−1z) · θ

[
μ

−aν

]
(−az̄),

(15)

where θ

[
μ

ν

]
(z) = ∑

n∈Z+μ eπ in2z+2π iνn is a theta function of weight 1/2.

A direct application of this is the following:

Lemma 16 With notation as above, we have:

∑

r∈Z/DZ

√
2ay√
D

θ

[
aμ + ar

D
ν

] (
D

z

a

)
θ

[
μ + r

D−aν

]
(−aDz) =

∑

m,n∈Z

e2π i(mν+nDμ)e
π(mni− |n−mz|2

2y ) D
a
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Proof Plugging in μ + r
D for μ and Dz for z in (15), and summing up for r in Z/DZ,

we get:

∑

r∈Z/DZ

√
2aDyθ

[
aμ + ar

D
ν

] (
Dz

a

)
θ

[
μ + r

D−aν

] (−aDz
) =

=
∑

r∈Z/DZ

∑

m,n∈Z

e2π i(mν+nμ+nr/D)eπ(mni− |n−m Dz|2
2Dy ) 1a .

Exchanging the two sums on the RHS we get

∑

m,n∈Z

e2π i(mν+nμ)eπ(mni− |n−m Dz|2
2Dy ) 1a

∑

r∈Z/DZ

e2π inr/D .

The inner sum
∑

r∈Z/DZ
e2π inr/D equals D when D|n, and 0 otherwise, thus we are

only summing over the integers n that are multiples of D. Rewriting n = Dn′, after
simplifying we get the result of the lemma. ��

Using the lemma above and the notation θr ,μ(z) = ∑
n∈Z

(−1)neπ i(n+ r
D −μ)

2z , we
show:

Proposition 17 For idealsA = [a, −b+√−3
2 ]Z,A1 = [a1, −b+√−3

2 ]Z and b such that
b2 ≡ −3 mod 4D2a2a1, we have:

Θμ (DτA ) =
4
√
3eπ i(a−1)/6

D
√

a1

∑

r∈Z/DZ

θar ,μ

(
τA 2A1

)
θr ,μ

(
τA1

)
.

Proof We apply Lemma 16 for μ = −1/6 and ν = 1/2, D odd, z = −b+√−3
2Daa1

.

It is easy to see on the LHS of the equation that we have θ
[ −1/6+ r

D−a/2

]
(z) =

e−aπ ir/Deaπ i/6θr ,μ(z), and, as a ≡ 1(mod 6), also θ
[ −a/6+ ar

D
1/2

]
(z) = eπ iar/D

e−π i/6θar ,μ(z). Moreover, since D ≡ 1(mod 6) we simplify the term e−2π inD/6 =
e−2π in/6 and we can also compute

√
2ay√
D

= 4√3
D

√
a1
. We get:

4√3

D
√

a1eπ i a−1
6

∑

r∈Z/DZ

θar ,μ

(
τA 2A1

)
θr ,μ

(
τA1

)
=

∑

m,n∈Z

e2π i( m
2 − n

6 )e
π(mni− |nDaa1−m −b+√−3

2 |2
Daa1

√
3

) D
a

.

(16)

Now we only have to show that the RHS equals Θμ(DτA ). We claim:

e2π i(m/2+n/2)e
π(mni− |naa1D−m −b+√−3

2 |2
aa1D

√
3

) D
a = e

2π i
|naa1D−m −b+√−3

2 |2
aa1D D −b+√−3

6a .
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Since the absolute values of the two sides already agree, we only need to show that

the arguments agree aswell,meaning2π i
(m
2 + n

2 + Dmn
2a

) ≡ −2π i
|naa1D−m −b+√−3

2 |2
aa1D

D b
6a mod 2π iZ. This is equivalent to showing that

(
m2

2
+ n2

2

)
−

(
m2

2
Db

(b2 + 3)

12a2a1
− Dmn

(b2 + 3)

6a
+ D

n2

2

b

3

)
∈ Z,

and this follows easily from the conditions on a, a1, b and D.

Finally, we claim that Θμ(z) = ∑
m,n∈Z

e2π in(μ+1/2)e
2π i

|m· b+√−3
2 +naa1|2

aa1
z
, which

would finish the proof. This is immediate for μ = 1/2. For μ = 1/6 denote

E∗,k(z) =
∑

m,n∈Z

n≡k(3)

e2π in/3e
2π i

|m· b+√−3
2 +naa1|2

aa1
z
.

Then we can write

∑

m,n∈Z

e2π in/3e
2π i

|m· b+√−3
2 +naa1|2

aa1
z = E∗,0(z) + ωE∗,1(z) + ω2E∗,2(z).

Note that E∗,0(z) = ΘK (3z) and E∗,1 = E∗,2, as we can change n → −n, m → −m
in the Fourier expansion. Thuswe get on the RHS the termΘ(3z)+(ω+ω2)E∗,1(z) =
Θ(3z) − E∗,1(z). Furthermore Θ(z) = E∗,1(z) + E∗,2(z) + E∗,0(z), thus we get
E∗,1(z) = 1

2 (Θ(z) − Θ(3z)). Plugging in E∗,1(z) above we get the result of the
proposition. ��

A particular case of Lemma 17 is for D = 1. As Θ (τA/3) = 0 from Lemma 43
from the Appendix, we get:

Corollary 18 For b2 ≡ −3 mod 12a2a1 and A ,A1 as above, we have

ΘK (τA ) = 2

3

4
√
3√
a1

eπ i(a−1) 16 θ0
(
τA 2A1

)
θ0

(
τA1

)
.

Let:

fr ,μ(z) = θr ,μ(z)

θ0(z)
.

Taking the ratios of the theta functions in Proposition 17 and Corollary 18 we get:

Corollary 19 Under the same conditions as above, we have:

Θμ(DτA )

Θ (τA )
= 3/2

D

∑

r∈Z/DZ

far ,μ

(
τA 2A1

)
fr ,μ

(
τA1

)
. (17)
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We are interested in the Galois conjugates of fr ,μ(τ ) for τ = −b+√−3
2 such that

b2 ≡ −3 mod 12D2. ForA = [a, −b+√−3
2 ]Z a primitive ideal and kA ≡ 1 mod 3

its generator, we write kA in the form kA = naa + ma
−b+√−3

2 with 3|ma and
na ≡ 1(3).

In Sect. 5.2, we compute the Galois conjugates of fr ,μ(τ ) using Shimura reci-
procity’s law in two ways. We first show in Lemma 38 that

( fr ,μ(τ ))σ
−1
A = fr ,μ(τA ),

where σA is the Galois action corresponding to the ideal A via the Artin map. With
the same notation, we show in Proposition 40 that

fr ,μ(τ )σ
−1
A = fn′

ar ,μ(τ ),

where n′
a ≡ na(3D) with n′

a odd. Thus we get the following lemma:

Lemma 20 For an ideal A = [a, −b+√−3
2 ] generated by naa +ma

−b+√−3
2 such that

ma ≡ 0 mod 3, na ≡ 1 mod 3 and b2 ≡ −3 mod 12aD2, we have:

fr ,μ(τ )σ
−1
A = fr ,μ (τA ) = fn′

ar ,μ(τ )

for n′
a ≡ na(3D) with n′

a odd.

Using the lemma above, we can rewrite Corollary 19:

Corollary 21 Under the same conditions as above, for A = (naa + ma
−b+√−3

2 ),

A1 = (na1a1 + ma1
−b+√−3

2 ) with b2 ≡ −3 mod 12a2a1D2, we have:

Θμ (DτA )

Θ (τA )
= 3/2

D

∑

r∈Z/DZ

fn′2
a n′

a1
ar ,μ fna′

1
r ,μ (τ ),

where n′
a ≡ na(3D), n′

a1 ≡ na1(3D) and n′
a, n′

a1 odd.

4.2 SD as an absolute value

In the following we will use Corollary 21 for a choice of representative ideals for the
classes of the ring class group Cl(O3D). We show first:

Proposition 22 For τ = −b+√−3
2 such that b2 ≡ −3 mod 12D2 and π ≡ 1 mod 3

an element of norm of D such that (π)2 divides (−b+√−3
2 ), we have:

Sμ = D−2/3

∣∣∣∣∣
∣∣∣

∑

s∈(Z/DZ)×
s≡1(6)

fs,μ (τ ) χπ(s)

∣∣∣∣∣
∣∣∣

2

.
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1348 E. Rosu

Proof The structure of the ring class group of conductor 3D for D = ∏
pi ≡1 mod 3 pi

is given by Cl(O3D) ∼= (Z/DZ)× (see for example Cox [5]). We will choose as
representatives for the classes of Cl(O3D) ideals As such that NmAs ≡ s mod D.
For b fixed, b2 ≡ −3 mod 12D, we take:

As =
(

nsas + ms
−b + √−3

2

)

,

where as = Nm(As) ≡ s mod D, ns ≡ 1 mod 3D, ms ≡ 0 mod 3. Note that this
gives us m ≡ b−1(s − 1) mod 3D. Moreover, it is easy to check that the ideals As

for s ∈ (Z/DZ)× are in different classes in Cl(O3D).
We take as before π the element of norm D such that (π)2 divides the ideal (τ ) =

(−b+√−3
2 ). Then note that χD(α) = χπ(α

α
) = χπ( α2

|α|2 ). As b ≡ √−3 mod π , we

get αs = nsas + ms
−b+√−3

2 ≡ s mod π and thus χπ((αs)) = χπ(s2/s) = χπ(s).
Taking representatives s ∈ Z/DZ, s ≡ 1 mod 6, we get ms ≡ 0 mod 6 and

ns ≡ 1 mod 6. Summing up over r ∈ Z/DZwith r ≡ 1 mod 6 and takingA1 = (1)
in Corollary 21, we get:

Θμ

(
DτAs

)

Θ
(
τAs

) = 3/2

D

∑

r∈Z/DZ

r≡1(6)

fsr ,μ (τ ) fr ,μ (τ ), (18)

Summing up for all {s ∈ (Z/DZ)×, s ≡ 1(6)} and rearranging the terms, we get:

Sμ = D−2/3
∑

s∈(Z/DZ)×
s≡1(6)

∑

r∈Z/DZ,
r≡1(6)

fsr ,μ (τ ) χπ(rs) · fr ,μ (τ ) χπ(r).

Finally, we will further modify the sums on the RHS in order to sum up over
r ∈ (Z/DZ)× as well. In order to emphasize the dependence of θr ,μ on D we will
use only for the current proof the notation

fr/D(z) = θr ,μ(z)

θ0(z)
=

∑
n∈Z

eπ i(n+ r
D −μ)

2z(−1)n

θ0(z)
.

Moreover, for pi1 . . . pik |D, denote:

Spi1 ...pik
=

∑

s∈(Z/DZ)×
s≡1(6)

χD(As)D−2/3
∑

r∈Z/DZ

r≡1(6)
pi1 ...pik |r

fsr/D(τ ) fr/D(τ ).
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We claim that for k ≥ 1 we have Spi1 ...pik
= 0. Note that we can rewrite

Sμ =
∑

pi |D
Spi −

∑

pi p j |D
Spi p j + · · · + (−1)n−1Sp1,...,pn

+
∑

s,r∈(Z/DZ)×
s≡r≡1(mod 6)

fsr/D(τ ) fr/D(τ )χD(As)D−2/3,

thus showing Spi1 ...pik
= 0 for k ≥ 1 proves our result.

To see that Spi1 ...pik
= 0, let D′ = D/(pi1 . . . pik ). We recognize each of the inner

sums
∑

r ′∈Z/D′
Z

r≡1(mod 6)
fsr ′/D′(τ ) fr ′/D′(τ ) of Spi1 ...pik

to be equal to D′
3/2

Θμ(D′τA s )
Θ(τA s )

from

(18) for D = D′.
Denote m = D/D′. From the properties of the cubic character, we have χD =

χmχD′ . Moreover, from our choice of ideals, we have
Θμ(D′τA s )

Θ(τA s )
= Θμ

(
D′τA s′

)

Θ
(
τA s′

) for

s ≡ s′ mod 3D′, as As and As′ are in the same class in Cl(O3D′). Then we can
rewrite the sum as:

Spi1 ...pik
=

∑

s′∈(Z/D′
Z)×,

s′≡1(mod 6)

D′

3/2

Θμ

(
D′τAs

)

Θ
(
τAs

) χD′(As)
∑

s∈(Z/DZ)×,

s,s′≡1(mod 6)
s≡s′(mod D′)

χm(As).

In the inner sumwe are summing over s modulo m for all s in (Z/mZ)×. Moreover,
χm(As) is a nontrivial character as a function of s, as m1/3χm(As) = (m1/3)σA s =
m1/3 for allAs iff m1/3 ∈ K . As we are summing a non-trivial character over a group,
the sum is 0. This finishes the proof. ��

Using the above proposition now it is easy to see:

Corollary 23 SD = 1
3c3D

S1/6 and S1/2 = 0.

Proof As 3c3D SD = S1/6 + 1/2S1/2, if S1/2 = 0 we have 3SDc3D = S1/6. Thus it is
enough to show S1/2 = 0. More precisely we will show that

U (z) =
∑

r∈(Z/DZ)×
r≡1(6)

θr ,1/2(z)χπ(r)

equals 0 for any z, in particular for z = τ . Since we showed that S1/2 = D−2/3|R(τ )|2
in Proposition 22, we get S1/2 = 0.

To show U (z) = 0, note that θr ,1/2(z) = −θ2D−r ,1/2(z), while χπ(2D − r) =
χπ(r). As both r , 2D − r ≡ 1 mod 6 and D odd, the terms cancel each other out in
the sum and we get U (z) = 0. ��
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1350 E. Rosu

Finally, from Proposition 22 and Corollary 23 we get:

Proposition 24 For τ = −b+√−3
2 such that b2 ≡ −3 mod 12D2, we have SD =

1
3c3D

S1/6 and

SD = D−2/3

3c3D

∣∣∣∣∣
∣∣∣

∑

s∈(Z/DZ)×
s≡1(6)

fs,1/6 (τ ) χπ(s)

∣∣∣∣∣
∣∣∣

2

.

4.3 SD as a square

In the following we will rewrite Proposition 24 so that we get a square. Define
Fr ,μ(z) = fr ,μ(3z) and take:

RD,μ(z) =
∑

r∈(Z/DZ)×
r≡1(6)

Fr ,μ(z)χπ(r).

With this notation,wehave showed inProposition22 that S1/6 = |RD,1/6(τ/3)D−1/3|2.
One can show that R3

D,1/6(τ/3) ∈ K and actually RD,1/6(τ/3) is really close to being
an integer. We will show in this section the following:

Proposition 25 For σ(D) the number of prime divisors of D, we have:

SD = (−1)σ(D)

3c3D
T 2

D,

where TD = RD,1/6(τ/3)π−2/3ωk0 and TD = (−1)σ(D)TD and thus TD is real or
purely imaginary. Here ωk0 is the unique cube root that makes TD real or purely
imaginary.

We are going to show first in Lemma 26 that RD,1/6(τ ) and RD,1/6(τ/3) differ only
by a cubic root of unity ωk , and thus S1/6 = |RD,1/6(τ )D−1/3|2. In Proposition 27

we show that RD,1/6(τ ) = (−1)σ(D) π2/3

π2/3 RD,1/6(τ )ωk′
.

Defining TD = RD,1/6(τ/3)π−2/3ωk0 for k0 = k + k′, this is equivalent to TD =
(−1)σ(D)TD and thus

S1/6 = (−1)σ(D)T 2
D,

which is the result of Proposition 25 above.

4.3.1 Relating SD to RD,1/6(�)

Wewill first show that S1/6 = |RD,1/6(τ )D−1/3|2 in Lemma 26. Define the theta func-

tion θ(r),μ(z) = ∑
n∈Z

eπ i(n−μ)2z(−1)ne2π inr/D and the ratio F (r),μ(z) = θ(r),μ(3z)
θ0(3z) .
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We introduce this notation, as we will use the transformation mentioned in Lemma 48
in the Appendix:

θr ,1/6(3z) = (−1)r (−1)
D−1
6 ω√−3

√−i z

(
θ(3r),1/6

(
− 3

z

)
− ωθ(−3r),1/6

(
− 3

z

)
− ω2θ(−3r),1/2

(
− 3

z

))
.

(19)

Using also θ0(3z) = 1√−i z
θ0(−3/z) and taking the ratio with (19) we get:

Fr ,1/6(z) = (−1)r (−1)
D−1
6 ω√−3

(
F(3r),1/6

(
− 1

z

)
− ωF(−3r),1/6

(
− 1

z

)
− ω2F(−3r),1/2

(
− 1

z

))
.

(20)

Then, using (20), we are ready to show:

Lemma 26 For τ = −b+√−3
2 such that b2 ≡ −3 mod 12D2, we have:

RD,1/6(τ ) = ωk RD,1/6(τ/3),

where ωk is a cubic root of unity. Furthermore, this implies S1/6 = |RD,1/6(τ )D−1/3|2.
Proof Let b′ ≡ b mod 4D2, and b′ �≡ 0 mod 3. Without loss of generality we can
actually pick b, b′ such that (b2 + 3)/12D2 and (b′2 + 3)/4D2 are prime to 3D. Let
π ≡ 1(3) be an element of norm D such that (π)2 divides (τ ). Then we can find ideals
A ,A ′ prime to 3D such that:

(
√−3)(π)2A =

(
−b + √−3

2

)

, (π)2A ′ =
(

−b′ + √−3

2

)

.

We can write the generators kA , kA ′ ≡ 1 mod 3 of A and A ′, respectively, in the

form ka = ana +ma
−b+√−3

2 , ka′ = a′na′ +ma′ −b+√−3
2 , where ma, m′

a ≡ 0 mod 3,

and na, n′
a ≡ 1 mod 3. Let τA = −b+√−3

2a , τA ′ = −b′+√−3
2a′ .

We are going to show that:

(i) RD,1/6(τA ′) = RD,1/6(τA /3)
(ii) RD,1/6(τA /3) = χπ(na)RD,1/6(τ/3)

These two relations will imply:
(iii) RD,1/6(τ ) = χπ(na)χπ(na′)RD,1/6(τ/3).

In order to show (i), note that it is enough to show that Fr ,1/6(τA ′) = Fr ,1/6(τA /3).
We have −1/(τA/3) = −τ/D2 and −1/τA ′ = −τ/D2 as well and we will use (20)
for both τA /3 and τA ′/3. First for z = τA /3 we get:

Fr ,1/6

( τA

3

)
= (−1)r+ D−1

6 ω√−3

(
F(3r),1/6

(−τ

D2

)
− ωF(−3r),1/6

(−τ

D2

)
− ω2F(3r),1/2

(−τ

D2

))
.
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Applying (20) also for τA ′ we get similarly

Fr ,1/6(τA ′ ) = (−1)r+ D−1
6 ω√−3

(

F(3r),1/6

(
−τ ′
D2

)

− ωF(−3r),1/6

(
−τ ′
D2

)

− ω2F(3r),1/2

(
−τ ′
D2

))

,

where τ ′ = −b′+√−3
2 .

Finally, note that F (s),1/6(z + 8D2) = F (s),1/6(z), thus since b ≡ b′ mod 8D2

we also have F (s),1/6(−τ ′/D2) = F (s),1/6(−τ/D2) for s = ±3r . Similarly we have
F (−3r),1/2(−τ ′/D2) = F (−3r),1/2(−τ/D2), thus Fr ,1/6(τA /3) = Fr ,1/6(τA ′) as
claimed.

To show (ii), as fr ,1/6(z) = Fr ,1/6(z/3), note that from Lemma 20 we have

Fr ,1/6(τ/3)σ
−1
A = Fr ,1/6(τA /3) = Fn′

ar ,1/6(τ/3) where na ≡ n′
a mod 3D and n′

a
odd. This further implies that RD,1/6(τA /3) = χπ(na)RD,1/6(τ/3).

To show (iii), note that we are in the conditions of Lemma 38 from Sect. 5, as Fr ,1/6

is a modular function of level 18D2. Then Fr ,1/6(τ )
σ−1
A ′ = Fr ,1/6(τA ′) and thus we

get RD,1/6(τA ′) = (RD,1/6(τ ))
σ−1
A ′ .

We can rewrite this as (RD,1/6(τA ′))σA ′ = RD,1/6(τ ) and using (i), we get
RD,1/6(τ ) = RD,1/6(τA /3)σA ′ . From(ii), this is RD,1/6(τ ) = χπ(na)RD,1/6(τ/3)σA ′ .

Using Lemma 20, we have Fr ,1/6(τ/3)σ
−1
A ′ = Fna′r ,1/6(τ/3), thus RD,1/6(τ/3)σA ′ =

χπ(na′)RD,1/6(τ/3). Finally this implies
RD,1/6(τ ) = χπ(na)χπ (na′)RD,1/6(τ/3) and we take ωk = χπ(na)χπ(na′) to get the
result. ��

4.3.2 Relating RD,1/6(�) to its complex conjugate

Now we want to show that RD,1/6(τ ) equals RD,1/6(τ ) up to a nice factor. As before

we let τ = −b+√−3
2 and π such that (π)2 divides (τ ). We will show:

Proposition 27 For some cubic root of unity ωk′
, we have:

RD,1/6(τ ) = (−1)σ(D)ωk′ π2/3

π2/3 RD,1/6(τ ).

Using the notation TD = RD,1/6(τ )π−2/3ωk′
this is equivalent to TD = (−1)σ(D)TD.

Note that we can think of ωk′
as the unique root of unity which makes

RD,1/6(τ )ωk′
π−2/3 either real or purely imaginary. We actually give a formula for ωk′

in the proof of Proposition 27.
We first define the linear combination:

R(D),μ(z) =
∑

r∈(Z/DZ)×
r≡1(6)

F (r),μ(z)χπ(r).

123



Central values of L-functions of cubic twists 1353

Note that we use χπ , unlike in RD,μ.
We choose b ≡ b′ mod 4D2 such that 3 � b′ and we can find A ′ as in the proof

of Lemma 26 such that A ′(π)2 =
(−b′+√−3

2

)
. Then from the transformation (20)

we have Fr ,1/6(τA ′) = (−1)r (−1)
D−1
6 ω√−3

(F (3r),1/6(−τ/D2)−ωF (−3r),1/6(−τ/D2)−
ω2F (−3r),1/2(−τ/D2)). Writing the full linear combination for r ∈ (Z/DZ)×, r ≡
1(6) and multiplying by χπ(3), we get:

(−1)
D+1
2 χπ(3)RD,1/6(τA ′) = R(D),1/6(τ/D2) − ω2R(D),1/2(τ/D2)/

√−3. (21)

Note that above we related RD,1/6(τ ) to R(D),μ for μ ∈ {1/2, 1/6}. In order to
show Proposition 27 we also want to relate R(D),μ back to RD,μ, and we do that in
the lemma below:

Lemma 28 We have the equality

R(D),μ(τ/D2) = (−1)(D+1)/2 G(χπ)

π
RD,μ(τ ),

where G(χπ) = ∑
r∈(Z/DZ)× χπ(r)e2π inr/D is the Gauss sum corresponding to the

character χπ .

Proof Recall R(D),μ(z/D2) = ∑
r∈(Z/DZ)× F (r),μ(z/D2)χπ(r), where

F (r),μ(z/D2) = θ(r),μ(3z/D2)

θ0(3z/D2)
. We show first that, for r odd, we can rewrite the terms

θ(r),μ(3z/D2) as:

θ(r),μ(3z/D2) = −
∑

s∈(Z/DZ)
s≡1(6)

θs,μ(3z)e2π irs/D . (22)

From the definition, we have θ(r),μ(3z) = ∑
n∈Z

eπ i(n−Dμ)23z(−1)ne2π inr/D .
Choosing as before s ∈ Z/DZ such that s ≡ 1 mod 6, we sum over all n mod-
ulo D:

θ(r),μ(3z) =
∑

s∈Z/DZ

s≡1(6)

∑

n∈Z

eπ i(Dn+s−Dμ)23z(−1)Dn+se2π i(Dn+s)r/D .

We can rewrite this as θ(r),μ(3z) = −∑
s∈Z/DZ

s≡1(6)
θs,μ(D23z)e2π isr/D and changing

z → z/3D2 we get (22).
Plugging in z = τ/D2 in (22) and dividing by θ0(3τ) we have further

θ(r),μ(3τ/D2)

θ0(3τ)
= −

∑

s∈Z/DZ

s≡1(6)

Fs,μ(τ )e2π irs/D .
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Moreover from Lemma 44 in the Appendix:

θ0(3τ/D2)

θ0(3τ)
= η(τ/D2)

η(τ )
= (−1)(D−1)/6π,

thus we get:

F (r),μ(τ/D2) = (−1)(D+1)/2

π

∑

s∈Z/DZ

s≡1(6)

Fs,μ(τ )e2π irs/D . (23)

Going back to the linear combination, we get

R(D),μ(τ/D2) = − 1

π

∑

r∈(Z/DZ)×
r≡1(6)

∑

s∈Z/DZ

s≡1(6)

Fs,μ (τ ) e2π isr/Dχπ(r).

We switch the two sums and get:

R(D),μ(z/D2) = (−1)(D+1)/2

π

∑

(s∈Z/DZ)×
s≡1(6)

Fs,μ (τ )
∑

r∈(Z/DZ)×
e2π isr/Dχπ(r).

Note that if gcd(s, D) = D1 > 1, then the inner sum equals 0. This is easily seen by
writing s = D1s1, D2 = D/D1, and rewriting

∑

r∈(Z/DZ)×
e2π isr/Dχπ (r) = χπ (s1)

∑

r∈(Z/DZ)×
e2π ir/D1χπ (r) =

∑

r∈(Z/D2Z)×
χπ2 (r)G(χπ1 ) = 0,

where π = π1π2 and Nm(πi ) = Di , for i = 1, 2. Thus we are left in our sum only
with s prime to D, and we can rewrite:

R(D),μ(z/D2) = (−1)(D+1)/2

π

∑

(s∈Z/DZ)×
Fs,μ(τ )χπ(s)

∑

r∈(Z/DZ)×
e2π isr/Dχπ(rs).

This is exactly R(D),μ(τ/D2) = (−1)(D+1)/2

π

∑
(s∈Z/DZ)×

s≡1(6)
Fs,μ (τ ) χπ(s)G(χπ),

which equals (−1)(D+1)/2 G(χπ )
π

RD,μ(τ ), and thus we get the result of our lemma.
��

Proof of Proposition 27 Recall from Eq. (21), we have

(−1)
D−1
2 χπ(3)RD,1/6(τA ′) = R(D),1/6(τ/D2) − ω2R(D),1/2(τ/D2)/

√−3.
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Rewriting the RHS using Lemma 28, then

χπ(3)RD,1/6(τA ′) = G(χπ)

π
(RD,1/6(τ ) − ω2RD,1/2(τ )/

√−3).

Finally, since we noted that RD,1/2(z) = 0 in the proof of Lemma 23, for any z, then
we get RD,1/6(τA ′) = χπ(3) G(χπ )

π
RD,1/6(τ ).

Now using the details of the proof of Lemma 26, recall that

RD,1/6(τA ′) = RD,1/6(τA /3) = χπ(na)RD,1/6(τ/3) = χπ(na′)RD,1/6(τ ),

thus

RD,1/6(τ ) = χπ(na′)χπ(3)
G(χπ)

π
RD,1/6(τ ). (24)

To actually compute the term on the RHS, we recall a few facts about cubic Gauss
sums (see [13, Chapter 9]). We can write π = ∏

pi |D πi , where πi is a generator of
norm pi with πi ≡ 1(3). Then:

G(χπ) =
∏

pi |D
χπ/πi (πi )G(χπi ).

��
Moreover, we can actually compute each G(χπi ) up to a cubic root of unity. From

[13, Chapter 9.4], we have G(χπi )
3 = −pπ i for πi ≡ 1 mod 3. Thus we get

G(χπi ) = −πi
2/3π

1/3
i ωki for some ki ∈ {0, 1, 2},

Then G(χπ )
π

= (−1)σ(D)ωkD π2/3

π2/3 , where kD = ∑
ki , which together with (24)

gives us Proposition 27 for ωk′ = χπ(na′)χπ(3)ωkD .
From Lemma 26 and Proposition 27, we get TD = RD,1/6(τ/3)π−2/3ωk0 for

k0 = k + k′, and thus:

Corollary 29 SD = (−1)σ(D)T 2
D.

4.4 Invariance under the Galois action

Define

MD = RD,1/6(τ/3)π−2/3.

We will write below MD as a trace.

Lemma 30 MD ∈ K and we can write it as a trace:

MD = 1

ϕ(D)
TrHO /K ( f1,1/6(τ )π−2/3),
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where HO is the ray class field of modulus 3D, ϕ is Euler’s totient function and
f1,1/6(τ ) = θ1,1/6(τ )/θ0(τ )

Recall we defined TD = RD,1/6(τ )π−2/3ωk′
and from Lemma 26 we have TD =

RD,1/6(τ/3)π−2/3ωk0 for k0 = k + k′. As TD = (−1)σ TD from Proposition 27, we
get immediately from Lemma 30:

Corollary 31 TD ∈ Q when σ(D) even and TD/
√−3 ∈ Q when σ(D) odd and we

have the formula:

TD = ωk0

ϕ(D)
TrHO /K ( f1,1/6(τ )π−2/3).

Proof of Lemma 30: Wecanwrite explicitly MD = ∑
r∈(Z/DZ)×

r≡1(6)
fr ,1/6(τ )χπ(r)π−2/3.

For an ideal A = [a, −b+√−3
2 ]Z with generator ka =

(
naa + ma

−b+√−3
2

)
with

6|ma , na ≡ 1(6), we are going to have the Galois transformation:

( fr ,1/6(τ )χπ(r)π−2/3)σ
−1
A = fnar ,1/6(τ )χπ(nar)π−2/3.

To show this, note that from Lemma 20 we have fr ,1/6(τ )σ
−1
A = frna ,1/6(τ ). We

compute (π1/3)σ
−1
A = χπ(A )π1/3. Furthermore, χπ(A ) = (

π
A

)
3 =

(
π

A

)

3
=

(
π

naa+mab

)

3
and na(naa +mab)2 ≡ a mod π , so we have

(
π

naa+mab

)

3
=

(
π

n−1
a

)

3
=

(
π
na

)

3
= χπ(na).

Moreover, taking the ideals A ◦
r =

(
1 + b∗(1 − r∗)−b+√−3

2

)
, where b∗ ≡ b−1

mod D and r∗ ≡ r−1 mod D, we have NmA ◦
r = aA ◦

r
≡ r−1 mod 3D and nA ◦

r
≡

r mod 3D, and then:

MD =
∑

r∈(Z/DZ)×
r≡1(6)

( f1,1/6(τ )π−2/3)
σ−1
A ◦

r .

We will show in the next section in Proposition 40 that f1,1/6(τ ) ∈ HO . Define the
group G0 = {[A ◦

r ], r ∈ (Z/DZ)×, r ≡ 1 mod 6}. It is a subgroup of Gal(HO/K )

andG0 is isomorphic to (Z/DZ)×.We define the fixed field ofG0 inGal(HO/K ) to be
H0 = {h ∈ HO : σ(h) = h,∀σ ∈ G0} andGalois theory impliesGal(HO/H0) ∼= G0.
Then we can rewrite the relation above as

MD = TrHO /H0( f1,1/6(τ )π−2/3).

As we will show in the next section in Proposition 40, fr ,1/6(τ )with r ≡ 1 mod 6
are all the Galois conjugates of f1,1/6(τ ), thus MD ∈ K . Then we can take the trace
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further to K to get

TrHO /K ( f1(τ )π−2/3) = # Gal(H0/K )TrHO /H0( f1,1/6(τ )π−2/3)

and this equals
∏

p|D(p − 1)TrHO /H0( f1,1/6(τ )π−2/3). ��

Remark 32 Using the notation from the proof of Lemma 30, one can actually show
similarly that κ = RD,1/6D−1/3 equals:

κ = TrHO /H0( f1(τ )D−1/3)

and κ3 ∈ K . However, κ /∈ K .

4.5 Integrality

In Sect. 3 we have showed that SD ∈ Q. We will show below that S1/6 ∈ Z, thus
3c3D SD ∈ Z.

Recall that S1/6 = 3c3D SD = TrH3D/K
Θ(Dω)
Θ(ω)

D1/3. Note that it is enough to show

that D1/3Θ(Dω)/Θ(ω) is an algebraic integer, as its trace would be a rational number
as well as an algebraic integer, thus an integer. Moreover, it is enough to show that
Θ(Dω)/Θ(ω) is an algebraic integer.

We cite the following standard result (see for example [19]):

Lemma 33 Let f (z) be a modular function for Γ (N ) such that for all γ ∈ SL2(Z) we
have f ◦ γ holomorphic on the upper half plane H and f has Fourier coefficients at
∞ that are algebraic integers. Then, for τ a CM point, f (τ ) is an algebraic integer.

First we will show that 2Θ(Dω)
Θ(ω)

is an algebraic integer. We have showed that
3
2Θ(ω) = 4

√
3|θ0(τ )|2. Then 2Θ(Dω)

Θ(ω)
= 33/4 Θ(Dω)

|θ0(τ )|2. = 33/4e−2π i/24 Θ(−Dτ)

θ0(−τ)2.

Since e−2π i/2433/4 is an algebraic integer, it is enough to show that Θ(−Dτ)

θ0(−τ)2
is one

as well. Recall that θ0(z) = η(z/3) and take f0(z) = Θ(Dz)
η(z/3)2

.
Note that:

– f0 is a modular function for Γ (36D);
– f0(γ z) is holomorphic on H for all γ ∈ SL2(Z);
– f0(γ z) has Fourier coefficients that are algebraic integers in its Fourier expansion
at ∞ for all γ ∈ SL2(Z).

These properties can be checkedusing the properties ofΘK from theAppendix ((27)
and Lemma 41), as well as the properties of η(z). Note that we are in the conditions of
Lemma 33, thus f (τ ) is an algebraic integer. This implies that 2Θ(Dω)

Θ(ω)
is an algebraic

integer, hence 2S1/6 is an integer.

Now we will show that DS1/6 is an integer as well by showing that D 2
3

Θ1/6(Dω)

Θ(ω)
is an algebraic integer. Using Lemma 16 for μ ∈ {−1/2,−1/6}, ν = 1/2, a = 1,
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z = D −3+√−3
2 , we can rewrite:

Θ1/6(Dτ) =
4
√
3

D

D−1∑

r=0

|θr ,1/6(τ )|2, τ = −3 + √−3

2
.

Taking the quotient by 3
2Θ(τ) = 4

√
3|θ0(τ )|2, we get:

2

3

Θ1/6(Dω)

Θ(ω)
= 1

D

D−1∑

r=0

∣
∣∣∣
θr ,1/6(τ )

θ0(τ )

∣
∣∣∣

2

.

Recall fr ,μ(z) = θr ,μ(z)
θ0(z)

for μ ∈ {1/2, 1/6} and note that:

– fr ,μ is a modular function for Γ (18D2);
– fr ,μ(γ z) is holomorphic onH for all γ ∈ SL2(Z);
– fr ,μ(γ z) has Fourier coefficients that are algebraic integers in its Fourier expansion
at ∞ for all γ ∈ SL2(Z).

To see the last property, we can either compute explicitly the transformations of
θr ,μ(γ z) and θ0(γ z) and get a Fourier expansion with coefficients inOK [ζ24, ζD2 ], or
interpret the theta functions as generating series attached to counting points on certain
lattices and get the Fourier coefficients of their ratio to be in Z.

Thus we are in the conditions of Lemma 33, hence fr ,μ(τ ) is an algebraic integer.

This implies that D
Θ1/6(Dω)

Θ(ω)
is an algebraic integer, and thus the trace DS1/6 =

D TrH3D/K
Θ1/6(Dω)

Θ(ω)
D1/3, which is a rational number, is indeed an integer. Since we

already showed that 2S1/6 is an integer, we get S1/6 ∈ Z when D is odd.
If we note that |θ0(τ )|2 = |η(τ/3)|2 = √

3|η(τ)|2, then we can also show similarly
that θr ,μ(τ )

η(τ )
is an algebraic integer, and thus DS1/6/

√
3 is an algebraic integer. Since

S1/6 ∈ Z, this implies 3 divides S1/6.
Finally, since S1/6 = (−1)σD T 2

D and S1/6 is an integer, from Corollary 31 we get:

Corollary 34 TD/3 ∈ Z when σ(D) even and TD/
√−3 ∈ Z when σ(D) odd.

Note that this implies that ωk0 is the unique choice for a cube root of unity such
that TD or TD/

√−3 is an integer.

4.6 Case of D not square free

We present below the case of D not square free. We write D = D1D2
2 such that D1D2

square free. Note that if we try to apply the steps before directly to (9) for D not
square-free some of the details of Proposition 22 no longer hold. Instead we use the
formula (13):

SD = 1

3

∑

A ∈Cl(O3D0 )

ΘK (D0τA )

ΘK (τA )
χD(A )D1/3.
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for D0 = D1D2. All the details of the proof for the square-free case will follow
through and we only briefly mention the steps.

We apply the factorization formula and obtain the factorization from Corollary 19:

Θμ(D0τA )

Θ (τA )
= 3/2

D0

∑

r∈Z/D0Z

far ,μ

(
τA 2A1

)
fr ,μ

(
τA1

)
, (25)

We use this to show similarly to the proof of Proposition 24 that:

SD = D1/3
2 D−2/3

1

3c3D
|

∑

s∈(Z/D0Z)×
s≡1(6)

fs,1/6 (τ ) χD(As)|2,

where As = [as,
−b+√−3

2 ] with Nm(as) ≡ s mod D1D2. Take π1 a generator of

D1 and π2 is the generator of D2 such that
(−b+√−3

2

)
is divisible by (π1π2)

2. Then

χD(As) = χπ1(s)χπ2(s).
The main difference is when we compute the complex conjugate of

RD,1/6(τ ) =
∑

r∈(Z/D0Z)×
r≡1(6)

fr ,1/6(τ )χπ1(s)χπ2(s),

as we get RD,1/6(τ ) = G(χπ1χπ2 )

π1π2
RD,1/6(τ ) and this equals

RD,1/6(τ ) = (−1)σ(D)ωk′ π1
1/3π2

2/3

π
1/3
1 π

1/3
2

RD,1/6(τ )

for a cubic root of unity ωk′
. Then we can rewrite:

SD = (−1)σ(D)

3c3D
T 2

D,

where TD = ∑
s∈(Z/D1D2Z)×

s≡1(6)
fs,1/6 (τ ) χπ1(s)χπ2(s)π1

−2/3π
1/3
2 ωk0 , andwe can show

that this is the trace:

TD = 1

ϕ(D0)
TrHO /K f1(τ )π1

−2/3π
1/3
2 ωk0 ,

where HO is the ray class field for the modulus D0 and ωk0 is a cubic root of unity.
Moreover, we can further show as in Sect. 4.5 that TD/3 ∈ Z when σ(D) even and
TD/

√−3 ∈ Z when σ(D) odd.
Finally, we have SD �= 0 for D split only for D ≡ 1 mod 9 and in this case we

can compute the Tamagawa number c3D to be equal to 31+σ(D) using Tate’s algorithm
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(see [28, Chapter IV.9]). Thus SD is an integer square up to an even power of 3 and it
equals:

SD =
(

TD

(
√−3)2+σ(D)

)2

.

5 Shimura reciprocity law

We present below some background on Shimura’s reciprocity law following the expo-
sition of Stevenhagen [30]. For more details also see Gee [7].

LetF be the field of modular functions over Q. From CM theory (see for example
[30]), it is known that if τ ∈ K ∩ H and f ∈ F , then we have f (τ ) ∈ K ab, where
K ab is the maximal abelian extension of K . Shimura’s reciprocity law gives us a way
to compute the Galois conjugates f (τ )σ of f (τ ) when acting with σ ∈ Gal(K ab/K ).
We recall thatF = ⋃

N≥1FN , whereFN is the space of modular functions of level
N .

As the restriction maps between the fields FN are in correspondence with the
natural maps between the groups GL2(Z/NZ)/{±1}, we can take the projective limit
to get the isomorphism Gal(F/F1) ∼= GL2(Ẑ)/{±1}.

WhenworkingoverQ, onehas an isomorphismGal(FN /F1) ∼= GL2(Z/NZ)/{±1}
and the maps on FN are given by projecting GL2(Ẑ)/{±1} → GL2(Z/NZ)/{±1}.
We define the actions of GL2(Z/NZ)/{±1} explicitly:
– Action of α ∈ SL2(Z/NZ) onFN . We have ( f (τ ))σα = f α(τ ) = f (ατ),where

α is acting on the upper half plane via fractional linear transformations.
– Action of

(
1 0
0 d

) ∈ (Z/NZ)× on FN . Note that for f ∈ FN we have a Fourier
expansion f (z) = ∑

n≥0 anqn/N with coefficients an ∈ Q(ζN ), q = e2π i z . If we
denote ud = (

1 0
0 d

)
, then the action of σud is given by ( f (τ ))σud = f ud (τ ) =∑

n≥0 aσd
n qn/N ,

where σd is the Galois action in Gal(Q(ζN )/Q) that sends ζN → ζ d
N .

To further get all the automorphisms of F we need to consider the action of
GL2(AQ, f ) and for that it is enough to define the action of GL2(Q)+ on F :

– Action of α ∈ GL2(Q)+ on F . We define f α(τ ) = f (ατ), where α acts by
fractional linear transformations.

Let O be the order of K generated by τ i.e. O = Z[τ ]. We define the matrix gτ (x)

to be the uniquematrix in GL2(AQ) such that x

(
τ

1

)
= gτ (x)

(
τ

1

)
.We can compute it

explicitly. Todo that, consider theminimal polynomial of τ to be p(X) = X2+B X+C .
Then if we write x p ∈ Q×

p in the form x p = spτ + tp ∈ Q×
p with sp, tp ∈ Qp, we can

compute gτ (x p) =
(

tp − sp B −spC
sp tp

)
.

Using the map gτ above, we have:
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Theorem 35 (Shimura’s reciprocity law) For f ∈ F and x ∈ A×
K , f , we have:

( f (τ ))σx = f gτ (x−1)(τ ),

where σx is the Galois action corresponding to the idele x via the Artin map, gτ is
defined above and the action of gτ (x) is the action in GL2(AQ, f ).

Note that the elements of K × have trivial action. This can be easily seen by embed-
ding K × ↪→ GL2(Q)+ via k ↪→ gτ (k). Noting that τ is fixed by the action of the
torus K ×, we have f gτ (k−1)(τ ) = f (gτ (k−1)τ ) = f (τ ).

We can also rewrite the theorem for ideals in K . Let f ∈ FN and O = Z[τ ] of
conductor M . Going through the Artin map, we can restate Shimura’s reciprocity in
this case in the form:

f (τ )σA = f gτ (A )−1
(τ ), (26)

whereA is an ideal prime to M N , σA is the Galois action corresponding to the ideal
A through the Artin map, and gτ (A ) = gτ ((α)p|Nm(A )). Note that gτ (A ) is unique
up to multiplication by roots of unity in K . However, these have trivial action on f at
the unramified places p|Nm(A ).

5.1 Galois conjugates of f(!)

Wedenote f (z) = ΘK (Dz)
ΘK (z) .We are interested in finding theGalois conjugates of f (ω).

By checking directly computationally and using the fact that bothΘK (Dz) andΘK (z)
have Fourier expansions in (Z�q�)×, where q = e2π i z , we get the standard result:

Lemma 36 The function f (z) is a modular function of level 3D with integer Fourier
coefficients at the cusp ∞.

From CM-theory, if f ∈ F3D and τ a generator of OK , we have f (τ ) ∈ HO the
ray class field of modulus 3D. Recall H3D is the ring class field for the order O3D =
Z + 3DOK , and we actually have:

Lemma 37 f (ω) ∈ H3D.

Wegive belowa computational proof.However this can also be seen viaKatz’smod-
ular interpretation of algebraic modular forms by thinking ofω ∈ H corresponding to
a point [(E, C)] ∈ Y0(3D)[H3D] (where E is an elliptic curve and C is a torsion sub-
group of E(C) of degree 3D), via the projection map H → Y0(3D) = H /Γ0(3D)

(see Katz [15] for more details).

Proof Weneed to show that f (ω) is invariant underGal(K ab/H3D). Via theArtinmap,

we can pick as representatives the ideal classesA = [a, −b+√−3
2 ]Z, wherea = NmA

and b2 ≡ −3 mod 4a, corresponding to the Galois classes of Gal(K ab/H3D). Then

we can pick a generator of the idealA written in the form ta+s −b+√−3
2 where t, s ∈ Z
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and 3D|s. As f (ω) = f (τ ), where τ = −b+√−3
2 , from Shimura’s reciprocity law, we

have:

( f (τ ))σA −1 = f gτ (A )(τ ).

Here gτ (A ) = (
ta−sb −sca

s ta

)
p|3D , where ca = b2+3

4 . Then we can rewrite the action
of gτ (A ) explicitly as:

f gτ (A )(τ ) = f

(
ta−sb −sc

s t

)

p|3D

(
1 0
0 a

)

p|3D (τ ) = f

(
1 0
0 a

)

p|3D (
(

ta−sb −sc
s t

)
τ).

Since 3D|s, the matrix
(

ta−sb −sc
s t

) ∈ Γ0(3D) and f (z) is invariant under its action,
while, since (a, 3D) = 1 and f has rational Fourier coefficients at ∞, the action of(
1 0
0 a

)
p|3D is trivial. Thus f (ω) is invariant under the Galois action coming from

U (3D) and this finishes the proof. ��
Now we would like to compute the Galois conjugates of f (ω) under the action of

Gal(H3D/K ). We will first show the following general result:

Lemma 38 Let F ∈ FN be a modular function of level N with rational Fourier

coefficients in its Fourier expansion at ∞. Let τ = −b+√−3
2 be a CM point and let

A =
[
a, −b+√−3

2

]

Z

be a primitive ideal prime to N. Then we have the Galois action:

F(τ )σ
−1
A = F(τ/a).

Proof From Shimura’s reciprocity law, we have F(τ )σ
−1
A = Fgτ (A )(τ ). Note that the

minimal polynomial of τ is pτ (X) = X2+bX + b2+3
4 . Letα be a generator ofA . Then

we can write α in the form α = ta + sτ and we have gτ (A ) =
(

ta−sb −s b2+3
4−s ta

)

p|a
.

We can rewrite the matrix in the form gτ (A ) =
(

ta−sb b2+3
4a−s t

)

p|a
(
1 0
0 a

)
p|a . As the

matrix
(

ta−sb − b2+3
4a−s t

)

p|a
is an element of SL2(Zp) for p � N , it has trivial action.

Then we have Fgτ (A )(τ ) = F

(
1 0
0 a

)

p|a (τ ).

We rewrite the matrix
(
1 0
0 a

)
p|a = ( 1 0

0 1/a

)
p�a

(
1 0
0 a

)
Q
, where

( 1 0
0 1/a

)
p�a

∈
GL2(Ẑ) and

(
1 0
0 a

)
Q

∈ GL2(Q)+. Note that the action of
( 1 0
0 1/a

)
p�a

is the same

as the action of
( 1 0
0 1/a

)
p|N . However, since F has rational Fourier coefficients

in its Fourier expansion, this action is trivial. Thus we are left with Fgτ (A )(τ ) =
F

(
1 0
0 a

)

Q(τ ) = F(τ/a), which finishes the proof. ��
We apply the lemma above to our case:
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Proposition 39 Take the primitive ideals A =
[
a, −b+√−3

2

]

Z

to be the representa-

tives of the classes of the ring class group Cl(O3D) such that all norms a = NmA
are relatively prime to each other and b2 ≡ −3 mod 4a for all the norms a.

Then the Galois conjugates of f (ω) = ΘK (Dω)
ΘK (ω)

are the terms
(

ΘK (Dω)
ΘK (ω)

)σ−1
A =

ΘK (DτA )
ΘK (τA )

.

Proof We note that ΘK (Dω)
ΘK (ω)

= ΘK (Dτ)
ΘK (τ )

and apply Lemma 38 to τ = −b+√−3
2 and

f (z) = ΘK (Dz)
ΘK (z) . These are the onlyGalois conjugates, as we showed that f (τ ) ∈ H3D .

��

5.2 Galois conjugates of fr,�(�)

Recall that we defined fr ,μ(z) = θr ,μ(z)
θ0(z)

. This is a modular function for Γ (18D2)

when μ = 1/2 and for Γ (9D2) when μ = 1/6 (see Lemma 46 in the Appendix).
From CM-theory then fr ,μ(τ ) ∈ HO ′ , where HO ′ is the ray class field of modulus
18D2 for μ = 1/2 and of modulus 9D2 for μ = 1/6. Note that this also follows from
the moduli interpretation of algebraic modular forms (see [15]). However, we want to
descend to the ray class field HO of modulus 3D.

In order to do that we compute the Galois conjugates of fr ,μ(τ ) over K using

Shimura’s reciprocity law for τ = −b+√−3
2 , with b2 ≡ −3 mod 12D2. Note that τ

has the minimum polynomial X2+bX + b2+3
4 . Thus we have to compute the action of

all gτ ((x p)p) = ∏
p

(
tp−spb −sp

b2+3
4

sp tp

)

p
on fr ,μ(τ ). We will prove that the Galois

action from Shimura’s reciprocity law is given by the following:
In our case we want to compute the Galois conjugates of fr ,μ(τ )

Proposition 40 For A = [a, −b+√−3
2 ]Z an ideal prime to 6D such that b2 ≡ −3

mod 12Da2. Let kA = naa + ma
−b+√−3

2 be the generator of A such that 3|ma and

na ≡ 1 mod 3, then for τ = −b+√−3
2 we have:

fr ,μ(τ )σ
−1
A = fn′

ar ,μ(τ ),

where na ≡ n′
a mod 3D and na′ odd. Moreover, these are all the Galois conjugates

of fr ,μ(τ ) and fr ,μ(τ ) is in HO the ray class field of modulus 3D.

Proof We will compute the Galois conjugates of fr ,μ(τ ) using Shimura’s reciprocity
law adelically first. As the action of K × ∏

v�6D O×
Kv

is trivial, we need to com-

pute the action of
∏

v|6D O×
Kv
. We project the action of (gτ (xv))v|6D to gτ (x ′) ∈

GL2(Z/18D2Z). From the Chinese remainder theorem, we can find k0 ∈ K such that
k0 ≡ x p mod 72D2Zp for all p|6D. Note that k0 is independent of the choice of τ

and gτ (x) ≡ gτ (k0) in GL2(Z/18D2Z).
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Moreover, (±ωi )p ↪→ A×
K f

acts trivially, thus we can consider the action of

k0(±ω j ) instead, for j ∈ {0, 1, 2}. We pick k0 = A + Bω such that v3(B) ≥ 1,
A ≡ 1(3). By possibly changing b to b := b + 18D2 above (this does not affect
the value of fr ,μ(τ )) as noted in Remark 47 in the Appendix), we can find b′ ≡ b

mod 18D2 Nm k0 such that k0 = ta + s −b′+√−3
2 with ta − sb′ ≡ 1 mod 6. Let

τ ′ = −b′+√−3
2 and we have:

( fr ,μ(τ ))σ(k0)6D = ( fr ,μ(τ ′))σ(k0)6D = f
gτ ′ ((k0)6D)

r ,μ (τ ′),

where gτ ′((k0)6D) = (
ta−sb′ −sc′a

s ta

)
, with c′a = b′2+3

4 .

We will now compute f
gτ (x)p|6D

r ,μ (τ ). We write the matrix gτ ′((k0)6D) as a product
gτ ′((k0)6D) = (

ta−sb′ −sc′
s t

)
p|6D

(
1 0
0 a

)
p|6D . Note that

(
1 0
0 a

)
p|6D acts trivially on

fr ,μ as the functions θr ,μ(z) and θ0(z) have rational Fourier coefficients in its Fourier
expansion at ∞, and thus so does fr ,μ(z). Thus we need to compute the action

f

(
ta−sb′ −sc′

s t

)

p|6D
r ,μ (τ ′) = fr ,μ(

(
ta−sb′ −sc′

s t

)
τ ′).

Using the transformation of Lemma 45 from the Appendix for both θr ,μ and θ0, as we
have 3D2|s and ta − sb ≡ 1 mod 6, and further noting that 9|sc′, we get precisely:

fr ,μ(
(

ta−sb′ −sc′
s t

)
τ ′) = θr

((
ta−sb′ −sc′

s t

)
τ ′)

θ0
((

ta−sb′ −sc′
s t

)
τ ′) = f(ta−sb′)r ,μ(τ ′).

Since (ta − sb′)t ≡ 1 mod D2, we can rewrite this as ft ′−1r ,μ(τ ′) for t ≡ t mod D
and t ′ ≡ 1 mod 6. Note that t is prime to D. Thus we have showed so far that the
Galois conjugates of fr ,μ(τ ) are the terms fs,μ(τ ), where gcd(s, D) = gcd(r , D).

Moreover, we have nontrivial Galois action only for k0 = ta + s −b+√−3
2 with t �≡ 1

mod D. Furthermore, it implies that f (τ ) ∈ HO , the ray class field of modulus 3D.
Finally, we would like to express the Galois action using ideals. For a primitive

idealA = [a, −b+√−3
2 ]Z prime to 6D with a generator (kA ) = (naa + ma

−b+√−3
2 )

with na ≡ 1 mod 6 and 3|ma , we have the correspondence map between ideles and
ideals given by x = (kA )p�6D ↔ A = (kA ). Picking the representatives kA as
above, we have:

fr ,μ(τ )σA = f
g−1
τ (kA )p�6D

r ,μ (τ ) = f
gτ (kA )p|6D

r ,μ (τ ) = fn′−1
a r ,μ

(τ ),

where na ≡ n′
a mod 3D and n′

a odd. After changing r → n′−1
a r , we get the result of

the Galois action from the proposition. ��
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6 Appendix: Properties of theta functions

6.1 Properties of2K and�

We have a functional equation for the theta function (see [16, Section 11.1]):

ΘK (−1/3z) = 3√−3
zΘK (z). (27)

Furthermore, we can compute the transformation of ΘK (z ± 1/3) in the lemma
below:

Lemma 41 Θ (z + k/3) = (1 − ω2k)Θ(3z) + ω2kΘ(z) for k ∈ Z.

Proof For k = 1, we can split the sum Θ
(
z + 1

3

) = ∑
m,n∈Z

e
2π i(m2+n2−mn)

(
z+ 1

3

)

in
two parts, depending on whether or not the ideal (m + nω) is prime to (

√−3). The
part of the sum for which (

√−3)|(m + nω) gives us
∑

m,n∈Z
e2π i(m2+n2−mn)(3z+1) =

Θ(3z + 1) = Θ(3z).
The part of the sum for which (

√−3) � (m + nω) can be rewritten as
ω

∑
m,n∈Z,

(
√−3)�(m+nω)

e2π i(m2+n2−mn)z sincem2+n2−mn ≡ 1(3). We rewrite this sum as

the sumof two termsω
∑

m,n∈Z
e2π i(m2+n2−mn)z−ω

∑
m,n∈Z,

(
√−3)|(m+nω)

e2π i(m2+n2−mn)z .

Finally we recognize the two terms as ωΘ(z) − ωΘ(3z).
Going back to our initial computation, we get Θ (z + 1/3) = Θ(3z) + ωΘ(z) −

ωΘ(3z) = (1−ω)Θ(3z)+ωΘ(z), and this finishes the proof of the first formula. We
can show the case k = 2 by applying the equality for k = 1 and plugging in z − 1/3
for z. ��

By applying the functional equation (27) for z = −3+√−3
6 we get the following

easy lemma:

Lemma 42 ΘK

(−3+√−3
6

)
= 0.

Using the lemma above, we get the following result that we use in the proof of
Corollary 18:
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Lemma 43 For a primitive ideal A = [a, −b+√−3
2 ]Z prime to 3 such that b2 ≡ −3

mod 12a, we have ΘK

(−b+√−3
6a

)
= 0.

Proof The proof is similar to that of Lemma 12.We canwrite the generator of primitive

ideal A =
[
a, −b+√−3

2

]
in the form kA = ma + n −b+√−3

2 for some integers

m, n and following similar steps as in Lemma 12, we get ΘK

(−b+√−3
6

)
= (m −

n −b+√−3
2a )ΘK

(−b+√−3
6a

)
. From the previous lemma, we know the LHS equals 0,

thus ΘK

(−b+√−3
6a

)
= 0 as well. ��

We also use the following lemma in the proof of Lemma 28:

Lemma 44 For b2 ≡ −3 mod 12D2 and π of norm D such that the ideal (π)2 divides(−b+√−3
2

)
, we have for τ = −b+√−3

2 :

η
(
τ/D2

)

η (τ)
= (−1)

D−1
6 π

Proof We apply Corollary 18 twice to get: (−1)
D−1
6

θ0(τ/D2)
θ0(τ )

θ0(τ )
θ0(τ )

= ΘK (τ/D)
ΘK (τ )

.

Then from Lemma 12, we have the RHS equal to π . Furthermore, we can pick

b ≡ b′ mod 8D2, b ≡ 0 mod 3 and b′ ≡ 1 mod 3. Denote τ ′ = −b′+√−3
2 . We can

pick without loss of generality b, b′ such that (b2 +3)/D2 and (b′2 +3)/D2 are prime
to D. Then we can find ideals A ,A ′ prime to D such that A (π)2(

√−3) = (τ ) and
A ′(π)2 = (τ ′). Let a = NmA , a′ = NmA ′ and then we have:

θ0
(
τ/D2

)

θ0 (τ )
=

(
θ0

(
τ/D2

)

θ0 (τ )

)σ−1
A

=
θ0

(
τ

a D2

)

θ0 (τ/a)
=

η
(

τ
3a D2

)

η
(

τ
3a

) = η (τ)

η
(
τ/D2

) .

Similarly we compute η(τ)

η(τ/D2)
= η(τ ′)

η
(
τ ′/D2

) = η
(

τ ′
a′ D2

)

η
(

τ ′
a′

) =
(

η
(
τ ′/D2

)

η(τ ′)

)σ−1
A ′

. Note

that we also have
η
(

τ ′
D2

)

η(τ ′) = η
(

τ

D2

)

η(τ)
, and thus we have

η
(

τ

D2

)

η(τ)
= (−1)

D−1
6 π. ��

6.2 Properties of�r,�

Recall that for r ∈ Z, μ ∈ {1/2, 1/6}, we have defined the theta function

θr ,μ(z) =
∑

n∈Z

eπ i(n+r/D−μ)2z(−1)n .
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We will write θr ,μ as an automorphic theta function (see for example [10]). Using
the standard notation (see [33]):

m(a) =
(

a 0
0 a−1

)
, n(b) =

(
1 b
0 1

)
, w =

(
0 1

−1 0

)
,

for φ ∈ S (AQ) a Schwartz–Bruhat function, the Weil representation r for SL2(AQ)

is defined by:

– r (m(a)) φ(x) = χ0(a)|a|1/2φ(ax)

– r (n(b)) φ(x) = ψ(bx2)φ(x)

– r (w) φ(x) = γ φ̂(x),

where ψp(x) = e−2π i Fracp(x) and ψ∞(x) = e2π i x , γ is an 8th root of unity, and
χ0 is a quadratic character. Here we choose the self-dual Haar measure such that
̂̂φ(−x) = φ(x). Note that this is the same Haar measure as chosen in Tate’s thesis for
the global field Q (see [1, Section 3.1]).

We define the Schwartz–Bruhat functions φr ,μ = ∏
v φ

r ,μ
v for θr ,μ by tak-

ing φ
r ,μ∞ (x) = e−2πx2 , φ

r ,μ
p = charZp+ r

D −μ for p �= 2 and φ
r ,μ
2 (x) =

eπ i Frac2(x) charZ2−1/2(x). Then for the theta function

θ(g, φr ,μ) =
∑

x∈Q

r(g)φr ,μ(x),

for gz =
(

y1/2 y−1/2x
0 y−1/2

)
,we can compute θ(gz, φ

r ,μ) = e−π i Frac2 μ(−1)r y1/4θr ,μ(2z).

For this type of standard computation see for example [10].
Using the properties of the Weil representation and the definition above for θr ,μ,

after a straightforward computation we get the following lemma that we use in the
proof of Proposition 40, as well as below for Lemma 46 that is used in Sect. 5.2:

Lemma 45 For
(

a b
c d

) ∈ SL2(Z) such that 3D2|b and a ≡ 1 mod 6, we have the
transformation:

θr ,μ

(
az + b

cz + d

)
= sgn(d)eπ i(a−1)/2χ0,6(a)e2π i Frac2(

ba−c/a
8 )e2π i Frac3(tμ

ba/2
9 )

√
cz + dθar ,μ(z).

where t1/2 = 0 and t1/6 = 1.

Proof Let φ = φμ,r . Recall that θ(gz/2, φ) = e−π i Frac2 μ(−1)r (y/2)1/2θr ,μ(z). We
have

θ(m(
√
2)−1 (

a b
c d

)
gz, 1 f , φ) = θ(m(

√
2)−1gz,

(
a b/2
2c d

)−1

f
, φ), (28)

and we will compute separately the LHS and the RHS using the definition of the Weil

representation. To compute the RHS, we rewrite the matrix
(

d −b/2
−2c a

)
as

m(a−1)n(−ba/2)m(−1)w · n(2c/a) · w.
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At p � 6D, the action of
(

d −b/2
−2c a

)
is trivial. For p|D, we can easily compute

the Fourier transform φ̂p(x) = e−2π i Fracp(2r x/D) charZp (x). Using vp(c/a) ≥ 0 and

vp(ba/2) ≥ 2, we get the action of
(

d −b/2
−2c a

)
on φp to equal charZp+ ar

D
(x).

For p = 3, the computation is similar. For μ = 1/2 we get χ0,3(a)φ3(x), while for

μ = 1/6 we get χ0,3(a)e−2π i Frac3(
ba/2
9 )φ3(x).

For p = 2,wehave theFourier transform φ̂2(x) = eπ i/2e−2π i Frac2(x) char 1
2 (Z2+1/2)(x).

Using v2(2c/a) ≥ 1 and v2(ba) ≥ 0 we get χ0,2(a)eπ i(a−1)/2e2π i Frac2(
ba−c/a

8 )φ2(x).

This finishes the computation, as we got θ(m(
√
2)−1gz,

(
a b/2
2c d

)−1

f
, φ) to equal:

c0(−1)r e−π i Frac2 μ(y/2)1/4θar ,μ(z), (29)

where c0 = χ0,6(a)eπ i(a−1)/2e2π i Frac2(
ba−c/a

8 )e2π i tμ Frac3(
ba/2
9 ).

For the LHS of (28) we have r(gz)φ∞(m) = y1/4e2π i zm2
. Using the Weil repre-

sentation action we get

r(m(
√
2)−1)r

(
a b
c d

)
r(gz)φ∞(x) = (y/2)1/4 sgn(d)

√
1

cz + d
e
π i

(
az+b
cz+d

)
x2

,

and thus combining with (29) we get the result of the lemma. ��
It follows immediately by applying the lemma above for θr ,μ and θ0 that:

Lemma 46 fr ,1/2 is a modular function for Γ (18D2) and fr ,1/6 is a modular function
for Γ (6D2).

Remark 47 Also from Lemma 45 it is easy to see that fr ,μ(z + 9D2) = fr ,μ(z).

We can also straightforwardly compute the transformation under w = (
0 1−1 0

)
of

θr ,μ and get the Lemma 48 below. This lemma is essential for the proof of Lemma 26.

Lemma 48 We have the transformation:

θr ,1/6(3z)

= (−1)r ωeπ i D−1
6√−3

√−i z

(
θ(−3r),1/6

(−3

z

)
− ωθ(3r),1/6

(−3

z

)
− ω2θ(−3r),1/2

(−3

z

))
,

where θ(r),μ(z) = ∑
n∈Z

eπ i(n−μ)2z(−1)ne2π inr/D.

Proof Denote φ = φr ,1/6. Then for gZ/2 =
(

(Y/2)1/2 (Y/2)−1/2(X/2)
0 (Y/2)−1/2

)
and w =

(
0 1−1 0

)
we have θ(gZ/2, φ) = θ(wgZ/2, wφ). We compute θ(wgZ/2, wφ) below:

– At ∞: r(wgZ/2)φ∞(x) = γ∞(Y/2)1/2e4π i x2(−1/Z)√−i Z
.

– At p|D: r(wφp) = γpe−2π i Fracp(2xr/D) charZp (x).
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– At p = 3: r(wφ3) = γ3e−2π i Frac3(2x/3) charZ3(x).
– At p = 2: r(wφ2) = γ2e−π i/2e2π i Frac2(x) char 1

2 (Z2+1/2)(x).

Writing all these together, we get:

θ(wgZ/2, wφ) = ω
(Y/2)1/4√−i Z

∑

n∈Z

eπ i(n+1/2)2(−1/Z)(−1)ne−2π i Frac3(n/3)e2π i FracD((n+1/2)r/D).

Changing n → −n − D−1
2 we get on the RHS:

e2π i D−1
3 (−1)

D−1
2 ω

(Y/2)1/4√−i Z

∑

n∈Z

eπ i(n−D/2)2(−1/Z)(−1)ne2π i Frac3(n/3)e−2π i FracD(nr/D).

Taking the separate sums depending on n mod 3 we get a sum:

∑

n∈Z

eπ i(n−D/2)2(−1/Z)(−1)ne2π i Frac3(n/3)e−2π i FracD(nr/D)

= θ(−3r),1/6(9(−1/Z)) − ωθ(3r),1/6(9(−1/Z)) − ω2θ(−3r),1/2(9(−1/Z))

Thus we got e2π i D−1
3 (−1)

D−1
2 ω

(Y/2)1/4√−i Z
(θ(−3r),1/6(9(− 1

Z )) − ωθ(3r),1/6(9(− 1
Z )) −

ω2θ(−3r),1/2(9(− 1
Z ))). Taking Z = 3z and using

θ(wgZ/2, wφ) = θ(gZ/2, φ) = i(−1)r (Y/2)1/4θr (Z),

we get the result of the lemma.
��
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