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Abstract

We are interested in finding for which positive integers D we have rational solutions
for the equation x3 + y> = D. The aim of this paper is to compute the value of the
L-function L(Ep, 1) for the elliptic curves Ep : x> 4 y> = D. For the case of p prime
p =1 mod 9, two formulas have been computed by Rodriguez-Villegas and Zagier.
We have computed formulas that relate L(Ep, 1) to the square of a trace of a modular
function at a CM point. This offers a criterion for when the integer D is the sum of
two rational cubes. Furthermore, when L(Ep, 1) is nonzero we get a formula for the
number of elements in the Tate—Shafarevich group and we show that this number is a
square when D is a norm in Q[\/—_S].

Mathematics Subject Classification Primary 11G40 - 11F67; Secondary 14H52

1 Introduction

In the current paper we are interested in finding which positive integers D can be
written as the sum of two rational cubes:

x3+y3=D, x,y €Q. @))

Despite the simplicity of the problem, an elementary approach to solving the Dio-
phantine equation fails. However, we can restate the problem in the language of elliptic
curves. After making the equation homogeneous, we get the equation x> 4+ y> = Dz3
that has a rational point at co = [1 : —1 : 0]. Moreover, after a change of coordinates
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X = 12D#y, Y = 36D% the equation becomes:

Ep:Y?=Xx3—432D?,

which defines an elliptic curve over QQ written in its Weierstrass affine form.

Thus the problem reduces to finding if the group of rational points Ep(Q) of the
elliptic curve Ep is non-trivial. We assume D cube free and D # 1, 2 throughout
the paper. In this case Ep(Q) has trivial torsion (see [27]), thus (1) has a solution iff
Ep(Q) has positive rank. From the Birch and Swinnerton-Dyer (BSD) conjecture, this
is conjecturally equivalent to the vanishing of L(Ep, 1).

Without assuming BSD, from the work of Coates—Wiles [3] (or more generally
Gross—Zagier [9] and Kolyvagin [17]), when L(Ep, 1) # 0 the rank of Ep(Q) is 0,
thus we have no rational solutions in (1).

In the case of prime numbers, Sylvester conjectured that we have solutions in (1)
in the case of D = 4,7,8 mod 9. In the cases of D prime with D = 2,5 mod 9,
D is not the sum of two cubes. This follows from a 3-descent argument (given in the
19th century by Sylvester, Lucas and Pepin).

We define the invariant

L(Ep, 1)
SD = —’
c3p§2p
where 2p = . ‘/551" (%)3 is the real period and c3p = HPI3D ¢ is the product of
T

the Tamagawa numbers c;, corresponding to the elliptic curve Ep at the unramified
places p|3D. The definition is made such that in the case of L(Ep, 1) # 0 we expect
to get from the full BSD conjecture:

Sp = #III(Ep), (2)

where #I11 is the order of the Tate—Shafarevich group.

From the work of Rubin [25], L(Ep, 1) # O implies the order of III(Ep) is
finite. Furthermore, using the Cassels—Tate pairing, Cassels proved in [2] that when
T is finite the order #III is a square. We actually show that, when D is a norm
in Q[+v/=3], Sp is an integer square up to an even power of 3. Current work in
Iwasawa theory shows that for semistable elliptic curves at the good primes p we have
ord, (#I[p>]) = ord,(Sp), where ILI[ p°°] is the p°°-torsion part of 11 (see [14]).
However, this cannot be applied at the place 3 in our case, as this is a prime of bad
reduction for Ep.

By computing the value of Sp, one can determine when we have solutions in (1)
and, assuming the full BSD conjecture, one can find in certain cases the order of I11:

(i) Sp # 0 = no solutions in (1)
(i) Sp #0 258 Sp = #I1I integer square

(i) Sp = 0 232 have solutions in (1).
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Central values of L-functions of cubic twists 1329

The goal of the current paper is to compute several formulas for Sp. In [24],
Rodriguez-Villegas and Zagier computed formulas for L(E, 1) in the case of primes
p =1 mod 9. In the current paper we are extending on their results and compute
similar formulas for all integers D.

Our main theorem is the following:

Theorem 1 For D = HpiEI(S) pie", Sp is an integer square up to an even power of 3.

Theorem 1 above follows from the formula for Sp presented below. Let K =
QI~/=3]. For D a norm in K, we write D = DlD% such that Dy = DD is the
radical of D. Let my, 1 = 1 mod 3 be elements of norm D; and D; respectively.
Let o (D) the number of distinct primes dividing D and ¢ Euler’s totient function.

Theorem 2 Using the above notation, let D = [ Pi=1(3) pff be a positive integer that
is a product of split primes in K and Dy = HpID p be its radical. Then Sp is an
integer square up to an even power of 3 and we have:

1

_ 72
Sp=Tp (_3)2+0(D) ’

3

where the term Tp /3 is an integer if o (D) is even and Tp /~/—3 is an integer if o (D)
is odd. Moreover, we have the formula:

1 01(T) jo——2/3_1/3
TDZ—TI'H~K( LL)OJTl /7'[ s
¢(Dy) ~ * \bo(2) 2

where:

2
i r_1
- 6,(2) = Znez(—l)"em<n+” 6) ° forr = 0,1 are theta functions of weight
1/2,
— T = % is a CM point such that b? = —3 mod 12D? and (711712)2 divides
(v),
— Hygp is the ray class field of modulus 3 Dy,
— @ is the unique cube root of unity that makes Tp /3 or Tp/~/—3 an integer:

This theorem follows from a more general result for all integers D prime to 6 that
is proved using automorphic methods:

Theorem 3 For all integers D prime to 6, 3c3pSp is an integer and we have the
formula:

1 Ok (Dw)
Sp = T p\/B==""1 4
D 3an er/K( Ox (@) > “)

: 2 2 . . . .
where Ok (2) = Y, pez i@ +b"=ab) jg the theta function of weight one associated

to the number field K, v = % is a third root of unity, and H3p is the ring class
field associated to the order Ozp = 7.+ 3D 0k.
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1330 E. Rosu

Note that each of the elliptic curves Ep is a cubic twist of £ . In the case of quadratic
twists of elliptic curves, an important tool in computing the values of the L-functions
is the work of Waldspurger [32]. For example, this is used to obtain Tunnell’s theorem
for congruent numbers in [31]. However, the cubic twist case proves to be significantly
more difficult. We instead take advantage of the fact that Ep is an elliptic curve with
complex multiplication by & = Z[w] the ring of integers of the number field K.
Then from CM theory there is a Hecke character yg, : Ag/K* — C* such that
L(Ep,s) = L(s, xgp) and we compute the value of L(s, xg,) using automorphic
methods.

We present now an outline of the proof of Theorem 3. To compute the value of
L(s, xe,) welook at the Hecke character adelically and using Tate’s thesis we compute
Tate’s zeta function Z(s, xg,,, Px) for @g a Schwartz—Bruhat function in . (Ag).
After integrating we get a linear combination of Eisenstein series. By evaluation at
s = 1, we write L(Ep, 1) as alinear combination of theta functions at CM-points. We
further show using Shimura’s reciprocity law that the terms are all Galois conjugates
over K.

The idea of the proof of Theorem 2 is based on factoring each weight one theta
function @ (z) into a product of theta functions of weight 1/2. The method we are
using is a factorization lemma of Rodriguez-Villegas and Zagier from [23] applied to
the formula in Theorem 3. This gives us the square of a linear combination of theta
functions evaluated at CM points. Finally, using Shimura reciprocity law, we show
that all the factors are Galois conjugates to each other and recover an integer square.

Note that using the formula (4) we can show that an integer D cannot be written as
the sum of two cubes by computationally checking whether L(Ep, 1) # 0. Further-
more, assuming BSD, Sp = #I1I and thus we can compute the expected order of 111
explicitly. We provide below some examples when Sp 7# 0 that we computed using
PARI:

D #I11 D #I11 D #I11
19 .37 1 37-73 1 13-19-79 1
31-43 1 4367 1 13-19-61 1
31-79 1 43-193 4 13-.37-61 1
31-97 1 61 -67 1 13-43-73 1
61-103 1 61-139 1 31-37-43 1

2 Background

Let K = Q[+v/—3] and denote O = Z[w] its ring of integers, where & = %
is a fixed cube root of unity. We will denote by K, the completion of K at the place
v, O, the ring of integers of K, and for a prime p in Z we define K, = K ®q Q),
and ﬁKp = Ok ®z 7, the semilocal ring of integers. Note that K, = Hvlp K, =

Qplx1/(x* = 3) and Ok, =T1,, Ok,
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Central values of L-functions of cubic twists 1331

2.1 The L-function

Our goal is to compute several formulas for the central value of the L-function
L(Ep, 1) of the elliptic curve Ep : X3+ y3 = Dz3. The elliptic curve Ep has
complex multiplication (CM) by Ok . Then from CM theory (see [27, Chapter II]) we
can find a Hecke character yx : AIX( /K> — C corresponding to the elliptic curve Ep
such that L(Ep, s) = L(s, x). We can compute explicitly x = xp¢ (see Ireland and
Rosen [13, Chapter 18], for more details), where ¢ is the Hecke character of infinity
type (1, 0) corresponding to Ej and xp is the Hecke character corresponding to the
cubic twist. More precisely, writing the characters classically, we have:

— ¢ : 1(3) - K* is defined on the set of ideals prime to 3 by ¢ (<) = «, where «
is the unique generator of the ideal ./ such thatoe =1 mod 3.

— xp : Cl(O3p) — {1, w, wz} is the cubic character defined below in Sect. 2.2; it
is defined over C1(03p) the ring class group corresponding to the order O3p =
Z.+3DCk.

Note that, for Re(s) > 1, the L-function can be expanded as

xp(a)a
L(Ep.s)= Y  “2——.
o (Nm «)

a=1(mod 3)

2.2 The cubic character

We define the cubic character xp and recall some of its properties following Ireland

and Rosen [13]. For @ € Ok prime to 3, we define the cubic residue character (g)3 :
1(3a) = {1, ®, w*}, where I (3) is the set of fractional ideals of K prime to 3«. For

a prime ideal p of K, we define (%)2 =w/, for0 < Jj < 2 such that

aNmP=D/3 = ) mod p.

It is extended multiplicatively on the fractional ideals of 7 (3«).
The character xp is defined following [13] to be:

D
xp(H) = (E)3

We also define x, (&) = (%) 3 where 7 is a generator of an ideal of norm D. Note
that X (&) = xz ().
An important result is the cubic reciprocity law (see [13] for more details):

Theorem 4 (Cubic reciprocity law) For 1, 7o = 2 mod 3 generators of the prime

ideals p1, po prime to 3, we have % ,= (Z—T J
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1332 E. Rosu

It follows immediately from the cubic reciprocity law that fore = +£1 mod 3, we
have yxp(a) = xo(D). Also from the cubic reciprocity it follows that xp((«@)) = 1
for « = a mod 3D, where a is an integer prime to 3D. Thus yp is trivial on the
ideals of Pz3p = {(a): @« € K such that @ = a mod 3D for some integer a
such that (a,3D) = 1}. The ring class group of the order 03p = Z + 3D0k is
Cl(03p) = 1(3D)/ Pz 3p, where 1(3D) is the set of fractional ideals prime to 3D,
and thus xp is invariant on C1(03p).

2.3 Hecke characters

A classical Hecke character X : I(f) — C* of conductor f can be expressed on the
set of principal ideals P(f) prime to f in the form X ((@)) = €(@) X, "(a), where
¢ . (Okx/fOk)* — T is a character taking values in a finite group T and ¥ is
an infinity type continuous character, meaning that X : C* — C* is a continuous
character.

The idelic Hecke character is a continuous character x : A* /K> — C*. There is
aunique correspondence between the idelic and the classical Hecke characters defined
as follows: at co for z € C we define xo0(2) = )?(;1(1) for z € C* and at the places
vt f we define x (0 w,) = X (py), for @, a uniformizer of Ok, and p, the prime
corresponding to the place v. At the places v|f, the value of x, can be determined
using the Weak Approximation Theorem.

We are interested in the character y = xp¢ defined before. By abuse of notation,
we will use ¢, xp both for the classical and the adelic Hecke characters.

Recall ¢ : I(3) — C* is the Hecke character defined by x ((@)) = « for «
mod 3. For the place v t 3, denote by @, a uniformizer of Ok, such that @,
mod 3. Then for ¢ : Ay — C*, we have:

— @u(p) = =p.u(Og ) =1,forv=p,p=2 mod 3,
- py(Ty) = @y, %(ﬁév) = 1,forv|p, p=1 mod 3,

- Poo(Xe0) = xo_ol, at v = oo.

Recall xp : I(3D) — {1, ®, w?} is the cubic character and we showed that it
is well-defined on Cl(03p), the ring class group for the order O3p = Z + 3D k.
We define the character xp adelically over K> \ AI? 7 /U@BD) ~ CI(03p), where

UBD) = (1+3Z3[) [1,p @+ DOk,)* [, (Ok,)

Note that we can rewrite [ € AX in the form Iy = kl; with k € K* and
) € ]_[v foo ﬁ .Wecan find k; € Ok such that k1 = /1 mod 3Dk, and we define
xp, () = Xp, f(ll) = xp((k1)). More precisely, we get:

- xp.w(@y) = xp(py) and XD,v(ﬁ;((U) =1, ifUJf3D,
— XD,co(¥o0) = 1,at v =00

The values of xp and ¢ at the ramified places can be computed using the Weak
approximation theorem.
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Central values of L-functions of cubic twists 1333

3 L(Ep, 1) and Tate's zeta function

In this section we will compute the value of L(Ep, 1) = L(1, xp¢), working with

XD, ¢ as automorphic Hecke characters. Let K = Q[+/—3] and w = # a fixed
cube root of unity as before. We will show the following result:

2/3x D1/
Theorem 5 For Sp = =~"=—-L(Ep, 1), we have 3c3pSp € Z and

or(})

1 Ok (Dw)
Sp=—Tr D'/ 5
D= 30, Hip/K ( O (@) Q)

where Ok (2) = )., ez Zmitm* tn=mnz b s the ring class field for the order
Osp =7Z+3D0Ck and c3p = HpBD cp is the product of the Tamagawa numbers c,
Of ED.

We will compute the formula (5) using Tate’s zeta function. We start by recalling
some background and notation.

3.1 Haar measure

We take V = K as a quadratic vector space over Q with the norm as its quadratic form.
We take dx, to be the self-dual additive Haar measure and d* o, the multiplicative
Haar measure d‘x, = 4% ormalized such that vol(ﬁ’X ) = L,if v { oo, and

[xXvly
d*z = |Z| where dz is the usual Lebesgue measure, and |z|oo = Izl(C is the square of
the usual absolute value over C. We use the same normalization for the Haar measure
as in Tate’s thesis (see [1, Section 3.1]).

3.2 Schwartz-Bruhat functions

We choose the Schwartz—Bruhat function @ r € S(Ag ) such that Tate’s zeta function
Z(s, D, xpy) defined below to be nonzero. More precisely, @ f= I1 @, where:

vtoo

- @, = char@KU forv {3D,
- @, = Z(a,D):l char(aJrDﬁKp) for p|D,
— @y = char( 1304, forv = +/-3.

3.3 Tate’s zeta function

We recall Tate’s zeta function. For a Hecke character x : Ag/K* — C* and
a Schwartz—Bruhat function @ € .(Ag), Tate’s zeta function is defined locally
as Zy(s, xv, @y) = fK,)X Ko (o) oy [3 Py (ey)d ™y, and globally as Z(s, x, @) =
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1334 E. Rosu

[T, Zu(s, xv, @y). As a global integral this is

Z(S,X,<P)=/X(a)lalsfp(a)dxa-
Ak

It has meromorphic continuation to all s € C and in our case it is entire. We will
compute Z (s, xr, Py) for x = xpe and the Schwartz—Bruhat function @y chosen
above.

From Tate’s thesis (see [1, Proposition 3.1.4]), we have the equality of local fac-

tors Ly(s, xpp) = Zy(s, xpe) at all the unramified places, and thus L(s, xpp) =
Zr(s, Xxp®) HpHD %. As ¢, xp and | - | are trivial when @, is nonzero
. k XD.pPp-

for p|3 D, we can compute easily

[1 2o xp.p0p. @p) = [ [ vol((Z + 3D O, ) ) vol (1 + 3Z3[w]) ,
p3D rID

and this equals %]_[mD(p — ()" The terms L, (s, xp@) = 1 for p|3D by def-
inition. Thus for all s and for @ the Schwartz—Bruhat function chosen above, we
have:

L(s, xpp) = Z¢(s, xpy, P)Vap, (6)

where V3p = ¢ [, — (En~—"
Next we compute the value of Z ¢ (s, xp, s, @ r) as alinear combination of Hecke
characters and use (6) to get the value of L(s, xp, r@r):

Lemma6 Forall s € C and the Schwartz—Bruhat function @y € /(Ag r) chosen
above, we have:

L(s, xpp) = > I(s,ap, @) xp(@)p(@),
ayeUBD)\AK /K*
where I(s,of, @) = Y pegx lk’<7€q>f(kaf) and U3D) = (1 + 3Z3[w)) [1,p
(Z+ DOk, [lupap Ok,

Proof We first take the quotient by K™ in the integral defining Z ¢ (s, xpg, @) and
get:

Zs(s, xpp, Py) = / Z xp.r(ka'p ) (ka'p) ka5 @ p(ka'p)d ™ .

keK>
A;;,f/l(><

Wehave xp, r(ka';) = xph () xp,r (@) = xp,(@)), 9 kay) = oK)y (@) =
k(pf(a}) and |koe}|§( = kI sl = |k|é2“|a’f|s , where | - |¢ is the usual absolute
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Central values of L-functions of cubic twists 1335

value over C. Then the integral reduces to:

k
Z (s, xpg. D7) = f ZV{—ZSXD,f(a})an(ka}) Qr@p)leyl d*aoy.
A /K> kekx TE

Furthermore, our Schwartz—Bruhat functions @ f(ko/ ) are invariant on U (3D). Sim-
ilarly, | - | ¢ is trivial on units, thus on U(3D), while xp is invariant on U (3D) by
definition. Moreover, ¢ is trivial on all the units at all the unramified places, while, at
3, @ is invariant under 1 + 3Z3[w], thus it is trivial on all of U (3 D). Thus we can take
the quotient by U (3D) as well. Note that the integral is now a finite sum:

Zy(s, xpp, D)

k /
=vlUBD) Y. > T Prked) | xns@pes@plefly.
afeUBD\AY /K> \keK* Ikig

We compute vol(U (3D)) = vol(1 + 3Z3[w]) HpID vol(Z + DﬁKp) = V3p and,
changing notation, we get:

Z¢(s, xp,fof, Pr) = Vip Z I(s,af, @f)xp, r@)er(a).
afeUBD\AY /K~

Finally together with (6) we get the result of the lemma. O

3.4 Representative classes of ClI(3p)

We will use the following lemma (see [22]) that is easy to show:

Lemma 7 Any primitive ideal of Ok can be written in the form </ = [a, %]Z
as a Z-module, where b is an integer (determined only modulo 2a) such that b* = —3
mod 4a and Nm &7 = a.

Conversely, given an integer satisfying the above congruence and </ defined as
above, we get that o7 is an ideal in Ok of norm a.

We will use the notation k., for the generator k,y = 1 mod 3 of a primitive
ideal <7 in Ok . If we choose a lattice such that &/ = [a, %]Z, we denote the
corresponding CM point 7,y = %.

We can write adelically C1(03p) >~ U(3D) \ A;é’ 7 /K*. This follows from the
Strong approximation theorem, as K is a PID and thus we have U (3D) \A}é! s JK* =
(]_[p|3D(ﬁKp)X/(Z +3D0k,)*)/ (—w) . Then we can define the map

[1@«x,)* /@ +3D6k,)*/ (~w) — 13D)/Pz3p
pI3D

@ Springer



1336 E. Rosu

given by
(av)vBD - (koz),

where we choose the representative +awk, such that o3 = 1 mod 3, and k, is an
element of Ok such that k, = «, mod 3D. Note that this is well defined as (k)
gives us a unique class in C1(03p), and two elements o1, ax get sent to the same class
in Cl(&3p) only if ) = ax mod 3D.

Thus fora y € Ok we canchoose aclass [, ] in C1(&3p) by taking arepresentative
%f = (kq), for kg € Ok such that ky, = o, mod 3DﬁKp for p|3D. Note that this
choice is not unique. However, we can pick the representatives .7, to be primitive
ideals.

Thus we can further write 7, as a Z-lattice .«, = [a, %]Z, where a =
Nm 7, and b is chosen (not uniquely) such that b? = —3 mod 4a. We define the

corresponding CM point 7, = _h;—a v=3

3.5 Eisenstein series of weight 1

We will now connect I(s,ar, @) = Y g \k\%(pf (ke ) to an Eisenstein series.
C

We define the following classical Eisenstein series of weight 1:

e(n)
E.(s,z) = ! .
e(s:2) ; (Bmz 4+ n)|3mz + n|*

Here the sum is taken over all m, n € Z except for the pair (0, 0), and ¢ = (g) is
the quadratic character associated to the field extension K /Q. Note also that from
quadratic reciprocity we have (_—3) = (5)

The Eisenstein series E. (s, z) does not converge absolutely for s = 0, but we
can still compute its value using the Hecke trick (see [11]). We compute its Fourier
expansion at s = 0 in the following section.

Using this notation, we have the following equality:

Lemma8 Foray € HUJ(OO , let d = (kg) be a choice of an ideal in the corre-
sponding class of C1(O3p). We write 427 = [ag, _b+2‘/j3]z and take T, = %_73

the corresponding CM point. Then we have:

(Nm 27,) !~

1
I(s,ap, y) = 3 r E (s, Dr%).
o

Remark 9 Note that the variable 7~ 7, on the left hand side is not uniquely defined.

However, the right-hand side depends only on the class [“7,] in C1(O3p).

Proof Recall that I(s,op, ®f) = D ;cxx ﬁcbf(kaf). We need to compute
C

@ s(kos). Note that @, (kay) # 0 only for ke, € Ok, at all places v, and since
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Central values of L-functions of cubic twists 1337

oy €0 1? , we must have k € Ok, as well for all v. This implies k € Ok and for all
places v qt 3D we get @, (kay) = 1 for k € Ok . Thus we can rewrite:

k
I(s,af, @f) = Z mq)sp(kaw),
kEﬁK

where @3p = ]_[v|3D @, and a3p = () v[3D-

We can further compute @, (ko) for v|3D. Recall that we defined the Schwartz—
Bruhat functions @, = Char(Z+3D@’Kp)>< for p|D and @3 = char(437;[«)). Then we
have @3p(kaszp) # 0iff kap € a + 3Dﬁkp for some integer a, (a, p) = 1 and, for
p =3, kaz € 1 +30k;.

Recall that we defined k, such that ki, = «, mod 3D0 K, for all p|3D. Then
kky € a + 3DﬁKp for (a, p) = 1 and kky € 1 + 3Z3[w]. Furthermore, for k € Ok
we actually have @3p(kazp) = P3p(kky). Then we can rewrite I (s, ay, @ r) using
ko asI(s,ap, Py) = Zkeﬁk ﬁ@3g(kka). We can rewrite this further:

ke |2 ke,
I(s,ap, Py) = X Z Ik |25 D3p(kky),
o keCk alC

Finally, we will make this explicit. Note that we must have kk,, € .7,, where <7, =
(ke), as well as kky € ap + DﬁKV for some integer a,, (ap, p) =1, and kk, € 1 +
3Z3|w]. By the Chinese remainder theorem, we can find an integer a such thata = a,
mod Danda =1 mod 3.Thenkk, € (a+D HPBD ﬁKp)ﬂﬁK,thuskka € Pz3pN
Py 3. Here Pz3p = {k € K : k =a mod 3Dk for some integer a, (a,3D) = 1}
and P13 ={ke K :k=1 mod 3}. We rewrite:

Ik |2 k
IGs.ap, @p) = — > T
« kE%ﬂPZYDﬂP1.3 C

Finally, we want to write the elements of <%, N Pz, p N Pj 3 explicitly. Recall that we
can write 27, as a Z-lattice <7, = [a, #Z] 7. Then all of the elements of <7 are of
the formma+n % for some integers m, n € Z. Moreover, note that the intersec-
tionof o7 and Pz 3p = {k € Ok : k =n mod 3D, for some integer n, (n, 3D) = 1}

is {ma + 3Dn_b+ V=3 m,n € Z}. Further taking the intersection with Pj 3, we
must have ma = 1, thus, as ¢ is norm in Ok, m = 1 mod 3, and we can rewrite
I(s,ap, @) in the form:

b++/-3
2

a’ ma +n=—
I(s,afp, @) = — Z )
ka m,n€Z,m=1(mod 3) |ma + 3HD%|%S
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1338 E. Rosu

By changing n — —n and taking out a factor of a' =, we have:
_ :
I(s,ap, dy) = !
ez, (A nPm 4 3n DR B2
m=1(mod 3)

Note that for Re(s) > 1 the integral converges absolutely, and we can rewrite the
sum as:

1—s

I @) = la Z e(m)
S, Olf, f

where e(m) = (%) is the usual quadratic character. On the right hand side we recognize
the Eisenstein series E,(2s — 2, IE) and we get I(s,ar, Py) = %%ES(ZS —
2, Dr%). By analytic continuation, we can extend the equality to all s € C. O

Now we can rewrite the linear combination in Lemma 6 by takmg representatives
&/ for the classes of Cl1(03p). Note that for o € ﬁ with @ = 1 mod 3 we have
pf(ay) =1and

xp(ay) = xp((@)p3p) = xp((ka) pj3D) = X[_)l((ka)pffiD) = xp(Ha).
Using the lemma above and after inverting each class .o/ — o in Cl(O3p), we get:

Corollary 10 Forall s, taking representative ideals </ = [a, %] 7. for the classes
in the ring class group C1(O3p), we have:

(Nm .27)!=s
L, xop) =5 ) Ee@s=2,Dre)xn(e)———,
W/ 1eCl(O3p) o

where o/ = (ko) withk,y =1 mod 3and Ty = b+F the associated CM points.

3.6 Fourier expansion of E.(s,z) ats =0

We want to connect the Eisenstein series E.(s,z) = Zc d /m’

> .. denotes the sum over all ¢, d € Z with (c, d) # (0, 0), to the theta function

where

ce 2002
@K(Z)Z Z eZm(m +n°—mn)z

m,nez

associated to the number field K . It is a modular form of weight 1 for the congruence
group I7(3). Note that this differs from the theta function @k chosen by Rodriguez-
Villegas and Zagier in [24] by a factor of 1/2.
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More precisely, we are going to show the following version of the Siegel-Weil
theorem:

Theorem 11 E.(0,z) =2L(1, e)Ok (2).

Proof We will show this by computing the Fourier expansion of E.(s,z) ats = 0
using the Hecke trick and comparing it to the Fourier expansion of Ok (z). We will
follow closely the exposition of Pacetti [20]. This is also done by Hecke in [11]. We
first rewrite E. (s, z) in the form:

e(d) X 2y e(r) £(r)
Ec(z,5) = ' +2 ‘ , )
e Z d1+25 ZZ 325+1 Z (3cz3+r +d)|3cz3+r +d|25

d c=1r=0 deZ

where )", denotes the sum over all d € Z, d # 0. We define for z in the upper-half

plane H(z,s) = and then we can rewrite the form above as:

1
2omez @+m)lz+m|>

E.(s,z) =2L(1 + 2s, 8)+2ZZ382§:_)1 (3dz3+r’s>.

c=1r=0

Pacetti [20], following Shimura [29, Lemma 1, p. 84], computed the Fourier expan-
sion of H(z,s) when s — 0tobe limy_,g H(s,z) = —mi — 2mi Z;il q". It gives
us in the relation above:

E.(0,z) =2L(1,8) +2 Z Z —( wi —2mi i eFminze ynry,
c=1r=0 =
We compute separately the inner sum and get:
50 (_m. .S zw) TG Y e
r=0 3 n=1 3 n=1

where G(g) = Zf:o e(r)o” = +/—3 is the quadratic Gauss sum corresponding to €.
Then we can rewrite:

ES(O,Z):zL(1’8)+47T\/_ZN1 Zg(m) o2miNT.

m|N

Since ¢ is a quadratic character, we compute L(1, ) = %g (see Kowalski [18]) and
this gives us the Fourier expansion:

Ea(0,1)=2n;/§ L+6) [ Do elm) | o). ™

N=1 \m|N
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Itis easy to show that ), &(m) represents the number of ideals of norm n in Ok,

thus we got #(1 +6> ., 2 iNm )2y Moreover |Og| = 6 and Nmg q(m +
nw) = m? + n* — mn and thus we can recognize the sum in the bracket on the RHS
of (7) to equal the theta function @k (z), which finishes the proof. m]

3.7 Formulafor L(1, yp®)

Applying Corollary 10 for s = 1 we get

1 1
L xpp) =5 D 7 Ee(0, Dt ().
[/1eCl(O3p) 7

Furthermore, from Theorem 11, this is the same as:
73 1
L, xpp) = —— Y. —OxDty)xn(). ®)
[1CUG3p) 7

We need one more step before rewriting the formula as a trace. We will use the
following lemma:

Lemma 12 For &/ = |[a, 7b+‘/j3]z a primitive ideal of norm Nm .o/ = a, with

2
generator f = (kg7), where ks =1 mod 3 and 1,7 = %, we have:

Ok (1) = ks Ok ().

Proof Since &/ = |a, 71’% V73]2 as a Z-lattice, we can write its generator k., in

the form k,y = ma + 3n#j3 for some integers m, n such that m = 1(3) and
gcd(m, 3n) = 1. Then we can find integers A, B such that mA + 3nB = 1, and thus
(£ B)isamatrixin I7(3). Since © (z) is a modular form of weight 1 for I (3), we
have Ok ((£ B)1y) = (m+3nty) Ok (1).

Noting that 3nt, +m = ks /a = 1/k,;, we can compute the term on the LHS to
be Ok ((Aty + B)@) and, after expanding, we are evaluating @k at —3nAbi—j;3 +
abB + w + @ Note that mA — 3nB = 1 implies that m A and 3n B have

different parities. Also, b is odd and b?>+3 =0 mod 4a. Then —3nAb24—j;3 +abB +

w € Z and thus using the period 1 of @ we get Ok (({) 2)ry) =

Ok (w). This finishes the proof. O

Using the Lemma above we can rewrite (8) as:

73 Z Ok (Dty)

Ok (w)
(eiosy OK T

L(1,¢xp) = Xp(A). 9)
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Now we will rewrite the formula (9) as a trace. We can define f(z) = O@K (?i) and

this is a modular function for IH(3 D). We will prove in Sect. 5 in Proposition 39 that

f(w) € H3p, the ring class field of corresponding to the order O3p = Z + 3D k.
—b+/-3
2

Moreover, we show in the same proposition that, for &/ = [a,
ideal in Ok, we have the Galois conjugate:

]z a primitive

@) = f(Ty),

where o is the Galois action corresponding to the ideal .7 via the Artin map.

Furthermore, from we have (D!/ 3)";/1 = D'Byp(«/) and then formula (9)
becomes:

LEp ) =B orw) Y (S22 o
9 Ok (w)
[«/1eCl(O3p)

Moreover, D'/3 € Hsp (see for example Cohn [4]). Thus we can rewrite the sum

on the left hand side as Try;,,/k (Dl/ 3 OJK(& “)’)) We can compute the extra terms as

well. Rodriguez-Villegas and Zagier in [24] cite Ok ( 9+F> = —6I" ( ) /2m)?.
Using several of the properties of @ proved in the Appendix ((27) and Lemma 41),
we can compute @ (w) = I” (%)3 /(27r2).

. - . L aar(y)
As the real period £2p of the elliptic curve Ep is 2p = D~V —6 > We get
the formula of Theorem 5:
.QD 1/3 @K(Da))
L(Ep,1)=—T D' 11
(Ep, 1) 3 WTHp/K < Ox (@) (11

Note that this implies Sp € K. Moreover, as D'/3© (Dw)/© (w) is invariant under
complex conjugation, we get Sp € R. Since K N R = Q, this furthermore implies
Sp € Q. We will show in Sect. 4.5 that actually 3c3pSp € Z.

Remark 13 If we take D = D1D§ such that Dy = Dj D» is square-free, note that the
character xp = xp, Xp, is well defined on the class group CI1(&3p,). Then the above
computations work for Dy and the character xp = xp, Xp, instead of xp, = xp, XD,
and we get:

3 Ok (D
L(L xp¢) = %_@K @ Y S )
(A1eCl(Grpy) KT

Note that, for D = D D2, L(Ep,s) = L(s, xp, XD,¢) and thus we have:

1 Ok (Do)
So=3 X o @D (13)
(A 1eCl(rpy) KT
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As before we have (D11/3D§/3)g;/1 = D11/3)(D1 (M)Dgﬁ)(l)z (/) and finally we

can write the expression above as:

2p
L(Ep.1) = == Try, /k (Dl/

3 Ok (Dow)
3

Ok (w)

4 Second formula for Sp

Forr € Z, u € {1/2, 1/6}, we define the theta functions of weight 1/2:

(@) = 3 &P 1y,

nez

Throughout the paper we will use the notation r € Z/DZ to mean any family of
representatives for the residues » mod D. We denote 6y = 6, 1/6. Note that 6y (z) =
n(z/3), where 7 is the Dedekind eta function, while ZreZ/DZ Or1/6(z) =1 <3zﬁ>

r=1(6)
In this section we will use a Factorization formula of Rodriguez-Villegas and Zagier

from [23] to show the following theorem, that is a restatement of Theorem 2 from the
Introduction:

Theorem 14 In the case of D = Hpi51(3) piei, let Dy = Hpi\D pi be the radical of D
and o (D) the number of distinct prime divisors of D. Then Sp is an integer square
up to an even power of 3 and we have:

(—1)7®

2
So = s T (14)

where Tp/3 € Zifo (D) is even and Tp /+/—3 € Z if o (D) is odd. We have the exact
formula:

ko 0
1) 1,1/6(T) 1/3
TD = —TI‘Hﬁ/K </—7'[1 2/37'[2/ ) .
®(Do) 0o (7)
Here t = % is a CM-point, with b? = —3 mod 12D?, 71, p are elements

in Ok such that wy,mp = 1 mod 3, 17w has norm Dy and 7117122 has norm D, and

such that (m1m2)? divides the ideal <_b+2*/j3), Hg is the ray class field of modulus

3D and 0 is the unique cube root of unity that makes Tp real or purely imaginary.

Below we discuss the details of D square-free. All definitions and proofs can be
easily extended to all D = D, D% by using the formula (13) with Dy = D1 D, square-
free. We do this in Sect. 4.6.

Take 7 = —HT«E a CM point such that b> = —3 mod 12D? and an element
7 =1 mod 3 of norm D in O such that 72 divides the ideal (<2£/=3).
We will use the notation:
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50k (1) = 30k (1/3),  foru=1/6

Ok (t/3), for u = 1/2.

_2 Ou(Dty ) 1/3
= S =3 Xiwieciom) By X0 DY.

- Ou(r) = {

In Theorem 3 we have proved that 3c3pSp = S1/6 + 1/2812. We are actually
going to show in Corollary 23 that S; 2 = 0, thus it is enough to compute the formula
(14) for Sl/6-

Using a Factorization formula of Rodriguez-Villegas and Zagier from [23] we will
write the theta functions @, of weight 1 as linear combinations of products of theta
functions of weight 1/2 in Proposition 17. We define:

0,11 (32)
Rp u(z) = E gou(—Sz)Xﬂ(r)'
re(Z/DZ)*
r=1(6)

We show in Lemma 26 that S /6 = |RD,1/6(I)D’1/3 |2. Moreover, if we denote
Tp = Rp,16(t/3)T 0,

for a cubic root of unity k0, then S1/6 = |Tp,1/6(T) |2.

We show in Lemma 30 that Tp = ﬁ Tru, /k glé;/(ﬁt()t)ﬁ_z/ 3wk andthat Tp € K.

Furthermore, we show in proposition 25 that Tp = (— DTy and thus Tp € Q or

Tp/+/—3 € Q and thus

(=D7®

Sp Tg.

3C3D

Moreover, in Sect. 4.5 we show that 3c3pSp is an integer, hence Tp/3 € Z for
o (D) even and Tp/~/—3 € Z for o (D) odd.

Finally, for D a product of split primes, we have Sp 7% 0 only for D =1 mod 9.
In this case we can compute the Tamagawa numbers to be c3p = 3!77(?) using Tate’s
algorithm (see [28, Chapter IV.9]). Thus we have:

| (Tp/3e P22, for o (D) even,
P (ap/v=3)/3@ D022 for o(D) odd.

Hence Sp is an integer square up to an even power of 3 and this finishes the proof of
Theorem 14.

For the reader’s convenience, we summarize the notations used in the whole chapter
in the table below:
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Sums Theta functions and ratios
1 Ok (D ) fo2 12
Sp =3 Z[d]sCl(ﬂzny Tgx‘(?*% xp(@)DV Ok @) = 3, peg T
Ou(D 13 O12(t) = O (7/3),
Sp = 7)( (#)D ;
1= 3 Yl 1eCl@sp) Ok i,y O1/6(r) = 30 (1) — YOk (1/3).
3 wi(n+s—1
Rp (@) = 2 cz/pz)* eo(gzi) X (r) Or10(2) = Y pep(=De (m+5-3)"
r=1(6)
0p(z) = ‘90,91/6((23 =n(z/3)
n(z .
= ng(z/{()g)x Fr,u(Z)X:—r(") fr,;L(Z) = % 5 Fr,u(l) = fr,u(3Z)
r=
. 2. .
R(D)’“(z) — Zre(Z/DZ)X F(r)’M(Z)Xﬁ(r) G(V)’“(z) _ ZneZ eTi(n—p) 4,(_1)n82mnr/D
=10 (r)
(r), _ 0" 3y
FPR@) = "m0

Tp = RD,l/e(f/3)f_2/3wk°
Mp = RD,1/6(T/3)ﬁ_2/3

4.1 Factorization lemma

—b+JT3]

Asin the previous section, we write a primitive ideal . as a lattice &/ = [a,

fora = Nm(«7) and b> = —3 mod 4a. We also define the CM point 7,y = bzf
corresponding to the Z-lattice. We also denote by k, the generator of </ such that
k. = 1(3) and we write the generator in the form k,; = nga + myt,y.

We start by recalling the Factorization Formula of Rodriguez-Villegas and Zagier
from [23]. It is used to decompose theta functions of weight 1 evaluated at CM points
as sums of products of theta functions of weight 1/2 also evaluated at CM points.

Below we recall from [23, Theorem, page 7] for the simplified case of « = p = 0:

Theorem 15 (Factorization formula) For a € Z~q, u,v € Q, z = x + yi € C, we

have:
mZ*nz
2 : eZni(mvﬂ—nu)e?T(im"*%)/d = /2a 9[ :|(a z) - 9|: j|( az),

m,ne’
(15)
in2 ion . . .

where 0 [ ] (@) = Y pezip €T is a theta function of weight 1/2.

A direct application of this is the following:
Lemma 16 With notation as above, we have:

_mz?

Z Vzaye |:aﬂ + %] (D ) |:ﬂ + :| (—aD37) = Z eZni(mv+nD;4)e77(m"i*u)Q

reZ/DZ \/5 v a B m,nez
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Proof Plugging in u + 4 for 1 and Dz for z in (15), and summing up for r in Z/DZ,
we get:

5, o 9 ) L] emo-

a —ayv
reZ/DZ

Z Z e2rimvtnptnr/D) , 77 (mni—

reZ/DZ m,neZ

In— mD |2)1

Exchanging the two sums on the RHS we get

— 72
Z ezm(m.ﬂrw)en(mni—%)l Z G2minr /D
m,nez reZ/DZ

2rinr/D equals D when D|n, and 0 otherwise, thus we are

The inner sum ), ;€
only summing over the integers n that are multiples of D. Rewriting n = Dn/, after

simplifying we get the result of the lemma. O

, ’ 2
Using the lemma above and the notation 6, ,, () = Y, .7 (— Drem (5 -1)72 e
show:

Proposition 17 Forideals o = [a, “25/=31;. o = [a1, =25/=31; and b such that
b? = -3 mod 4D2a2a1, we have:

YRemita=1/6

@M (Dtey) = D\/a_ Z ear,u (Tyizin) er,u (TJA/I)
' ezpz

Proof We apply Lemma 16 for u = —1/6 and v = 1/2, D odd, z = _é’gf.
It is easy to see on the LHS of the equation that we have 9[ I/ 6+ ](z)
e~amir/Deai/Og, , (2), and, as a = 1(mod 6), also 6 [ |57 ] (z) = eiar/D
e /%0, ,,(z). Moreover, since D = 1(mod 6) we simplify the term e~>7"P/6 =

—2min/6 V2ay _ 3

e and we can also compute Jb = Dya We get:

% _ m o n(m,”‘,% W)Q
—F Z Oar,p (rﬂzﬂl)er,u (T{Wl) = Z A2Ti(FT %), Daay /3 @
D\/LT]eT” 6 reZ/DZ m,nez

(16)
Now we only have to show that the RHS equals &, (Dt,,). We claim:
. |naa D*WMF naa m b+‘/jz
ezm(m/2+n/2)e”(’""'—#)§ — 27 et aa;D L pty
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Since the absolute values of the two sides already agree, we only need to show that

b+/=32
the arguments agree as well, meaning 27 i (% + 5+ DZ’Z") =21 ‘"aalDa;"lD 7|
D% mod 2mwiZ. This is equivalent to showing that
2 2 2 2 2 2
m n m b+ 3) b= +3) n~b
—+— ) - —=Db—— — Dmn—-—=+D—= ) € Z,
(2+2) (2 naa, ™M ed P73
and this follows easily from the conditions on a, ay, b and D.
m b+f+mm”2
Finally, we claim that ©,,(z) = }_,, ez 2min(u+1/2) 2 ad , which

would finish the proof. This is immediate for © = 1/2. For u = 1/6 denote

o b+r+naa1\2
z
E*,k(Z) — Z eZmn/%
m,nez
nzk(?ﬁ)
Then we can write
2w lm- b+r+naa1|2
. P w20 L
Y. e W= Eyg(2) + 0E 1 () + 02 Ea(2).

m,nez

Note that E o(z) = @k (3z) and E, | = E4 2, as we canchangen — —n,m — —m
in the Fourier expansion. Thus we get on the RHS the term & (3z) + (a)+w2)E*,1 () =
©®(3z) — Ex 1(z). Furthermore ©(z) = E. 1(2) + E«2(2) + Ex0(z), thus we get
E.1(z) = %(@(Z) — ©(3z)). Plugging in E, 1(z) above we get the result of the
proposition. O

A particular case of Lemma 17 is for D = 1. As ©® (t4/3) = 0 from Lemma 43
from the Appendix, we get:

Corollary 18 For b? = —3 mod 12a%a; and </, <7, as above, we have
23
Ok (1) = 3= V50 (272,4) 0 (1t ).
Let:
. ru(z)
Sroun(@) = )

Taking the ratios of the theta functions in Proposition 17 and Corollary 18 we get:
Corollary 19 Under the same conditions as above, we have:

OuDTy) _3/2

O (1) Z fur,u (TWZM)W. 17)

reZ/DZ
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We are interested in the Galois conjugates of f,. ,(7) for v = _}’J’T V=3 such that

b? = —3 mod 12D2. For & = [a, %]Z a primitive ideal and k,y = 1 mod 3

its generator, we write k., in the form k., = nga + maw with 3|m, and
ng = 1(3).
In Sect. 5.2, we compute the Galois conjugates of f; ,(7) using Shimura reci-

procity’s law in two ways. We first show in Lemma 38 that

Frn N = frp (),

where o, is the Galois action corresponding to the ideal .7’ via the Artin map. With
the same notation, we show in Proposition 40 that

fr,u(t)ﬂ‘&l = fn;,r,//.('f)v

where n), = n,(3D) with n/, odd. Thus we get the following lemma:

Lemma 20 Foranideal &7 = |a, _b+2 _3] generated by nga +my _b+2‘/j3 such that
mg =0 mod 3, n, =1 mod 3 and b*> = —3 mod 12aD?, we have:

fr,u(f)g‘;/l = frou (Tr) = fné,r,u(f)

Jornl, = ng(3D) with n, odd.
Using the lemma above, we can rewrite Corollary 19:

Corollary 21 Under the same conditions as above, for o = (nga + ma%),

A = (ng,a1 + my, _b+2‘/j3) with b* = =3 mod 12a2%a; D%, we have:

@u (D) _ %

O (T%) Z fnZIanlar,uﬁlg/lr,M ('L'),

reZ/DZ

where n;, = nq(3D), ny, = ng (3D) and ny, n, odd.

4.2 Sp as an absolute value

In the following we will use Corollary 21 for a choice of representative ideals for the
classes of the ring class group Cl(&3p). We show first:

Proposition 22 Fort = % such that b* = —3 mod 12D?> andm =1 mod 3
an element of norm of D such that ()? divides (%), we have:

2

Su=D > fiu (@) A (s)

se(Z/DZ)*
s=1(6)
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Proof The structure of the ring class group of conductor 3D for D =[], _; a3 Pi
is given by Cl(03p) = (Z/DZ)* (see for example Cox [5]). We will choose as
representatives for the classes of Cl(03p) ideals .o7; such that Nm <7, = s mod D.
For b fixed, b2 = —3 mod 12D, we take:

—b+ -3
Ay = (nsas + my +—) s

2

where a; = Nm(«%) =s mod D,ng; =1 mod 3D, mg =0 mod 3. Note that this
gives us m = b~ (s — 1) mod 3D. Moreover, it is easy to check that the ideals <7
fors € (Z/DZ)* are in different classes in C1(O3p).

We take as before 7 the element of norm D such that ()% divides the ideal (7) =

— — 2
( b+2ﬁ)‘ Then note that xp(«) = Xn(%) = Xn ‘gﬁ)- Asb = /-3 mod 7, we
getas = nsas —i-ms%j3 =5 mod 7 and thus xr ((et)) = ) (s2/5) = X (5).
Taking representatives s € Z/DZ,s = 1 mod 6, we get my = 0 mod 6 and

ng =1 mod 6. Summingupoverr € Z/DZ withr =1 mod 6 and taking o] = (1)
in Corollary 21, we get:

Ou (Dq%) _3/2

e (‘L'VQ{Y) D Z fW,lL () fr,p. (1), (18)

reZ/DZ
r=1(6)

Summing up for all {s € (Z/DZ)*, s = 1(6)} and rearranging the terms, we get:

Su=D7P 3" 3 fon @ xa(rs) - frow (@) xa ()

se(Z/DZ)* reZ/DZ,
s=1(6)  r=1(0)

Finally, we will further modify the sums on the RHS in order to sum up over
r € (Z/DZ)* as well. In order to emphasize the dependence of 6, , on D we will
use only for the current proof the notation

er’#(z) B ZneZ eﬂi("+%—ﬂ)21(_1)”
0o(z) 60(2)

fr/D(Z) =
Moreover, for p;, ... p;, | D, denote:

Spiyory = 2 Xp(@)DT N fon (@) fryp (D).

se(Z)DZ)* reZ/DZ
s=1(6) r=1(6)
Pi1~-~17ik|r
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We claim that for k > 1 we have SPi| by = 0. Note that we can rewrite

pilD pipj|D

+ Y fap@ @)D,

s, re(Z/DZ)*
s=r=1(mod 6)

thus showing S,,i1 Py = 0 for k > 1 proves our result.

To see that Spi1 by = 0,let D' = D/(pj, ... pi,). We recognize each of the inner
sums Y vezp'z, Jsryp'(T) fryp (T) Of Spfl"'pik to be equal to %% from
r=1(mod 6) A s

(18) for D = D'.
Denote m = D/D’. From the properties of the cubic character, we have xp =
0Dty _ On(P'7)
OCws) o)
s = s’ mod 3D, as «/; and <7, are in the same class in CI(03p/). Then we can
rewrite the sum as:

Xm XD’ - Moreover, from our choice of ideals, we have for

D' 0, (D'ty)
Soiri = D mmmww Do xm().
s'e(Z)D' 7)™, s s€(Z/DZ)*,
s'=1(mod 6) s,8'=1(mod 6)
s=s’(mod D)

In the inner sum we are summing over s modulo m for all s in (Z/mZ)* . Moreover,
xm (%) is a nontrivial character as a function of s, as m'/3 x,,(<%) = (m'/3)%«s =
m!/3 forall o7 iff m'/3 € K. As we are summing a non-trivial character over a group,
the sum is 0. This finishes the proof. O

Using the above proposition now it is easy to see:
Corollary 23 Sp = =Si6 and S1/2 = 0.

Proof As3c3pSp = Si/6+ 1/251)2,if S1/2 = 0 we have 3Spc3p = Siy6. Thus it is
enough to show Sy, = 0. More precisely we will show that

U(z) = Z 0r,1/2(2) Xx (r)

re(Z/DZ)*
r=1(6)

equals O for any z, in particular for z = 7. Since we showed that 51, = D23 |R(T) |2
in Proposition 22, we get S1,2 = 0.

To show U(z) = 0, note that 6, 1/2(z) = —62p_, 1/2(z), while x; (2D —r) =
Xz (r). Asbothr,2D —r =1 mod 6 and D odd, the terms cancel each other out in
the sum and we get U (z) = 0. ]
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Finally, from Proposition 22 and Corollary 23 we get:

Proposition 24 For 1 = % such that b* = —3 mod 12D?, we have Sp =

1
3c3p

S1/6 and

D72/3

3c3p

Sp = > fo16 (D) xa(s)

se(Z/DZ)*
s=1(6)

4.3 Sp as a square

In the following we will rewrite Proposition 24 so that we get a square. Define
Fr u(z) = fr,u(32) and take:

Rpu@= Y  Fru@x«(r).
re(Z/ D7)
r=1(6)
With this notation, we have showed in Proposition 22 that S1,6 = |Rp,1/6(t/3) D~ 173 |2.
One can show that R%vl/G(r/S) € K and actually Rp,1/6(t/3) is really close to being
an integer. We will show in this section the following:

Proposition 25 For o (D) the number of prime divisors of D, we have:

_ ey,

SD D>

3c3p
where Tp = RD’]/6(‘E/3)772/30)k0 and Tp = (—I)G(D)T_D and thus Tp is real or
purely imaginary. Here ok is the unique cube root that makes Tp real or purely
imaginary.

We are going to show firstin Lemma 26 that Rp 1,6(7) and Rp 1/6(t/3) differ only
by a cubic root of unity ¥, and thus S1/6 = |RD,1/6(I)D’1/3|2. In Proposition 27
we show that Rp 1/6(7) = (—1)"(D)%Wa)k/.

Defining Tp = Rp 16(7 /3)%’2/ 3k for ko = k + K/, this is equivalent to Tp =

(=)D Ty and thus

Sij6 = (=113,
which is the result of Proposition 25 above.
4.3.1 Relating Sp to Rp, 1/6(T)

We will first show that 1,6 = |Rp,1/6(T) D13 |2 in Lemma 26. Define the theta func-

. i i . (r),
tion g(r),ﬂ(z) — ZneZ em(n_,u)zz(_l)neZntnr/D and the ratio F(r)’M(Z) — 900(‘;(23)1)'
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We introduce this notation, as we will use the transformation mentioned in Lemma 48
in the Appendix:

D-1
a0 = b ST (s (2 g (2) e (2)).

V=34/—iz z z z
(19)
Using also 6p(3z) = ﬁ@o(—yz) and taking the ratio with (19) we get:
( I)DT_1 1 1 1
_ oy iT) b e G161\ _ =3m,1/6 ( L\ 2.(=3m,1/2(_1
Frajold) = (1 <F ( Z) oF ( Z) W F ( Z))
(20)
Then, using (20), we are ready to show:
Lemma 26 Fort = % such that b* = —3 mod 12D2, we have:
Rp,1/6(t) = " Rp 1/6(t/3),
132,

where o is a cubic root of unity. Furthermore, this implies S1/6 = |Rp,1/6(t) D™

Proof Let b’ = b mod 4D?, and b’ % 0 mod 3. Without loss of generality we can
actually pick b, b’ such that (b> 4 3)/12D? and (b'> + 3)/4D? are prime to 3D. Let
7 = 1(3) be an element of norm D such that (;x)2 divides (7). Then we can find ideals
o, &/’ prime to 3D such that:

=3 e = (—“T*/—_’J’) et = (—’J+~/—_3> |

We can write the generators k., k7 = 1 mod 3 of ./ and &7/, respectively, in the

formk, = an,+my, _b+2V _3,ka/ =a'ng+mgy _b+2 =3 where my, m), =0 mod 3,

—b+v/-3 —b'+/-3
2a 2a’ '

and ng,n, =1 mod 3. Let 7,y =
We are going to show that:

b t,(y/ =

(i) Rp,1/6(ter’) = Rp,176(Ter/3)
(i) Rp,1/6(ter/3) = x7(na)Rp,1/6(T/3)
These two relations will imply:

(i) Rp,1/6(7) = x7(na) Xx (ma)Rp,1/6(T/3).

In order to show (i), note that it is enough to show that Fy 1/6(te) = Fr 1/6(Te7/3).
We have —1/(t4/3) = —T/D?* and —1/1, = —7/D? as well and we will use (20)
for both 7,//3 and 7 /3. First for z = t//3 we get:

D—1
A I e (3,176 (T 2.Gm2 (T
F,,1/6(T)_773 F ) —oF ) @F )
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Applying (20) also for t., we get similarly

D—1 — — —
D" w 16 [T -3 -7 2 G2 [ =T
Fr 6ty ) = ———=— FG.1/6 -7 — @F(3):1/6 o) FON-Y - )

where 7/ = hu“ﬁ

Fmally, note that F(Y) 1/6(z 4+ 8D?%) = F©):-1/6(2), thus since b = b mod 8D?
we also have F&)-1/6(—7//D2) = F&)-1/6(_7/D?) for s = +3r. Similarly we have
FODAR(—1/D?) = FOD2(—T/D?), thus Fri/6(ter/3) = Fri/6(te) as
claimed.

To show (ii), as fr 1/6(z) = Fy 1/6(2/3), note that from Lemma 20 we have
Fr,1/6(7/3)0‘°}1 = Fr,l/6(7:,§z7/3) = Fn;r,l/6(77/3) where ng = n; mod 3D and n;
odd. This further implies that Rp 1/6(te//3) = x7(na)Rp,1/6(t/3).

To show (iii), note that we are in the conditions of Lemma 38 from Sect. 5, as F} 16
is a modular function of level 18 D2. Then F,,1/6(r)°;/1’ = F; 1/6(t4) and thus we
get Rp 1/6(ty) = (RD,1/6(T))UW1’-

We can rewrite this as (Rp,1/6(t./))’%’ = Rp,1/6(7) and using (i), we get

Rp.1/6(t) = Rp.1/6(Ter/3)° . From(ii), thisis Rp 1/6(v) = xz(na) Rp.1/6(7/3)%< .
Using Lemma 20, we have Fr’1/6(1/3)";/1’ = Fur,1/6(7/3), thus Rp 1/6(t/3)°7" =
Xx(na)Rp,1/6(7/3). Finally this implies
Rp,1/6(t) = x7(na) x= (Mg ) Rp,1/6(t/3) and we take oF = x7(na) xx (na') to get the
result. m]

4.3.2 Relating Rp,1/6(7) to its complex conjugate

Now we want to show that Rp 1/6(7) equals Rp, 1/6(t) up to a nice factor. As before
we let T = % and 77 such that ()% divides (). We will show:

o . . /
Proposition 27 For some cubic root of unity o* , we have:

72/3
Rp1/6(7) = (— e T 7 —7=Rp,1/6(7).

Using the notation Tp = RD,1/6(T)E_2/3wk/ this is equivalent to Tp = (=)o DTy,
Note that we can think of ¥ as the unique root of unity which makes

Rp,1/6 (1)wk 7T2/3 either real or purely imaginary. We actually give a formula for »f

in the proof of Proposition 27.

We first define the linear combination:

Ry = 3 FO'@xe(r).

re(Z/DZL)*
r=1(6)
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Note that we use x, unlike in Rp .
We choose b = b’ mod 4D? such that 3 { b’ and we can find .’ as in the proof

of Lemma 26 such that o7’/ (7)? = (%) Then from the transformation (20)

D—1
we have Fy.1/6(t,) = (-1)f%(ﬂ3r%1/6(—?/1)2) —F31/6(_7/p2) —

w? F(3):1/2(_7/D?)). Writing the full linear combination for r € (Z/DZ)*, r =
1(6) and multiplying by x (3), we get:

(_I)DTHXH(?’)RDJ/()(TM’) = R(P11/0(x/D?) — ® RP-1/2(1/D?) /v/=3. (21)

Note that above we related Rp,1/6(7) to R(P):# for u € {1/2,1/6}. In order to
show Proposition 27 we also want to relate RP):1 back to R p,uu» and we do that in
the lemma below:

Lemma 28 We have the equality
D D+ G (xx)
R( )’M(T/Dz) =( 1)( h/2 _n RD,/}.(T)v

where G(x7) = Zre(Z/DZ)X x7=(r)e2™ " ID s the Gauss sum corresponding to the
character xz.

Proof Recall R1P)#(z/D?) =Y, 7/ pzyx F(z/D?) xz(r), where

). 2 .
F )’“(z / D2) = %%Z). We show first that, for » odd, we can rewrite the terms

001 (3z/D?) as:

0 B/ DY == D 0, (Br)emirP, (22)

se(Z/DZ)
s=1(6)

From the definition, we have 80)-#(3z) = Y onez e”i("_D“)23z(—1)”62’”"’/D.
Choosing as before s € Z/DZ such that s = 1 mod 6, we sum over all » mod-
ulo D:

G(r),u(3z) — Z Zeni(Dn+s—D,u)23Z(_I)Dn+se2ni(Dn+s)r/D.

S€Z/DZ ne’l
s=1(6)

W i i (r), - — 2 2misr/D .
- ) N 9
e can rewrite this as 0 (32) > ez/p7 05, (D32)e and changing

S=
7z — z/3D? we get (22).
Plugging in z = t/D? in (22) and dividing by 6y(37) we have further

001 (37/D?) :
s = D Fu@e .
0 s€Z/DZ
s=1(6)
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Moreover from Lemma 44 in the Appendix:

0Gr/DY _ 1@/ _ | o-veg,
60(37) n(0)

thus we get:

(=1)(P+D/2

F"l(z/D?) = Fy u(0)e?™ /P, (23)

seZ/D7Z
s=1(6)

Going back to the linear combination, we get

. .
R(D),u(r/Dz)z_% Yo ) Fu@e Py,

re(Z/DZ)* s€L/DZ
r=1(6) s=1(6)

We switch the two sums and get:

_1)(D+D)2
ROy pty = TN

Yo Fu@ Y &P

(s€Z/DZ)* re(Z)DZ)*
s=1(6)

Note that if gcd(s, D) = Dj > 1, then the inner sum equals 0. This is easily seen by
writing s = D1s1, Dy = D /Dy, and rewriting

Yoo ey = Y, TPy = Y xm ()G ) =0,
re(Z/DZ)* re(Z/DZ)* re(Z/DyZ)*

where m = w7y and Nm(rr;) = D;, fori = 1, 2. Thus we are left in our sum only
with s prime to D, and we can rewrite:

(_1)(D+1)/2 -
RO/ D) = e Y Fu@t) Y, P r(rs).

(s€Z/DZ)* re(Z)DZ)*

. RNCERY

This is exactly RP#(r/D?) = % Z(seZ/DZ)X Fs 1 (T) X2 ()G (x7),
5=1(6)

which equals (—1)(D+1)/2%RD,M(I), and thus we get the result of our lemma.

m}

Proof of Proposition 27 Recall from Eq. (21), we have

(=) Xz B)Rp.1/6(tey) = RPW16(x/D2) — > RDV2(r/D2) //=3.
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Rewriting the RHS using Lemma 28, then

G (Xx)
T

Xr(3Rp.1/6(Ter) = (Rp.1/6(t) — @’ Rp.1,2(t) /v =3).

Finally, since we noted that Rp 1/2(z) = 0 in the proof of Lemma 23, for any z, then

we get RD,1/6(T,,QV/) = Xﬁ(3) G(;Z(”)RD,I/G(I).

Now using the details of the proof of Lemma 26, recall that

Rp.1/6(Teyr) = Rp,1/6(Ter/3) = x7(na)Rp,1/6(7/3) = x7(na)Rp,1/6(T),
thus

G(xr)
s

Rp.1/6(t) = xn(ng) x7(3) Rp,1/6(7). (24)

To actually compute the term on the RHS, we recall a few facts about cubic Gauss
sums (see [13, Chapter 9]). We can write 7 = [] pilD TTis where m; is a generator of
norm p; with r; = 1(3). Then:

Gxx) = [ xw/m TG (i)
pilD

O

Moreover, we can actually compute each G (xx,;) up to a cubic root of unity. From

[13, Chapter 9.4], we have G(er,-)3 = —pm,; for ;; = 1 mod 3. Thus we get
G()n;) = —n_i2/3nil/3a)k" for some k; € {0, 1,2},
Then €% = (—1)?(Pf» T where kp = Y ki, which together with (24)

gives us Proposition 27 for ok = Xz (ngr) Xﬁ(3)wk0.
From Lemma 26 and Proposition 27, we get Tp = Rp 1/6(t/ 3)?‘2/ 3k for
ko = k + k', and thus:

Corollary29 Sp = (—1)°P)T3.
4.4 Invariance under the Galois action
Define
Mp = Rp,1/6(t/3)7T 3.

We will write below M p as a trace.

Lemma30 Mp € K and we can write it as a trace:

1
Mp = ——Tru, /x (fi.16(0)7T>/3),
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where Hg is the ray class field of modulus 3D, ¢ is Euler’s totient function and
J1.176(t) = 01,1/6(7)/60(T)

Recall we defined Tp = Rp .| /ﬁ(t)ﬁ_z/ 3wk and from Lemma 26 we have Tp =
RD,1/6(I/3)E_2/3wk0 forkg =k +k'. As Tp = (—=1)°Tp from Proposition 27, we

get immediately from Lemma 30:

Corollary31 Tp € Q when o (D) even and Tp/~/—3 € Q when o (D) odd and we
have the formula:

o

Tp = ——Tru, /k (f1,16(0)T

72/3).
(D)

Proof of Lemma 30: We can write explicitly Mp = Z,G(Z /DZ)* fra76(T) Xz (r)ﬁ_z/ 3,
r=1(6)

For an ideal &/ = [a, %]Z with generator k, = (naa + ma%) with
6|mg, n, = 1(6), we are going to have the Galois transformation:

Fra /6O 1 VT2 = frr 1160 o (nar) T2,

To show this, note that from Lemma 20 we have f,,1/6(r)°;’] = frna.1/6(7). We
compute (71/3)”&;1 = xz(o)7T'/3. Furthermore, xz(&/) = (%)3 = (” )3 =

o
g 2 — T — g —
(m)3 andn,(nga+myb)* =a mod m,sowe have( )3 = (E)3 =

nga+mgb
(,:;T_a>3 = Xx(na).

Moreover, taking the ideals 27° = (1 +b*(1 — r*)%), where b* = b~
1 1

mod Dandr* =r~
r mod 3D, and then:

mod D, wehave Nm ° = ago =7~ mod 3D andn . =

o]
Mp = Z (f1,1/6(1)7_2/3) Fzs

re(Z)DZ)*
r=1(6)

We will show in the next section in Proposition 40 that fi 1,6(7) € H. Define the
group Go = {[</°],r € (Z/DZ)*,r =1 mod 6}. It is a subgroup of Gal(Hg/K)
and G is isomorphic to (Z/ D7) . We define the fixed field of G in Gal(H/K) to be
Hyo=1{h e Hp :0(h) = h,Vo € Go} and Galois theory implies Gal(Hs/ Hy) = Go.
Then we can rewrite the relation above as

Mp = Trp, 11y (fi.16(0)T23).

As we will show in the next section in Proposition 40, f; 1/6(z) withr =1 mod 6
are all the Galois conjugates of f1,1/6(t), thus Mp € K. Then we can take the trace
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Central values of L-functions of cubic twists 1357

further to K to get
——2/3\ _ ——2/3
Tra, /k (fi(©7T ) = #Gal(Ho/K) Tra, /1y (f1,1/6(T)T )

and this equals [, ,(p — 1) Trp,, 1y (f1.1/6(0)T23). O

Remark 32 Using the notation from the proof of Lemma 30, one can actually show
similarly that « = Rp, 16D~/ equals:

K =Tra, m,(fr(1)D™/?)
and k3 € K. However, « ¢ K.

4.5 Integrality

In Sect. 3 we have showed that Sp € Q. We will show below that Sy/s € Z, thus
3c3pSp € Z.

Recall that S1 /6 = 3¢3pSp = Tra,p /K O (Dw)

O (w)
that D'/30 (Dw) /O (w) is an algebraic integer, as its trace would be a rational number
as well as an algebraic integer, thus an integer. Moreover, it is enough to show that
O (Dw)/O (w) is an algebraic integer.

We cite the following standard result (see for example [19]):

D'/3. Note that it is enough to show

Lemma 33 Let f(z2) be a modular function for I' (N) such that for all y € SL,(Z) we
have f oy holomorphic on the upper half plane 7€ and f has Fourier coefficients at
oo that are algebraic integers. Then, for T a CM point, f(t) is an algebraic integer.

First we will show that 2@@(60 ")’) is an algebraic integer. We have showed that

3 __ 4 2 ODw) _ 23/4 ODw) _ 23/4,-27i/24 O(=DT)
30(w) = V/3|60(1) . Then 25GT8 = 334230 = 33/4e=2mi/24 =20

Since e~>7/2433/4 i5 an algebraic integer, it is enough to show that OCDY) s one
60(—7)?
as well. Recall that 6)(z) = 7(z/3) and take fy(z) = ﬁ%; )
Note that:

— fo is a modular function for I"(36D);

— fo(yz) is holomorphic on 7 for all y € SL,(Z);

— fo(yz) has Fourier coefficients that are algebraic integers in its Fourier expansion
at oo for all y € SLy(Z).

These properties can be checked using the properties of ® ¢ from the Appendix ((27)
and Lemma 41), as well as the properties of 1(z). Note that we are in the conditions of
Lemma 33, thus f(7) is an algebraic integer. This implies that 2 @é(Dw ‘3)) is an algebraic
integer, hence 25| /¢ is an integer.

Now we will show that DSy ¢ is an integer as well by showing that D3 @'(ﬁ;((al)))w)

is an algebraic integer. Using Lemma 16 for u € {—1/2,—-1/6},v = 1/2,a =1,
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, WE can rewrite:

_ pn=3+/=3
=D—F—

D
-3+/-3
O1/6(DT) = 3 Z 6160, T = ———.
r=0

Taking the quotient by %@(‘L’) = (4/§|90(r)|2, we get:
D-1

2016(Dw) _ 1
3 Ow) Z

o, 1/6(T)
Oo(7)

r=

Recall f; ,(z) = 0;’0"(2;) for u € {1/2, 1/6} and note that:

— fr., is amodular function for I" (18 D?);
— fr.u(y2) is holomorphic on JZ for all y € SLy(7Z);

— fr,u(Y2) has Fourier coefficients that are algebraic integers in its Fourier expansion
at oo for all y € SLy(Z).

To see the last property, we can either compute explicitly the transformations of
0, (y2) and 6y (y z) and get a Fourier expansion with coefficients in Ok [£24, {p2], or
interpret the theta functions as generating series attached to counting points on certain
lattices and get the Fourier coefficients of their ratio to be in Z.

Thus we are in the conditions of Lemma 33, hence f, ,(7) is an algebraic integer.

This implies that D% is an algebraic integer, and thus the trace DS/ =

DTryyp/k %Dl/ 3, which is a rational number, is indeed an integer. Since we

already showed that 25} /¢ is an integer, we get Sy € Z when D is odd.

If We note that |90(t)|2 |n('c/3)|2 \/_|17(r)|2 then we can also show similarly
that 2 IZ()) is an algebraic integer, and thus DS 6/ /3 is an algebraic integer. Since
S1/6 € Z, this implies 3 divides Sy 6.

Finally, since S1/6 = (—1)°P Tg and S is an integer, from Corollary 31 we get:

Corollary 34 Tp/3 € Z when o (D) even and Tp/~/—3 € Z when o (D) odd.

Note that this implies that o*0 is the unique choice for a cube root of unity such
that Tp or Tp/+/—3 is an integer.

4.6 Case of D not square free

We present below the case of D not square free. We write D = D; D% such that D1 D,
square free. Note that if we try to apply the steps before directly to (9) for D not
square-free some of the details of Proposition 22 no longer hold. Instead we use the
formula (13):

1 Ok (DoTey)
Sp =< Z WXD(«Q{)DI/3~
SOy KT
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for Dy = D1D,. All the details of the proof for the square-free case will follow
through and we only briefly mention the steps.
We apply the factorization formula and obtain the factorization from Corollary 19:

Ou(Doty) _ 3/2

O (ty) Dy Z Jar.u (?Q/Z,Qfl)m, (25)

reZ/DoZ

We use this to show similarly to the proof of Proposition 24 that:
1/3 ~—2/3

_Dy" D,

S
b 3c3p

Y fue (@ xo (),

s€(Z/DoZ)*
s=1(6)

where <7, = [ay, 4’%@] with Nm(as;) = s mod D D;. Take 1 a generator of
D1 and 7 is the generator of D; such that (%) is divisible by (711712)2. Then

XD (s) = Xy (8) X, (5)-
The main difference is when we compute the complex conjugate of

Rpae(m = > fr1/6(0)xm (8)Xm (5),

re(Z/DoZ)*
r=1(6)

G Xy X72)
T2

as we get Rp 1/6(7) = Rp,1/6(7) and this equals

—1/3==2/3

1 TT] ) _—
Rp.1/6(0) = (=1 P! —7=75-Rp 1/6(0)
Ty T

. . ! .
for a cubic root of unity w* . Then we can rewrite:

(D7,
Sp=—T75,
b 3C3D b
_ o ra=—-2/3_1/3 ko
where Tp = ZSE(Z/DIDZZ)X S5,1/6 (T) X, (8) Xop (8701 m," " ", and we can show
s=1(6)
that this is the trace:

—_ 1/3
2/37T2/ a)ko’

Tp Tra, /k f1(D)7T

_ 1
~ @(Do)

where Hy is the ray class field for the modulus Do and w0 is a cubic root of unity.
Moreover, we can further show as in Sect. 4.5 that Tp /3 € Z when o (D) even and
Tp/~/—3 € Z when o (D) odd.

Finally, we have Sp # 0 for D split only for D = 1 mod 9 and in this case we
can compute the Tamagawa number ¢3p to be equal to 3177 (?) using Tate’s algorithm
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(see [28, Chapter IV.9]). Thus Sp is an integer square up to an even power of 3 and it
equals:

Sp=(——P ’
v <<¢——3>2+ow>> ‘

5 Shimura reciprocity law

We present below some background on Shimura’s reciprocity law following the expo-
sition of Stevenhagen [30]. For more details also see Gee [7].

Let .% be the field of modular functions over Q. From CM theory (see for example
[30]), it is known that if t € K N 2Z and f € .Z, then we have f(t) € K%’, where
K is the maximal abelian extension of K. Shimura’s reciprocity law gives us a way
to compute the Galois conjugates f ()? of f(zr) when acting with o € Gal(K®?/K).
We recall that .# = | .| Zn, where Fy is the space of modular functions of level
N.

As the restriction maps between the fields %y are in correspondence with the
natural maps between the groups GL»>(Z/NZ)/{x1}, we can take the projective limit
to get the isomorphism Gal(% /. #1) = GL;, (2)/{:&1}.

When working over QQ, one has anisomorphism Gal(%y /%) = GLo(Z/NZ)/{+1}
and the maps on .% are given by projecting GLz(Z)/{il} — GLy(Z/NZ)/{£1}.
We define the actions of GLy(Z/NZ)/{£1} explicitly:

— Actionof o € SLy(Z/NZ) on.%y. Wehave (f(1))° = f%(t) = f(at), where
« is acting on the upper half plane via fractional linear transformations.

— Actionof () 9) € (Z/NZ)* on Zy. Note that for f € .Fy we have a Fourier
expansion f(z) = ) ,-¢ anq"'N with coefficients a, € Q(¢n), g = €272, If we
denote uy; = ((1) 2), then the action of oy, is given by (f(1))% = fi(r) =
Zn>0 agdqn/N’

where o is the Galois action in Gal(Q(¢y)/Q) that sends ¢y — {ﬁ,.
To further get all the automorphisms of .# we need to consider the action of
GL2(Aq, r) and for that it is enough to define the action of GL, Q)" on Z:

— Action of a € GL(Q)" on #. We define f%(r) = f(at), where a acts by
fractional linear transformations.

Let O be the order of K generated by 7 i.e. & = Z[t]. We define the matrix g; (x)
to be the unique matrix in GL; (Ag) such that x <11—> =g:(x) (;) . We can compute it
explicitly. To do that, consider the minimal polynomial of 7 tobe p(X) = X>+BX+C.
Then if we write x,, € Q; inthe formx, = 5,7 +1, € Q; withs,, 1, € Qp, we can
tp —spB  —s5,C )

Sp 1y
Using the map g, above, we have:

compute g (xp) =
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Theorem 35 (Shimura’s reciprocity law) For f € .% and x € A}é’ o we have:

(F(D)% = &0 (o),

where oy is the Galois action corresponding to the idele x via the Artin map, g is
defined above and the action of g.(x) is the action in GL2(Aq, 5).

Note that the elements of K * have trivial action. This can be easily seen by embed-
ding K* <> GL,(Q)* via k — g, (k). Noting that t is fixed by the action of the
torus K*, we have £ * () = f(g: (kD7) = f (7).

We can also rewrite the theorem for ideals in K. Let f € % and 0 = Z[t] of
conductor M. Going through the Artin map, we can restate Shimura’s reciprocity in
this case in the form:

@) = & (), (26)

where o7 is an ideal prime to M N, o, is the Galois action corresponding to the ideal
</ through the Artin map, and g; (%) = g ((&) p| Nm(sv))- Note that g; (<7) is unique
up to multiplication by roots of unity in K. However, these have trivial action on f at
the unramified places p| Nm ().

5.1 Galois conjugates of f(@)

We denote f(z) = %. We are interested in finding the Galois conjugates of f (w).
By checking directly computationally and using the fact that both ©x (Dz) and Ok (z)
have Fourier expansions in (Z[g])*, where ¢ = 2T we get the standard result:

Lemma 36 The function f(z) is a modular function of level 3D with integer Fourier
coefficients at the cusp oo.

From CM-theory, if f € Z3p and t a generator of Ok, we have f(r) € Hy the
ray class field of modulus 3D. Recall H3p is the ring class field for the order 03p =
Z + 3D 0k, and we actually have:

Lemma37 f(w) € Hap.

We give below a computational proof. However this can also be seen via Katz’s mod-
ular interpretation of algebraic modular forms by thinking of w € J corresponding to
apoint [(E, C)] € Yo(3D)[H3p] (where E is an elliptic curve and C is a torsion sub-
group of E(C) of degree 3D), via the projection map 5 — Yo(3D) = 57 /I1(3D)
(see Katz [15] for more details).

Proof We need to show that f (w) isinvariant under Gal (K ab /H3p). Viathe Artin map,
we can pick as representatives the ideal classes &7 = [a, %] 7., wherea = Nm &/
and b*> = —3 mod 4a, corresponding to the Galois classes of Gal(K*”/H3p). Then

we can pick a generator of the ideal .7’ written in the form ra+s _b+2 =3 wheret, s € Z
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and 3D]|s. As f(w) = f(1), where T = %, from Shimura’s reciprocity law, we
have:

(f(x)7o 1 = [ (q),

_ (ta—sb —sca bz—+3
Here g, (/) = ("7 ta )p|3D’ 4

of g (&) explicitly as:

where ca = . Then we can rewrite the action

fgr(%)(r)zf(m?b _tsc)p\w((l) 2)p\3p(r)=f((l) 2),;|3D((ta¥sb —sc).’:).

t

Since 3D|s, the matrix (’“?S b _t“') € I'Hh(3D) and f (z) is invariant under its action,

while, since (a,3D) = 1 and f has rational Fourier coefficients at oo, the action of

((1) 2)P|3 p is trivial. Thus f(w) is invariant under the Galois action coming from

U (3D) and this finishes the proof. O

Now we would like to compute the Galois conjugates of f(w) under the action of
Gal(H3p/K). We will first show the following general result:

Lemma38 Let F € %N be a modular function of level N with rational Fourier
coefficients in its Fourier expansion at 0o. Let T = _b+T V=3 be a CM point and let

o = [a, %]Z be a primitive ideal prime to N. Then we have the Galois action:

F(x)+ = F(t/a).

Proof From Shimura’s reciprocity law, we have F (r)“;fl = F8(&) (7). Note that the
minimal polynomial of 7 is p; (X) = X?+bX + haTJr?’. Let o be a generator of <7 . Then

. . b243
we can write « in the form o = ta + st and we have g; (&) = ("“—”’ -3 ) .
—5 ta
pla

2
We can rewrite the matrix in the form g, (&) = (’a—sb b ) (& 09 )pla . As the
pla

—s t a

2
matrix (m—fb —%) | is an element of SL»(Z),) for p { N, it has trivial action.
s pla
(6 2)
Then we have F$(7)(7) = F\0  @/pla(q),

We rewrite the matrix () g)p\a = (¢ 1%)[)){“ (6 9)g where (6 1(/)a)p)(a €

GLZ(Z) and ((1) 2)(@ € GL,(Q)™. Note that the action of ((1) 1?,1 )P’(a is the same

as the action of ((1) 1%) However, since F has rational Fourier coefficients

PIN’

in its Fourier expansion, this action is trivial. Thus we are left with F§- €4 M) =
1 0

F<0 “)@(r) = F(t/a), which finishes the proof. O

We apply the lemma above to our case:
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to be the representa-

Proposition 39 Tuke the primitive ideals o/ = [a, %]

tives of the classes of the ring class group C1(O3p) such that all norms a = Nm o/

are relatively prime to each other and b*> = —3 mod 4a for all the norms a.
—1

i ; _ Okx(Dw) Ox Do)\ _

Then the Galois conjugates of f(w) = Ox(w) are the terms ( O @) ) =
Ok D1y )
Ok (te) -~

Proof We note that @é{;a“)’) = @(gk(g 3) and apply Lemma 38 to t = %—73 and

f(z) = 2P Thege are the only Galois conjugates, as we showed that f (1) € Hsp.

Ok (2)
O

5.2 Galois conjugates of f, ;, (7)

Recall that we defined f; ,(z) = 6;6“(2?. This is a modular function for I" (18 D?)

when 1 = 1/2 and for I'(9D?) when . = 1/6 (see Lemma 46 in the Appendix).
From CM-theory then f, ,(t) € Hgr, where Hyy is the ray class field of modulus
18D? for 1 = 1/2 and of modulus 9D? for 1 = 1/6. Note that this also follows from
the moduli interpretation of algebraic modular forms (see [15]). However, we want to
descend to the ray class field Hy of modulus 3D.

In order to do that we compute the Galois conjugates of f, ,(t) over K using

Shimura’s reciprocity law for t = %, with > = —3 mod 12D?. Note that 7

has the minimum polynomial X +bX + haTH. Thus we have to compute the action of

Sp tp

2
all g:((xp)p) = ]_[p <tps,,b —sp 2 ) on f, , (7). We will prove that the Galois
p

action from Shimura’s reciprocity law is given by the following:
In our case we want to compute the Galois conjugates of f; ,(7)

Proposition 40 For o/ = [a, _h+2*/j3]z an ideal prime to 6D such that b2 = -3

mod 12Da?. Let k oy = nga +myg % be the generator of &/ such that 3|m, and
ng =1 mod 3, then for t = % we have:

fr,u(f)%}] = fnﬁlr,u(f),

where ng = n), mod 3D and ny odd. Moreover, these are all the Galois conjugates
of fru(t) and f; ,,(t) is in Hp the ray class field of modulus 3D.

Proof We will compute the Galois conjugates of f , (t) using Shimura’s reciprocity
law adelically first. As the action of K* ]_[v%D ﬁ;v is trivial, we need to com-
pute the action of ]_[U‘(,D ﬁ;v. We project the action of (g¢(xy))vjep to g-(x) €
GLy(Z/ 18 D?Z). From the Chinese remainder theorem, we can find kg € K such that
ko = x, mod 72D%7, p for all p|6D. Note that k¢ is independent of the choice of t
and g, (x) = g; (ko) in GL»(Z/18D?*7).
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Moreover, (:ta)i) p = A}éf acts trivially, thus we can consider the action of

ko(:ta)f) instead, for j € {0, i, 2}. We pick kg = A + Bw such that v3(B) > 1,
A = 1(3). By possibly changing b to b := b + 18D? above (this does not affect
the value of f; (7)) as noted in Remark 47 in the Appendix), we can find ' = b

mod 18D% Nm ko such that kg = ra + s# V=3 with ta — sb' = 1 mod 6. Let
; _ —=b'+J=3
- 2

T and we have:

Frop ()00 = (f (') Gosn = f55F00) (1),

. 2
where g,/ ((ko)ep) = (‘”;Sb/ *?;"“) , with c’a = %.

We will now compute frﬁ()‘)” %P (1). We write the matrix g ((ko)ep) as a product
/ / ..
gr((ko)sp) = (150" 3¢ )pIGD (& 2)p|6D' Note that () 2)p|60 acts trivially on
fr.u as the functions 6, , (z) and 6y (z) have rational Fourier coefficients in its Fourier
expansion at 0o, and thus so does f; ,(z). Thus we need to compute the action

(tafsb’ 7;‘0’)
N / /

fr ") = fra((e ) D),

Using the transformation of Lemma 45 from the Appendix for both 6, ,, and 6, as we

have 3D?|s and ta — sh = 1 mod 6, and further noting that 9|s¢’, we get precisely:

o, ((tafsb’ 7sc’) ‘[/)

N 13

Frop((rest =) ) = b (- 30)7) fia=styr,u (T

Since (fa — sb')t =1 mod D?, we can rewrite this as fo-1y (7)) fort =t mod D
and 1 = 1 mod 6. Note that 7 is prime to D. Thus we have showed so far that the
Galois conjugates of f, ,(t) are the terms f; , (1), where gcd(s, D) = ged(r, D).
Moreover, we have nontrivial Galois action only for kg = ta + s% with t 2 1
mod D. Furthermore, it implies that f(t) € Hy, the ray class field of modulus 3D.

Finally, we would like to express the Galois action using ideals. For a primitive
ideal &/ = |[a, %]Z prime to 6 D with a generator (ko) = (nqga +mg %)
withn, =1 mod 6 and 3|m,, we have the correspondence map between ideles and
ideals given by x = (ko) pt6p <> @ = (ko). Picking the representatives k. as
above, we have:

-1
87 (ker) gr(ke)
frn @ = fr @ = (L@ = f, (@),

where n, = n/, mod 3D and n/, odd. After changing r — n/;"!r, we get the result of

the Galois action from the proposition. O
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6 Appendix: Properties of theta functions
6.1 Properties of O and

We have a functional equation for the theta function (see [16, Section 11.1]):

Ok (=1/3z) =

3
720k (2). 27
=70k @7)
Furthermore, we can compute the transformation of @k (z £ 1/3) in the lemma
below:

Lemma4l O (z +k/3) = (1 — 0*)O(32) + 0*O(2) fork € 7.
Proof For k = 1, we can splitthe sum @ (z + 3) =Y, ,cz 2in =) (2 ) in
two parts, depending on whether or not the ideal (m + nw) is prime to (v/—3). The
part of the sum for which (v/=3)|(m + nw) gives us Y emim? +n?—mm)3z+1)
©(3z+1) = O32).

The part of the sum for which (v/—3) { (m 4 nw) can be rewritten as
0> ez 2rim* 0> =mn)z Gince m? 4+ n® —mn = 1(3). We rewrite this sum as

(V=3)(m+nw)

the sum of two terms w y

m,nez.

2ni(m2+n2—mn)z_w Z e27ri(m2+n2—mn)z.

m,ne”,
. . (WV=3)l(m+nw)
Finally we recognize the two terms as w®(z) — w® (3z).

Going back to our initial computation, we get ® (z + 1/3) = @ (3z) + wO(z) —
w®(3z) = (1 —w)O®(3z) + wO (z), and this finishes the proof of the first formula. We
can show the case k = 2 by applying the equality for k = 1 and plugging in z — 1/3
for z. m]

—34/=3
6

m,ne’ e

By applying the functional equation (27) for z =
easy lemma:

we get the following

Lemma42 Ok (%) =0.

Using the lemma above, we get the following result that we use in the proof of
Corollary 18:
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Lemma 43 For a primitive ideal </ = |[a, %]Z prime to 3 such that b* = =3
mod 12a, we have O (%) =0

Proof The proofis similar to that of Lemma 12. We can write the generator of primitive
ideal &/ = [a, M] in the form k,; = ma + n% for some integers

m, n and following similar steps as in Lemma 12, we get Ok (M) = (m —

n=, +f)0 ( b+‘ﬁ) From the previous lemma, we know the LHS equals 0,
thus O (_”Jg—;ﬁ) = 0 as well. O

We also use the following lemma in the proof of Lemma 28:

Lemma 44 Forb®* = —3 mod 12D? and w of norm D such that the ideal ()? divides
(%) we have for T = %.‘

Proof We apply Corollary 18 twice to get: (— 1) 5 % zgg @gl(:(/r)D)'

Then from Lemma 12, we have the RHS equal to 7. Furthermore, we can pick
b=b mod 8D%,b=0 mod 3andb =1 mod 3. Denote t/ = %.We can
pick without loss of generality b, b" such that (b> 4 3)/D? and (b'> 4 3)/ D? are prime
to D. Then we can find ideals <7, <7’ prime to D such that <7 (7)*(+/—3) = (7) and
o' ()% = (1'). Leta = Nm <7, ¢’ = Nm &7’ and then we have:

b0 (x/D?) _ (90 (1/02))"“’l _b (J;z) B ”(ﬁ) 1@

b (7) 6o (7) bo(t/a) — n(%)  n(z/DY)
e T ) I o N Nk
Similarly we compute n(r/D y = ( //D2> n(;) = < 7 ) . Note
(52) _ nl52) (52) o1
that we also have W@ = Tn) , and thus we haveW =(—1)s 7. O

6.2 Propertiesof 0, ,

Recall that forr € Z, u € {1/2, 1/6}, we have defined the theta function

Or,”,(Z) — Zeni(l’H»r/D*M)zZ(_l)n'

nez
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We will write 6, ;, as an automorphic theta function (see for example [10]). Using
the standard notation (see [33]):

=5 2)o0=( 8)ou (5 D)

for ¢ € #(Ag) a Schwartz—Bruhat function, the Weil representation r for SL»(Ag)
is defined by:

— r(m()) ¢ (x) = xo(a)la|"*¢(ax)

— 1 (n(b)) p(x) = Y (bx?)¢(x)

- r(w)¢x) =yox),
where ¥, (x) = e 2riFrac, ™) and Yoo (x) = e¥*, y is an 8th root of unity, and
Xo is a quadratic character. Here we choose the self-dual Haar measure such that
a (—x) = ¢(x). Note that this is the same Haar measure as chosen in Tate’s thesis for
the global field Q (see [1, Section 3.1]).

We define the Schwartz-Bruhat functions ¢"* = [, ¢," for 6, , by tak-

ing ¢Ll(x) = e 2%, ¢, = charg,r_, for p # 2 and ¢ (x) =
g7 i Fracy (x) charz,_1/2(x). Then for the theta function

0(g,0"") =Y r(@)p " (x),
xeQ

2 =12y

0 112 ), we cancompute 0 (g,, ¢"*) = e~ 7iFrac “(—1)’y1/49r,ﬂ(22).
For this type of standard computation see for example [10].

Using the properties of the Weil representation and the definition above for 6, ,,,
after a straightforward computation we get the following lemma that we use in the
proof of Proposition 40, as well as below for Lemma 46 that is used in Sect. 5.2:

forg, = (~

Lemmad45 For (‘Z Z) € SLo(Z) such that 3D*|b and a = 1 mod 6, we have the
transformation:

ba—c/a

az+b (a— i i baj2
i (czz +d>25gn<d>e”’<“ D2 0,6 (@™ P2 ) 2T RS 0760 oz 1 dr,u(2).

where 1y = 0 and 16 = 1.

Proof Let ¢ = ¢, Recall that 6(g;/2, ¢) = e ™ Frac21(—1)"(y/2)1/26, ,(z). We
have

—1
62 (4 h) g 1y 0) =0 (VD .. (4 ”f)f ). (29

and we will compute separately the LHS and the RHS using the definition of the Weil
representation. To compute the RHS, we rewrite the matrix ( d b/ 2) as

—2c a
m(a_l)n(—ba/Z)m(—l)w -n(2c/a) - w.
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At p 1 6D, the action of (jéc _Z/2> is trivial. For p|D, we can easily compute

the Fourier transform a; (x) = e~ 2miFrac,(2rx/D)

charz, (x). Using v,(c/a) > 0 and
vp(ba/2) = 2, we get the action of <7d2c b/z) on ¢, to equal charZ +e (x).

For p = 3, the computation is similar For u = 1/2 we get x0.3(a)$3(x), while for
u=1/6 we get Xo,g(a)e_sz”“( )¢3(x)

For p = 2, we have the Fourier transform ¢2 (x) = e™i/2—2miFracy(x)

char%(zﬁ_l/z) (x).
. . bafc a
Using v2(2c/a) > 1 and va(ba) > 0 we get xo.2(a)e™ (@—D/22mi Fraca( : ) o (x).

This finishes the computation, as we got 8 (m (+/2) ' g, ( 2“6 b2 ) , ¢) toequal:

co(—1)e ™2k (y myl/Ag,  (2), (29)

where co = xo. 6(61)67”(“ D/2, 27 Fracy (24~ C/a) e2mity Fracs( “/2)

For the LHS of (28) we have r(g.)poo(m) = y!/%e 2mizm? . Using the Weil repre-
sentation action we get

rm(v2)"r (4 B) r(g) e (x) = (v/2)'/* sgn(d)

and thus combining with (29) we get the result of the lemma. O
It follows immediately by applying the lemma above for 6, ,, and 6y that:

Lemma 46 f, 1,2 is a modular function for I"(18D2) and fr 1,6 is a modular function
for I'(6D?).

Remark 47 Also from Lemma 45 it is easy to see that f; , (z + 9D?) = frin(@).

We can also straightforwardly compute the transformation under w = (_01 é) of
0y, and get the Lemma 48 below. This lemma is essential for the proof of Lemma 26.

Lemma 48 We have the transformation:

0r.1/6(32)
D—1

oy S w76 (9(73r),]/6 (j) o176 (;3) _ 2030172 (j))
V=3/= z z 2 ))

where Q(V),M(Z) — ZneZ eni(nfu)zz(_l)neZninr/D'

12 —12
Proof Denote ¢ = ¢"~'/%. Then for gz = ((Y/g) (Y/é)/z)_(ljg/z)) and w =

(91 (1)) we have 0(gz,2, ¢) = 0(wgz,2, wp). We compute 0 (wgz,2, we) below:

) . _ yoo(Y/z)l/zezme(—l/z)
At 00: 1(wgz/2)Poo(x) = Ny

= At pID: r(wep) = ype 27T/ charg, (x).
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— At p =3:r(we3) = yze” 2T Fracsx/3) chary (x).
_ —_ 9. _ —mi/2 ,2mi Fracy(x)
At p =2:r(wen) = yre et A char%(zﬁl/z)(x).

Writing all these together, we get:

(y/2)l/4 LTiH1/22(=1/2) n —27i Fracy(n/3) 2mi Fi 1/2)r/D
o0(w Jwh) = w 1 3(n/3) 2mi Fracp ((n+1/2)r/D)
(wgz/2, we) ey E (=D"e

nez

Changing n — —n — DT*I we get on the RHS:

1/4
ezm%(—l)% Y/l Z Ti(n—DJ2)2 (=1/2) (_ 1 yn p2mi Fracs(n/3) ,—2i Fracp (nr /D)

iz

nez

Taking the separate sums depending on n mod 3 we get a sum:

Z em‘(n—D/2)2(—1/Z) (— 1)ne2m' Fra03(n/3)e—27ri Fracp (nr/D)
nez

=6 109(=1/2)) — w0 09(=1/2)) — 0?61 2(9(=1/2))

Thus we got 275" (—1) T 022 (0 1/0(9(— L)) — wpC1/09(—1)) —
w29(73r)’1/2(9(—7)))~ Taking Z = 3z and using

O(wgzn, w) = 0(gz2, d) = i(—1) (Y /2)/*6,(2),

we get the result of the lemma.
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