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The Hilbert scheme of hyperelliptic Jacobians
and moduli of Picard sheaves

Andrea T. Ricolfi

Let C be a hyperelliptic curve embedded in its Jacobian J via an Abel–Jacobi map. We compute the
scheme structure of the Hilbert scheme component of HilbJ containing the Abel–Jacobi embedding as
a point. We relate the result to the ramification (and to the fibres) of the Torelli morphism Mg → Ag

along the hyperelliptic locus. As an application, we determine the scheme structure of the moduli space
of Picard sheaves (introduced by Mukai) on a hyperelliptic Jacobian.
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Introduction

Main result. In this paper we study the deformation theory of a smooth hyperelliptic curve C of genus
g ≥ 2, embedded in its Jacobian J = (Pic0 C,2C) via an Abel–Jacobi map

aj : C ↪→ J.

We work over an algebraically closed field k of characteristic different from 2. Our aim is to compute the
scheme structure of the Hilbert scheme component

HilbC/J ⊂ HilbJ

containing the point defined by aj. It is well-known that the embedded deformations of C into J are
parametrised by translations of C , and that they are obstructed as long as g ≥ 3 (see the next section for
more details). In other words HilbC/J is singular, with reduced underlying variety isomorphic to J . The
tangent space dimension to the Hilbert scheme has been computed in [Lange and Sernesi 2004; Griffiths
1967]. The result is

dimk H 0(C, NC)= 2g− 2.
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Therefore, as dim J = g, the nonreduced structure of HilbC/J along J is accounted for (up to first order)
by g− 2 extra tangents. By homogeneity of the Jacobian, it is natural to expect a decomposition

HilbC/J = J × Rg

for some artinian scheme Rg with embedding dimension g− 2. As we shall see, this is precisely what
happens, and Rg turns out to be the “smallest” (in the sense of Lemma 3.3) artinian scheme with the
required embedding dimension. More precisely, let

Rg = Spec k[s1, . . . , sg−2]/m
2, (0-1)

where m = (s1, . . . , sg−2) is the maximal ideal of the origin. The main result of this paper (proved in
Theorem 3.6 in the main body) is the following.

Theorem 1. Let C be a hyperelliptic curve of genus g ≥ 2 over a field k of characteristic different from 2,
and let J be its Jacobian. Then there is an isomorphism of k-schemes

HilbC/J ∼= J × Rg,

where Rg is the artinian scheme (0-1).

Interpretation. Let Mg be the moduli stack of smooth curves of genus g, and let Ag be the moduli stack
of principally polarised abelian varieties of dimension g. The Torelli morphism

τg :Mg→Ag

sends a curve C to its Jacobian J = Pic0 C , principally polarised by the Theta divisor 2C . One can
interpret the artinian scheme Rg as the fibre of τg over a hyperelliptic point [J,2C ] ∈Ag. This makes
explicit the link between the ramification of τg along the hyperelliptic locus (in other words, the failure
of the infinitesimal Torelli property) and the singularities of the Hilbert scheme HilbC/J (in other words,
the obstructions to deform C in J ). We come back to this in Section 3B.

Moduli of Picard sheaves. As an application of our result, in Section 4 we compute the scheme structure
of certain moduli spaces of Picard sheaves on a hyperelliptic Jacobian J . Mukai introduced these spaces
as an application of his Fourier transform; he completed their study in the nonhyperelliptic case [Mukai
1981; 1987], leaving open the hyperelliptic one.

Let F be the Fourier–Mukai transform of a line bundle ξ = OC(dp0), where p0 ∈ C and we assume
1 ≤ d ≤ g− 1 to ensure that F is a simple sheaf on J . Let M(F) be the connected component of the
moduli space of simple sheaves containing the point [F]. Mukai proved that M(F)red = Ĵ × J , the
isomorphism being given by the family of twists and translations of F [Mukai 1987, Example 1.15].
Under the same assumptions of Theorem 1, we prove the following (see Theorem 4.2 in the main body of
the text).



The Hilbert scheme of hyperelliptic Jacobians and moduli of Picard sheaves 1383

Theorem 2. There is an isomorphism of k-schemes

M(F)∼= Ĵ × J × Rg.

Enumerative geometry of abelian varieties. A motivation for understanding the scheme structure of
classical moduli spaces such as the Hilbert scheme (Theorem 1) and the moduli space of Picard sheaves
(Theorem 2) comes from the subject of enumerative geometry of abelian varieties.

For instance, the Hilbert scheme of curves (in a 3-fold) is the main player in Donaldson–Thomas
theory — see, for instance, [Bryan et al. 2018] for an exhaustive treatment (including several interesting
conjectures) of the Enumerative Geometry of curves on abelian surfaces and 3-folds. Understanding the
scheme structure (or even the closed points!) of the Hilbert scheme of curves on a 3-fold is very often a
hopeless problem. Of course, Donaldson–Thomas theory has developed several sophisticated tools to
deal with the lack of an explicit description of the Hilbert scheme; however, this paper shows that, at least
for an arbitrary Abel–Jacobi curve, the Hilbert scheme can be described completely. Thus an immediate
corollary of Theorem 1 is the explicit description of the Donaldson–Thomas theory of an Abel–Jacobi
curve; see Section 3C.

On the other hand, it is conceivable that the theory of Picard sheaves, arising as a direct application of
the Fourier–Mukai transform, could be exploited to aim for a deeper understanding of the intersection
theory and cohomology of Jacobians, and possibly their compactifications. Having at one’s disposal global
results such as Theorem 2 might allow one to treat the whole moduli space (the universal Jacobian over
the moduli space of curves) at once in developing a theory of tautological rings for (possibly compactified,
universal) Jacobians, by combining Fourier–Mukai techniques with suitable analogues of the intersection
theoretic calculations carried out in [Pagani et al. 2018].

Conventions. We work over an algebraically closed field k of characteristic p 6= 2. All curves are smooth
and proper over k, they are (geometrically) connected, and their Jacobians are principally polarised by
the Theta divisor.

1. Ramification of Torelli and the Hilbert scheme

In this section we provide the framework for where the problem tackled in this paper naturally lives in.

1A. Deformations of Abel–Jacobi curves. The following theorem was proved in the stated form by
Lange and Sernesi, but see also the work of Griffiths [1967].

Theorem 1.1 [Lange and Sernesi 2004, Theorem 1.2]. Let C be a smooth curve of genus g ≥ 3:

(i) If C is nonhyperelliptic, then HilbC/J is smooth of dimension g.

(ii) If C is hyperelliptic, then HilbC/J is irreducible of dimension g and everywhere nonreduced, with
Zariski tangent space of dimension 2g− 2.

In both cases, the only deformations of C in J are translations.
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The statement of Theorem 1.1 is proved over C in [Lange and Sernesi 2004], but it holds over
algebraically closed fields k of arbitrary characteristic. To see this, we need Collino’s extension of the
Ran–Matsusaka criterion for Jacobians to an arbitrary field, which we state here for completeness.

Theorem 1.2 [Collino 1984]. Let X be an abelian variety of dimension g over an algebraically closed
field k. Let D be an effective 1-cycle generating X and let 2⊂ X be an ample divisor such that D ·2= g.
Then (X,2, D) is a Jacobian triple.

Proof of Theorem 1.1. Let C→ Spec k be a smooth curve of genus g and fix an Abel–Jacobi map C ↪→ J .
Consider the normal bundle exact sequence

0→ TC → TJ |C → NC → 0.

Since we have a canonical identification TJ |C = H 1(C,OC)⊗k OC , the induced cohomology sequence is

0→ H 1(C,OC)→ H 0(C, NC)
∂
−→ H 1(C, TC)

σ
−→ H 1(C,OC)

⊗2. (1-1)

Since H 0(C, NC) is the tangent space to the Hilbert scheme, and dimk H 1(C,OC) = g, it is clear that
HilbC/J is smooth of dimension g if and only if ∂ = 0, if and only if σ is injective. The map σ factors
through the subspace Sym2 H 1(C,OC), and its dual is the multiplication map

µC : Sym2 H 0(C, KC)→ H 0(C, K 2
C),

where KC is the canonical line bundle of C . For a modern, fully detailed proof of the identification
σ∨ = µC , we refer the reader to [Landesman 2019, Theorem 4.3]. By a theorem of Max Noether
[Arbarello et al. 1985, Chapter III, Section 2], the map µC is surjective if and only if C is nonhyperelliptic
(see also [Griffiths 1967; Andreotti 1958] for different proofs). If C is hyperelliptic, the quotient
H 0(C, NC)/H 1(C,OC) = Im ∂ has dimension g− 2, as shown directly in [Oort and Steenbrink 1980,
Section 2] by choosing appropriate bases of differentials. This proves part (i) of Theorem 1.1, along with
the count h0(C, NC)= 2g− 2 (and the nonreducedness statement) of part (ii). So in the nonhyperelliptic
case, HilbC/J is smooth of dimension g.

To finish the proof of part (ii), suppose C is hyperelliptic, and let D ⊂ J be a closed 1-dimensional
k-subscheme defining a point of HilbC/J . Then D is represented by the minimal cohomology class

2
g−1
C

(g− 1)!

on J . This implies at once that D generates J , and that D · 2C = g. Therefore, by Theorem 1.2,
(Pic0 D,2D) and (J,2C) are isomorphic as principally polarised abelian varieties. By Torelli’s theorem,
this implies (using also that C is hyperelliptic) that D is a translate of C . Thus HilbC/J is irreducible of
dimension g, and its k-points coincide with those of J . The result follows. �

Corollary 1.3. Let J be the Jacobian of a nonhyperelliptic curve C. Then the family of translations of C
inside J induces an isomorphism

J ∼
−→ HilbC/J .
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Proof. The natural morphism h : J → HilbC/J is proper (since J is proper and the Hilbert scheme is
proper, hence separated), injective on points and tangent spaces — since the tangent map at 0 ∈ J is the
map dh : H 1(C,OC) ↪→ H 0(C, NC) in the sequence (1-1). Thus h is a closed immersion, in particular it
is unramified. However, the proof of Theorem 1.1 shows that h : J→HilbC/J is bijective and, since C is
nonhyperelliptic, dh is an isomorphism. Thus h is an isomorphism. �

Remark 1.4. If C is a generic complex curve of genus at least 3, its 1-cycle on J is not algebraically
equivalent to the cycle of−C by a famous theorem of Ceresa [1983]. Here−C is the image of C under the
automorphism −1 : J → J . Therefore the Hilbert scheme HilbJ contains another component Hilb−C/J ,
disjoint from HilbC/J and still isomorphic to J .

1B. Torelli problems. Consider the Torelli morphism

τg :Mg→Ag

from the stack of nonsingular curves of genus g to the stack of principally polarised abelian varieties,
sending a curve to its (canonically polarised) Jacobian. The infinitesimal Torelli problem asks whether the
Torelli morphism is an immersion. It is well-known that τg is ramified along the hyperelliptic locus; this
is again Noether’s theorem, stating that µC , the codifferential of τg at [C] ∈Mg, is not surjective. So,
even though τg is injective on geometric points by Torelli’s theorem, it is not an immersion.

To sum up, we have the following. Let C be an arbitrary smooth curve of genus g ≥ 3, and let J be its
Jacobian. Then the following conditions are equivalent:

(i) C is hyperelliptic.

(ii) HilbC/J is singular at [aj : C ↪→ J ].

(iii) The embedded deformations of C into J are obstructed.

(iv) τg :Mg→Ag is ramified at [C].

(v) Infinitesimal Torelli fails at C .

The local Torelli problem for curves, studied by Oort and Steenbrink [1980], asks whether the morphism

tg : Mg→ Ag

between the coarse moduli spaces is an immersion. These schemes do not represent the corresponding
moduli functors, so the local structure of tg is not (directly) linked with deformation theory of curves and
their Jacobians. However, introducing suitable level structures, one replaces the normal varieties Mg and
Ag with smooth varieties

M (n)
g and A(n)g

that are fine moduli spaces for the corresponding moduli problem, and are étale over Mg and Ag,
respectively.
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Let p ≥ 0 be the characteristic of the base field. Oort and Steenbrink show that tg is an immersion if
p = 0. The answer to the local Torelli problem is also affirmative if p > 2, at almost all points of Mg.
More precisely, tg is an immersion at those points in Mg representing curves C such that Aut C has no
elements of order p [Oort and Steenbrink 1980, Corollary 3.2]. Finally, tg is not an immersion if p = 2
and g ≥ 5 [loc. cit., Corollary 5.3].

2. Moduli spaces with level structures

In this section we introduce the moduli spaces of curves and abelian varieties we will be working with
throughout.

2A. Level structures. Let S be a scheme. An abelian scheme over S is a group scheme X→ S which is
smooth and proper and has geometrically connected fibres. We let X̂→ S denote the dual abelian scheme.
A polarisation on X→ S is an S-morphism λ : X→ X̂ such that its restriction to every geometric point
s ∈ S is of the form

φL : Xs→ X̂s, x 7→ t∗xL ⊗L ∨,

for some ample line bundle L on Xs . Here and in what follows, tx is the translation y 7→ x + y by the
element x ∈ Xs . We say λ is principal if it is an isomorphism.

Fix an integer n > 0 and an abelian scheme X→ S of relative dimension g. Multiplication by n is an
S-morphism of group schemes

[n] : X→ X,

and we denote its kernel by Xn . Assuming n is not divisible by p, we have that Xn is an étale group
scheme over S, locally isomorphic in the étale topology to the constant group scheme (Z/nZ)2g. One has
X̂n = X D

n , where the superscript D denotes the Cartier dual of a finite group scheme. Then any principal
polarisation λ on X induces a skew-symmetric bilinear form

En : Xn ×S Xn
id×λ
−−−→ Xn ×S X D

n
en
−→ µn,

where en is the Weil pairing. The group Z/nZ is Cartier dual to µn . We endow (Z/nZ)g ∼
−→ µ

g
n with

the standard symplectic structure, given by the 2g× 2g matrix(
0 1g

−1g 0

)
.

Definition 2.1 [Oort and Steenbrink 1980]. A (symplectic) level-n structure on a principally polarised
abelian scheme (X/S, λ) is a symplectic isomorphism

α : (Xn, En)
∼
−→ (Z/nZ)2g.

A level-n structure on a smooth proper curve C→ S is a level structure on its Jacobian Pic0(C/S)→ S.
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Curves with level structure are represented by pairs (C, α). We consider (C, α) and (C ′, α′) as being
isomorphic if there is an isomorphism u : C ∼

−→ C ′ such that the induced isomorphism J (u) : J ′ ∼−→ J
between the Jacobians takes α′ to α. An isomorphism between (X, λ, α) and (X ′, λ′, α′) is an isomorphism
(X ′, λ′) ∼−→ (X, λ) of principally polarised abelian schemes, taking α′ to α.

Remark 2.2. If C is a curve of genus g ≥ 3 with trivial automorphism group, and α is a level structure
on C , then (C, α) is not isomorphic to (C,−α). On the other hand, if J denotes the Jacobian of C , one
has that (J,2C , α) and (J,2C ,−α) are isomorphic, because the automorphism −1 : J → J , defined
globally on J , identifies the two pairs.

2A1. Choice of level. As indicated by Theorem 2.3 below, moduli spaces of curves and abelian varieties
with level structure are well behaved when the condition (p, n)= 1 is met. For later purposes, we need
to strengthen the condition (p, n)= 1. Note that p = char k is fixed, as well as the genus g. However, we
are free to choose n ≥ 3, and the condition we require is that the order of the symplectic group

|Sp(2g,Z/nZ)| = ng2
·

g∏
i=1

(n2i
− 1)

is not divisible by p. In particular, this implies (p, n)= 1. From now on,

n is fixed in such a way that p does not divide |Sp(2g,Z/nZ)|. (2-1)

This condition implies that the symplectic group Sp(2g,Z/nZ) acts freely and transitively on the set
of symplectic level-n structures on a smooth curve defined over k. This will be used in the proof of
Lemma 2.5.

2B. Moduli spaces. Let M
(n)
g be the functor Schop

k → Sets sending a k-scheme S to the set of S-
isomorphism classes of curves of genus g with level-n structure. Similarly, let A

(n)
g be the functor sending

S to the set of S-isomorphism classes of principally polarised abelian schemes of relative dimension g
over S equipped with a level-n structure.

Theorem 2.3. If n ≥ 3 and (p, n)= 1, the functors M
(n)
g and A

(n)
g are represented by smooth quasipro-

jective varieties M (n)
g and A(n)g of dimensions 3g− 3 and g(g+ 1)/2 respectively.

Proof. For the statement about M
(n)
g we refer to [Popp 1977], whereas the one about A

(n)
g is [Mumford

1965, Theorem 7.9]. �

Consider the morphism
jn : M (n)

g → A(n)g (2-2)

sending a curve with level structure to its Jacobian, as usual principally polarised by the Theta divisor.
The map jn is generically of degree two onto its image, essentially because of Remark 2.2. To link it
back to tg : Mg→ Ag, Oort and Steenbrink form the geometric quotient

V (n)
= M (n)

g /6,
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where

6 : M (n)
g → M (n)

g (2-3)

is the involution sending [D, β] 7→ [D,−β]. Note that 6 is the identity if g ≤ 2. The map jn factors
through a morphism

ι : V (n)
→ A(n)g ,

which turns out to be injective on geometric points [Oort and Steenbrink 1980, Lemma 1.11]. In fact, we
need the following stronger statement:

Theorem 2.4 [Oort and Steenbrink 1980, Theorem 3.1]. If g ≥ 2 and char k 6= 2 then ι is an immersion.

Oort and Steenbrink use this result crucially to solve the local Torelli problem as we recalled in
Section 1B. For us, it is not important to have the statement of local Torelli (which strictly speaking only
holds globally in characteristic 0); all we need in our argument is Theorem 2.4, which is why we require
the base field k to have characteristic p 6= 2.

The following result was proven in [Deligne and Mumford 1969, Proposition 5.8] in greater generality.
We give a short proof here for the sake of completeness.

Lemma 2.5. The maps ϕ : M (n)
g →Mg and ψ : A(n)g →Ag forgetting the level structure are étale.

Proof. We start by showing that ϕ is flat. Choose an atlas for Mg, that is, an étale surjective map
a : U →Mg from a scheme. Form the fibre square

V M (n)
g

U Mg

�

b

ϕ

a

and pick a point u ∈U , with image y= a(u)∈Mg. The fibre Vu ⊂ V is contained in b−1ϕ−1(y), which is
étale over ϕ−1(y) because b is étale. In particular, since ϕ−1(y) is finite, the same is true for Vu . Therefore
V → U is a map of smooth varieties with fibres of the same dimension (zero); by “miracle flatness”
[EGA IV3 1966, Proposition 15.4.2], it is flat; therefore ϕ is flat. On the other hand, the geometric fibres
of ϕ are the symplectic groups Sp(2g,Z/nZ), and they are reduced by our choice of n (see (2-1) in
Section 2A1). Hence ϕ is smooth of relative dimension zero, that is, étale. The same argument applies to
the map ψ , with the symplectic group replaced by Sp(2g,Z/nZ)/± 1. �

Remark 2.6. The maps M (n)
g → Mg and A(n)g → Ag down to the coarse moduli schemes are still finite

Galois covers, but they are not étale.
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By Lemma 2.5, we can identity the tangent space to a point [C, α] ∈ M (n)
g with the tangent space to its

image [C] ∈Mg under ϕ, and similarly on the abelian variety side. Moreover, the cartesian diagram

M (n)
g A(n)g

Mg Ag

�

jn

ϕ ψ

τg

(2-4)

allows us to identify the map

σ : H 1(C, TC)→ Sym2 H 1(C,OC),

already appeared in (1-1), with the tangent map of jn at a point [C, α]. As we already mentioned, in [Oort
and Steenbrink 1980, Section 2] it is shown that if C is hyperelliptic the kernel of σ has dimension g− 2.

3. Proof of the main theorem

3A. Proof of Theorem 1. Let C be a hyperelliptic curve of genus g ≥ 3 and let J be its Jacobian. Fix
an Abel–Jacobi embedding C ↪→ J and let

H := HilbC/J

be the Hilbert scheme component containing such embedding as a point. Let

Z H × J

H

ι

pr1

be the universal family over the Hilbert scheme.

Lemma 3.1. The restriction morphism

ι∗ : Pic0(H × J/H)→ Pic0(Z/H)

is an isomorphism of abelian schemes over H.

Proof. We use the critère de platitude par fibres [EGA IV3 1966, Théorème 11.3.10] in the following
special case: suppose given a scheme S and an S-morphism f : X→ Y such that

(a) X/S is finitely presented and flat,

(b) Y/S is locally of finite type, and

(c) fs : Xs→ Ys is flat for each s ∈ S. Then f is flat.

Applying this to (S, f )= (H, ι∗), we conclude that ι∗ is flat. But Pic0(H × J/H) is isomorphic, over H ,
to the constant abelian scheme H × J , and ι∗ is an isomorphism on each fibre over H . Therefore it is a
flat, unramified and bijective morphism, hence an isomorphism. �
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Let α be a fixed level-n structure on J , with n ≥ 3 chosen as in Section 2A1. Form the constant
level structure αH on the abelian scheme H × J → H . Transferring the level structure αH from H × J
to Pic0(Z/H) using the isomorphism ι∗ of Lemma 3.1, we can now regard Z → H as a family of
Abel–Jacobi curves with level-n structure. Since M (n)

g is a fine moduli space for these objects, we obtain
a morphism

f : H → M (n)
g . (3-1)

Note that the topological image of f is just the point x ∈ M (n)
g corresponding to [C, α]. The tangent map

d f at the point [C] ∈ H is the connecting homomorphism

∂ : H 0(C, NC)→ H 1(C, TC),

already appeared in (1-1).
Our next goal is to view the Hilbert scheme H over a suitable artinian scheme Rg. Recall the Torelli

type morphism jn introduced in (2-2). We define

Rg ⊂ M (n)
g

to be the scheme-theoretic fibre of jn over the moduli point [J, α] ∈ A(n)g . Let y ∈ V (n) be the image of
the point x = [C, α] under the quotient map

M (n)
g → V (n)

= M (n)
g /6,

where 6 is the involution first appeared in (2-3). During the proof of [Oort and Steenbrink 1980,
Corollary 3.2] it is shown that one can choose local coordinates t1, . . . , t3g−3 around x such that 6∗ti = ti
if i = 1, . . . , 2g− 1 and 6∗ti =−ti if i = 2g, . . . , 3g− 3. Oort–Steenbrink deduce that

Ôy = Ô6
x = k[[t1, . . . , t2g−1, t2

2g, t2gt2g+1, . . . , t2
3g−3]]. (3-2)

Since we have a factorisation

jn : M (n)
g → V (n) ι

↪−→ A(n)g

where ι is an immersion by Theorem 2.4, we deduce from (3-2) that

Rg = Spec k[s1, . . . , sg−2]/m
2,

where m = (s1, . . . , sg−2) ⊂ k[s1, . . . , sg−2]. For instance, R3 is the scheme of dual numbers k[s]/s2,
and if g = 4 we get the triple point k[s, t]/(s2, st, t2).

Recall the cohomology sequence

0→ H 1(C,OC)→ H 0(C, NC)
∂
−→ H 1(C, TC)

σ
−→ H 1(C,OC)

⊗2, (3-3)

where σ factors through Sym2 H 1(C,OC), the tangent space of Ag at [J,2C ]. Since C is hyperelliptic,
the image of ∂ has dimension g− 2> 0. In other words, the differential ∂ = d f , where f was defined
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in (3-1), does not vanish at the point [C] ∈ H . Thus f is not scheme-theoretically constant, although
x = [C, α] ∈ M (n)

g is the only point in the image. On the other hand, the composition

jn ◦ f : H → M (n)
g → A(n)g

is the constant morphism since its differential is identically zero. Indeed the composition

σ ◦ ∂ : H 0(C, NC)→ H 1(C, TC)→ Sym2 H 1(C,OC)

vanishes by exactness of (3-3). So the image point [J, α] does not deform even at first order, and we
conclude that f factors through the scheme-theoretic fibre of jn . This gives us a morphism

π : H → Rg. (3-4)

We will exploit the following technical lemma:

Lemma 3.2 [Kollár 1996, Lemma 1.10.1]. Let R be the spectrum of a local ring, p : U→ V a morphism
over R, with U→ R flat and proper. If the restriction p0 : U0→ V0 of p over the closed point 0 ∈ R is an
isomorphism, then p is an isomorphism.

Recall that J = Hred, so we have a closed immersion J ↪→ H (with empty complement). Consider the
closed point 0 ∈ J corresponding to C . Let us fix a regular sequence f1, . . . , fg in the maximal ideal
of OJ,0. Choose lifts f̃i ∈ OH,0 along the natural surjection OH,0 � OJ,0, for i = 1, . . . , g. Then we
consider the zero scheme

i : Sg = Z( f̃1, . . . , f̃g) ↪→ H, (3-5)

the largest artinian scheme supported at 0 ∈ H . We next show that the composition

ρ = π ◦ i : Sg ↪→ H → Rg (3-6)

is an isomorphism, where π is defined in (3-4). We will need the following lemma:

Lemma 3.3. Let ` : k[x1, . . . , xd ]/m
2 � B be a surjection of local Artin k-algebras such that the

differential d` is an isomorphism. Then ` is an isomorphism.

Proof. Since d` is an isomorphism by assumption, B has embedding dimension d , hence it can be written
as a quotient k[x1, . . . , xd ]/I , so that its maximal ideal is mB = m/I . Starting from the surjection `,
it is then clear that m2

⊂ I , and we have to show the other inclusion. This follows from the chain of
isomorphisms

m/m2 ∼
−→mB/m

2
B =

m/I
(m/I )2

=
m/I

m2/I ∩m2 =
m/m2

I/m2 ,

where the first isomorphism is (d`)∨. �

Lemma 3.4. The tangent map dρ : TSg → TRg is an isomorphism.
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Proof. The kernel of H 1(C, TC)→ H 1(C,OC)
⊗2, namely the image of ∂ : H 0(C, NC)→ H 1(C, TC), is

the tangent space TRg to the artinian scheme Rg, as the latter is by definition the fibre of jn . We then have
a direct sum decomposition T0 H = T0 J ⊕ TRg . The intersection of Sg and J inside H is the reduced
origin 0∈ J , so the linear subspace TSg ⊂ T0 H intersects T0 J trivially, which implies that the tangent map

dρ : TSg ⊂ T0 J ⊕ TRg → TRg

is injective. On the other hand, the inclusion TSg ⊂ T0 H is cut out by independent linear functions,
again because TSg ∩ T0 J = (0). It follows that the linear inclusion TSg ⊂ T0 H has codimension equal to
dim T0 J = g, thus

dim TSg = dim T0 H − g = g− 2= dim TRg .

The result follows. �

Corollary 3.5. The map ρ : Sg→ Rg of (3-6) is an isomorphism.

Proof. The map ρ is proper, injective on points and, by Lemma 3.4, injective on tangent spaces. Then
it is a closed immersion; in fact, by Lemma 3.4 again, it is an isomorphism on tangent spaces, so by
Lemma 3.3 it is an isomorphism. �

The corollary yields a section of π ,

s = i ◦ ρ−1
: Rg

∼
−→ Sg ↪→ H,

which finally allows us to prove the main result of this paper.

Theorem 3.6. Let C he a hyperelliptic curve of genus g ≥ 2, and let J be its Jacobian. Then there is an
isomorphism of schemes

J × Rg
∼
−→ H.

Proof. If g = 2, the Hilbert scheme is nonsingular because ∂ : H 0(C, NC)→ H 1(C, TC), the connecting
homomorphism in (1-1), vanishes. If g ≥ 3, consider the translation action µ : J × H → H by J on the
Hilbert scheme and the composition

J × Rg
idJ ×s
↪−−−→ J × H µ

−→ H,

viewed as a morphism over the artinian scheme Rg. Since it restricts to the identity idJ over the closed
point of Rg, by Lemma 3.2 it must be an isomorphism. �

3B. Relation between Hilbert scheme and Torelli. Let z= [J,2C ] be a point in the image of the Torelli
morphism τg :Mg→Ag . The fibre of τg over Spec k(z)→Ag is, topologically, just a point, by Torellli’s
theorem. This point is scheme-theoretically reduced if C is nonhyperelliptic. However, thanks to the
cartesian diagram (2-4), what we can observe is that τ−1

g (z)=Mg ×Ag Spec k(z)⊂Mg is the artinian
scheme Rg when z represents a hyperelliptic Jacobian. Theorem 3.6 thus fully develops in a qualitative
form the idea already present in [Lange and Sernesi 2004], namely that understanding the ramification
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(the fibres) of the Torelli morphism is equivalent to understanding the singularities of the Hilbert scheme;
what the present work shows is that these singularities are controlled by the artinian scheme Rg.

The results proved so far essentially show the following:

Proposition 3.7. Let C be a smooth curve of genus g ≥ 2, and let J be its Jacobian. Then τ−1
g ([J,2C ])

is isomorphic to the largest closed subscheme of HilbC/J supported at [aj : C ↪→ J ].

Proof. In the nonhyperelliptic case, we have τ−1
g ([J,2C ])∼= Spec k, because τg is unramified at [C]. The

result then follows because J → HilbC/J is an isomorphism (by Corollary 1.3). In the hyperelliptic case
we get, using Corollary 3.5,

Sg
∼
−→ Rg = τ

−1
g ([J,2C ]),

where Sg ⊂ HilbC/J , introduced in (3-5), is precisely the largest subscheme of the Hilbert scheme
supported at [aj : C ↪→ J ]. �

3C. Donaldson–Thomas invariants for Jacobians. Let C be a smooth complex projective curve of
genus 3. One can study the “C-local Donaldson–Thomas invariants” of the abelian 3-fold J = Pic0 C .
As explained in [Ricolfi 2018a; 2018b], these invariants are completely determined by the “BPS number”
of the curve,

nC = νH (IC) ∈ Z,

in the sense that their generating function is equal to the rational function

nC · q−2(1+ q)4.

Here νH : HilbC/J → Z is the Behrend function of the Hilbert scheme. The Behrend function attached to
a general finite type C-scheme X is an invariant of the singularities of X . It was introduced in [Behrend
2009] and is now a key tool in Donaldson–Thomas theory. For a smooth scheme Y one has that νY is
the constant (−1)dim Y , and moreover νX×Y = νX · νY for two complex schemes X and Y . While for
nonhyperelliptic C we have nC =−1 (because the Hilbert scheme is a copy of the smooth 3-fold J ), the
structure result

HilbC/J = J ×Spec C[s]/s2

in the hyperelliptic case yields nC = −2, because the scheme of dual numbers has Behrend function
νR3 = 2.

4. An application to moduli spaces of Picard sheaves

Mukai [1981] introduced his celebrated Fourier transform, and gave an application to the moduli space
of Picard sheaves on Jacobians of curves. We now review his results on nonhyperelliptic Jacobians and
extend them to the hyperelliptic case. We assume that the base field k is, as ever, algebraically closed of
characteristic different from 2.
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We let8 : Db( Ĵ )→Db(J ) be the Fourier transform with kernel the Poincaré line bundle P ∈Pic( Ĵ×J ).
If p̂ : Ĵ × J → Ĵ and p̂ : Ĵ × J → J are the projections, by definition one has

8(E )= Rp∗(p̂
∗E ⊗P).

We will denote by 8i (E ) the i-th cohomology sheaf of the complex 8(E ).
Let p0 ∈ C be a point on a smooth curve of genus g ≥ 2. Let us form the line bundle ξ = OC(dp0).

From now on we view it as a sheaf on Ĵ by pushing it forward along the Abel–Jacobi map aj : C ↪→ J
followed by the identification of J with its dual. Applying his Fourier transform, Mukai constructs

F =81(aj∗ξ), (4-1)

a Picard sheaf of rank g−d−1 living on J . Assume 1≤ d ≤ g−1, so that by [Mukai 1981, Lemma 4.9]
we know that F is simple (that is, EndOJ (F)= k), and

dim Ext1OJ
(F, F)=

{
2g if C is not hyperelliptic,
3g− 2 if C is hyperelliptic.

(4-2)

Let SplJ be the moduli space of simple coherent sheaves on J , and let M(F)⊂ SplJ be the connected
component containing the point corresponding to F . It is shown in [loc. cit., Theorem 4.8] that if g = 2
or C is nonhyperelliptic, the morphism

f : Ĵ × J → M(F), (η, x) 7→ t∗x F ⊗Pη, (4-3)

is an isomorphism. By (4-2), the space M(F) is reduced precisely when C has genus 2 or is nonhyperel-
liptic. For C hyperelliptic, f turns out to be an isomorphism onto the reduction M(F)red ( M(F), as
Mukai showed [1987, Example 1.15].

Remark 4.1. The moduli space M(F) is a priori only an algebraic space. But an algebraic space is a
scheme if and only if its reduction is a scheme. Therefore M(F) is a scheme because of the isomorphism
Ĵ × J ∼= M(F)red.

The following result, which can be seen as a corollary of Theorem 3.6, completes the study of Picard
sheaves on Jacobians considered by Mukai, namely those of rank g− d − 1, with d ≤ g− 1.

Theorem 4.2. Let C be a hyperelliptic curve of genus g ≥ 2. Let J be its Jacobian and F a Picard sheaf
as above. Then, as schemes,

M(F)= Ĵ × J × Rg.

Proof. The case g = 2 is already covered by Mukai’s tangent space calculation. By Theorem 3.6, it is
enough to exhibit an isomorphism Ĵ × H ∼

−→ M(F), where as usual H ⊂ HilbJ is the Hilbert scheme
component containing the Abel–Jacobi point [C]. We will do this by extending the morphism (4-3)
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defined by Mukai, that is, completing the diagram

Ĵ × J M(F)red

Ĵ × H M(F)

∼

φ

(4-4)

and showing that the extension φ is an isomorphism. Recall that via the identification J = Hred we can
identify a k-valued point x ∈ J (k) with a k-valued point of H . Also, for any such point x ∈ J ⊂ H ,
we will use the notation x + p0 for the point on the Abel–Jacobi curve txC ⊂ J obtained by translating
p0 ∈ C ⊂ J via the automorphism tx : J → J . Let

Z ι
↪−→ H × J → H

be the universal family of the Hilbert scheme: the fibre of Z→ H over Spec k(x) ↪→ H is the subscheme
txC ⊂ J , and ι, the universal Abel–Jacobi map, restricts to aj ◦ t−x : txC→ C ↪→ {x}× J over the point
x ∈ H . We now construct a section σ of Z→ H restricting to the divisor dp0 on C (in other words, a
“universal” version of ξ ). If q : H → J denotes the projection (forgetting the nonreduced structure) and
u : J → J is the composition tdp0 ◦ [d], the section σ is the map

σ : H (1H ,q)
−−−→ H × J 1H×u

−−−→ H × J, x 7→ (x, d(x + p0)).

Here we view d(x + p0) as a degree d divisor on the translated Abel–Jacobi curve txC ⊂ J , in particular
the image of σ clearly lands inside Z . Let L = OZ(σ ) be the associated line bundle on the total space Z .
Then, by construction, restricting L to a fibre of Z→ H we get

L |tx C = Otx C(d(x + p0))= t∗
−xξ. (4-5)

If we consider the pushforward ι∗L to H × J , using (4-5) we obtain

(ι∗L )|x×J = (aj ◦ t−x)∗(L |tx C)= aj∗ξ. (4-6)

Note that L is flat over H (because Z→ H is flat), therefore the same is true for ι∗L . Since taking the
Fourier–Mukai transform commutes with base change, (4-6) yields

81(ι∗L )|x×J =8
1(aj∗ξ)= F. (4-7)

Now we consider the following diagram:

( Ĵ × J )× J (J × J )× J J × J J

Ĵ × J ( Ĵ × H)× J (J × H)× J H × J

i

∼ m×idJ pr1

∼pr13 µ×idJ

where m and µ are the translation actions by J on J and H respectively. The Fourier–Mukai transform
81(ι∗L ) lives on H × J and is flat over H , by flatness of ι∗L . By (4-7), we know that the families of
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sheaves 81(ι∗L )|J×J and pr∗1 F (both flat over J ) define the same morphism J → M(F), namely the
constant morphism hitting the point [F]. Since Mukai’s morphism Ĵ × J → M(F), defined in (4-3),
corresponds (after identifying J with its dual) to the family of sheaves

(m× idJ )
∗ pr∗1 F ⊗ (pr13 ◦ i)∗P,

it follows that the family
(µ× idJ )

∗81(ι∗L )⊗ pr∗13 P

defines an extension φ : Ĵ × H → M(F), completing diagram (4-4). We know that φ is an isomorphism
around [ξ ] 7→ [F]. Indeed, φ is precisely the morphism constructed by Mukai [1987, Proposition 1.12],
where he proves that M(ξ) and M(F) are isomorphic along a Zariski open subset. The construction is
homogeneous, in the sense that φ does not depend on the initial point [ξ ] ∈ M(ξ). Therefore φ is globally
an isomorphism, as claimed. �

Remark 4.3. The connected component M(ξ) of the moduli space of simple sheaves containing the
point [ξ ] is the relative Picard variety Picd(Z/H), which can be identified with Ĵ × H by Lemma 3.1. It
is possible to adapt the proof of [Mukai 1987, Proposition 1.12] to show that the birational map

Picd(Z/H) 99K M(F)

is everywhere defined (and an isomorphism), giving an immediate proof of Theorem 4.2. We preferred to
present the argument above, because the construction makes the isomorphism φ : Ĵ × H → M(F) arise
directly, as a “thickening” of Mukai’s isomorphism Ĵ × J → M(F)red. Moreover the argument makes
explicit use of (the properties of) the Fourier–Mukai transform.
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