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Arakelov geometry on degenerating curves
By Gerd Faltings at Bonn

Abstract. We study the behaviour of the Arakelov metric on a smooth curve under
semistable degeneration. The final result is a complicated formula involving the local discrim-
inants of the singularities, and the graph governing the degeneration.

1. Introduction

Arakelov theory was introduced more than forty years ago ([1]) to define an archimedean
analogue of the intersection pairing on algebraic surfaces. Especially for curves over the com-
plex numbers we defined in [3] an invariant ı which is an archimedean analogue of the dis-
criminant, to be able to formulate an Arakelov-type Noether formula. A natural question is the
behaviour of ı at the boundary of the moduli-space of stable curves. A naive hope might be
that it behaves like the logarithm of a metric on a rational combination of the boundary divi-
sors. That is, ı should be a rational linear combination of the � log jtej, where the te are local
equations for the irreducible components of the boundary divisor. However, this is not the case:
Namely, ı behaves like a rational function of homogeneous degree one in the � log jtej (with
coefficients continuous functions on the base), except for a loglog-term which comes from the
singularities of the metric on differentials on degenerating abelian varieties. More generally, we
can describe the asymptotic behaviour of all Green’s functions, for a family C of semistable
curves over a complex analytic base S :

Namely, each fibre Cs is (non-canonical) the union of curves Cv;s with disks removed,
parametrised by the vertices v of the dual graph � describing the degeneration, and annuli
parametrised by the edges e of � . On each Cv;s the Green’s function differs, up to uniformly
(in s) bounded terms, from a well-behaved function by a constant which can be computed
from � . On the annuli we have “linear interpolation” except for some explicit corrections.
For degenerations over a one-dimensional base this has been studied by Robin de Jong, [5].
Robert Wilms has investigated the delta function in his PhD thesis [8] (Bonn 2016). However,
he relates it to integrals over theta functions and his results are very much disjoint from ours.
Also Jorgensen ([6]) and Wentworth ([7]) have studied the problem using theta functions. Our
methods are more geometric than theirs, and do not use theta functions except to the extent
they appear in the definition of ı. We study the asymptotics of the Arakelov functions first in
a simplified model (“linear interpolation”) where they are determined by the metrised graph � .
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After that we add corrections which (except for a global constant arising from averaging) can
be computed locally.

The basic setup is a family of semistable curves over an C-analytic space, with smooth
generic fibre. We consider functions depending on r points on a smooth curve. By asymptotics
we mean that we investigate them on the space of semistable r-punctured curves of genus g,
and determine them modulo uniformly bounded functions. Equivalently, we consider a versal
deformation of a punctured semistable curve over a polydisk, and consider the functions in
a neighbourhood of the origin in the base, up to bounded (uniformly in s) functions. As the
moduli-space of stable punctured curves is compact finitely many neighbourhoods of base
points s suffice to cover it. Also at one stage we need asymptotics of metrics. For this we
define a reference metric and then determine the difference up to uniformly bounded (in s)
contributions.

To describe the asymptotic we need the theory of semistable degenerations of abelian
varieties, especially when applied to Jacobians. We thus start with this theory.

2. Degenerating abelian varieties

In [4] we develop a classification of semiabelian degenerations of abelian varieties, over
normal base schemes. There we claim somehow optimistically that if the base is a scheme of
finite type over C, the corresponding complex analytic picture is what it should be. As there
have been objections about missing details we give some more:

Suppose S is a normal scheme of finite type over C, s 2 S a C-point, andG ! S a semi-
abelian scheme with generically good reduction. We assume that this holds over a Zariski open
Sı which is the complement of a divisor. Then over the formal completion OS of S (in s) G is
given as a quotient

G D QG=�.Y /;

where QG is a global extension
0! T ! QG ! A! 0

with T a split torus with character group X , and A an abelian variety. Furthermore, Y � X is
a subgroup of finite index,

� W Y ! QG.Sı/

a homomorphism of the form � D �1�2, where

�1 W Y ! T .Sı/

is a homomorphism given by a bilinear form

b W X � Y ! �.Sı;Gm/

with b.y; y/ regular and a nonunit at s (for y ¤ 0). Finally, �2 is a homomorphism into the
formal completion at s of QG. Also there exists an ample line bundle M on A whose pullback to
the formal completion of G at s (equal to the formal completion of QG) is induced by an ample
line bundle L on G. Furthermore, the algebraic sections of L on G induce theta series on the
formal completion.

We claim that the map �2 is complex analytic in a neighbourhood of s and that the analytic
space defined by G is the analytic quotient of QG by �.Y /, with its canonical polarisation.



Faltings, Arakelov geometry on degenerating curves 67

For this we denote by T the tangent bundle of G, a vector bundle on S . The exponential
map defines a complex analytic map

exp W T ! G

which induces an isomorphism of a neighbourhood of the zero-section of T onto a neigh-
bourhood of the zero section of G. At the base point s the induced map has as kernel a free
Z-submodule Y0.s/ � T .s/ which generates T .s/ as a complex vector space. The quotient
is QG.s/. In a neighbourhood of s this extends to a discrete Y0 � T contained in the kernel of
exp with quotient an analytic family QG of semiabelian schemes. It follows that Y0.s/ has a sub-
lattice Y1.s/ isomorphic to the fundamental group of T .s/, and a Z-basis of Y1.s/ is a C-basis
of the tangent space of T .s/. This extends to a sublattice Y1 � Y0 which generates the Lie
algebra T1 of a maximal subtorus T � QG. We remark that complex analytic families of alge-
braic tori (like T ) are classified (very much like in the usual algebraic setting) by their lattice
Y.T / � Lie.T /, a locally constant sheaf on the base. For example homomorphisms between
T ’s correspond to homomorphisms between Y ’s, and extensions are locally trivial.

Furthermore, Y.s/=Y1.s/ is a lattice in T =T1 and the quotient

B D .T =T1/=.Y=Y1/

is a complex analytic torus, that is, a family of compact complex analytic Lie groups. Over the
formal completion OS these induce the formal completions of QG, T , and A.

An ample L on G defines a cubical line bundle QL on QG, by pullback. It thus defines
a bi-extension of QG � QG by Gm which is locally (in the analytic sense) in S trivial over T � QG:
Namely the induced extension of T by Gm is locally trivial over QG. Thus the sections form an
extension of the character group X.T / of T by QG. As the bi-extension is formally trivial this
extension has a section in an analytic neighbourhood of s in S .

As the restriction to T � T is trivial, QL defines a Gm-extension of T which is locally
trivial. Thus locally in S T operates on QL which descends to a bundle M on B . Also after
formal completion at 0 we get the formal data from [4, Chapter 2]. As M is ample on the
formal scheme (on the fibre of B at 0 is enough), it is locally in S relatively ample. Finally,
the algebraic sections of L on G induce theta series (which are essentially Fourier expansions
on T ) which are analytic and induce the theta series on the formal completion. It follows that
the formal period map � is analytic (that is, its component �2 is) and the quotient defines the
analytic family induced by G.

We also need estimates on theta functions. Suppose the g � g-matrix Z D X C iY is an
element of the Siegel upper halfplane, and

A D A.Z/ D Cg=.Zg
C ZgZ/

the corresponding principally polarised abelian variety. The corresponding theta series is
defined as

#.z/ D
X

n2Zg

exp.�intZn/ exp.2�intz/;

and its norm as (z D x C iy)

k#k.z/ D exp.��ytY �1y/j#.z/j:
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The theta series is characterised among its translates that it is even and of even order at the
2-division points given by 1=2.Zg/. If we assume that

Y � cI

is bounded below by some positive multiple of the unit matrix, then k#k.z/ is uniformly
bounded above, on all of Cg , with the bound depending on c > 0. On the other hand the
supremum of k#k.x/ on real arguments is > 1 because this holds for the square integral over
such x.

3. Jacobians of degenerating curves

We assume that we have a semistable family C ! S of curves of genus g over a normal
analytic space S , and a base point 0 2 S . We assume that it is smooth over a dense open
Sı � S which is the complement of a divisor D (the discriminant). We further assume that
each irreducible component of D contains the origin 0 2 S . This can be achieved by replacing
S by a smaller disk, an operation which we will repeat without further mentioning.

Associated to the special fibre C0 there is a graph

� D .V ;E/

whose vertices v 2 V correspond to the irreducible components Cv of C0 and whose edges
e 2 E to the double points. We change notations slightly by denoting as Cv the normalisation
of the corresponding component of C0, and by gv its genus. Also we choose some orientation
on the edges. Then C0 is obtained from the disjoint union of the Cv by identifying for each
edge e from v to w points xe 2 Cv and ye 2 Cw . Associated to e is a function te on S , well
defined up to units, such that a local equation of C at the corresponding double point is

ueve D te:

The divisor D is the zero set of the product of the te. More intrinsic a suitable Fitting ideal
of �C=S defines a subscheme of codimension two in C whose connected components are
indexed by E. The projection to S induces an isomorphism of the e-component with a divisor
in S with local equation te. Especially over this divisor we have a section of C which maps to
the non-smooth locus.

The fibres over an s close to the origin are unions of curves with disks removed, and
annuli. The annuli are neighbourhoods of the double points of the special fibre at 0 (this follows
by GAGA from the explicit equation). Their boundaries are disjoint unions of two circle, say
of radius 1 (change te to a multiple if necessary). If we replace the annuli by two disjoint
disks with the same boundary, the result is a smooth and proper family of curves over S . Its
connected components are curves indexed by V and are punctured deformations Cv;s (non-
canonical) of the curves Cv, where we remove small disks around the punctures. The annuli
are indexed by E and have equations

ueve D te; juej; jvej � 1;

where the te are holomorphic functions on S vanishing in 0. The circle defined by

juej D 1
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is glued to the component Cv where v denotes the start of e, and

jvej D 1

to Cw with w the end of e. For simplicity we denote

se D � log jtej;

and assume usually that se > 0, that is, jtej < 1 (if necessary replace S by a smaller neighbour-
hood of 0). By construction in each fibre Cs the annulus labelled by an edge e maps to the two
adjacent curves Cv, via the coordinates ue and ve

In describing asymptotics we usually distinguish between the behaviour on annuli and
that on the punctured Riemann surfaces. On the latter the asymptotics tend to be given by
constants which of course depend on the point s 2 S .

The homology H�.�/ is defined by the complex

ZE
! ZV

which sends an edge e to the difference of its endpoints. We denote its differential by d , and
its adjoint (for the natural inner products) by d t . The differential d maps an edge e to the
difference

d.e/ D v � w

of the start and the end of e, and
d t .v/ D

X
˙e

is the sum (with signs) of the edges starting or ending in e. Then

H0.�;Z/ D Z

and
H1.�;Z/ D X;

where X consists of all linear combinations
P

E nee with boundary zero.
The space RE admits an inner product and a norm given by

hxe; yei D

X
e

xeye:

We also use the scaled inner product h � ; � is , where we apply to one variable the endomor-
phism s which multiplies xe by se. The character group X admits a bilinear pairing b into the
meromorphic functions on S defined by

b.¹meº; ¹neº/ D
Y

tmene
e :

The Jacobian of C=Sı admits a semistable model G D QG=�.X/. Here QG is an exten-
sion of an abelian variety by the torus with character group X . Its special fibre QG0 classi-
fies line bundles on C0 which have degree 0 on each component. Furthermore, the tangent
bundle of QG is the first direct image of OC , so using the exponential map the tangent bundle
parametrises (not uniquely) line bundles on C . The kernel of its exponential map to QG maps to
0 2 G, thus defines line bundles M trivial on S0. By semicontinuity M admits a global section
over a neighbourhood of 0 which generates it over C0 and thus in a neighbourhood. Thus the
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exponential map factors over QG which parametrises certain line bundles which have degree 0
on each Cv. Their restrictions to Cv are classified by the product of the Jacobians J.Cv/, and
the gluings along double points form a homogeneous space over G

E
m . Two such gluings give

isomorphic bundles if they differ by the boundary of an element of G
V
m . Conversely, if we have

such a line bundle over a neighbourhood of 0, then over a possibly smaller neighbourhood it
is parametrised by QG: We may assume that it is trivial on C0. Then with some topology one
checks that it can be given by a small Čech cocycle which lies in the image of the exponential
map. Also the period map has component �1 determined by b.

Line bundles of total degree zero on the formal completion (in 0) OC induce formal sec-
tions of G. A special case where this section vanishes is sometimes denoted O.Cv/: Namely,
assume given a local meromorphic function tv on S which is up to units a power of te for each
edge e for which v is an endpoint. Then O.Cv/ is generated by 1 outside Cv and by tv on its
interior. The condition on tv assures that at a double points with local equation

ueve D te

it is locally generated by a monomial in ue; ve.
For later applications we need a construction of certain theta characteristics on C=Sı.

In general, it is known that the polarisation on the Jacobian can be defined by one of the 22g

symmetric theta divisors which correspond to theta characteristics on the curve, but I do not
know a direct definition of this association. We denote by

QS ! S

the cover defined by adjoining square roots of the te. Over QS we blowup the image of the
locus of t1=2

e , under the section defined by e. The result is a new semistable curve QC= QS with
graph Q� where each edge e is subdivided into two edges e0; e00 with middle ve. The component
parametrised by ve is a projective line, and e0 and e00 have invariant t1=2

e . We choose a line
bundle M on QC such that M has degree gv � 1 on Cv and 1 on Cve

. Then M˝2.
P

e Cve
/ (the

previous condition is satisfied, so we are allowed to form this) has the same degree as !C on
each irreducible component. The two line bundles thus differ on the formal completion and
then over a neighbourhood of 0 by a section of QG which can be divided by 2. Thus we may
modify M by an element of QG so that its square is !C .�

P
e Cve

/.

Lemma 1. This square root has the property that each twist by elements of T Œ2�
(2-torsion points) has the same parity, that is, they are all either even or all odd.

This property determines the theta characteristic M uniquely up to translation by ele-
ments of QGŒ2�. We remark that by the same type of argument or by duality this property
also holds for the bundle M0 below where the degrees of M on the irreducible components
Cve

are �1. Moreover, on the components Cv, M defines a theta characteristic in the usual
sense. Modifying by a 2-division point of QG we may assume that all these theta characteristics
are even.

Proof. We first check this over 0. But the space of global sections over C0 is the direct
sum˚�.Cv;Mv/, as such sections uniquely extend over the Cve

.
We show the parity at 0 is the same as that at a generic fibre: To this end, embed M

into M0 DM.
P

e Cve
/. The quotient M0=M is the direct sum of O.�1/’s on the exceptional
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curves Cve
and thus has trivial cohomology. Choose a sufficiently positive divisor† supported

on the non-exceptional curves Cv. Then the sum of the †-residues (M ˝M0 D !C ) of the
product of two sections induces a perfect symmetric pairing on

M.†/=M.�†/ DM0.†/=M0.�†/:

In it M=M.�†/ and �.C;M.†// form two families of maximal isotropic subspaces (of an
orthogonal space) whose intersection (on each fibre Cs) are the global sections of L or L0.
But it is known that the parity of the intersection dimension is locally constant (on the ortho-
gonal k2n there are two families of maximal isotropic subspaces, stabilised by SO.2n/ and
exchanged by elements of O.2n/ of determinant �1).

So finally we have constructed a theta characteristics such that all translates by 2-division
points of T have the same parity.

4. Homology and cycles

Next we construct nice bases for the homology of the curves Cs , s 2 S0. For this recall
that for a smooth complex curve C of genus g a symplectic basis for the first homology
H1.C;Z/ can be represented by loops

a1; : : : ; ag ; b1; : : : ; bg

which form a basis and have intersection matrix such that the intersection number of aj and bj
is 1, and all others vanish. The intersection numbers depend on the orientation. For the standard
orientation on C the intersection number of the real axis and the imaginary axis (both in the
increasing direction) is C1. This gives a symplectic inner product on the first homology. By
duality we also get a symplectic product on the cohomology.

We now do this in our family. In the fibreCs choose base pointsPs;v in eachC 0
v (given by

sections over S ). First choose loops ai;v, bi;v on each Cv;s (again contained in C 0
s;v) realising

the standard intersection matrix. This defines
P

v gv of the a’s and b’s. Next choose boundary
loops ae on the annuli indexed by edges e, say with winding number C1 in the ue-coordinate.
Also if e starts from v and ends inw chose a path be from Ps;v to a point on the outer boundary
circle juej D 1, then through the annulus to a point on the other boundary, and finally from
there to Pv;s . Adding suitable linear combinations of the previous cycles we may assume that
the paths ae and be have intersection number 0 with all ai;v and bi;v, and that the be are
orthogonal. For the remaining elements of a symplectic basis chose edges e1; : : : ; er such that
evaluation at the ek defines a basis for the dual of X D H1.G;Z/. Here

r D g �
X

v

gv

is the number of loops in � , equal to the rank of X . Denote by �1; : : : ; �r the corresponding
dual basis of X . For the remaining ak’s choose the ae indexed by ek . For the bk’s choose the
linear combination of be’s given by �k .

Next come differentials: The fibresCs are unions of deformations of the curvesCv, where
disks around the punctures are joined by gluing in annuli labelled by the e’s. Especially each
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holomorphic differential on them has well-defined residues along these annuli, namely the
integral over the boundary disks, and the sum of the residues on each Cs;v vanishes. That is,
the residues lie in X ˝C. The residues define a holomorphic map from the direct image of
!X=S to X ˝OS which is surjective at 0 and thus on all of S if it is small enough.

We define a corresponding family of differentials j̨ which gives a basis of the direct
image of !C in a neighbourhood of the origin: Namely first choose families of differentials
˛k;v which specialise in C0 to basis elements of ˚�.Cv; �Cv

/, that is, to sections of !C with
residues 0. Extend them to sections on C with e-residues 0. The real parts of their periods over
the ai;v and bi;v can be prescribed arbitrarily. Add sections of !C on C0 which have residues as
prescribed by �k , and again extends them to sections of !C with the same e-residues. We may
assume that their ai;v- and bi;v-periods are purely imaginary (modify them to adding ˛k;v’s).
On Cs the periods form a matrix which is continuous in S , thus invertible for small s, and we
apply its inverse. It follows that the deformations of the ˛i:v have trivial residues, while those
of the ˛k’s have residues �k;e. Then their integrals over the bk’s are (up to uniformly bounded
corrections) made up of the integrals near the cusps, which are the integrals of �k;edue=ue over
a path from ue D te to ue D 1, that is, ��k;ese. The corrections come from the paths from the
base point Pv;s to the boundary circles. They are uniformly bounded. Then the imaginary part
Y of the period matrix Z is up to a uniformly bounded summand given by the matrixX

e

se�k;e�l;e=.2�/:

Especially it is bounded below by a positive multiple of the unit matrix, provided the se are
big enough.

We normalise the square integrals as

i=.4�/

Z
Cs

˛ ^ N̨

(this differs by a factor 2� from the normalisation in [3] and has the advantage that this fac-
tor does not appear later everywhere in the formulas). The inner products of differentials can
be computed from their periods over the symplectic basis of 1-cycles (which naturally lie in
H 1.Cs;C/) and using the symplectic product (dual to the intersection product on cycles), mul-
tiplied with i=.4�/. A symplectic basis of the homology is given by the ai;v’s and bi;v’s as well
as the ak’s and bk’s. If ˛ and ˇ are holomorphic differentials, then

h˛; Ňi D h˛; ˇ C Ňi:

Especially the 1-cycles on which ˇ has purely imaginary periods do not contribute. For the ˛k

this leaves only the cycles bk , and thus they are perpendicular to the ˛i;v. Furthermore, the
inner product with N̨l is

4�i Re
�Z

bk

˛l

�
:

This is purely imaginary and invariant under exchange of k and l . It follows that if we use
residues to identify the space of ˛k’s with XR, then the real parts of the integrals define a sym-
metric bilinear form bs on X �X . Up to a uniformly (in s) bounded form it is given by the
inner product

2�
X

e

sex
2
e :
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5. Estimates of harmonic functions

Our main results will show that various interesting functions are up to uniformly (in s)
bounded functions constant (with the value depending on .v; s/ on the interiors C 0

s;v (i.e., after
removing the disks), and determine the constants. Also on annuli ueve D te they are sometimes
linear in log.juj/, up to bounded functions, and are thus determined on the annulus by the
asymptotic values on the adjacent C 0

v;s . However, sometimes we need a correction to linearity.
Nevertheless, a model with linear interpolation is useful because it reduces the problem to
computations involving the graph � . These give the correct values for the Arakelov functions
on the C 0

s;v except for a global constant which comes from the lack of linear interpolation.
Finally, on the annuli we have to correct linear interpolation by a local term (only involving
data on the annulus). This way we avoid metrised graphs as in [9]

Sometimes instead of functions we consider norms on line bundles. For example the
Arakelov Green’s functions g.P;Q/ have a log-singularity at the diagonal, so cannot be
described by constants up to bounded functions. If these line bundles exist on all of C , we
use some continuous metric on them as a reference, and apply the theory to the logarithm of
the quotient. Another important case is O.�/ on C �S C , � the diagonal. This is not a line
bundle at the product of two singular points. However, we define a reference metric on the
product of an annulus ueve D te with itself by requiring that the norm of 1 at a pair with
coordinates u1; u2 is

ju1 � u2j=Max.ju1j; ju2j/:

This is invariant under the symmetry which changes ui to vi , and induces by restriction a con-
tinuous metric on !C . It also induces a metric on the line bundle defined by the proper trans-
form of the diagonal on a local blow-up of C �S C . Namely, we have to blow-up the ideal
generated by u1; u2, or equivalently the ideal generated by v1; v2. Also the average over fixed
norm u1 (that is, integration over a circle) of the log-norm of 1 vanishes.

For two sections P and Q of C=S we want to construct a differential ˛P;Q with simple
poles in P and Q, residues ˙1, and purely imaginary periods. That is, ˛P;Q is a continuous
section over S of the holomorphic direct image of !C .P CQ/. It is known that over S0 there
exists a unique such section (differentiable but not analytic in s). To extend to S we chose the
differentials ˛k such that they have residues �k;e and that their periods over the av;i and bv;i

are purely imaginary. This can be done by correcting the original ˛k by differentials with trivial
residue, and the result depends continuously (but no more holomorphically) on s. Assume first
that P andQ specialise to the interiors of components Cv of C0. We claim that in this case the
˛P;Q are up to some explicit orthogonal projection controlled by � (locally near 0) bounded:

Firstly there exists a holomorphic differential ˇP;Q with the correct residues at P andQ.
Modifying it by imaginary multiples of the ˛k , we may assume that their residues in annuli
are real, and then this holds for all residues. Adding some ˛i;v (with trivial residues), we may
assume that the periods over ai;v’s and bi;v’s are purely imaginary. Finally, we add suitable
real multiples of the ˛k to make also the bk periods imaginary (the remaining periods are
imaginary already). We need to bound the coefficients of the ˛k . For this we note that the real
periods of the ˛k on loops parametrised by ¹xeº 2 X are given up to a bounded function on X
by a bilinear form be on X �X which differs only by a uniformly bounded bilinear form from
the sum X

e

se�k;exe:
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The difference is given by integrals from Ps;v to boundary circles and gives rise to the bilinear
form b in the corollary below.

The real parts of the periods of ˇP;Q are given by the integrals over paths from Ps;v

to Ps;w corresponding to edges e from v to w, and correspond to the element y in the corollary
below.

Lemma 2. Suppose se > 0 is a family of positive real numbers. Define a new inner
product on RE by

hx; yis D
X

sexeye:

Then the s-orthogonal projection from RE to XR D H1.�;R/ is uniformly bounded (in the
usual norm), independent of s.

Proof. It suffices to show that the projection of a basis element e is uniformly bounded.
We may assume se D 1 (a common factor does not change anything). If xe D 0 for all x 2 X ,
this projection vanishes. If not, choose an x 2 X with xe D 1. LetX 0 � X denote the subspace
where the e-component vanishes. It corresponds to the graph � 0 where we remove e. Write
x D e C y where y has e-component zero. Then an orthonormal base for X for the s inner
product consists of such a basis for X 0 together with

.se C kyk
2
s /
�1x:

This and induction easily imply the assertion.

We derive a more technical result.

Corollary 3. Suppose
b W X �X ! R

is a bilinear form with
b.x; x0/ � kxkkx0k;

and
� W XR ! R

a bilinear form also of norm � 1. Then if

Min.se/ � 2

for each y 2 H 1.�;R, there exists a unique y0 2 XR such that for x 2 X

hx; y0is C b.x; y
0/ D hx; yis C �.x/:

The norm of the map from y to y0 is bounded independently of b; b0.

Proof. We may assume that � vanishes, by changing y by adding some element with
suitably bounded norm. Then for each linear form on X there exists a y0 such that it is of the
form

hx; y0i C b.x; y0/;

because the map from y0 to linear forms is injective as

hy0; y0is C b.y
0; y0/ � ky0k2:
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Thus the existence of y0. To show that its dependance on y is bounded we first subtract from
y its s-projection to X , so assume that it is s-perpendicular to X . The remaining linear form
on X has norm � kyk. Thus

ky0k2 � hy0; y0is C b.y
0; y0/ � kykky0k:

Remark. If b and b0 have norm � c, we may scale s by c and obtain the same conclu-
sion if the minimum of the se is� 2c. Also if c approaches1, y0 converges to the s-orthogonal
projection of y to x, with the difference bounded by a multiple of c�1.

It follows that ˇP;Q may be modified to an ˛P;Q which has purely imaginary periods,
and such that the residues in annuli are uniformly bounded, for s in a neighbourhood of 0.
More precisely choose an element ye 2 RE with boundary Q � P . Then subtract from ye its
orthogonal projection to XR, for the inner product given by bs . This orthogonal projection is
given by the residues of a linear combination of the ˛k , and if we subtract it from ˇP;Q we
obtain ˛P;Q which has only real periods.

The differential ˛P;Q is used to define a real-valued harmonic function hP;Q on the
Cs , with simple “poles” in P and Q. That is, there it is asymptotic to ˙ log jzj for a local
coordinate z near P or Q. It is unique up to a constant, and can be defined by the real part of
the indefinite integral of ˛P;Q. If we apply the curvature operator àNà=.�i/ to hP;Q, we obtain
ıQ � ıP . To fix the indeterminancy we choose a section R of C and take the definite integral
starting from R. Its real part is independent of the path because of the condition on the periods.
On the C 0

s;v it differs by a uniformly (in s) bounded amount from a constant (respectively the
logarithm of a reference metric) depending only on s. We call this constant hP;Q.v/, which is
a function on the vertices of � . The real parts of the integral of ˛P;Q over the paths indexed
by edges e (from Ps;v to Ps;w through the annulus parametrised by e) are up to a uniformly
bounded term �e of the form

�se Rese.˛P;Q/:

Modifying the vector of residues by a uniformly bounded element of X , we may assume that
the vector �e 2 RE is perpendicular to X , for the s inner product. The corresponding vector is
then after scaling by the s�1

e of the form d t .h�;P;Q/ on vertices, with hP;Q.R/ D 0. Thus

ds�1d th�;P;Q D ıQ � ıP ;

and it describes (up to uniformly bounded contribution) the indefinite integral of ˛P;Q. On
annuli the indefinite integral interpolates linearly on annuli. Here h�;P;Q is the graph version
of hP;Q.

Finally, we need to study what happens if P or Q lie in an annulus. As

hP;Q D hP;R � hQ;R;

it suffices to investigate ifP lies in an annulus butQ does not. Assume the annulus has equation
ueve D te and P has coordinates .a; te=a/. Blow up the subvariety cut out by .ue; a/. This
replaces the edge e by two edges e1; e2 (with discriminants te=a and a) joined by a projective
line, and P specialises to a point in the interior of this line. Denote by A and B the original
endpoints of e, and by C the new component. If

r D log jaj=log jtej;



76 Faltings, Arakelov geometry on degenerating curves

the new se’s satisfy
se;1 D .1 � r/se; se;2 D rse:

On the C 0
s;v the function hP;Q is given (up to bounded contributions) by a solution of

ds�1
e d t .�/ D ıQ � ıP :

If we replace P by A or B , we obtain instead hA;Q respectively hB;Q. Furthermore, the linear
combination

re1 � .1 � r/e2 2 RE

is s-perpendicular to X and has boundary rAC .1 � r/B � C . If we multiply by se, we get
r.1 � r/sed

t .C /. Thus:

Lemma 4. The value of the function hP;Q on C is given by the linear interpolation
of rhA;Q C .1 � r/hB;Q, where we subtract r.1 � r/se. It then interpolates linearly on the
annuli defined by e1 and e2. That is, if

q D log ju.z/j=log jtej;

then the correction to linear interpolation of hP;Q is given by

�Min.q.1 � r/; .1 � q/r/se:

If both P and Q lie in the annulus, we get the difference of the corresponding corrections.

To study the degeneration of Arakelov metrics we first need that of the Arakelov measure.
On a smooth curve of genus g it is defined by the sum

� D i=.4�g/
X

j

j̨ ^ N̨j ;

where the j̨ form an orthogonal basis of the holomorphic differentials. Its has total mass 1.
On a degenerating curve C ! S the relative (logarithmic) differentials on fibres Cs surject
onto XC via the residue map. The square integral of differentials in the kernel is a continuous
function of s, even if the curve Cs becomes singular. The total measure of the square integrals
of these forms is

P
v gv, and at s D 0 we obtain the sum of the Arakelov measures on the Cv;0,

each multiplied by gv.
For the remaining differentials we chose an orthonormal basis perpendicular to the previ-

ous one. If we have a continuous family of such differentials the square integral has a singularity
which is a multiple (depending on choice of normalisation) of the sumX

e

sejRese.˛/j
2:

If we subtract this singularity, we again get a continuous function of s.
In more detail on the annuli the differentials are given as

.f .ue/C c C g.ve//due=ue;

where f and g are convergent powerseries without constant term, and c is the residue of ˛. It
follows that the square integral of ˛ over the annulus is the sum of the square integrals over
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the f and g terms, and of
2�jcj2se:

At the end we want to integrate functions (well-defined up to uniformly bounded functions)
which are constant on the C 0

s;v, and sums of a constant and a bounded multiple of log juej on
the annulus parametrised by e, or at worst a double integral over the correction

se Min.q.1 � r/; .1 � q/r/:

As we integrate against probability measures and need the result only up to bounded functions
the indeterminancy in the values of the functions does not matter. However as our functions are
bounded only by bounded multiples of the se indeterminancies in the measure do. These are
given by continuous (in s) functions.

The measures are given by square integration cdue=ue over the annulus, and a certain
total measure �v (depending on s) assigned to a vertex v. This total measure is given by the
square integrals of an orthonormal basis ˛ over the open C 0

s;v, to which we add the square
integrals over the e-annuli (for e an edge say starting at v) of the f -component in the decom-
position of ˛ (the boundary to C 0

s;v is defined by juej D 1). For the functions we intend to
integrate this changes the result only by a bounded amount. Again if we square integrate a con-
tinuous family of ˛’s, the �v are continuous functions of s, and the measures on the annuli are
the singular contribution given by the residues. At s D 0 the sum of �v defined by an ortho-
normal family in the kernel of the residue map to XC has measure the genus gv on Cv. For
the remaining ˛k’s they form a space isomorphic to XC via the residue maps. We only need to
consider real residues, and then the square integrals are given by a symmetric bilinear form Bs

on X �X with
bs.x; x/ D

X
e

sex
2
e C b

0.x; x/

with b0 a bounded bilinear form depending continuously on s. It corresponds to the square
integrals over the f and g parts, is thus also positive semidefinite, and the resulting measure
has been distributed to the Cv, that is, added to the �v. We define the weight we of e as se
multiplied by the square norm of the linear function xe on X (with the norm given by bs).
Their sum is � r , and approaches r if the se approach 1. We claim that up to a uniformly
bounded correction we can also use the norm

P
e sex

2
e to define sewe:

Namely, sewe is the square norm of the function sexe, in the bs-inner product. This linear
form onX is given by the s-product with an element x 2 XR, uniformly bounded by Lemma 1.
Then the difference between our linear form and the bs-product with x is a uniformly bounded
linear form on X , given by the bs-inner product with an element y 2 XR, again uniformly
bounded by Corollary 3. Then wese is the bs square norm of x C y. As the bs-products of y
with x and y are uniformly bounded this differs only by a uniformly bounded amount from the
bs square norm of x, which again up to a uniformly bounded correction is

P
e sex

2
e .

Now to the e-annulus we give Arakelov measure we=g, defined by a suitable multiple
of the form due=ue ^

Ndue= Nue. If we integrate functions with linear interpolation, we may
distribute the measure we of the annulus evenly to its two endpoints, and our integrals be-
come sums over vertices. We denote the resulting measure on vertices by �0.v/. Note that we
divide these measures by a positive linear combination of the se, but we also integrate against
such linear combinations. So if the se approach infinity, all with the same rate (for example
if dim.S/ D 1) we can expect some bounds, but not in general. However, the measures have
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limits gv=g respectively we=g at the origin s, and they differ from these limits by a quantity
which is bounded by the maximum of the jtej.

The Arakelov Green’s function on the fibre Cs is defined by correcting hP;Q by integrals
against the Arakelov measure �. More precisely, one first replaces hP;Q.z/ by its �-integral
over Q, then subtracts from this its �-integral over z. After the first step we obtain a function
on which the Laplacian (strictly speaking its negative) àNà=.�i/ takes the value � � ıP , and
after the second its �-average vanishes. The asymptotics of the Green’s function on interiors
of Cv;s’s can be determined from Green’s functions on the graph � . On annuli this determines
them if the hP;Q.z/ satisfy linear interpolation. In the remaining cases we get interesting com-
plications. In the Q-average this happens if z and Q lie in the same annulus ueve D te. We
may (by additivity) assume that P stays away from this vertex. The function hP;Q differs from
linear interpolation by adding the function (r and q the log coordinates of z and Q)

Min.r.1 � q/; .1 � r/q/se:

We have to take the average over 0 � q � 1, multiplied with we=g (the fraction of the total
measure supported in our annulus). The result is we have to add

wese � r.1 � r/=.2g/

to the result given by linear interpolation (half its maximal value r.1 � r/ at q D r). Finally, the
�-integral over z increases over the result of linear interpolation by (again) we=g-multiplied
with the r-average, that is, by

w2
e se=.12g

2/:

Finally, we have to subtract from the previous the sum (over e) of these. This constant does not
matter if we consider questions of linear interpolation.

If the first argument P also lies in the annulus labelled by e, we have for the z-integral to
subtract an additional correction (p the logarithmic coordinate of P )

wese � p.1 � p/=.2g/;

with p the relevant coordinate for P . Finally, we have to subtract

Min.r.1 � p/; .1 � r/p/

because of the fact that hP;Q also does not satisfy linear interpolation in P . Thus:

Proposition 5. The function g.P;Q/, or better the difference between the Arakelov
function g.P;Q/ and the logarithm of the reference metric, differs from linear interpolation if
only the argument Q lies in the annulus ueve D te by adding

r.1 � r/wese=.2g/;

where
r D log.juej/=log.jtej/:

If both arguments lie in the annulus, we have to add

.r1.1 � r1/C r2.1 � r2//wese=.2g/ �Min.r1.1 � r2/; .1 � r1/r2/se:

Here r1 is the coordinate of P and r2 that of Q.
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Thus up to a constant due to nonlinear interpolation the Arakelov function on the interior
of Cv;s is up to uniformly bounded functions described by a g�.P;Q/ 2 RV which is obtained
from hP;Q by the analogues of the integrations above, that is, g�.P;Q/ differs by a constant
from the solution of

�.s/.�/ D �0 � ıP ;

with X
v

�.v/�0.v/ D 0:

Here we denote the operator ds�1d t on RV by �.s/. The constant that we have to add is
�
P

e w
2
e se=.12g

2/, the negative of the sum of the integrals over annuli of the corrections.
Note that our sign is opposite to that in [9], to conform to the analytic Green’s functions. Note
that g�.P;Q/ is symmetric in P and Q.

For simplicity of notation we extend g�.P;Q/ as a bilinear function on linear combina-
tion of vertices. Then �g�.A;A/ (A 2 RV of degree deg.A/) can be computed by choosing
some  2 RE with

d. / D deg.A/�0 � ıA;

subtracting from it its s-orthogonal projection onto

X D H1.G;R/ D Ker.d/;

and forming the inner s-product with itself. Then the new  is the element with boundary
deg.A/�0 � ıA with the minimal s-norm.

If A is a vertex as a function of B , g�.A;B/ takes its minimum in B D A (especially
g�.A:A/ � 0): Namely, the �.s/-operator applied to it gives �0 � ıA, and this takes values
� 0 except (possibly) at A. As the value at B is a positive multiple of the difference between
g�.A;B/ and a weighted average over the value at its neighbours, it follows that at a minimum

�0.B/ � ıA � 0:

Now by the previous the Arakelov function g.P;Q/ for P andQ (or better the difference
to the standard metric) in the interiors of Cs;v’s is (up to uniformly in s bounded functions)
given by

g�.P;Q/ �
X

e

w2
e se=.12g

2/;

where we identify a point and the component which contains it. If one of the points is the
midpoint (by which we mean that juej D jtej

1=2) in an annulus ueve D te, then the right-hand
side becomes the average over the two adjacent components, modified by adding .wese/=.8g/.
If both points are midpoints this has to be done for the two e’s. Finally, if both points are
midpoints in the same annulus, we have to subtract se=4.

Remark. We can also treat the midpoints by subdividing each edge e of the graph into
two edges (with half the invariants we and se). This corresponds to blowups in C which were
already used previously to define good theta characteristics.

Define an element K 2 RV by the rule

K.v/ D deg.!C jCv/:

We have the following lemma (a special case of [9, Theorem 3.2]).
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Lemma 6. There exists a constant (depending on s) c.�/ D �
P

v �
0.v/g�.v; v/ � 0

such that
g�.K;A/ D �g�.A;A/ � c.�/:

Furthermore,
g�.K;K/ � �c.�/.2g � 2/

2=.2g � 1/:

Proof. The value of c.�/ is computed by taking the �0-average. Finally, if dv denotes
the degree of !C on Cv,

g�.K;K/ D
X

v

dvg�.K; v/

� .2g � 2/
X

v

dvg�.v; v/

D .2g � 2/
X

v

dv.�g�.K; v/ � c.�//

D �.2g � 2/g�.K;K/ � .2g � 2/
2c.�/:

The Arakelov functions g.P; z/ define metrics on line bundles O.Q/ on Cs , by the rule
that the norm of the section 1 at z is eg.P;z/, and also a metric on !C by the rule that the
residue-map

!C .P /ŒP � Š C

is an isometry. The ı-function is determined by them as follows: Denote for a line bundle L

on Cs the determinant of cohomology by

�.L/ D det.R�.Cs;L//:

Define a metric on �.Cs; !C / by using the natural square integration. It induces a metric on

�.!C / D det.�.Cc ; !C //:

We then use exact sequences to define metrics on �.!C .D// for any divisorD. For line bundles

L D !C .D/

of degree g � 1 �.L/ is isomorphic to the bundle O.�‚/ on the Jacobian, and our metric
is proportional to the canonical metric. The proportionality factor defines the ı-function (see
[3, end of Section 3]).

Another ingredient in it is the determinant of Y , the imaginary part of the period-matrix
defined by the bi -periods of the integrals j̨ . This matrix is, up to a bounded summand positive
definite the matrix of the quadratic form

P
e se�

2
e on X , and its determinant is for sufficiently

big se a product of a bounded functor with the determinant of this quadratic form, on the
Z-lattice X D H1.G;Z/. The determinant of Y also appears in the metric on �.!C /. Namely,
the inner product on the basis j̨ of �.Cs; !C / is also given by Y , so the norm of the wedge-
product of the ˛i in

�.!C / D det.�.Cs; !C //

is (up to a bounded factor) det.Y /1=2.
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For the line bundle L D !C .D/with trivial cohomology we want to estimate the asymp-
totics of the metric on

�.L/ D OS ;

which are just functions on S . Write

D D P1 C � � � C Pa �Q1 � � � � �Qb;

with b � a D g � 1, a > 0, and the Pi and Qj are pairwise distinct. Then

�.C; !C .P1 C � � � C Pa//

has basis
˛1; : : : ; ˛g ; f1; : : : ; fa�1;

where the fi have residues

ResPi
.fi / D 1; ResPa

.fi / D �1;

and the residues in other Pj vanish. The norm of the wedge-product of these basis-elements in

�.!C .P1 C � � � C Pa// D det.�.Cs; !C .P1 C � � � C Pa///

is up to a bounded factor equal to

det.Y /1=2 exp
�X

i<j

g.Pi ; Pj /

�
:

We derive that the norm of the determinant of cohomology of !C .D/ is, again up to a bounded
factor, given by

det.Y /1=2 exp
�X

i<j

g.Pi ; Pj /C
X
i<j

g.Qi ;Qj /C
X
i;j

g.Pi ;Qj /

�
= det..˛i ; fj /ŒQk�/:

The last determinant is the determinant of the basis ˛i ; fj of ˚k!C ŒQk� in the Arakelov
norm on !C . Its inverse is equal to (note that in [3] the norm of theta has an additional fac-
tor det.Y /1=4)

det.Y /1=4 exp.ı.Cs/=8/k#.z/k;

where z describes the image in the Jacobian of the difference !C .D/ and a theta characteristic.
Different theta characteristics differ by translation by a 2-torsion point, and the correct translate
is not easy to determine. For this we need the theta characteristics defined in the beginning
which solves this problem, at least to an extent sufficient for our purposes.

Now suppose that we replace our model by blowing up the double points, and choose the
Pi and Qj such that the Pi specialise in C0 to “old” components Cv, and some of the Qj to
the new components (one per edge) and the remaining Qj to Cv’s such that the degree of D
on Cv is gv � 1. We furthermore choose a theta-characteristic L0 which has degree�1 on each
new component. Then the theta function defined by this L0 differs from the standard theta by
translation by a 2-division point in QG. Changing L0 by this point, we may assume that it is the
standard theta.
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The asymptotics of the Arakelov functions are such that they are determined by the
functions g�.A;B/ on the graph, up to bounded functions. The correction to linear interpo-
lation also gives a correction term, namely each g�.A;B/ is increased by

P
e w

2
e se=.12g

2/.
Also we get an increase by wese=.8g/ if A or B are midpoints Me (two such terms if both
are midpoints), and if they are both midpoints in the same e we also have to subtract se=4.
Finally, the Arakelov metrics on differentials on components Cv are (if we take logs) asymp-
totic to �g.v; v/. If we chose trivialisations of the various line bundles on S we obtain that up
to bounded functions (for simplicity denote D D

P
V .gv � 1/v C

P
E Me)

ı.Cs/=8C log k#.z/k D �3=4 log.jdet.Y /j/ � 1=2g.D;D/ � 1=2
X

g.Pi ; Pi /

� 1=2
X

j

g.Qj ;Qj /C logjdet.˛i ; fj /ŒQk�/j

D �3=4 log.jdet.Y /j/ � 1=2g�.D;D/

� 1=2
X

g�.Pi ; Pi / � 1=2
X

j

g�.Qj ;Qj /

C logjdet.˛i ; fj /ŒQk�/j

C g.g � 1/=2
X

e

.w2
e se/=.12g

2/

� .g � 1/
X

e

.wese/=.8g/C
X

e

se=4:

We identify the points with the components they specialise to, and to evaluate g� on a mid-
point Me we replace Me by the average .AC B/=2) of its endpoints. Here z is given by the
periods of the difference of L and L0, that is, by integrating the vector of ˛’s among a differ-
ence of divisors. Now we vary D (such that the Pi and Qj are still distinct). This way we can
achieve that the restriction of L to the Cv cover all the Jacobians of Cv, and that the gluings
along the edges (these can be changed by moving the pointsQk in the new components) cover
the maximal compact subgroup of QG. Thus from the introduction we derive that the supremum
of log.k#.z/k/ is a bounded function. Thus ı.Cs/ is asymptotic to

�6 logjdet.Y /j � 4g�.D;D/ � 4
X

.gv � 1/g�.v; v/ � 4
X

g�.Me;Me/

C .g � 1/
X

e

.w2
e se/=.3g/C 2

X
e

.2 � we/se;

where Me denotes the midpoint of the annulus defined by e.
After replacing the midpoints Me the average over the endpoints Ae; Be of e, D

becomes K=2 (in the notation of Lemma 3). The result is that ı.Cs/ is now asymptotic to

�6 logjdet.Y /j � g�.K;K/ � 4
X

v

.gv � 1/g�.v; v/ � 4
X

g�.Me:Me/

C

X
e

.2 � we/se C .g � 1/=.3g/
X

e

.w2
e se/:

On the right we use that

g�.Me;Me/ D 1=2.g�.Ae; Ae/C g�.Be:Be// � g�.Ae � Be; Ae � Be/=4
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and
g�.Ae � Be; Ae � Be/ D �se.1 � we/:

The right-hand side is the square s-norm of the projection in RE to the perpendicular space
of X ) Thus the asymptotic becomes:

Theorem 7. The function ı.Cs/ is asymptotic to

�6 logjdet.Y /j C g�.K;K/C 4.g � 1/c.�/C
X

se C .g � 1/=.3g/
X

w2
e se:

If we use the estimate from Lemma 6 for g�.K;K/, this is bounded below by

�6 logjdet.Y /j C 4g.g � 1/c.�=.2g � 1/C .g � 1/=.3g/
X

w2
e se C

X
e

se:

Note that logjdet.Y /j has a loglog singularity, thus us dominated by the other terms. Hence the
ı-function is bounded below.

An instance where we can make some calculation if � has one edge e connects two
different vertices A1 and A2, corresponding to components of genus g1 and g2, g1 C g2 D g.
Note that e has weight we D 0, and the measure � differs from .g1; g2/ by an error bounded
by a multiple of jtej D e�se , thus for computing asymptotics may be replaced by its limit. Then

g�.A1; A1/ D �seg
2
2=g

2; g�.A2; A2/ D �seg
2
1=g

2;

g�.A1; A2/ D g�.A2; A1/ D �seg1g2=g
2; c.�/ D seg1g2=g

2;

and
g�.K;K/ D �se.g1 � g2/

2=g2:

As jdet.Y /j has no singularity, the asymptotic of ı is given by

4seg1g2=g:

(see also [6, Theorem 3.4] and [7, Main Theorem]).
Another example occurs if the special fibre acquires a double point but remains irre-

ducible. The graph � then has one vertex v and one edge e with start and endpoint v. Then
g�.v; v/ D 0, we D 1, log.jdet.Y /j/ is asymptotic to log.se/. Thus ı has asymptotic (compare
[6, Theorem 4.8] and [7, Main Theorem])

�6 log.se/C .4g � 1/=.3g/se:
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