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SOLPS-ITER is a code package for tokamak plasma boundary modelling comprising the B2.5 plasma fluid code 

and the EIRENE neutral kinetic code. The form of the momentum balance equation, used in the SOLPS-ITER 

code before version 3.0.6 (and in all previous versions of SOLPS codes), was simplified due to numerical 

reasons – the electric field term was replaced with the electron gradient pressure term, friction and thermal force 

terms were derived using the trace impurity assumption. It has now been decided to switch back to the general 

Braginskii version of this equation. Derivation of the new form of the parallel friction and thermal force terms 

has been required to allow the use of the general form of the equation and allow more accurate modelling of 

multicomponent plasmas. The new form is based on the theoretical description of multicomponent plasma 

derived by V. Zhdanov [V M Zhdanov. “Transport Processes in Multicomponent Plasma”. In: Plasma Physics 

and Controlled Fusion 44.10 (2002), pp. 2283–2283]. In the present paper, a detailed derivation of these terms is 

presented and their implementation into the SOLPS-ITER code package is discussed.  

1. Introduction 

Future tokamak reactors, of which the ITER machine will be prototypical, require that very high levels of 

plasma power be exhausted from the device [2]. This requires high levels of radiative power dissipation which, 

in the case of high atomic number target materials like tungsten, can only be achieved with the injection of 

extrinsic seed impurities such as nitrogen (N), neon (Ne), argon, etc.  In the case of ITER, where plasma power 

entering the scrape-off layer (SOL) is expected to be in the range of PSOL ~100 MW, the medium atomic number 

(Z) radiators, N and Ne, are expected to be sufficient, with the majority of the radiation occurring in the divertor 



plasma region [3]. The required impurity density will be at the level of a few percent of the local electron 

density in the divertor plasma and hence far above trace concentrations. 

The ITER divertor required intense numerical studies [3 and references therein]. These simulations have been 

largely performed with the SOLPS-4.3 [4] code package which comprises a fluid plasma code describing 

plasma transport in the SOL and divertor region (the B2 code in the case of SOLPS-4.3) coupled to a Monte 

Carlo kinetic code (the EIRENE code [5]) for the neutral dynamics.  The very first version of the fluid part of 

the code was developed by B. Braams in 1987 [6], and consisted of a Braginskii solver for multifluid plasma 

dynamics parallel to the tokamak magnetic field.  Since then, the fluid code has been coupled to EIRENE and 

has been developed notably to include solution of the current continuity equation and addition of drift terms [7]. 

The most modern version of the code, SOLPS-ITER [8] was launched in 2015 by the ITER Organization and is 

being continuously updated. It comprises the most up-to-date versions of the fluid code (B2.5). The most recent 

update in 2016 [9] includes a generalization of the parallel momentum balance equation for ions (PMBE) used 

in the fluid component [10]. This generalization required a change of the treatment of friction and thermal force 

terms, the detailed physics description of which is the subject of the present paper. 

The SOLPS-ITER equations are given in toroidal geometry, with the assumption of toroidal symmetry, and do 

not include any variation of the variables in the toroidal (z) direction. Coordinates are denoted as follows: x - for 

poloidal direction, y - for radial direction, z - toroidal coordinate (absent in the equations and used only in the 

geometry description). The coordinate system is orthogonal and for its description in the code gathering 

equations metric coefficients are used. These coefficients (Lame coefficients) are defined as follows:
x

hx

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1

; 

y
hy




1
; 

z
hz




1
.The notations 

zyx hhhg  , BBb xx /  are used. 

It is important to note, that in all discussed SOLPS equations, each of the impurity ion charged states is treated 

as a separate ion species - for instance, there are momentum equations for each of these charged states and also 

the friction forces between the different charged states of the same impurity are taken into account.  

The previous version of the PMBE for ion species α, used in the code, was simplified for numerical reasons - 

excluding the electric potential from the system helped to improve the convergence. So instead of using the 

general Braginskii form of the equation, the modified version was used, in which the potential gradient was 

replaced by the electron pressure gradient term: 
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Here m , n , ||V  are respectively the mass, density, and the parallel velocity of the ion species α, en  is the 

electron density, az  is the charge number of the species α. The term 
t

Vn
m



 ||

  is the time derivative of the 



momentum flux; 
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 is the parallel projection of the ion pressure gradient term. 

The term 
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 is the parallel projection of the electron pressure gradient term multiplied by the 

factor

en

nz  . This term, in combination with the 
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Therm
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fr SS __


  from the l. h. s. provides the replacement 

for the electric gradient term, which is supposed to be present in this equation [11].  
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are the parallel momentum sources caused correspondingly by viscosity, 

centrifugal force, ionization, recombination and charge exchange.  

Formulation of the OLD friction and thermal force terms acting in the ion species α has the following form [11]: 
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Here ,az  is the charge number of the species α and β, 

x

x

h

b
 is the coefficient for the parallel projection of the 

following terms: 
x

Tn ee




 - electron pressure gradient; 

x


 - electric potential gradient; 

x

Ti




 - ion temperature 

gradient;   is the reduced mass for species pair α, β, 
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
  - normalized to the 

density collision time for protons; pm  is the proton mass,   is the Coulomb logarithm, and 0  is the vacuum 

permittivity.  

This form of the friction and thermal force terms is the modified form of the classical expression for these terms 

in [12], the modification was made in order to match equation (1). 

In the SOLPS-ITER code, the full Braginskii form [12] of the parallel momentum balance equation (PMBE) is 

solved: 
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This equation is written in the form in which it is implemented in the code. Here


m

ThermS , 
m

frS


 are the thermal 

and friction force terms which will be derived and discussed below; 
xh

b
enz

x

x




  - electric field term; all the 

other terms are the same as in equation (1).  

 For a full description of other variables and of the specific formulation used in the SOLPS code suite, see [7]. 

Note that all ion species in eq (2) and in all following equations are assumed to share a common temperature Ti, 

which is the fundamental assumption in the SOLPS-ITER physics model. The importance of the implementation 

of the Braginskii form of the PMBE is discussed in [10]. This implementation requires the derivation of the 

general form for the friction and thermal force terms for a multi-component plasma: 


m

ThermS  and 
m

frS


, because 

the terms 
OLDm

frS _
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 and 

OLDm

ThermS _


 could not be used anymore. The present paper focuses on the detailed 

derivation of these terms. 

The starting point for this derivation is the general description of friction and thermal forces, which is valid for 

arbitrary plasma composition. This description is taken from [13] and is based on the following simplifying 

assumptions: 

 A single main ion species; 

 Impurity ions assumed to have much larger mass than the main ions. 

These assumptions limit the applicability of the derived terms, but they are fulfilled for the modeling of most of 

the key exhaust scenarios of interest in the case, for example, of impurity seeding for divertor power flux control 

in present tokamaks. The lightest impurity discussed as a divertor radiator is nitrogen with its atomic mass 7 

times bigger than that of deuterium. The main ion here is one of the hydrogen isotopes (D, T, or H), the density 

of which is assumed to be at least one order of magnitude higher than the sum of all other ion species densities. 

In the equations below, the main ion species will be denoted by the subscript MAIN. All species other than main 

ions and electrons are impurity ions with subscript IMP.  



The paper is organized as follows: the form of the terms and the procedure for the definition of the numerical 

coefficients appearing in front of the force terms are presented in Section 2, collision times and averaged 

collision frequencies used in the formulation are given in Section 3, with the final form of the terms presented in 

Section 4. A comparison of the modeling results with the old and new forms of the parallel momentum balance 

equation for the ASDEX Upgrade model case is presented in Section 5. Section 6 discusses the reformulation of 

the terms for implementation in SOLPS-ITER. 

2. General form of the thermal and friction terms and procedure for determining 

numerical force term coefficients 

The present derivation of the new form for the friction and thermal force terms is based on the multicomponent 

plasma description introduced by V. Zhdanov [13]. The key equation for the derivation is Eq. (5) below, taken 

from paragraph 8.4 of [13]. This equation describes the sum of the friction and thermal forces, acting on ion 

species α. These forces include the friction and thermal forces with all the other ion species and with the 

electrons.  

 


























  





























TcT

m

c
VVcnSS m

Fr

m

Therm ||

)5(

||1

1)2(

||||

1)1(

~
   (5) 

where m  and n  are the mass and density of species α,   
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 the averaged collision frequency, 








mm

mm


 is the reduced mass for species pair α, β, 

1

  the collision frequency between species α and β 

(the exact form of the collision frequency is discussed below), ||V , ||V  the projections of the velocities for 

species α and β on the direction parallel to the magnetic field and T||  the projection of the gradient of the 

temperature of species α on the parallel direction. Coefficients 
)1(

c  are assumed to be symmetric against the 

permutation of α, β indices.  

The first term in the sum in Eq. (5) corresponds to the friction force interaction between plasma species α and β. 

The second term in the sum and the last term correspond to the thermal forces. In [13] the different ion species 

are assumed to have different temperatures, so there are separate terms with parallel temperature gradients in 

Eq. (5): the term associated with other species’ temperature gradients is part of the sum normalized by the 

collision frequency (the ratio 
1

1

~










 originates from the kinetic derivation of (5)); the last term on the RHS of Eq. 

(5) is associated with the temperature gradient of the species under consideration.  

The most complicated aspect of the implementation of Eq. (5) is the calculation of the numerical coefficients

)1(

c , 
)2(

c , and 
)5(

c . In general, this should be performed for each simulated plasma composition (set of the 

types of ions chosen for modeling, e.g. pure deuterium plasma, D-T mixture, D plasma with N impurity, etc.). 



Depending on the masses of the ions present in the composition, coefficients can be calculated by integration of 

the system of kinetic equations using generalized Laguerre polynomials.  

As shown in [13], for relatively light plasma particles k, with low mass in comparison to that of other species in 

the same plasma, the calculation of these coefficients can be simplified as: 
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In the implementation discussed here, the same mass separation is performed between the main and impurity 

ions, with the latter assumed to be heavy particles, MAINIMP mm  . This assumption limits the applicability 

of the suggested thermal and friction force model for the cases with helium impurity, since this impurity ion is 

not much heavier than D or T. 

With these separations, the coefficients
)1(

kc , 
)2(

kc  and 
)2(

kc  in the implementation of Eq (5) are computed in the 

SOLPS-ITER code as follows: 

 for electrons separated as light particles from all ion species: 
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 for heavy impurity ions separated as light particles from main ions: 
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In the improved thermal and friction force description presented here, the definition of the coefficients
)2(

c  and

)5(

c is performed in two steps (for α going through all plasma species).  

Importantly, we note that Eq (5) for each plasma species effectively contains these coefficients only in the 

specific combination 
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1 1)2()5( cc . This requires manipulations of equation (5), which are 

demonstrated below. Once this combination is obtained in the equation, there will be no need to define the 

coefficients
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c  and 
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c  separately – only the combination will need to be defined. 

To show that only the mentioned combination is necessary, here we separate the part of the thermal force driven 

by T|| in Eq. (5) as: 
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Now, according to Newton's third law, the sum of all thermal force and friction terms from all species should be 

0. This means that after summing up the separate momentum balance equations for all plasma species all terms 

should cancel out:  
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The first term on the RHS of Eq (12) gives the condition
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 cc   (to eliminate velocity terms in the total 

sum), which was mentioned above (symmetry of the 
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thermal force: 
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It is convenient to define the coefficients in Eq (12) by putting α equal to each type of plasma particle 

separately. Here the procedure will be demonstrated for coefficients corresponding to electron temperature 

gradients. 
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Substituting the values of 
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 mentioned above. With these, the implementation of Eq (5) 

for electrons in the mass separation assumption is complete.   

The same procedure is followed for the main ion temperature gradient, resulting in: 
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Terms due to different temperature gradients between impurity and main ions are neglected in this 

implementation of the PMBE, as mentioned above.  The derivation of the coefficients in front of such terms 

cannot be performed by the same procedure and would require future effort. These terms are second order with 

respect to impurity density and at the moment they are not included in the code.  

3. Collision times.  

The definition of the collision times is essential when dealing with processes of particle interactions in 

plasmas. Here we follow the formulation from [13], which matches the approach of Braginskii [12]. Before 

presenting the collision times it is convenient to define the following quantities: 
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Here pm , em  are respectively the proton and electron masses,  is the Coulomb logarithm, and 0  is the 

vacuum permittivity. These are normalized collision times for protons and electrons respectively. 

Definitions of (17a) and (17b) simplify the symmetry-checking procedure of the final equations.  

The collision times can then be written as follows: 
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To use equation (5) it is also necessary to compute the average collision frequency for species , 
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and for the main ions: 
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In deducing the final form of equations (19) and (20), the term proportional to the electron mass is neglected to 

simplify the result. 

4. Final form of the friction and thermal force terms.  

Now that the collision frequencies have been defined, Eq (5) can be rewritten in more detail.  



The friction and thermal forces acting on the electrons are given by:
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Using (17) 
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 This form, in the pure plasma limit (nIMP = 0), matches the Braginskii friction and thermal force expression:
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To write Eq (5) for the case of ion-ion interactions Eq (20) is used: 
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The final form of Eq (5) for ions – including the sum of all the friction and thermal forces acting on the main 

ions and on each impurity ion species - becomes correspondingly: 
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Here in Eq. (24) IMP  in the sum index going through all the impurity species in the system.  

In Eq. (25) *IMP  is the index in the sum which also goes through all the impurity species in the system, 

including the impurity, for which the equation (25) is written ( IMP ). 

Since the expressions for electron-ion friction and thermal force are now modified, the expression for parallel 

current should be modified accordingly. The starting point is the electron parallel momentum balance equation 

in its stationary form:  
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from which it is possible to construct an expression for the parallel current. By definition, the latter is 
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Now we are able to construct ||j  by combining  
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Using 
effe

IMPMAIN
ions

znzn 
),(

2


 and regrouping the terms then leads to: 

e

eff

eff

e

e

eeeffe

IMPMAIN
ions

IMPMAIN
ions

e

e

ee

ee

T

z

z
cj

e

mczn
VznVnzne

e

mc

enp

||

)2(

||

)1(

),( ),(

||||

2
)1(

||||

2

2

0










































 






  (29) 

From which ||j  can be extracted to yield the following expression: 
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Since both indices  and  in the sums run over the same values, in the second sum one can intervert the indices 

(α ↔ β), after which the terms in (31) can be regrouped the following way: 
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Finally, gathering 
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zn   in (32) back into eeff nz and substituting it into (30) results in the following 

expression for ||j  
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5. Implementation in modeling 

Comparisons of the modeling results with the new and old versions of the PMBE were first published in [10]. 

More figures from this comparison are presented below to demonstrate the effect of the new form of the 

equation in terms of the impurity transport.  

Here the modeling results are presented for the ASDEX Upgrade geometry. No attempt to match the data for a 

specific experimental shot was made. Instead, typical H mode parameters were chosen. The input parameters 

were inspired by [15]: 5 MW heating power; D fueling was set to 2e22 atoms/s, two N seeding values were 

considered: 8e18 atoms/s (trace impurity case) and 8e19 atoms/s. All drifts and currents were included in the 

SOLPS-ITER modeling and the transport barrier was imposed through the transport coefficients profiles [10]. 



In Figs. 1 – 4, electron density and temperature profiles are presented at the outer midplane and at the outer 

target. Outer target profiles change with the increase of the impurity seeding - the temperature peak at the outer 

target is significantly decreased with the higher impurity seeding. The main point of these graphs in the context 

of this paper is to demonstrate that the influence of the new form of PMBE on the main ions is minor for the 

chosen modeling parameters.   

In Figs. 5 and 6, the total nitrogen ion density, summed over all charged states, is plotted at the midplane and at 

the outer target. As it can be expected, the effect of new equations is more significant for higher impurity 

density. Here, a rather strong effect of the new form of the parallel momentum balance equation can be seen for 

the 8e19 atoms/s nitrogen seeding case. The new form of the equation results in the redistribution of the 

impurity ions: more impurity ions are dragged from the divertor target towards upstream and the impurity 

density in the core region grows significantly. This difference can be crucial when modeling  impurity seeding 

discharges and therefore the new form of the equation was made the default in SOLPS-ITER. starting from the 

3.0.6 version [9].  

More results with the new version of the equation for ITER input parameters can also be found in Ref, [16]. 

6. Summary. 

New forms of the friction and thermal force terms are derived for the Braginskii form of the parallel momentum 

balance equation in the SOLPS-ITER physics model. The derivation is based on the kinetic description from V. 

Zhdanov [13], simplified with the mass separation procedure, which allows for the uncoupling of the equations 

for different sorts of ion species and obtaining an analytical form for the final coefficients. Corresponding 

changes are also made in the expression for the parallel current. The obtained friction and thermal force 

formulations are implemented in the master version of SOLPS-ITER code. The derivation allows to obtain a 

simple and yet accurate form of the terms when given assumptions (mass of impurity ions is much bigger than 

the mass of main ions; density of impurity ions is much smaller than that of main ions) are fulfilled. The present 

work aims to serve as the basis for future improvements of the model equations for friction and thermal forces 

interactions between particles for SOLPS-ITER and other tokamak edge plasma codes. Such improvements in 

the SOLPS-ITER model could be the modification of the friction and thermal force model to be able to describe 

several isotopes for the main ions, which is important to model ITER DT plasmas. 
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Figure captions 

Figure 1: Electron density profiles at the outer midplane. Solid lines represent modeling results obtained with 

the new form of PMBE, dashed lines represent the modeling results obtained with the old form of PMBE. Blue 

lines represent modeling results with the 8e18 atoms/s nitrogen seeding, red lines represent modeling results 

with the 8e19 atoms/s nitrogen seeding.  

Figure 2: Electron temperature profiles at the outer midplane. Curves are color-coded as in Fig. 1.  

Figure 3: Electron density profiles at the outer target. Curves are color-coded as in Fig. 1. Abbreviation PFR 

means private flow region.  

Figure 4: Electron temperature profiles at the outer target. Curves are color-coded as in Fig. 1. 

Figure 5: Nitrogen density profiles at the outer midplane. Curves are color-coded as in Fig. 1. 

Figure 6: Nitrogen density profiles at the outer target. Curves are color-coded as in Fig. 1. 

 


