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Abstract
We introduce a method to evaluate the steady-state non-equilibrium Keldysh–Schwinger Green’s
functions for infinite systems subject to both an electric field and a coupling to reservoirs. The
method we present exploits a physical quasi-translation invariance, where a shift by one unit cell
leaves the physics invariant if all electronic energies are simultaneously shifted by the magnitude of
the electric field. Our framework is straightaway applicable to diagrammatic many-body methods.
We discuss two flagship applications, mean-field theories as well as a sophisticated second-order
functional renormalization group approach. The latter allows us to push the
renormalization-group characterization of phase transitions for lattice fermions into the
out-of-equilibrium realm. We exemplify this by studying a model of spinless fermions, which in
equilibrium exhibits a Berezinskii–Kosterlitz–Thouless phase transition.

1. Introduction

Unconventional phases of matter play an integral role in condensed matter research and beyond [1].
Understanding the conditions under which systems harboring many particles conspire to give rise to these
emergent, collective phenomena is crucial from a fundamental as well as a technological perspective. The
description of such phases also poses a formidable theoretical challenge as they are usually driven by
interactions and independent particle pictures fail spectacularly. To remedy this, powerful many-body
techniques such as the renormalization group where developed. After years of research, much is known
about the classification of phases of matter in thermal equilibrium as well as about the transitions between
them [1].

As a second step, one might wonder about ways of controlling these phases beyond the possibilities
offered by equilibrium means [2]. A particular non-equilibrium route that is routinely followed in
experiments is to apply electric fields to solids. If the electric field is strong enough, the linear response
regime is left, electrons are driven out of equilibrium, and non-linear effects become relevant. This so-called
non-linear transport regime has attracted much interest in the last decades and many counter-intuitive
effects were demonstrated. E.g., it was shown that a negative differential conductance [3–6] and oscillating
currents (thyristor effect) [7] can arise and that this might have significant implications for highly efficient
heat engines [8, 9]. For very strong electric fields compared to the scattering rate of electrons, coherent
Bloch oscillations are found [10, 11], which in the absence of scattering will not decay [12]. In a metallic
condensed matter setup, these oscillations are challenging to observe experimentally because the
scattering-induced relaxation is usually very fast on the time scale of the oscillation frequency and the
steady-state current quickly relaxes to zero [13–15]. However, these oscillations can be accessed in
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semiconductors [16] or cold-atom systems [17, 18]. For non-interacting electrons (i.e., in the absence of
scattering), these oscillations can be understood as a gradient-field induced localization of the electron wave
functions [19], an effect known as Wannier–Stark localization [20–22]. Recently, it was shown that this
localization might survive even when interactions are turned on [23, 24], yielding the concept of Stark
many-body localization akin to many-body localization induced by quenched, quasi-periodic or
programmable disorder [25–31]. These studies elevate closed electric-field driven quantum systems to the
frontier of research concerning ergodicity breaking, and thus effects beyond the paradigm of statistical
mechanics can be expected in these systems.

However, when considering interacting closed systems (as discussed above) under an external driving
force and beyond the regime of many-body localization, the drive will continuously heat up the system until
an infinite temperature state is reached by the growing deposition of energy. This state is not very
interesting, but fortunately a more realistic model includes infinite baths [32] which can dissipate this
additional energy [33–37]. In such a setup, an interesting non-equilibrium state (supporting, e.g., a finite
value of the steady state current) is conceivable. In this context, negative differential conductance was
reported if the electric field is increased at a constant coupling to the reservoirs. This negative differential
conductance is a consequence of the current being suppressed for increasing fields, because the amount of
energy per unit time dissipated by the bath remains constant, and thus the effective temperature increases,
which in turn decreases the current [33, 34, 38].

Here we want to address the question of what happens to the electronic phases of matter as an
increasingly strong field is driving the system out of its equilibrium state [39–41] from a microscopic model
perspective. To this end, we extend a renormalization group approach [42], which was successfully applied
to characterize phases of matter in microscopic models in equilibrium [43, 44], to the non-equilibrium
realm. This allows us to address how phases of matter can be controlled using non-equilibrium means via
mechanism such as the dielectric breakdown of insulators. This mechanism is only one example out of the
broader class of non-equilibrium control avenues and describes that a correlation driven Mott insulating
state can be turned metallic after the field strength has surpassed a certain threshold value where the
metallization occurs via the production of doublon–hole pairs [45–51]. While we apply the developed
methodology to the case of an infinite one-dimensional nearest neighbor chain of spinless fermions, the
general framework we derive allows to study non-equilibrium control of phases of matter in general
tight-binding models, while keeping track of all of the microscopic details.

The rest of this paper is structured as follows: in section 2, we introduce the class of models that can be
treated using our methods. After briefly recapitulating the Keldysh Green’s function formalism in section 3,
we discuss an iterative algorithm to compute the Green’s functions of an infinite system (section 4). This
algorithm is widely applicable within all diagrammatic techniques such as (dynamical) mean-field theory;
similar approaches in the context of Wannier–Stark localization can be found, e.g., in references [21, 22].
We develop a full second-order implementation of the Keldysh functional renormalization group (that
accounts for inelastic scattering) for infinite, open systems subject to an electric field in section 5. As an
example, we then apply this methodology to an interacting tight-binding chain coupled to reservoirs in an
electric field (section 6). We thoroughly discuss numerical details, and we investigate the survival of the
charge-density wave transition when the reservoir couplings and/or an electric field are switched on.

2. Class of models

First, we will outline the class of systems that can be treated using our method. We eventually aim at
modelling infinitely extended, one-dimensional chains of charged fermions which are coupled to reservoirs
and which are subject to an electric field. As a starting point, we consider a general fermionic Hamiltonian
with an infinite number of degrees of freedom that features a kinetic energy as well as a two-particle
interaction:

Hsys =
∑
i,j∈Z

hijc
†
i cj +

1

4

∑
i,j,k,l∈Z

vijklc
†
i c†j clck, (1)

where hij = h∗
ji, vijkl = −vjikl = −vijlk, and c(†) denote the fermionic annihilation (creation) operator. We

also refer to Hsys as the chain. This system is assumed to be coupled to an infinite set of fermionic,
non-interacting reservoirs:

Hν
res =

∑
k

ενk a†k,νak,ν ,

Hν
coup =

∑
i,k

tνi,kc†i ak,ν + h.c.,
(2)
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Figure 1. Pictorial representation of the model defined in equation (9) and used in section 6. A tight-binding chain with a
nearest-neighbor hopping t and a nearest-neighbor interaction U is subject to an in-plane electrical field E and is coupled to
wide-band reservoirs with a hybridization Γ. In addition, we consider a finite staggered on-site potential of strength s (not
depicted).

where a(†) denote the fermionic annihilation (creation) operators within the reservoirs. The total
Hamiltonian is given by:

Htot = Hsys +
∑
ν

[
Hν

res + Hν
coup

]
. (3)

The initial state is assumed to be one where the reservoirs are decoupled (Hν
coup = 0) and are by

themselves in thermal equilibrium. The influence of the reservoirs can then be characterized by the
following hybridization functions (which will play the role of reservoir self-energies in the Dyson equation):

Γν,ret
ij (ω) =

∑
k

tνi,ktν∗j,k

1

ω − ενk + i0+
,

Γν,K
ij (ω) = [1 − 2nν(ω)] 2i ImΓν,ret

ij (ω),

(4)

where nν(ω) is a thermal (Fermi) distribution function:

nν(ω) =
1

exp[(ω − μν)/T] + 1
. (5)

We also assume that all degrees of freedom within the chain feature some decay channel into the reservoirs,
guaranteeing a well-defined stationary state that is independent of the initial preparation of the chain itself.

Guided by the picture of a chain in an electric field, we restrict ourselves to Hamiltonians which have a
discrete translational shift symmetry. With a given L ∈ N defining a unit cell, we demand that

h(i+L)(j+L) = hij + LEδi,j,

v(i+L)(j+L)(k+L)(l+L) = vijkl ∀i, j, k, l ∈ Z.
(6)

The quantity E > 0 has the interpretation of an electric field in arbitrary units. The hybridization and
distribution function are similarly required to fulfill5

Γν+L,ret
(i+L)( j+L)(ω) = Γν,ret

ij (ω − LE) ∀i, j ∈ Z,

nν+L(ω) = nν(ω − LE) ⇔ μν+L = μν + LE,
(7)

which directly yields a similar relation for Γν,K
ij . Finally, we assume that all terms in the Hamiltonian are

strictly local, i.e., there exists an R ∈ N such that

hij = Γν,ret
ij = 0 ∀|i − j| � R,

vijkl = 0 ∀ dist(i, j, k, l) � R,
(8)

where dist(i, j, k, l) refers to the maximum of the pairwise distances |i − j|, |i − k| etc. We stress that we do
not impose any constraints on the size L of the unit cell.

5 It would be interesting to generalize our method to the case that the baths and the chain feature different translational shift
symmetries. However, this is not straightforward.
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In section 6, we will discuss the specific example of an interacting tight-binding chain coupled to
zero-temperature wide-band reservoirs (L = 1, R = 2; see figure 1) governed by

h00 = −U/2, h01 = h10 = t, v0101 = U ,

Γ0,ret
0i (ω) = −iΓδi,0, n0(ω) = θ(−ω).

(9)

All other components are uniquely defined by the symmetries of the system. This model will serve as the
main testbed for our method. In the limit Γ = E = 0, the phase diagram can be computed analytically
using the Bethe ansatz [52]: the system is a gapless Luttinger liquid for U � 2t and a Mott insulator with a
spontaneously-broken translational symmetry for U > 2t, respectively. In the latter case, the ground-state is
two-fold degenerate and features a charge-density wave (CDW). In order to break a potential ground-state
degeneracy within a numerical method, we introduce a staggered potential s that increases (decreases) the
on-site energies of odd (even) sites within the chain by s and therefore breaks translational symmetry. This
increases the unit cell to L = 2.

3. Green’s functions

We will now introduce Keldysh Green’s functions, which are a key ingredient to diagrammatic methods
such as the FRG formalism [53]. The single-particle Green’s functions in the stationary state can be written
as

G(ω) =

(
G11(ω) G12(ω)
G21(ω) G22(ω)

)
=

(
Gret(ω) GK(ω)

0 Gadv(ω)

)
. (10)

The retarded component is given by

Gret
ij (t, t′) = Gret

ij (t − t′) = −iθ(t − t′)

〈[
c†j (t′), ci(t)

]
+

〉
,

Gret
ij (ω) =

∫ ∞

−∞
dt eiωtGret

ij (t) = Gadv
ji (ω)∗,

(11)

and can be related to the non-interacting retarded Green’s function gret(ω) by virtue of the Dyson equation:

Gret(ω) =
1

gret(ω)−1 − Σret(ω)
,

gret(ω) =
1

ω − h −
∑

ν∈ZΓ
ν,ret(ω)

,

(12)

where the self-energy Σret is associated with the two-particle interaction vijkl. The Keldysh Green’s function
is defined as

GK
ij (t − t′) = i

[〈
c†j (t′)ci(t)

〉
−
〈

ci(t)c†j (t′)
〉]

,

GK(ω) =

∫ ∞

−∞
dt eiωtGK(t),

(13)

and the corresponding Dyson equation reads

GK = Gret[(gret)−1gK(gadv)−1 +ΣK]Gadv

= Gret

[∑
ν∈Z

Γν,K +ΣK

]
Gadv, (14)

where we have used that
gK = gret

∑
ν∈Z

Γν,Kgadv. (15)

All quantities in equations (11) and (14) are matrices defined by two single-particle indices. To simplify the
notation, we will frequently employ multi-indices 1 = (i1,α1) that include both this single-particle index i1

as well as the Keldysh index α1 ∈ {1, 2}. The frequency-dependence will still be written out explicitly.
If the entire system is in an equilibrium configuration described by the (Fermi) distribution function

n(ω), the Green’s functions obey the fluctuation–dissipation theorem:

GK(ω) = [1 − 2n(ω)]
[
Gret(ω) − Gadv(ω)

]
. (16)

The FRG approximation we introduce in section 5 preserves this symmetry in the equilibrium limit, which
is essential in order to avoid unphysical, anomalous heating effects.

4
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The symmetry described by equations (6) and (7) translates directly to non-interacting Green’s function
g,

g(1′+L)(1+L)(ω) = g1′1(ω − LE), (17)

where 1 + L denotes a shift of the single-particle index, 1 + L = (i1 + L,α1). This is a direct consequence of
the Dyson equations (12) and (15). It follows from diagrammatic arguments (an expansion into an infinite
perturbation series) that the exact self-energy Σ and thus also the full Green function GΛ (see, e.g., the
Dyson equation) inherit this symmetry:

Σ(1′+L)(1+L)(ω) = Σ1′1(ω − LE),

G(1′+L)(1+L)(ω) = G1′1(ω − LE).
(18)

4. Computing Green’s functions in an infinite system

In this section, we discuss how to compute the retarded and Keldysh Green’s function of an infinite system
under the assumption that the corresponding self-energies are known (e.g., from an FRG calculation). This
cannot be done straightforwardly but requires an iterative algorithm, which we will now present. Our
algorithm does not involve any additional approximations but is (numerically) exact. More importantly, it
is not specifically tailored to the methods of this paper but is applicable in a completely general setting.

In the following, we will assume that (i) our system fulfills the translation symmetry of equations (6)
and (7), that (ii) the single-particle Hamiltonian h, the self-energies Σret,K, and the reservoir coupling Γν,ret

ij

are of limited range N where L evenly divides N, i.e.,

hij = Γν,ret
ij = Σret,K

ij = 0 if |i − j| � N, (19)

and that (iii) the Green’s functions Gret,K
ij are only needed for |i − j| < N (this will be the case in the FRG

approach introduced in the next section).
In our concrete example of the tight-binding chain (see equation (9)), we have hij = Γν,ret

ij = 0 for
|i − j| � 2. In section 5, we will show that our FRG approximation to the self-energy fulfills equation (19)
and that only Green’s function with |i − j| < 3M enter into the flow equations due to the approximations
made in equations (48) and (57). Thus, we would have N = 3M in this case.

A similar recursive algorithm has been put forward in reference [22] in the context of a cluster
perturbation theory calculation. We generalize those ideas by, e.g., allowing for an arbitrary, finite-range
self-energy.

4.1. Notation
For the rest of this section, we introduce the following notation for the single-particle indices: (see figure 2)

i ∈ L̃ ⇔ i � −1,

i ∈ L ⇔ −N � i � −1,

i ∈ C ⇔ 0 � i � N − 1,

i ∈ R ⇔ N � i � 2N − 1,

i ∈ R̃ ⇔ N � i,

(20)

with the implicit understanding that, e.g., Gret
CL(ω) refers to the retarded Green’s function Gret

(i∈C)(j∈L)(ω),
which is a matrix of size N × N. The same convention is used for the self-energy as well as for all other
quantities carrying two single-particle indices. We employ an Einstein convention for summations, e.g.,

Gret
CL(ω)ΣK

LL(ω) =
∑
j∈L

[
Gret

ij (ω)ΣK
jk(ω)

]
i∈C,k∈L

. (21)

We finally note that using our notation, the translation symmetry in equation (18) takes the form

Gret,K
LL (ω − NE) = Gret,K

CC (ω) = Gret,K
RR (ω + NE), (22)

and likewise for the self-energy.

5
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Figure 2. Illustration of the decomposition of the system used in section 4.1 for the example of a simple tight-binding chain
with N = 2.

4.2. Retarded Green’s function
We first discuss how one can obtain the retarded part of the Green’s function. We need to invert a matrix
which by construction has the following form:

ω − h −
∑
ν∈Z

Γν,ret − Σret = T + D, (23)

where a block structure is defined by T and D as follows:

(24)

DCC, TCL, TLC, TCR, and TRC are matrices of size N × N. Note that in general TLC �= T†
CL due to the

inclusion of the self-energy. From now on, we will often omit the frequency dependence to improve
readability.

A crucial ingredient is that the inverse of a block matrix is given by(
V W
X Y

)−1

=

(
V−1 + V−1WYIXV−1 −V−1WYI

−YIXV−1 YI

)
YI = (Y − XV−1W)−1, (25)

or equivalently (
V W
X Y

)−1

=

(
VI −VIWY−1

−Y−1XVI Y−1 + Y−1XVIWY−1

)
VI = (V − WY−1X)−1. (26)

By successively applying equations (25) and (26), one can prove that

(27)

where in the first step we identified four blocks as indicated on the lhs.
Per our assumption, the retarded Green’s function Gret

ij is only needed for |i − j| < N; it is thus sufficient

to determine Gret
CC. If we apply equation (27) to equation (23) and use that TC(L̃\L) = 0, we obtain

Gret
CC(ω) =

1

DCC − TCL[D−1]LLTLC − TCR[D−1]RRTRC
. (28)

6
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In order to solve equation (28), we need to determine the objects [D−1]LL as well as [D−1]RR, i.e., we need to
calculate the first and last block of the inverse of the two matrices DL̃L̃ and DR̃R̃ associated with semi-infinite
systems. This can be achieved iteratively by exploiting translation-invariance, which we will now discuss.

4.2.1. Iterative algorithm for the auxiliary Green’s function
For notational simplicity, we define an auxiliary Green’s function

Gret, �L�R :=D−1 (29)

as the inverse of the matrix in equation (23) for TLC = TCL = TRC = TCR = 0 (which becomes block
diagonal in this case). For later use, we introduce similar objects Gret, �L and Gret, �R as the inverse of
equation (23) where only TLC = TCL = 0 and TRC = TCR = 0, respectively. The advanced components are
defined as Gadv, �L�R := [Gret, �L�R]†, Gadv, �L := [Gret, �L]†, and Gadv, �R := [Gret, �R]†. We note that while in the presence of
finite interactions Σret �= 0, these are no longer physical Green’s functions of the underlying Hamiltonian,
they inherit all of its symmetries such as translation-invariance:

Gret, �L
LL (ω − NE) = Gret, �L�R

LL (ω − NE) = Gret, �R
CC (ω),

Gret, �R
RR (ω + NE) = Gret, �L�R

RR (ω + NE) = Gret, �L
CC (ω).

(30)

The first line is a direct consequence of equations (6), (7), and (18) combined with the fact that the last
N × N block (L) of an isolated L̃ system is, up to a shift in energy, identical to the last N × N block (C) of a
system where R̃ is removed (the second line follows similarly). If we use equation (30), we can now set up a
recursion relation to determine Gret, �L�R

LL :

Gret, �L�R
LL (ω − NE) = Gret, �R

CC (ω)

=
1

DCC(ω) − TCL(ω)Gret, �L �R
LL (ω)TLC(ω)

,
(31)

where we have applied equation (25) to equation (23) with TCR = TRC = 0. A similar expression can be
derived for Gret, �L�R

RR (ω).
For E = 0, equation (31) is local in ω and easily solved using a self-consistency loop. At finite electric

field, however, this equation couples Green’s functions at different frequencies. One can solve it by using
limω→±∞ Gret, �R(ω) = 0 as an initial condition; in practice, it is sufficient to set Gret, �R(±Ω) = 0, where Ω far
exceeds all other energy scales. Equation (31) can then be used to successively calculate the auxiliary Green’s
function on a discrete grid of frequencies. How to do this in practice is outlined in appendix A.

4.3. Keldysh Green’s function
Next, we illustrate how to compute the Keldysh Green’s function GK

CC(ω). The Dyson equation (14) takes
the form

GK
CC(ω) =

∑
S,S′=L̃,C,R̃

Gret
CS(ω)

[∑
ν∈Z

Γν,K
SS′ +ΣK

SS′

]
Gadv

S′C(ω). (32)

If we employ the lower-left component of equation (25),

Gret
CL̃ = −Gret

CCTCL[D−1]LL̃ = −Gret
CCTCLGret, �L�R

LL̃
,

Gret
CR̃

= −Gret
CCTCR[D−1]RR̃ = −Gret

CCTCRGret, �L �R
RR̃

,
(33)

the Dyson equation can be simplified as follows:

GK
CC = Gret

CC

[
Σ̃K

CC − TCLGret, �L�R
LL Σ̃K

LC − Σ̃K
CLG

adv, �L �R
LL T†

LC − TCRGret, �L�R
RR Σ̃K

RC − Σ̃K
CRG

adv, �L�R
RR T†

RC

+ TCLGK, �L�R
LL T†

LC + TCRGK, �L�R
RR T†

RC

]
Gadv

CC ,
(34)

where we have defined
Σ̃K :=

∑
ν∈Z

Γν,K +ΣK (35)

as well as the auxiliary Green’s functions

GK, �L �R
LL (ω) :=Gret, �L�R

LL̃
(ω)Σ̃K

L̃L̃(ω)Gadv, �L�R
L̃L

(ω),

GK, �L �R
RR (ω) :=Gret, �L�R

RR̃
(ω)Σ̃K

R̃R̃(ω)Gadv, �L�R
R̃R

(ω).
(36)

7



New J. Phys. 22 (2020) 083039 C Klöckner et al

The latter are the only unknown quantities in equation (34); Gret
CC, Gret, �L�R

LL , and Gret, �L�R
RR have already been

calculated in the previous section. In equation (34), we have employed that Σ̃K
L̃R̃

= Σ̃K
C(L̃\L)

= Σ̃K
C(R̃\R)

= 0

holds per our assumption. We will now discuss how GK, �L�R
LL and GK, �L�R

LL can be computed iteratively by
exploiting translation-invariance.

4.3.1. Iterative algorithm for the auxiliary Green’s function
In order to compute GK, �L�R

LL and GK, �L �R
RR , we will use the relation

Gret, �R
CL̃

= −Gret, �R
CC TCLGret, �L�R

LL̃
,

Gret, �L
CR̃

= −Gret, �L
CC TCRGret, �L�R

RR̃
,

(37)

which is analogous to equation (33) and follows by applying equation (25) to equation (23) with
TCR = TRC = 0. Moreover, we exploit translation-invariance for Σ̃K (see equation (18)) as well as for
Gret,adv:

Gret, �L�R
LL̃

(ω − NE) = Gret, �R
C(C∪L̃)

(ω),

Gret, �L�R
RR̃

(ω + NE) = Gret, �L
C(C∪R̃)

(ω),
(38)

which can be derived in analogy to equation (30). This yields

GK, �L�R
LL (ω − NE) = Gret, �L �R

LL̃
(ω − NE)Σ̃K

L̃L̃(ω − NE)Gadv, �L�R
L̃L

(ω − NE)

(38)
= Gret, �R

C(C∪L̃)
(ω)Σ̃K

(C∪L̃)(C∪L̃)(ω)Gadv, �R
(C∪L̃)C

(ω)

(37)
= Gret, �R

CC

⎡
⎢⎢⎢⎣Σ̃K

CC − TCLGret, �L�R
LL Σ̃K

LC − Σ̃K
CLG

adv, �L�R
LL T†

LC + TCLGret, �L�R
LL̃

Σ̃K
L̃L̃G

adv, �L�R
L̃L︸ ︷︷ ︸

=GK,�L�R
LL (ω)

T†
LC

⎤
⎥⎥⎥⎦Gadv, �R

CC .

(39)

In the last line, all quantities carry a frequency argument ω, which we have omitted to improve readability.
GK, �L�R

RR follows similarly. This equation has the same form as equation (31) and can be solved either
self-consistently (if E = 0) or successively by utilizing GK, �L�R(ω) → 0 for ω →±∞ (if E �= 0, see appendix
A).

5. Functional renormalization group approach

The functional renormalization group is an implementation of the RG idea on the level of correlation
functions [42]. It sets up flow equations for the self-energy as well as for higher-order vertex functions with
respect to a flow parameter Λ introduced as an infrared cutoff within the non-interacting Green’s functions
gret,Λ(ω) and gK,Λ(ω). A detailed description to this method can be found in references [42, 54].

From now on, we focus solely on the case that Hν
res describes zero-temperature wide-band reservoirs

with a frequency independent hybridization that are coupled uniformly to the chain:

Γν,ret
ij (ω) = −iΓδi,jδi,ν . (40)

In this case, it is convenient to use the single scale Γ as the flow parameter Λ = Γ [55]. The advantage of
this approach is its physical interpretation—intermediate results during the solution of the flow equations
can simply be viewed as physical results at a stronger coupling.

We will now set up a full-fledged second-order Keldysh FRG implementation for a one-dimensional
chain that is translation-invariant up to shifts in energy. A variety of different first-order Keldysh FRG
calculations can be found in the literature [56–59], but second-order FRG schemes have so far been
developed exclusively for single-impurity models [55, 60] or for chains which are in thermal equilibrium
[43, 44, 61, 62].

The only key approximation in our scheme is the so-called channel decomposition of the vertex flow
equation (see section 5.2), which has been widely applied in equilibrium FRG calculations [43, 44, 60, 62].
Moreover, we will assume that all vertex functions have a limited support of range M (see section 5.5),
which will serve as our key numerical control parameter. The original second-order flow equations (which
only assume the channel decomposition) are recovered in the limit M →∞, and we will demonstrate that
convergence in M can be reached in all practical applications.

8



New J. Phys. 22 (2020) 083039 C Klöckner et al

5.1. Flow equations
The flow equation for the self-energy reads

∂ΛΣ
Λ
1′1(ω) = − i

2π

∫
dΩ

∑
22′

γΛ
1′2′12(ω,Ω,ω,Ω)SΛ22′(Ω). (41)

The single-scale propagator is given by

SΛ(ω) = −GΛ(ω){∂Λ[gΛ(ω)−1]}GΛ(ω)

= ∂∗
ΛGΛ(ω),

(42)

where ∂∗
Λ indicates a derivative that acts only on the explicit Λ-dependence of the cutoff (but not on ΣΛ).

The quantity γ denotes the one-particle irreducible two-particle vertex function; it preserves energy
conservation due to the time-translation invariance of the system, and its frequency-dependence can thus
be parametrized via

γΛ
1′2′12(ω1′ ,ω2′ ,ω1,ω2) = γΛ

1′2′12(Π, X,Δ) (43)

with the coordinates
Π = ω1 + ω2 = ω1′ + ω2′ ,

X = ω2′ − ω1 = ω2 − ω1′ ,

Δ = ω1′ − ω1 = ω2 − ω2′ .

(44)

Using this notation, the flow equation for γ takes the form

(45)

where we already truncated the otherwise infinite hierarchy of differential equations by neglecting the flow
of the three-particle vertex. This approximation is controlled in a perturbative sense and all terms neglected
are at least of O

(
U3

)
.

The flow equations (41) and (45) need to be complemented by an initial condition. When the coupling
to the reservoirs is large (Λ→∞), the vertex functions can be obtained analytically:

Σret,Λ→∞
i′ i =

1

2

∑
j

vi′ jij, ΣK,Λ→∞
i′i = 0, γΛ→∞

1′2′12 = v̄1′2′12, (46)

where we introduced the Keldysh-space version of the two-particle interaction

v̄1′2′12 =

⎧⎨
⎩

1

2
vi1′ i2′ i1i2 α1′ + α2′ + α1 + α2 odd

0 otherwise.
(47)
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The initial value of the retarded self-energy is frequency-independent and can therefore be absorbed into
the non-interacting Hamiltonian h.

5.2. Channel decomposition
The vertex flow equation (45) depends on three independent frequencies and is thus difficult to tackle
numerically. Hence, we need to resort to an additional approximation, the so-called channel decomposition
[60]. We make the following ansatz for γ:

γΛ
1′2′12(Π, X,Δ) = v̄1′2′12 + γ

p,Λ
1′2′12(Π) + γx,Λ

1′2′12(X) + γd,Λ
1′2′12(Δ), (48)

and assume that (i) the flow equation for γp,Λ, γx,Λ, and γd,Λ is given by the first, second, and third term of
equation (45), respectively, and that (ii) each channel is only fed back into its own flow equation. This
yields

∂Λγ
p,Λ
1′2′12(Π) =

i

2π

∫
dΩ

∑
33′44′

γ̄
p,Λ
1′2′34 (Π) SΛ33′

(
Π

2
− Ω

)
GΛ

44′

(
Π

2
+Ω

)
γ̄

p,Λ
3′4′12 (Π) ,

∂Λγ
x,Λ
1′2′12(X) =

i

2π

∫
dΩ

∑
33′44′

γ̄x,Λ
1′4′32 (X)

[
SΛ33′

(
Ω− X

2

)
GΛ

44′

(
Ω+

X

2

)

+ GΛ
33′

(
Ω− X

2

)
SΛ44′

(
Ω+

X

2

)]
γ̄x,Λ

3′2′14 (X) ,

∂Λγ
d,Λ
1′2′12(Δ) =

−i

2π

∫
dΩ

∑
33′44′

γ̄d,Λ
1′3′14 (Δ)

[
SΛ33′

(
Ω− Δ

2

)
GΛ

44′

(
Ω+

Δ

2

)

+ GΛ
33′

(
Ω− Δ

2

)
SΛ44′

(
Ω+

Δ

2

)]
γ̄d,Λ

4′2′32 (Δ) ,

(49)

with γ̄α,Λ = v̄ + γα,Λ, α = p, x, d. The initial condition reads γα,Λ→∞
1′2′12 = 0. The self-energy flow

equation (41) now takes the form

∂ΛΣ
Λ
1′1(ω) = − i

2π

∫
dΩ

∑
22′

SΛ22′(Ω)
[
v̄1′2′12 + γ

p,Λ
1′2′12(Ω + ω) + γx,Λ

1′2′12(Ω− ω) + γd,Λ
1′2′12(0)

]
. (50)

The channel decomposition makes the vertex flow equations manageable by numerics (each term γα,Λ

depends only on a single frequency) but still include all terms of O(U2).
In addition to decoupling the frequency structure, the channel decomposition also simplifies the

dependence on the spatial indices of the vertex functions. Since γα,Λ→∞ = 0, one trivially finds that in this
limit:

γ
p,Λ→∞
1′2′12 (Π) = 0 ∀|1′ − 2′| � R ∨ |1 − 2| � R,

γx,Λ→∞
1′2′12 (X) = 0 ∀ |1′ − 2| � R ∨ |2′ − 1| � R,

γd,Λ→∞
1′2′12 (Δ) = 0 ∀ |1′ − 1| � R ∨ |2′ − 2| � R,

(51)

where |1 − 2| := |i1 − i2| refers to the distance of the single particle-indices within the multi-indices
1, 2 = (i1,2,α1,2). Per the assumption in equation (8), the same holds true for the single-particle structure of
the initial vertex v̄. One can easily see that the flow equation (49) preserve equation (51), which thus
remains true throughout the flow; e.g., the indices 1′ and 2 (2′ and 1) appear as the first and last (second
and third) argument on the rhs of the flow equation for γx,Λ

1′2′12. We emphasize that equation (51) is a direct
consequence of the channel decomposition and does not constitute an additional approximation.

5.3. Making use of the system’s symmetry
The symmetries in equation (18) are self-consistently preserved within our approximation scheme (i.e.,
after truncation). If we assume that equation (18) holds for a given ΣΛ (and thus also for GΛ as well as SΛ)
and exploit that the initial, frequency-independent vertex fulfills equation (6), we can use the flow
equation (49) to show that

γ
p,Λ
(1′+L)(2′+L)(1+L)(2+L)(Π) = γ

p,Λ
1′2′12(Π− 2LE),

γx,Λ
(1′+L)(2′+L)(1+L)(2+L)(X) = γx,Λ

1′2′12(X),

γd,Λ
(1′+L)(2′+L)(1+L)(2+L)(Δ) = γd,Λ

1′2′12(Δ).

(52)
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If we now plug equation (52) into the self-energy flow equation (50), it follows immediately that the
symmetry relations in equation (18) are preserved.

In a nutshell, equations (18) and (52) imply that one of the spatial indices (say i1′) of the self-energy as
well as of the two-particle vertex can be restricted to {0, . . . , L − 1} when solving the flow equations.

5.4. Integrations as convolutions
The flow equations (49) and (50) can all be rewritten in terms of convolutions:

( f ∗ g)(y) =

∫
dxf (x)g(y − x). (53)

If we define the shorthand notation
f̃ (x) = f (−x), (54)

and split up the self-energy flow equation (50) into three terms, ΣΛ =
∑

α∈{p,x,d}Σ
α,Λ, we find

∂ΛΣ
p,Λ
1′1 (ω) = − i

2π

∑
22′

S̃Λ22′ ∗ γ
p,Λ
1′2′12,

∂ΛΣ
x,Λ
1′1 (−ω) = − i

2π

∑
22′

S̃Λ22′ ∗ γx,Λ
1′2′12,

∂ΛΣ
d,Λ
1′1 (ω) = − i

2π

∑
22′

γ̄d,Λ
1′2′12(0)

∫
dΩ SΛ22′(Ω).

(55)

No frequency-dependence is generated in the last term. Similarly, the flow equations (49) for the vertex can
be recast as

∂Λγ
p,Λ
1′2′12(Π) =

i

2π

∑
33′44′

γ̄
p,Λ
1′2′34 (Π)

[
GΛ

44′ ∗ SΛ33′
]

(Π) γ̄
p,Λ
3′4′12 (Π) ,

∂Λγ
x,Λ
1′2′12(X) =

i

2π

∑
33′44′

γ̄x,Λ
1′4′32 (X)

[
GΛ

44′ ∗ S̃Λ33′ + SΛ44′ ∗ G̃Λ
33′
]

(X) γ̄x,Λ
3′2′14 (X) ,

∂Λγ
d,Λ
1′2′12(Δ) =

−i

2π

∑
33′44′

γ̄d,Λ
1′3′14 (Δ)

[
GΛ

44′ ∗ S̃Λ33′ + SΛ44′ ∗ G̃Λ
33′
]

(Δ) γ̄d,Λ
4′2′32 (Δ) .

(56)

This shows that a numerically-efficient implementation of the flow equations can be based on an efficient
implementation of convolutions, which in turn can be achieved by employing fast Fourier transforms to
perform all integrations (see appendix B).

While at T = 0 some components of the Green’s functions and single-scale propagators are
discontinuous, this is not true for the vertex functions, which one can understand as follows: the rhs of the
flow equation (56) is governed by a convolution of two functions GΛ and SΛ that decay sufficiently quickly
for ω →±∞; this yields a continuous function.

5.5. Support of the vertex functions
During the flow, self-energy components with arbitrary single-particle indices are generated by
equation (55). The same holds true for the two-particle vertex with the exception that the spatial structure
of equation (51) is always preserved (e.g., components with arbitrary i1′ − i1 can be generated in γ

p,Λ
1′2′12).

Moreover, the rhs of equations (55) and (56) contains infinite sums over single-particle indices. Thus, we
need to devise additional approximations in order to make a numerical treatment feasible. To this end, we
introduce M ∈ N, M � R as a cutoff parameter and set

ΣΛ
1′1 = 0 ∀|1 − 1′| � M,

γΛ
1′2′12 = 0 ∀ dist(1′, 2′, 1, 2) � M,

(57)

where |1 − 1′| := |i1 − i1′ | again refers to the distance of the single-particle indices, and the more special
case of equation (51) always holds exactly. This is a natural assumption in a system where inelastic
scattering limits the correlation length. In the limit M →∞, we recover the original flow equations (49) and
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(50). Note that this choice of truncation preserves the symmetries [63]

ΣΛ
1′1(ω1′ ,ω1) = (−1)α1+α1′

[
ΣΛ

1̄1̄′(ω1,ω1′)
]∗

,

γΛ
1′2′12(ω1′ ,ω2′ ,ω1,ω2) = −γΛ

2′1′12(ω2′ ,ω1′ ,ω1,ω2),

= −γΛ
1′2′21(ω1′ ,ω2′ ,ω2,ω1),

γΛ
1′2′12(ω1′ ,ω2′ ,ω1,ω2) = (−1)1+α1+α2+α1′+α2′γΛ

1̄2̄1̄′ 2̄′(ω1,ω2,ω1′ ,ω2′)
∗ ,

(58)

where 1̄ = (i1, 3 − α1). This is essential in order to preserve the fluctuation–dissipation theorem in the
equilibrium limit (see equation (16)).

Overall, we are left with a maximum of ∼ LMR2 independent, frequency-dependent components of the
two-particle vertex functions. Note that equation (57) implies that the summations on the lhs of
equations (55) and (56) are limited by dist(2, 2′) < M and dist(3, 3′, 4, 4′) < 3M, respectively; it is thus
sufficient to set N = 3M when calculating GΛ and SΛ (see section 4).

5.6. Single-scale propagators
In section 4, we discussed how the Green’s functions GΛ of an infinite system can be computed iteratively.
Since the rhs of the FRG flow equations also contains the single-scale propagator SΛ, we will now illustrate
how this quantity can be computed along the lines of section 4. To improve readability, we will frequently
refrain from writing out the Λ-dependence as well as frequency-arguments of various quantities such as
GΛ(ω) and SΛ(ω) throughout this section.

5.6.1. Retarded single-scale propagator
We begin with the retarded part of the single-scale propagator; the advanced part follows from
[Sret]† = Sadv. Since our cutoff stems from wide-band reservoirs coupled to each site, it only enters on the
diagonal of [Gret]−1 and thus

∂ ∗
ΛD = i, ∂ ∗

ΛTCL = ∂ ∗
ΛTLC = ∂ ∗

ΛTCR = ∂ ∗
ΛTRC = 0. (59)

This restriction reduces the number of terms in the following expressions, but a generalization to a more
involved cutoff scheme is straightforward.

The retarded part of the single-scale propagator can be computed by taking the derivative of
equation (28):

Sret
CC = ∂ ∗

ΛGret
CC = −Gret

CC

[
i − TCLSret, �L�R

LL TLC − TCRSret, �L�R
RR TRC

]
Gret

CC. (60)

The only unknown quantity in this equation is Sret, �L �R := ∂ ∗
ΛGret, �L �R, which can be obtained via the derivative

of equation (31):

Sret, �L�R
LL (ω − NE) = −Gret, �R

CC (ω)
[
i − TCLSret, �L�R

LL (ω)TLC

]
Gret, �R

CC (ω), (61)

and similarly for Sret, �L�R
RR . Yet again, this equation can either be solved self-consistently (at E = 0) or

successively (for E �= 0) using the boundary conditions Sret, �L�R(±∞) = 0 as outlined in appendix A.

5.6.2. Keldysh single-scale propagator
We now proceed with the Keldysh component of the single-scale propagator. The cutoff only enters into the
diagonal of Σ̃K, which leads to (see equations (4), (35), and (40))

∂ ∗
Λ Σ̃

K
ij (ω) = ∂Λ

∑
ν

Γν,K
ij (ω)

= 2i
∑
ν

[1 − 2nν(ω)]∂Λ Im Γν,ret
ij (ω)

= 2i[1 − 2ni(ω)]δij. (62)

Taking the derivative of equation (34) yields (all quantities carry a frequency argument ω)

SK
CC(ω) = Sret

CC(ω) [· · · ] Gadv
CC (ω) + Gret

CC(ω) [· · · ] Sadv
CC (ω) + Gret

CC

[
∂ ∗
Λ Σ̃

K
CC − TCLSret, �L�R

LL Σ̃K
LC − Σ̃K

CLS
adv, �L�R
LL T†

LC

− TCRSret, �L�R
RR Σ̃K

RC − Σ̃K
CRS

adv, �L�R
RR T†

RC + TCLSK, �L�R
LL T†

LC + TCRSK, �L�R
RR T†

RC

]
Gadv

CC , (63)
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where the brackets [· · ·] are identical to the bracket in equation (34). The only unknown quantity is
SK, �L�R

LL := ∂ ∗
ΛG

K, �L�R
LL , which can be determined by taking the derivative of equation (39):

SK, �L�R
LL (ω − NE) = Sret, �R

CC (ω) [· · · ]Gadv, �R
CC (ω) + Gret, �R

CC (ω) [· · · ]Sadv, �R
CC (ω)

+ Gret, �R
CC

[
∂ ∗
Λ Σ̃

K
CC − TCLSret, �L �R

LL Σ̃K
LC − Σ̃K

CLS
adv, �L�R
LL T†

LC + TCLSK, �L�R
LL T†

LC

]
Gadv, �R

CC , (64)

where the brackets [· · ·] are identical to the bracket in equation (39), and we have omitted frequency
arguments ω in the last two lines. Equation (30) implies that Sret, �R

CC (ω) = Sret, �L�R
LL (ω − NE), which was

calculated via equation (61). Equation (64) can be solved self-consistently (E = 0) or successively (E �= 0,
see appendix A).

5.7. Frequency discretization
For a numerical treatment, it is necessary to discretize the frequency space. In order to faithfully represent
the physical system at hand, one must choose a grid that accounts for all of its relevant energy scales. For
simplicity, we evaluate both the vertex functions as well as the Green’s functions and single-scale
propagators on the same set of frequencies.

The Green’s functions decay on the scale of the system’s bandwidth and are broadened by inelastic
scattering. Furthermore, the Keldysh Green’s function is linked to the distribution function within the
reservoirs via equation (14), making the temperature of the reservoirs a relevant energy scale. This
motivates the use of an equidistant grid whose width scales with the bandwidth and which includes
additional points around the chemical potentials of the reservoirs. For the case of zero-temperature
reservoirs, it is most convenient to choose

Ω = Ωequi ∪ Ωextra,

Ωequi = {nδω|n ∈ Z, |nδω| � ωmax} ,

Ωextra =

Nμ
max⋃

ν=−Nμ
max

{μν − ε,μν + ε} ,

(65)

with ε 
 δω . At non-zero temperature, a more sophisticated choice of Ωextra is required. In appendix B, we
show that using such a grid allows for an efficient implementation of convolutions using fast Fourier
transforms if the number of points in Ωextra is small.

When the coupling to the reservoir dominates all other energy scales, we require that ωmax � Λ � δω .
In the opposite limit, the bandwidth B = 4t of the closed system determines the width of the grid,
ωmax � B, and δ−1

ω should be chosen much larger than the coherence time of the closed system. If not
otherwise stated, we use

ωmax = 20Λ + 16t,

2ωmax/δω = 37,

ε = 10−4t,

Nμ
max = 12.

(66)

Since ωmax depends on Λ, it is necessary to adapt the grid during the solution of the flow equations. This is
done after every step of the differential equation solver; in order to obtain the vertex functions on the new
grid, we use linear interpolation (note that extrapolation is never required as ωmax is only decreased).

6. Application

We will now apply our iterative Green’s function algorithm as well as our novel non-equilibrium FRG
approach to the tight-binding chain introduced in section 2. A pictorial representation of this model is
shown in figure 1.

First, we will benchmark the iterative Green’s function algorithm introduced in section 4 against
analytical results available for the non-interacting Hamiltonian U = 0. In this limit, all single-particle
eigenfunctions of the closed system (Γ = 0) are exponentially localized for any non-zero E, leading to
Wannier–Stark insulating behavior. The conductivity becomes finite for any Γ > 0.

Secondly, we will explore the capabilities of our novel non-equilibrium functional RG approach in
describing finite interactions U > 0. There are two reference results that we can compare against. First, we
will set up a mean-field treatment to compute the phase diagram in the large-U limit; this serves as a highly
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Figure 3. Benchmarking of the iterative, infinite-system Green’s function algorithm introduced in section 4 in the
non-interacting limit U = 0. (a) Local density of states ρ(ω) = − 1

π Im[gret(ω)] at Γ/t = 0.05 and E = 0 with 1, 4, 16 iterations of
the self-consistency equation (31) (blue, yellow and green; the curves are shifted vertically for readability). The dashed red line
indicates the analytic result of equation (69). (b) The same but for a finite electric field E/t = 0.1. Results are obtained using a
frequency grid with 2ωmax/δω = 3α,α = 5, 6, 7, which corresponds to a grid spacing of δω/t = 0.14, 0.047, 0.016. The inset
shows a zoom-in of the region indicated in the main panel, and the dashed red line shows the analytical solution for a system of
61 sites.

non-trivial test for the FRG, which is perturbative w.r.t. U. Secondly, it is known that the closed system with
zero electric field (Γ = E = 0) undergoes a Berezinskii–Kosterlitz–Thouless quantum phase transition from
a gapless Tomonaga–Luttinger liquid (U < 2t) to a charge density wave (U > 2t). The order parameter of
the charge density wave (CDW) phase can be defined as the occupation difference between even and odd
sites:

Δn = 〈n̂even〉 − 〈n̂odd〉. (67)

The corresponding susceptibility

χ = lim
s→0

Δn

s
(68)

diverges in a CDW phase but is finite otherwise. We will explicitly compute these quantities using the FRG
for arbitrary U, Γ, and E.

6.1. Non-interacting properties
6.1.1. Density of states
We now discuss the physics for U = 0 in more detail and use this limit as a testing ground for our iterative
Green’s function algorithm. In the absence of an electric field, the local density of states (LDOS) is known
analytically:

ρ(ω) = − 1

π
Im

(
1√

(ω + iΓ)2 − 4t2

)
. (69)

In figure 3(a), we demonstrate how this exact result is recovered by the iterative algorithm of section 4.
For finite fields E > 0 and Γ = 0, the system is a Wannier–Stark insulator, and all single-particle

eigenstates are exponentially localized. At small Γ 
 t, the local density of states becomes sharply peaked on
the scale of Γ. In figure 3(b), we demonstrate how our iterative algorithm can be used to compute the
LDOS in a numerically-exact fashion. (One should note that for finite U, additional inelastic processes lead
to smoother Green’s functions, which simplifies computations.)

6.1.2. Current

Wannier–Stark localization has a profound impact on the current I flowing through the system in the
presence of a finite electric field. In the absence of interactions, the current through a bond, say the one
connecting site 0 to site 1, is given by [64]

I =
∑
ν�0

∑
ν′�1

Iνν′ ,

Iνν′ =
2

π

∫
dω

[
nν(ω) − nν′(ω)

]
Γ2
∣∣gret

νν′(ω)
∣∣2,

(70)
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Figure 4. The finite-field conductivity I/E as a function of the reservoir coupling Γ for three different fields E in absence of
interactions (U = 0). According to equation (71), one expects three distinct power-law regimes. The data was computed using
the iterative algorithm of section 4. The different colors indicate different spacings δω of the frequency grid, indicating that
convergence can be reached.

where Iνν′ can be understood as the current between reservoirs ν and ν ′. One can show that for small fields
E 
 t, the hybridization-dependence I(Γ) reads (note that the bandwidth is given by B = 4t):6

I ∼

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Γt

E
Γ 
 E

Et

Γ
E 
 Γ 
 t

Et2

Γ2 t 
 Γ.

(71)

The behavior in these three regimes can be understood qualitatively. For small Γ, Wannier–Stark
localization leads to a vanishing current; the number of particles entering the chain from the reservoirs
scales with Γ. Once in the system, each fermion is repeatedly reflected by the electric field in the form of
Bloch oscillations. The typical distance traveled before eventually leaving the chain scales as t/E, resulting in
a total current that scales as Γt/E.

If E 
 Γ � t, fermions tunnel coherently between far-apart reservoirs. To analyze this in more detail,
consider the defining equation for an element of the non-interacting Green’s function:∑

k

[
(ω − kE + iΓ)δi,k − tδ|i−k|,1

]
gkj(ω) = δi,j. (72)

At ω = 0, E 
 Γ � t, and i 
 j or j 
 i, this equation is approximately solved by

gij(ω = 0) ∼ −i|i−j| exp(−|i − j|Γ/2t), (73)

only resulting in deviations of O(Γ3). We plug this into equation (70) and exploit that for a given distance
Δ between pairs of reservoirs, there is O(Δ) pairs that are connected by the selected bond. The function

nν(ω) − nν ′(ω) has a width ΔE, and the Green’s function can be assumed to be constant within such an
interval. Therefore, the total current through that bond is obtained as

I ∼
∞∑

Δ=1

EΔ2Γ2

t2
exp(−ΔΓ/t) ∼ Et

Γ
. (74)

At large coupling Γ � t, the scattering into the reservoirs dominates and the correlation becomes small
(compare equation (12)):

gret(ω) =
1

ω − h + iΓ
=

1

iΓ
+

ω − h

Γ2 +O
(

1

Γ3

)
,

gret
i(i+1)(ω = 0) ∼ t

Γ2 ⇒ I ∼ Et2

Γ2 .

(75)

The current obtained using our numerical algorithm is shown in figure 4 as a function of Γ for various
values of E < t. The three distinct regimes of equation (71) can be clearly identified; this serves as an
additional benchmark for our iterative approach.

6 The current in the absence of interactions was computed in reference [36], and analytical formulas for I(Γ ) were derived in the limit
E, Γ 
 t. We briefly recapitulate these results for didactic purposes.
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Figure 5. Functional RG results in the limit U � t. (a) Difference Δn between the occupation of even and odd sites (the CDW
order parameter) as a function of the reservoir coupling Γ for various values of the initial symmetry breaking s. The transition
into the CDW phase becomes sharper as s is decreased. The data was obtained for fixed M = 10, which is the numerical control
parameter in the solution of the flow equations. (b) M-dependence of the critical ratio Ucrit/Γcrit, which is defined as the point in
(a) where lines at different s cross. The dashed line shows the mean-field result of equation (79). (c) CDW order parameter as a
function of Γ for fixed s/U = 0.01 but different M, which again illustrates that convergence in M can be reached. (d) The
susceptibility χ = lims→0Δn/s features a power-law divergence with an exponent γ ≈ 1.2 (dashed line) close to the critical point.

6.2. Large interaction limit
In the previous section, we have tested the (numerically exact) iterative algorithm introduced in section 4 by
comparing with analytical results in the non-interacting limit U = 0. We now turn to benchmarking our
FRG approximation scheme for U �= 0. To the best of our knowledge, no reference data is available except in
the limit E = Γ = 0. We therefore resort to a mean-field treatment, which is expected to give reasonable
results for U →∞. This is a highly non-trivial testing ground for the FRG, which is perturbative w.r.t. the
interaction strength.

6.2.1. Mean-field approach
If the interaction dominates the bare, decoupled Hamiltonian (i.e., for U � t), the system can be reduced to
a chain of disconnected sites. One can easily show that for t = 0, the effects of a finite field E �= 0 can be
eliminated by virtue of a gauge transformation analogous to the Peierls substitution [65]:

cj → exp(−ijEτ)cj,

ak,j → exp(−ijEτ)ak,j,
(76)

where τ denotes time (within the action). This transformation effectively shifts all energies on site j and the
adjacent reservoir by −jE. Hence, we can restrict ourselves to E = 0. For Γ = 0, the ground state is a perfect
charge density wave, while for large couplings Γ � U, the ground state is not spontaneously ordered. To
our best knowledge, the critical coupling strength which characterizes the transition between these two
regimes is not known.

It is reasonable to treat the limit t = 0 using mean-field theory. Since the Green’s functions become
diagonal, one needs to solve the following self-consistency equation:

〈n̂even〉 =
−1

π

∫ 0

−∞
dω Im

(
1

ω + s + U − 2U 〈n̂odd〉+ iΓ

)
. (77)

Using equation (67) as well as 〈n̂even〉 = 1 − 〈n̂odd〉, this reduces to

Δn =
2

π
arctan

(
s/Γ + UΔn/Γ

)
. (78)

At s = 0, this equation has nontrivial solutions beyond a critical interaction strength of

UMF
crit =

π

2
ΓMF

crit ≈ 1.571ΓMF
crit. (79)

In the disordered phase (U/Γ < π/2), the susceptibility for small symmetry breaking (s 
 U,Γ) scales as

χMF = lim
s→0

Δn

s
∼ 1/Γ

π/2 − U/Γ
, U/Γ < π/2. (80)
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Figure 6. (a) Functional RG results for the susceptibilityχ for finite interactions U/t � 1, E = 0, and different values for the
initial symmetry breaking s. The susceptibility is finite (though large) for any Γ. The FRG calculation was performed with
M = 4. In contrast to the FRG, mean-field theory (gray lines) predicts a transition into a CDW phase at any U for small enough
Γ. (b) For larger interactions and small Γ, the response of the system is no longer linear in s, as demonstrated here for s/t = 0.01
(solid) and s/t = 0.001 (dashed). This indicates a divergent susceptibility and a transition into a CDW phase.

Figure 7. FRG results for the critical behavior of the susceptibility at E = 0 close to the phase transition. The data was obtained
using s/U = 10−6 and M = 4. (a) The susceptibility diverges as a power-law χ ∼ (Γ− Γcrit)−γ (dashed red lines). (b) The
corresponding exponent γ is interaction-dependent and diverges at a finite value Ucrit. The FRG does not predict a transition into
a CDW phase at low interactions. In contrast, mean-field theory (dashed red line) yields a transition for arbitrary U with an
exponent γMF = 1.

For reasons of completeness, we will now present technical details of how to solve the mean-field
equations for t �= 0; results will be discussed elsewhere. In thermal equilibrium, a common technique to
finding solutions of the mean-field equations is to use a self-consistency loop based on an initial guess for
the field. If multiple solutions are found, one picks the one which minimizes the free energy; this solution
corresponds to a stable fixed point of the mean-field equations.

For finite fields E �= 0, the above procedure needs to be modified. First, a self-consistency loop is
insufficient to identify all solutions of the mean-field equations as not all fixed points can be obtained as the
limit of a self-consistency loop, regardless of the initial guess. One therefore needs to resort to a version of
Newton’s method, which also converges to fixed points where a self-consistency loop fails. Secondly, the free
energy can no longer be used to determine a unique, stable solution. One can gauge the stability from the
Lipschitz constant, which is estimated from the behavior of the self-consistency loop under a small
perturbation. Out of equilibrium, one can thus only report the existence of solutions of the self-consistent
equations and their stability with respect to perturbation. This will be discussed in a separate publication.

6.2.2. Benchmarking the FRG
The mean-field results in the limit U →∞ can be used to benchmark our FRG approach (which is
perturbative w.r.t. U). Since h is diagonal, the same holds true for all single-particle propagators g (which
can thus be computed straightforwardly without resorting to the iterative algorithm of section 4) as well as
for the self-energy. This allows us to greatly simplify the FRG flow equations. Note that the two-particle
vertex functions remain infinitely extended as terms with arbitrary dist(1′, 2′) and dist(1, 2) can be
generated by the flow. However, γΛ

1′212 = 0 if dist(1′, 1) > 0, and the self-energy itself is strictly local.
The main FRG results are presented in figure 5(a). For large reservoir couplings Γ, the CDW order

parameter Δn scales linearly in the initial symmetry breaking s, which corresponds to a finite susceptibility
χ. Below a critical coupling, however, Δn takes a finite value which does not decrease with decreasing s; the
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Figure 8. FRG results for (a) the susceptibility and (b) the CDW order parameter as a function of the reservoir coupling Γ at a
fixed electrical field E/t = 0.2 which drives the system out of equilibrium for various values of U. Solid and dashed lines show
data for s/t = 0.02 and s/t = 0.01, respectively. The FRG calculation was carried out using M = 4. The field E induces a current,
which suppresses charge-ordering tendencies: the system is in a disordered phase (finite susceptibility) for any Γ at U/t � 3; for
larger U, we find a transition into a CDW phase at a finite value of Γ.

response of the system diverges, and translation invariance is spontaneously broken. One can identify the
critical point Γcrit of this transition as the point where the curves at different s intersect. In figure 5(b), we
show Γcrit as a function of M, which is the control parameter in the numerical solution of the FRG flow
equations. For large M, we obtain

Ucrit ≈ 1.639Γcrit, (81)

which is in good agreement with the mean-field prediction of equation (79). For reasons of completeness,
we show the CDW order parameter for different values of M in figure 5(c), which again confirms that
convergence can be reached. At the critical point, the susceptibility appears to diverge as a power law, and
the FRG result for the critical exponent reads:

χ ∼ α

(
Γ− Γcrit

U

)−γ

, γ ≈ 1.2. (82)

This is illustrated in figure 5(d).

6.3. Phase diagram at intermediate interaction
At intermediate interaction, the ordering tendencies driven by the interaction compete with the kinetic
energy, resulting in a non-trivial phase-diagram. In the absence of an electric field, mean field theory
predicts an ordered phase at any interaction U when the coupling Γ is small enough (Ucrit/t → 0 for
Γ→ 0). In equilibrium and for Γ→ 0 this is known to be an artifact of the mean-field approximation. The
exact Bethe-ansatz solution predicts that the CDW order is destabilized by quantum fluctuations and that a
finite critical Ucrit/t = 2 is needed to drive the phase into an ordered state by a
Berezinskii–Kosterlitz–Thouless mechanism [66, 67].

In contrast to the mean-field approach and in accord with the exact solution, we do not observe
symmetry breaking at small interactions within the FRG calculation (see figure 6(a)). While a phase
transition at lower, inaccessible reservoir couplings Γ can in principle not be ruled out, an alternative,
Matsubara FRG scheme carried out directly at Γ = 0 predicts a finite value of Ucrit/t [43]. Beyond a critical
interaction of Ucrit/t ≈ 1.4, the initial symmetry breaking yields a response that does not vanish linearly for
s → 0, and the system enters a CDW phase (see figure 6(b)).

After pinpointing the position of the phase transition, we can analyze the critical behavior itself.
Mean-field theory predicts a divergence as

χMF ∼ (Γ− ΓMF
crit)

−γMF
, γMF = 1, (83)

independent of the interaction strength. In contrast, the susceptibility obtained using the FRG diverges as a
power-law with an interaction-dependent exponent (see figure 7(a)). The exponent increases upon lowering
the interaction towards the critical point, beyond which no phase transition can be identified at any Γ > 0
(see figure 7(b)). The critical interaction strength extracted from the analysis is approximately Ucrit/t ≈ 1.4
in the small-Γ limit (the exact solution yields Ucrit/t = 2).
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Figure 9. The same as in figure 8 but for fixed U/t = 5 and varying electrical fields. Solid and dashed lines show data for
s/U = 0.02 and s/U = 0.01, respectively. For E/t = 1, 2, the system is in a disordered phase for any Γ. For both smaller and
larger electric fields, we find a transition into a CDW phase at a finite value of Γ/U. The system shows reentrance behavior.

6.4. Phase diagram at non-zero electric field
We now turn to the phase diagram of the system driven out of equilibrium by a finite electric field E > 0.
Results for the susceptibility as well as for the CDW order parameter are shown in figures 8 and 9 for a
constant electric field E/t = 0.2 and a constant interaction U/t = 5, respectively.

For a constant, small electric field of E/t = 0.2, the system is in a disordered phase for U/t � 3 at any
value of Γ. However, the susceptibility does not decrease monotonically with Γ but features novel structures
which reflect the emergence of the multiple energy scales away from equilibrium (see figure 8(a)). The
critical interaction beyond which we observe a transition into a CDW phase is drastically enhanced (here by
roughly a factor of 2) compared to the case of E = 0; the electric field drives a current through the system,
and the tendencies to form charge order are suppressed.

In figure 9, we show results for constant U/t = 5 and various E. Small fields E/t � 2 induce a current
and thus reduce the tendency to form charge order. However, we observe a re-entrance into the CDW phase
as the strength of the field is increased: for large E, the current is suppressed due to localization and can no
longer inhibit CDW order.

7. Conclusion

We have discussed a method to treat an infinite quantum system which is driven out of thermal equilibrium
in a translation-invariant fashion. In particular, we have set up recursion relations for Keldysh–Schwinger
Green’s functions and demonstrated how they can be solved efficiently in a numerically-exact way. The
algorithm is directly applicable to any diagrammatic Green’s function based method such as (dynamical)
mean field theories or the functional renormalization group. Furthermore, the presented iterative Green’s
functions scheme has direct relevance to periodically driven systems described by a Floquet Green’s
functions approach [20, 68, 69].

We applied this general machinery within a novel, second-order Keldysh formulation of the functional
renormalization group; significant effort was devoted to efficiently implementing the FRG flow equation via
fast Fourier transforms. As a physically relevant example, we studied a tight-binding chain of interacting
spinless fermions coupled to reservoirs and driven out of equilibrium by an electric field. It is known that
the closed system features an equilibrium Berezinskii–Kosterlitz–Thouless phase transition into a CDW
phase beyond a critical interaction strength Ucrit. In contrast to mean-field approaches, the FRG reproduces
this result and can be used to determine Ucrit in the presence of a finite reservoir coupling. A small electric
field induces a current and thus suppresses tendencies to form charge order. For large field, however,
Wannier–Stark localization leads inhibits currents and leads to a re-entrance into the CDW phase.
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Appendix A. Solution of non-local self-consistency equations

In sections 4 and 5.6 we derived self-consistency equations for the auxiliary Green’s functions and
single-scale propagators (see equations (31), (39), (61), and (64)) of the form:

G(ω ± NE) = F (G(ω)) , (A1)

where G ∈
{
Gret, �L�R

LL ,GK, �L�R
LL ,Gret, �L�R

LL ,Sret, �L�R
LL ,SK, �L �R

LL

}
. At vanishing E = 0, such equations can be solved with a

self-consistency loop. For E > 0, equation (A1) is non-local in the frequency, and we will now discuss to
solve such an equation efficiently. In all cases, the following boundary condition holds:

lim
ω→±∞

G(ω) = 0. (A2)

Together, equations (A1) and (A2) uniquely define G(ω).
(a) Equidistant grids of spacing NE. The first, straightforward way to solve such equation is to consider

an equidistant grid
{−kmaxNE, (−kmax + 1)NE, . . . , kmaxNE} . (A3)

With the initial assumption G(±kmaxNE) = 0, equation (A1) can be used to successively calculate the
Green’s function on the entire grid.

(b) Arbitrary grids. The method described above becomes inefficient if NE is much smaller than the
required grid spacing. Alternatively, we can consider an arbitrary frequency discretization {ω1, . . . ,ωkmax}
and assume G(ωkmax ) = G(ω1) = 0. For simplicity, we restrict us to the case of negative sign in
equation (A1). In that case one uses the following recursive algorithm to successively obtain G(ω) on the
entire grid. One assumes that G(ω) has already been calculated for all frequencies ωk+1, . . . ,ωkmax . In order
to compute ωk, we find the largest frequency ωi which fulfills

ωi � ωk + NE. (A4)

Note that one always has i � k. If we assume that G is well approximated by a linear interpolation between
grid points, we obtain:

G(ωk) = F [G(ωk + NE)]

≈ F
[
(1 − δ)G(ωi) + δG(ωi+1)

]
,

(A5)

where

δ =
ωk + NE − ωi

ωi+1 − ωi
. (A6)

Whenever k = i, equation (A5) is solved using a self-consistency loop, otherwise G(ωi) has previously been
computed (G(ωi+1) is known since i � k). If i = kmax, we set G(ωi+1) = 0.

Appendix B. Efficient convolution

For a numerical implementation of the FRG algorithm discussed in this work, it is essential to perform the
integrals appearing on the rhs of the flow equations efficiently. As mentioned above, this can be achieved by
treating all integrals as convolutions and by utilizing an efficient algorithm to perform these. To that end,
we discretize all frequencies on a grid as discussed in section 5.7. In the following, N denotes the total
number of frequency points.

We define the convolution of two functions as

( f ∗ g)(y) =

∫ ∞

−∞
dxf (x)g(y − x). (B1)

If this integral is carried out naively, this requires O(N) operations, and the effort to obtain the rhs of all of
the flow equations thus scales as O(N2). In this appendix, we will discuss how such convolutions can be
obtained efficiently on equidistant grids, on grids with an arbitrary spacing, and on mixed grids (which are
required within the FRG).

B.1. Equidistant grids
For equidistant grids, we can rewrite the convolution in terms of a discrete Fourier transform, which will
allow us to perform significantly faster computations.
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Figure B1. Pictorial representation of the three different discretizations discussed in this appendix. From left to right we show a
piecewise constant approximation on an equidistant grid (discussed in B.1), a piecewise linear approximation on an arbitrary
grid (see B.2) and a piecewise constant approximation with piecewise linear refinements (see B.3).

B.1.1. Discretization. We employ an equidistant grid with N ∈ 2N+ 1 points and approximate f and g by
piecewise constant functions (compare left panel of figure B1):

h̃(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 x < −N

2
w

hi

(
i − 1

2

)
w � x <

(
i +

1

2

)
w

0
N

2
w � x

(B2)

with a vector (hi)i={− N−1
2 ... N−1

2 }, and hi = h (iw) and h = f, g. A convolution of f, g then reduces to a

convolution of vectors:

( f ∗ g)(iw) =

∫ ∞

−∞
dxf (x)g(y − x) ≈ w

∑
k

fkgi−k, (B3)

with the summation bounded appropriately. The summation runs over O(N) elements, and it thus takes
O(N2) operations to compute the convolution on the entire original grid (which has N points). This can be
improved by employing a Fourier transform.

B.1.2. Fourier transform. Using the discrete Fourier transform

f̄ k =
1√
N

∑
l

eilk 2π
N fl, fl =

1√
N

∑
k

e−ilk 2π
N f̄ k, (B4)

one rewrites the discrete convolution as

w
∑

j

fjgn−j =
w

N

∑
k1,k2

∑
j

e−ijk1
2π
N f̄ k1 e−i(n−j)k2

2π
N ḡk2

= w
∑

k

e−ink 2π
N f̄ kḡk, (B5)

which is the nth element of the back-transform of the product of f̄ kḡk.
By employing the fast Fourier transform (FFT) algorithm, the discrete Fourier transform can be

computed in O(N log(N)) operations7, which allows us to obtain all components of the convolution on
the same grid in O(N log(N)) operations.

While this algorithm is very efficient, it is specifically designed for equidistant grids and can not easily be
generalized to more general discretizations. For our application with its vastly different energy scales, one is
forced to use an overly dense grid, which diminishes the advantage of this method.

7 In our implementation of the algorithm we employ the FFTW library [70], which provides a FFT implementation for discrete Fourier
transforms. To obtain optimal performance, it is beneficial to chose a grid size with small prime factors; as our grid contains an odd
number of points we chose a power of 3.
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B.2. Arbitrary grids
Alternatively, one can work with an entirely arbitrary grid defined via {x1, . . . , xN} with x1 < · · · < xN. We
assume that the functions f, g are approximated piecewise linearly (compare center panel of figure B1),

h̃(x) =

⎧⎨
⎩

0 x < x1

ah
i x + bh

i xi � x < xi+1

0 xN � x,
(B6)

with aixi+1 + bi = ai+1xi+1 + bi+1∀i, and

h̃(xi) = h(xi) ∀i ∈ {1, . . . , N} (B7)

for h = f, g. The convolution of the two functions can then be written as

( f ∗ g)(xi) =

∫ ∞

−∞
dxf (x)g(xi − x)

=

N∑
k,k′=1

∫
Skk′

dx
(

af
kx − bf

k

) (
ag

k′(xi − x) − bg
k′
)

,

Si
kk′ = [xk, xk+1] ∩ [xi − xk′+1, xi − xk′]. (B8)

Depending on the chosen discretization, the support Skk′ of the integrand at a given k might be non-zero for
more than one k′; however, ∣∣{(k, k′) ∈ {1, . . . , N}2|Si

kk′ �= ∅
}∣∣ ∈ O(N). (B9)

Given a fixed k, the values of k′ contributing to the rhs of equation (B8) can be identified in O(log(N))
operations by traversing the xi with an appropriate algorithm. Using the indefinite integral∫

dx (ax − b)(a′x − b′) =
1

3
aa′x3 +

1

2

(
ab′ + ba′

)
x2 + bb′x + c, (B10)

the remaining convolutions of linear functions can be easily evaluated.
Note that for an efficient algorithm it is of crucial importance that the grid of xi is sorted and that

appropriate algorithms to identify the contributing k′ are employed. On an arbitrary grid with N points,
this algorithm requires O(N2 log N) operations to obtain the convolutions on the entire grid.

While this algorithm allows for grids that take the vastly different energy scales of the problem into
account, it is (compared with the case of equidistant grids) slow and is the bottleneck of such an
implementation.

B.3. Mixed grids
Let us assume that the functions f, g are known on a grid Ω containing O(N) equidistant points as well as
O(k) additional points at arbitrary positions,

Ω =

{
−N − 1

2
w, . . . ,

N − 1

2
w

}
∪ {x1, . . . , xk} , (B11)

with −N−1
2 w < x1 < x2 < · · · < xk <

N−1
2 w. We first analyze sections of the equidistant subgrid.

B.3.1. Within one section. For a given n ∈
{
−N−1

2 , . . . , N−1
2

}
consider the adjacent points

Sn =
(

nw − w

2
, nw +

w

2

)
∩ {x1, . . . , xk} . (B12)

Then there is exactly one decomposition f (x) ≈ an + f n
lin(x) fulfilling the following three conditions: firstly,

we require
f (x) = an + f n

lin(x) ∀x ∈ {nw} ∪ Sn, (B13)

where flin is a piecewise linear function with support only in
(
nw − w

2 , nw + w
2

)
. Secondly, we require

df n
lin(x)

dx
→ 0 for x → nw ± w

2
. (B14)
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Figure B2. Pictorial representation of the decomposition proposed in appendix B.2. We obtain an approximation on a refined
equidistant grid as a decomposition into a piecewise constant function f0(x) and a series of piecewise linear functions (here only
f 1
lin) with support only within one segment of the equidistant grid. We have the freedom to choose

∫
dxf 1

lin(x) = 0.

Lastly, we impose the condition ∫ ∞

−∞
dxf n

lin(x) =

∫ nw+w
2

nw−w
2

dxf n
lin(x) = 0. (B15)

If this was not fulfilled, the finite weight of flin could be absorbed into the constant an.

B.3.2. On the entire grid. Following this procedure in every segment results in a representation

f (x) ≈ f0(x) +
N∑

n=1

f n
lin(x) (B16)

with

f0(x) =

{
an |x − nw| < w

2
0 otherwise.

(B17)

Note that only a small number of f n
lin(x) �≡ 0 (in fact, k at most), since these linear functions are only

required if one of the additional points xi falls into the interval
(
nw − w

2 , nw + w
2

)
.

A visual example of such a decomposition is shown in figure B2, a concrete example is presented in the
next section.

B.3.3. Example. As an example, consider
f (x) = sgn(x − 0.2) (B18)

on the grid
Ω = {−1, 0, 1} ∪ {0.1, 0.3}. (B19)

These functions can be approximated as

f (x) ≈ f0(x) + f 1
lin(x), (B20)

with

f0(x) =

⎧⎪⎪⎨
⎪⎪⎩

−1 −1.5 � x < −0.5
−0.4 −0.5 � x < 0.5

1. 0.5 � x < 1.5
0 otherwise

(B21)

and

f 1
lin(x) =

⎧⎪⎪⎨
⎪⎪⎩

−0.6 −0.5 � x < 0.1
10x − 1.6 0.1 � x < 0.3

1.4 0.3 � x < 0.5
0 otherwise.

(B22)

B.3.4. Performing convolutions on such approximations. Using its linearity, a convolution of two functions
approximated in such a way can always be decomposed as:

( f ∗ g)(y) = (f0 ∗ g0)(y) +
∑

i

(f i
lin ∗ g0)(y) +

∑
j

(f0 ∗ gj
lin)(y) +

∑
i,j

(f i
lin ∗ gj

lin)(y) (B23)

We now evaluate this decomposition on the grid and have to distinguish between two cases:
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(a) For all y in the equidistant grid. The first term can be computed as outlined in appendix B.1 in
O(N log(N)) operations. Due to our choice

∫
dxf i

lin(x) = 0 =
∫

dxgi
lin(x), the support of these functions as

well as the fact that f0 and g0 are piecewise constant, the second and third term vanish. The last term can be
explicitly computed in O(k2 log(N)) operations: the summands are only non-zero for O(k2) values of (i, j),
and for each such combination O(log(N)) operations are required to identify the (small) support of
f i
lin ∗ gj

lin.
(b) For each y outside the equidistant grid. One can obtain the convolution explicitly using the

algorithm for arbitrary grids discussed in appendix B.2; as there are only k such points, this results in an
algorithm of O(kN log(N)) operations.
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