TORSION POINTS OF ORDER $2 g+1$ ON ODD DEGREE HYPERELLIPTIC CURVES OF GENUS g

BORIS M. BEKKER AND YURI G. ZARHIN

Abstract

Let K be an algebraically closed field of characteristic different from $2, g$ a positive integer, $f(x) \in K[x]$ a degree $2 g+1$ monic polynomial without multiple roots, $\mathcal{C}_{f}: y^{2}=f(x)$ the corresponding genus g hyperelliptic curve over K, and J the Jacobian of \mathcal{C}_{f}. We identify \mathcal{C}_{f} with the image of its canonical embedding into J (the infinite point of \mathcal{C}_{f} goes to the zero of the group law on J). It is known 9 that if $g \geq 2$, then $\mathcal{C}_{f}(K)$ contains no points of orders lying between 3 and $2 g$.

In this paper we study torsion points of order $2 g+1$ on $\mathcal{C}_{f}(K)$. Despite the striking difference between the cases of $g=1$ and $g \geq 2$, some of our results may be viewed as a generalization of well-known results about points of order 3 on elliptic curves. E.g., if $p=2 g+1$ is a prime that coincides with $\operatorname{char}(K)$, then every odd degree genus g hyperelliptic curve contains at most two points of order p. If g is odd and $f(x)$ has real coefficients, then there are at most two real points of order $2 g+1$ on \mathcal{C}_{f}. If $f(x)$ has rational coefficients and $g \leq 51$, then there are at most two rational points of order $2 g+1$ on \mathcal{C}_{f}. (However, there exist odd degree genus 52 hyperelliptic curves over \mathbb{Q} that have at least four rational points of order 105.)

1. Introduction

Let K be an algebraically closed field and K_{0} a subfield of K. Let \mathcal{C} be a smooth irreducible projective curve of positive genus g over K. We say that \mathcal{C} is defined over K_{0} if there exists a smooth projective curve \mathcal{C}_{0} of the same genus g over K_{0} such that $\mathcal{C}=\mathcal{C}_{0} \times_{K_{0}} K$. Let \mathcal{C} be defined over K_{0}, O be a K_{0}-point on \mathcal{C}, and J the Jacobian of C,

[^0]which is a g-dimensional abelian variety over K_{0}. There is a canonical K_{0}-regular embedding alb: $\mathcal{C} \rightarrow J$ that sends O to the zero of the group law on J and every point $P \in \mathcal{C}(K)$ to the linear equivalence class of the divisor $(P)-(O)$. We identify \mathcal{C} with its image in J.

A celebrated theorem of Raynaud (Manin-Mumford conjecture) asserts that if $g>1$ and $\operatorname{char}(K)=0$, then the set of torsion points in $\mathcal{C}(K)$ is finite [6]. (This assertion does not hold in prime characteristic: e.g., if K is an algebraic closure of a finite field, then $\mathcal{C}(K)$ is an infinite set that consists of torsion points.) The importance of determining explicitly the finite set occuring in Raynaud's theorem for specific curves was stressed by R.Coleman, K.Ribet, and other authors (for more details, see [7], 8]).

In particular, it is natural to ask what are the "small" orders of torsion points in $\mathcal{C}\left(K_{0}\right) \subset J\left(K_{0}\right)$ for specific K_{0}. More precisely:

- does there exist (for given $g>1, K_{0}$, and a positive integer n) a genus g curve \mathcal{C} over K_{0} such that $\mathcal{C}\left(K_{0}\right)$ contains a torsion point of order n ?
- if such a curve exists, then how many points of order n it may contain?

Of course, $O \in \mathcal{C}(K) \subset J(K)$ is the only point of order 1 , so we may assume that $n>1$. In what follows we assume that $\operatorname{char}(K) \neq 2, \mathcal{C}$ is a genus g hyperelliptic curve, and O is one of the Weierstrass points of \mathcal{C}. It is well known that the torsion points of order 2 in $\mathcal{C}(K)$ are the remaining (different from $O)(2 g+1)$ Weierstrass points on $\mathcal{C}(K)$.

It was proven by J. Boxall and D. Grant in [2] that for $g=2$ there are no points of order 3 or 4 .

The second named author proved in [9, Theorem 2.8] that $\mathcal{C}(K)$ does not contain a point of order n if $g \geq 2$ and $3 \leq n \leq 2 g$.

Thus the first nontrivial case is $n=2 g+1$, which is the subject of the present paper.

In the case of $g=2$ such a study was done by J. Boxall, D. Grant, and F. Leprévost in [3], where a classification (parameterization) of the genus 2 curves (up to an isomorphism) with torsion points of order 5 over algebraically closed fields was given. In particular, it was proven in [3] that if $\operatorname{char}(K)=5$, then $\mathcal{C}(K)$ contains at most 2 points of order 5 . The latter assertion may be viewed as a genus 2 analog of the following well-known fact: an elliptic curve in characteristic 3 has at most 2 points of order 3.

Here are our results about genus g hyperelliptic curves \mathcal{C} with torsion points of order $n=2 g+1$.

1. For every K_{0} and every g there exists a curve \mathcal{C} such that $\mathcal{C}\left(K_{0}\right)$ contains at least two points of order $n=2 g+1$ (Examples 1 and 2, Remark (3). Actually, we construct a versal family of such curves that is parameterized by an affine rational K_{0}-variety (Theorems 2 and 1).
2. If K_{0} is the field \mathbb{Q} of rational numbers and $g \leq 100$, then a curve \mathcal{C} having at least four points of order $n=2 g+1$ in $\mathcal{C}(\mathbb{Q})$ exists if and only if $g=52$ or $g=82$ (Corollary 5.2 and Example (5).
3. If K_{0} is the field \mathbb{R} of real numbers, then a curve \mathcal{C} having at least four points of order $n=2 g+1$ in $\mathcal{C}(\mathbb{R})$ exists if and only if g is even (Corollary 5.1) and Example (4).
4. If $p=\operatorname{char}(K)>0$ and $2 g+1$ is a power of p (e.g., $2 g+1=p$), then $\mathcal{C}(K)$ contains at most two points of order $n=2 g+1$ for every \mathcal{C} (Theorem 5).
5. If $2 g+1$ is not a power of $\operatorname{char}(K)$ (e.g., $\operatorname{char}(K)=0$ or $\operatorname{char}(K)>2 g+1$), then there exists a versal family of curves having at least four points of order $n=2 g+1$ in $\mathcal{C}(K)$. This family is parameterized by a finite (nonempty) disjoint union of affine rational K-curves (Theorems 20 and 221).

While there are striking differences between the cases of $g=1$ (elliptic curves) and $g \geq 2$, our assertions 1,3 , and 4 may be viewed as generalizations of well-known results about points of order 3 on elliptic curves.

The paper is organized as follows. In Section 2 we remind the reader of some basic results about odd degree hyperelliptic curves. It also contains auxiliary assertions from [9] that will be used later. In Section 3 we describe odd degree genus g hyperelliptic curves with one pair of torsion points of order $2 g+1$. It turns out that such curves and points exist over arbitrary fields for all g (Examples 1 and 2). We give a characterization of hyperelliptic genus g curves with two pairs of torsion points of order $2 g+1$ in terms of certain factorizations of the polynomial $\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}$ where a_{1} and a_{2} are abscissas of the torsion points. Each such factorization gives rise to a one-dimensional family of hyperelliptic genus g curves with two pairs of torsion points of order $2 g+1$, and we study them in Section 4. In Section 5 we discuss the rationality questions and prove the results over \mathbb{R} and \mathbb{Q} mentioned above. We also introduce and discuss the notion of hyperelliptic numbers, which may be of independent interest. In Section 6 we concentrate on the case of algebraically closed field. We study odd degree genus g hypelliptic curves that have two torsion points P, Q of
order $2 g+1$ with $P \neq Q, P \neq \iota(Q)$ and provide a parameterization of their isomorphism classes by a disjoint union of finitely many affine rational curves. In Section 7 we compute the value of the Weil pairing between certain torsion points of order $2 g+1$ on \mathcal{C}_{f}.

2. Preliminaries

Let K be an algebraically closed field with $\operatorname{char}(K) \neq 2$. Let \mathcal{C} be a hyperelliptic curve of genus $g \geq 1$ over K. Let $K(\mathcal{C})$ be the field of rational functions on \mathcal{C} and J the Jacobian of \mathcal{C}. Let $O \in \mathcal{C}(K)$ be a Weierstrass point on \mathcal{C}. The pair (\mathcal{C}, O) is called a pointed hyperelliptic curve [4]. (If $g=1$, then every K-point of \mathcal{C} is a Weierstrass one. If $g>1$, then there are exactly $2 g+2$ Weierstrass K-points on \mathcal{C}.) By the definition of a Weierstrass point [4], there exists a rational function $x \in K(\mathcal{C})$ that is regular outside O and has a double pole at O. (Any other rational function on \mathcal{C} that enjoys these properties is of the form $\alpha x+\beta$ with $\left.\alpha \in K^{*}, \beta \in K[4].\right)$ The regular map $\pi: \mathcal{C} \rightarrow \mathbb{P}^{1}$ to the projective line \mathbb{P}^{1} defined by x is a double cover that sends O to the infinite point of \mathbb{P}^{1}. The K-biregular involution

$$
\iota=\iota_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C}
$$

attached to π is the so-called hyperelliptic involution of the hyperelliptic curve \mathcal{C}, which does not depend on a choice of x; it even does not depend on a choice of O if $g>1$. The set of fixed points of ι (i.e., the set of branch points of π) is a certain $(2 g+2)$-element set of Weierstrass points in $\mathcal{C}(K)$, including O. (If $g>1$, then this set coincides with the set of all Weierstrass points on \mathcal{C}.) The K-vector subspace $\mathcal{L}((2 g+1)(O)) \subset$ $K(\mathcal{C})$ of functions that are regular outside O and have a pole of order at most $2 g+1$ at O has dimension $g+2$; in addition, it is ι-stable and contains $g+1$ linearly independent ι-invariant functions $1, x, \ldots, x^{g}$ that have a pole of order at most $2 g$ at O [4]. This implies that there exists a rational function $y \in K(\mathcal{C})$ that is ι-anti-invariant, regular outside O, and has a pole of order $2 g+1$ at O; such a y is unique up to multiplication by a nonzero element of K. In addition, there exists a degree $2 g+1$ polynomial $f(x) \in K[x]$ without multiple roots such that $y^{2}=f(x)$ in $K(\mathcal{C})$ [4]. Multiplying x and y by suitable nonzero elements of K, we may and will assume that $f(x)$ is monic. The functions (x, y) define a biregular K-isomorphism between \mathcal{C} and the (smooth) normalization \mathcal{C}_{f} of the projective closure of the smooth plane affine curve $y^{2}=f(x)$ under which O goes to the unique infinite point of \mathcal{C}_{f} [4], which we denote by ∞; in addition, $\iota_{\mathcal{C}}$ becomes the involution

$$
\mathcal{C}_{f} \rightarrow \mathcal{C}_{f}, \quad(x, y) \mapsto(x,-y) .
$$

The fixed points of ι are ∞ and all the points $\mathfrak{W}_{i}=\left(w_{i}, 0\right)$, where $w_{i} \in K(1 \leq i \leq 2 g+1)$ are the roots of $f(x)$.

The action of ι on $\mathcal{C}(K)$ extends by linearity to the action on divisors of \mathcal{C}. Notice that for any nonzero rational function F on \mathcal{C} we have $\operatorname{div}\left(\iota^{*}(F)\right)=\iota(\operatorname{div} F)$, where $\operatorname{div}(F)$ is the divisor of F and ι^{*} is the induced action of ι on the field of rational functions on \mathcal{C}. Thus we obtain the induced action of ι on the linear equivalence classes of divisors on \mathcal{C}. If $P \in \mathcal{C}(K)$, then we write (P) for the corresponding degree 1 effective divisor with support in P. If $P=(a, b)$, then $\operatorname{div}(x-a)=(P)+(\iota(P))-2(\infty)$. This explains why after the identification of \mathcal{C} with its image in J the involution ι becomes multiplication by -1 and the points of order 2 in $\mathcal{C}(K)$ are all (except $\infty)(2 g+1)$ branch points of π of \mathcal{C}. Notice that if $\mathcal{C}(K)$ contains a torsion point P of order $n>2$, then it contains the torsion point $\iota(P) \neq P$ of the same order, which implies that the number of points of order n in $\mathcal{C}(K)$ is even.

If K_{0} is a subfield of K, \mathcal{C} is defined over K_{0}, and $O \in \mathcal{C}\left(K_{0}\right)$, then (\mathcal{C}, O) is called a pointed hyperelliptic curve over K_{0} [4]. Let (\mathcal{C}, O) be a pointed hyperelliptic curve over K_{0} and $K_{0}(\mathcal{C})$ be the field of $K_{0^{-}}$ rational functions on \mathcal{C}. Then the coordinate functions x and y can be chosen in $K_{0}(\mathcal{C})$, the double cover $\pi: \mathcal{C} \rightarrow \mathbb{P}^{1}$ defined by x is $K_{0^{-}}$ regular, and the involution $\iota_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C}$ is K_{0}-biregular. In addition, the monic polynomial $f(x)$ such that $y^{2}=f(x)$ can be chosen in $K_{0}[x]$. The functions (x, y) define a biregular K_{0}-isomorphism between \mathcal{C} and the (smooth) normalization \mathcal{C}_{f} of the projective closure of the smooth plane affine curve $y^{2}=f(x)$ over K_{0} under which O goes to ∞ [4].

We say that two pointed hyperelliptic curves $\left(\mathcal{C}_{1}, O_{1}\right)$ and $\left(\mathcal{C}_{2}, O_{2}\right)$ are isomorphic if there exists a K_{0}-regular isomorphism $\phi: \mathcal{C}_{1} \rightarrow \mathcal{C}_{2}$ such that $\phi\left(O_{1}\right)=O_{2}$. Each isomorphism class of pointed hyperelliptic curves over K_{0} contains a pointed hyperelliptic curve of the form $\left(\mathcal{C}_{f}, \infty\right)$. In what follows, we may assume without loss of generality that $\mathcal{C}=\mathcal{C}_{f}$ for a suitable $f(x) \in K_{0}[x]$ and $O=\infty$.

Remark 1. Let (\mathcal{C}, ∞) and $\left(\mathcal{C}_{1}, \infty_{1}\right)$ be pointed genus g hyperelliptic curves over K_{0} defined respectively by $y^{2}=f(x)$ and $y_{1}^{2}=f_{1}\left(x_{1}\right)$, where $f(x), f_{1}(x) \in K_{0}[x]$ are monic degree $2 g+1$ polynomials without multiple roots. Let $\phi:(\mathcal{C}, \infty) \cong\left(\mathcal{C}_{1}, \infty_{1}\right)$ be an isomorphism of pointed hyperelliptic curves over K_{0}, i.e., a K_{0}-biregular isomorphism $\mathcal{C} \rightarrow \mathcal{C}_{1}$ of K_{0}-curves that sends ∞ to ∞_{1}. Then there exist $\lambda \in K_{0}^{*}$ and $r \in K_{0}$ such that

$$
\phi^{*}\left(x_{1}\right)=\lambda^{2} x+r \in K_{0}(\mathcal{C}), \phi^{*}\left(y_{1}\right)=\lambda^{2 g+1} y \in K_{0}(\mathcal{C})
$$

(see [4, Prop. 1.2 and Remark on p. 730]). This implies that in $K_{0}(C)$

$$
\left(\lambda^{2 g+1} y\right)^{2}=f_{1}\left(\lambda^{2} x+r\right)
$$

and therefore

$$
y^{2}=\frac{f_{1}\left(\lambda^{2} x+r\right)}{\lambda^{2(2 g+1)}}
$$

Consequently,

$$
f(x)=\frac{f_{1}\left(\lambda^{2} x+r\right)}{\lambda^{2(2 g+1)}}
$$

and therefore

$$
f_{1}(x)=\lambda^{2(2 g+1)} \cdot f\left(\frac{x-r}{\lambda^{2}}\right)
$$

Assume additionally that $f(0) \neq 0, f_{1}(0) \neq 0$, and ϕ sends a point $P=$ $(0, \sqrt{f(0)}) \in \mathcal{C}(K) \backslash\{\infty\}$ with abscissa 0 to a point $P_{1} \in \mathcal{C}_{1}(K) \backslash\{\infty\}$ with abscissa 0 . Then $r=0$ and

$$
\begin{equation*}
\phi^{*}\left(x_{1}\right)=\lambda^{2} x, \phi^{*}\left(y_{1}\right)=\lambda^{2 g+1} y, f_{1}(x)=\lambda^{2(2 g+1)} \cdot f\left(\frac{x}{\lambda^{2}}\right) . \tag{1}
\end{equation*}
$$

Let us assume also that there are nonzero $a, b \in K_{0}$ such that

$$
f(a) \neq 0, f_{1}(b) \neq 0
$$

and ϕ sends a point $Q=(a, \sqrt{f(a)}) \in \mathcal{C}(K) \backslash\{\infty\}$ with abscissa a to a point $Q_{1} \in \mathcal{C}_{1}(K) \backslash\{\infty\}$ with abscissa b. Then $b=x_{1}(Q)=\lambda^{2} x(P)=$ $\lambda^{2} a$, i.e.,

$$
\begin{equation*}
\lambda^{2}=\frac{b}{a}, \lambda=\sqrt{\frac{b}{a}} \tag{2}
\end{equation*}
$$

Since $\lambda \in K_{0}$, we conclude that b / a is a square in K_{0}. In addition

$$
\begin{equation*}
f_{1}(x)=\lambda^{2(2 g+1)} \cdot f\left(\frac{x}{\lambda^{2}}\right)=\left(\frac{b}{a}\right)^{2 g+1} f\left(\frac{x}{b / a}\right) \tag{3}
\end{equation*}
$$

In particular, if $a=b$, then $b / a=1$ and therefore $f(x)=f_{1}(x)$, i.e., $\mathcal{C}=\mathcal{C}_{1}$ and either

$$
\lambda=1, \phi^{*}\left(x_{1}\right)=x, \phi^{*}\left(y_{1}\right)=y_{1}
$$

and ϕ is the identity map or

$$
\lambda=-1, \phi^{*}\left(x_{1}\right)=x, \phi^{*}\left(y_{1}\right)=-y_{1}
$$

and $\phi=\iota$.
We will need the following assertion that was proven in [9].
Lemma 1. Let D be an effective positive degree m divisor on \mathcal{C} such that $m \leq 2 g+1$ and $\sup (D)$ does not contain ∞. Assume that the divisor $D-m(\infty)$ is principal.
(1) Suppose that m is odd. Then:
(i) $m=2 g+1$ and there exists exactly one polynomial $v(x) \in$ $K[x]$ such that the divisor of $y-v(x)$ coincides with $D-$ $(2 g+1)(\infty)$. In addition, $\operatorname{deg}(v) \leq g$.
(ii) If \mathfrak{W}_{i} lies in $\sup (D)$, then it appears in D with multiplicity 1.
(iii) If b is a nonzero element of K and $P=(a, b) \in \mathcal{C}(K)$ lies in $\sup (D)$, then $\iota(P)=(a,-b)$ does not lie in $\sup (D)$.
(2) Suppose that $m=2 d$ is even. Then there exists exactly one monic degree d polynomial $u(x) \in K[x]$ such that the divisor of $u(x)$ coincides with $D-m(\infty)$. In particular, every point $Q \in \mathcal{C}(K)$ appears in $D-m(\infty)$ with the same multiplicity as $\iota(Q)$.

We finish this section by the following elementary useful statement.
Lemma 2. Let K_{0} be a field, let a be a nonzero element of K, and let $w(x) \in K_{0}[x]$ be a degree g polynomial with nonzero constant term. Then there exists a unique degree g polynomial $\tilde{w}(x) \in K_{0}[x]$ with nonzero constant term such that in the field $K_{0}(x)$ of rational functions

$$
\tilde{w}(a / x)=\frac{w(x)}{x^{g}} .
$$

Proof. We have

$$
\begin{equation*}
w(x)=\sum_{i=0}^{g} b_{i} x^{i}, a_{i} \in K_{0}, b_{0} \neq 0, b_{g} \neq 0 . \tag{4}
\end{equation*}
$$

Then

$$
\frac{w(x)}{x^{g}}=\sum_{i=0}^{g} b_{i} x^{i-g}=\sum_{i=0}^{g} \frac{b_{i}}{a^{g-i}}(a / x)^{g-i}
$$

Let us put

$$
\tilde{w}(x)=\sum_{i=0}^{g} \frac{b_{i}}{a^{g-i}} x^{g-i} \in K_{0}[x] .
$$

Clearly, $\operatorname{deg}(\tilde{w}) \leq g$. The coefficient of \tilde{w} at x^{g} is $b_{0} / a^{g} \neq 0$, and therefore $\operatorname{deg}(\tilde{w})=g$. The constant term of \tilde{w} is $b_{g} \neq 0$. It follows from (4) that

$$
\tilde{w}(a / x)=\frac{w(x)}{x^{g}} .
$$

The uniqueness of \tilde{w} is obvious.

3. Torsion points of order $2 g+1$

The next assertion describes all odd degree hyperelliptic curves of genus g that admit a torsion point of order $2 g+1$.
Theorem 1. Let $g \geq 1$ be an integer and $f(x) \in K[x]$ a monic degree $2 g+1$ polynomial without multiple roots. Then the odd degree hyperelliptic curve $y^{2}=f(x)$ has a point P of order $2 g+1$ if and only if there exist $a \in K$ and a polynomial $v(x) \in K[x]$ such that

$$
\operatorname{deg}(v) \leq g, \quad v(a) \neq 0, \quad f(x)=(x-a)^{2 g+1}+v^{2}(x)
$$

If this is the case, then the point $P=(a, v(a)) \in \mathcal{C}(K)$ has order $2 g+1$.
Proof. Suppose that $P=(a, c)$ is a K-point on \mathcal{C} having order $2 g+1$ in $J(K)$. Then the divisor $(2 g+1)(P)-(2 g+1)(\infty)$ is principal. By Lemma 1, there exists precisely one polynomial $v(x)$ with $\operatorname{deg}(v) \leq g$ such that

$$
\operatorname{div}(y-v(x))=(2 g+1)(P)-(2 g+1)(\infty)
$$

Thus the zero divisor of $y-v(x)$ coincides with $(2 g+1)(P)$. In particular, $c=v(a)$. Notice that the point $\iota(P)=(a,-c)$ also has order $2 g+1$. The zero divisor of $y+v(x)$ equals $(2 g+1)(\iota(P))$. Since $P \neq \iota(P)$, the zero divisor of

$$
y^{2}-v^{2}(x)=f(x)-v^{2}(x)
$$

equals $(2 g+1)(P)+(2 g+1)(\iota(P))$ while its polar divisor is $2(2 g+1)(\infty)$. This means that the monic degree $2 g+1$ polynomial $f(x)-v^{2}(x)$ equals $(x-a)^{2 g+1}$, which implies that $f(x)=(x-a)^{2 g+1}+v^{2}(x)$.

Conversely, let us consider the hyperelliptic curve $y^{2}=(x-a)^{2 g+1}+$ $v^{2}(x)$, where $v(x) \in K[x]$ is a polynomial with $\operatorname{deg}(v) \leq g$ and $v(a) \neq 0$. Let us put $c=v(a)$ and prove that $P=(a, c) \in \mathcal{C}(K)$ has order $2 g+1$. It follows from $y^{2}-v^{2}(x)=(x-a)^{2 g+1}$ that all zeros of $y-v(x)$ have abscissa a. Clearly, $P=(a, c)$ is a zero of $y-v(x)$, but $\iota(P)=(a,-c)$ is not one a zero of $y-v(x)$, because $y-v(x)$ takes the value $-c-v(a)=-2 v(c) \neq 0$ at $\iota(P)$. This implies that $y-v(x)$ has exactly one zero, namely P. Obviously, $y-v(x)$ has exactly one pole, namely ∞, and its multiplicity is $2 g+1$. It follows that

$$
\operatorname{div}(y-v(x))=(2 g+1)(P)-(2 g+1)(\infty)=(2 g+1)((P)-(\infty))
$$

This implies that P has finite order m in $J(K)$ and m divides $2 g+1$. Clearly, m is neither 1 nor 2 . If $g=1$, then $2 g+1=3$ is a prime divisible by m. This implies that $m=3=2 g+1$, i.e., P is a torsion point of order $2 g+1$. Now assume that $g>1$. By a result of [9], m cannot lie between 3 and $2 g$. This implies again that $m=2 g+1$, i.e., P is a torsion point of order $2 g+1$.

Example 1. Suppose that char (K) does not divide $2 g+1$. Then the polynomial $x^{2 g+1}+1$ has no multiple roots and the odd degree genus g hyperelliptic curve

$$
y^{2}=x^{2 g+1}+1
$$

contains a torsion point $(0,1)$ of order $2 g+1$ [9, example 2.10].
Example 2. Suppose that char (K) divides $2 g+1$. Choose a nonzero $b \in K$. Then the polynomial $f(x)=x^{2 g+1}+(b x+1)^{2}$ has no multiple roots. Indeed, $f^{\prime}(x)=2 b(b x+1)$. So, if x_{0} is a root of $f^{\prime}(x)$, then $b x_{0}+1=0$, which implies that $x_{0} \neq 0$ and

$$
f\left(x_{0}\right)=x_{0}^{2 g+1}+\left(b x_{0}+1\right)^{2}=x_{0}^{2 g+1} \neq 0 .
$$

This proves that $f(x)$ has no multiple roots. Applying Theorem 1 to $a=0$ and $v(x)=b x+1$, we conclude that the odd degree genus g hyperelliptic curve

$$
y^{2}=x^{2 g+1}+(b x+1)^{2}
$$

has a torsion point $P=(0,1)$ of order $2 g+1$. If we take $b=1$, then we obtain that the odd degree genus g hyperelliptic curve $y^{2}=$ $x^{2 g+1}+(x+1)^{2}$ has two torsion points $(0, \pm 1)$ of order $2 g+1$.

Remark 2. Let $v(x), w(x) \in K[x]$ be polynomials whose degrees do not exceed g with

$$
v(0) \neq 0, w(0) \neq 0
$$

and such that both degree $2 g+1$ polynomials

$$
f(x)=x^{2 g+1}+v^{2}(x), f_{1}(x)=x^{2 g+1}+w^{2}(x)
$$

have no multiple roots. Let us consider the odd degree genus g hyperelliptic curves

$$
\mathcal{C}: y^{2}=x^{2 g+1}+v^{2}(x) \text { and } \mathcal{C}_{1}: y_{1}^{2}=x_{1}^{2 g+1}+w^{2}\left(x_{1}\right)
$$

over K. By Theorem 回 $P=(0, v(0))$ is a torsion point of order $2 g+1$ in $\mathcal{C}(K)$ and $P_{1}=(0, w(0))$ is a torsion point of order $2 g+1$ in $\mathcal{C}_{1}(K)$. It follows from arguments of Remark 1 that if there is a K-biregular isomorphism of pointed curves $\phi: \mathcal{C} \cong \mathcal{C}_{1}$ that sends P to P_{1}, then there exists $\lambda \in K^{*}$ such that

$$
\begin{gathered}
\phi^{*} x_{1}=\lambda^{2} x, \phi^{*} y_{1}=\lambda^{2 g+1} y \\
x^{2 g+1}+w^{2}(x)=f_{1}(x)=\lambda^{2(2 g+1)} \cdot f\left(\frac{x}{\lambda^{2}}\right)=x^{2 g+1}+\lambda^{2(2 g+1)}\left(v\left(\frac{x}{\lambda^{2}}\right)\right)^{2} .
\end{gathered}
$$

This implies that

$$
w(x)= \pm \lambda^{(2 g+1)} v\left(\frac{x}{\lambda^{2}}\right)
$$

Theorem 2. Let K_{0} be a subfield of K. Let $g \geq 1$ be an integer and

$$
f(x) \in K_{0}[x] \subset K[x]
$$

be a monic degree $2 g+1$ polynomial without multiple roots.
Suppose that the hyperelliptic curve $C_{f}: y^{2}=f(x)$ has a K_{0}-point $P=(a, c)$ of order $2 g+1$. Then there exists precisely one polynomial $v(x) \in K_{0}[x]$ such that

$$
\operatorname{deg}(v) \leq g, v(a)=c \neq 0, \quad f(x)=(x-a)^{2 g+1}+v^{2}(x)
$$

Proof. It follows from Theorem 1 and its proof that there exists a polynomial $v(x) \in K[x]$ such that

$$
\operatorname{deg}(v) \leq g, v(a)=c \neq 0, f(x)=(x-a)^{2 g+1}+v^{2}(x) .
$$

Since $f(x) \in K_{0}[x]$, we get $v^{2}(x) \in K_{0}[x]$. This implies that the polynomial $w(x)=v(x) / c$ satisfies

$$
w(a)=1, w^{2}(x) \in K_{0}[x] .
$$

If we put $\tilde{w}(x)=w(x+a) \in K[x]$, then

$$
\tilde{w}(0)=1, \tilde{w}^{2}(x) \in K_{0}[x], w(x)=\tilde{w}(x-a), v(x)=c \cdot \tilde{w}(x-a) .
$$

Hence, in order to prove that $v(x) \in K_{0}[x]$, it suffices to check that the polynomial $\tilde{w}(x)$ lies in $K_{0}[x]$. Let us do it.

Let $m:=\operatorname{deg}(\tilde{w})$. If $m=0$, then $\tilde{w}(x)=\tilde{w}(0)=1 \in K_{0}[x]$. Assume now that $m \geq 1$ and

$$
\tilde{w}(x)=1+\sum_{k=1}^{m} a_{k} x^{k} \in K[x], \tilde{w}^{2}(x)=1+\sum_{k=1}^{2 m} b_{k} x^{k} \in K_{0}[x] .
$$

We know that all $b_{k} \in K_{0}$ and need to prove that all $a_{k} \in K_{0}$. We use induction on k. First, $b_{1}=2 a_{1}$. Since $\operatorname{char}(K) \neq 2$, we have $a_{1} \in K_{0}$, and the first step of induction is done. (Notice that we have also proven that $\tilde{w}(x) \in K_{0}[x]$ if $m \leq 1$.) Now assume that $k>1$ (and therefore $m \geq k>1)$ and $a_{i} \in K_{0}$ for all $i<k$. Then

$$
b_{k}=1 \cdot a_{k}+a_{k} \cdot 1+B_{k}, \quad \text { where } B_{k}=\sum_{1 \leq i, j \leq k-1, i+j=k} a_{i} a_{j} .
$$

By induction assumption, all a_{i} and a_{j} with $1 \leq i, j \leq k-1$ lie in K_{0}. This implies that $B_{k} \in K_{0}$. Since $b_{k}=a_{k}+a_{k}+B_{k}$ lies in K_{0}, we have $2 a_{k} \in K_{0}$ and therefore $a_{k} \in K_{0}$. This ends the proof.

Remark 3. Let K_{0} be a subfield of K and g a positive integer. It follows from Examples 1 and 2 that there is a degree $2 g+1$ monic polynomial $f(x) \in K_{0}[x]$ without multiple roots such that the odd degree genus g hyperelliptic curve $\mathcal{C}_{f}: y^{2}=f(x)$ defined over K_{0} has a torsion point of order $2 g+1$ in $\mathcal{C}_{f}\left(K_{0}\right)$.

Theorem 3. Let K_{0} be a subfield of K. Let $g \geq 1$ be an integer and $f(x) \in K_{0}[x]$ be a monic degree $2 g+1$ polynomial without multiple roots. Suppose that the odd degree genus g hyperelliptic curve $C_{f}: y^{2}=f(x)$ over K_{0} has K_{0}-points $P=\left(a_{1}, c_{1}\right)$ and $Q=\left(a_{2}, c_{2}\right)$ of order $2 g+1$ such that $Q \neq P, \iota(P)$, i.e.,

$$
a_{i}, c_{i} \in K_{0}, c_{i}^{2}=f\left(a_{i}\right) \text { for } i=1,2, a_{1} \neq a_{2}
$$

Then there exists precisely one ordered pair of polynomials $u_{1}(x), u_{2}(x) \in$ $K_{0}[x]$ such that the following conditions hold.
(i) $\operatorname{deg}\left(u_{i}\right) \leq g$ for $i=1,2$.
(ii) $u_{1}(x) u_{2}(x)=\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}$.
(iii) If $\operatorname{char}\left(K_{0}\right)$ does not divide $2 g+1$, then $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{2}\right)=g$.
(iv) $u_{1}\left(a_{1}\right)+u_{2}\left(a_{1}\right) \neq 0, u_{1}\left(a_{2}\right)-u_{2}\left(a_{2}\right) \neq 0$. In particular, $u_{2}(x) \neq$ $\pm u_{1}(x)$.
(v)
$f(x)=\left(x-a_{1}\right)^{2 g+1}+\left(\frac{u_{1}(x)+u_{2}(x)}{2}\right)^{2}=\left(x-a_{2}\right)^{2 g+1}+\left(\frac{u_{1}(x)-u_{2}(x)}{2}\right)^{2}$.

$$
\begin{equation*}
P=\left(a_{1}, \frac{u_{1}\left(a_{1}\right)+u_{2}\left(a_{1}\right)}{2}\right), Q=\left(a_{2}, \frac{u_{1}\left(a_{1}\right)-u_{2}\left(a_{2}\right)}{2}\right) . \tag{vi}
\end{equation*}
$$

Proof. It follows from Theorem 2 that there exists precisely one pair of polynomials $v_{1}(x), v_{2}(x) \in K_{0}[x]$ such that for $i=1,2$ we have

$$
\operatorname{deg}\left(v_{i}\right) \leq g, v_{i}\left(a_{i}\right) \neq 0, f(x)=\left(x-a_{i}\right)^{2 g+1}+v_{i}^{2}(x), P_{i}=\left(a_{i}, v_{i}\left(a_{i}\right)\right)
$$

We obtain

$$
0=\left(\left(x-a_{2}\right)^{2 g+1}+v_{2}^{2}(x)\right)-\left(\left(x-a_{1}\right)^{2 g+1}+v_{1}^{2}(x)\right),
$$

i.e.,

$$
\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}=v_{1}(x)^{2}-v_{2}^{2}(x)=\left(v_{1}(x)+v_{2}(x)\right)\left(v_{1}(x)-v_{2}(x)\right) .
$$

Let us put

$$
u_{1}(x):=v_{1}(x)+v_{2}(x), u_{2}(x):=v_{1}(x)-v_{2}(x) .
$$

Then

$$
u_{1}(x) u_{2}(x)=\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1},
$$

which gives us (ii). Clearly,

$$
v_{1}(x)=\frac{u_{1}(x)+u_{2}(x)}{2}, v_{2}(x)=\frac{u_{1}(x)-u_{2}(x)}{2} .
$$

This implies that

$$
u_{1}\left(a_{1}\right)+u_{2}\left(a_{1}\right) \neq 0, u_{1}\left(a_{1}\right)-u_{2}\left(a_{1}\right) \neq 0, \operatorname{deg}\left(u_{i}\right) \leq g \text { for } i=1,2
$$

which gives us (iv) and (i), and
$f(x)=\left(x-a_{1}\right)^{2 g+1}+\left(\frac{u_{1}(x)+u_{2}(x)}{2}\right)^{2}=\left(x-a_{2}\right)^{2 g+1}+\left(\frac{u_{1}(x)-u_{2}(x)}{2}\right)^{2}$,
which gives us (v).
We have

$$
\begin{aligned}
& P=\left(a_{1}, v_{1}\left(a_{1}\right)\right)=\left(a_{1}, \frac{u_{1}\left(a_{1}\right)+u_{2}\left(a_{1}\right)}{2}\right), \\
& Q=\left(a_{2}, v_{2}\left(a_{2}\right)\right)=\left(a_{2}, \frac{u_{1}\left(a_{2}\right)-u_{2}\left(a_{2}\right)}{2}\right),
\end{aligned}
$$

which gives us (vi).
If char $\left(K_{0}\right)$ does not divide $2 g+1$, then the polynomial $\left(x-a_{2}\right)^{2 g+1}-$ $\left(x-a_{1}\right)^{2 g+1}$ has degree $2 g$ (and leading coefficient $(2 g+1)\left(a_{1}-a_{2}\right)$), and therefore

$$
2 g=\operatorname{deg}\left(u_{1}\right)+\operatorname{deg}\left(u_{2}\right)
$$

Since both $\operatorname{deg}\left(u_{1}\right), \operatorname{deg}\left(u_{2}\right) \leq g$, we conclude that

$$
\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{2}\right)=g
$$

which gives us (iii).
It remains to prove the uniqueness of $u_{1}(x), u_{2}(x)$. It follows from (v) that both polynomials $u_{1}(x)+u_{2}(x)$ and $u_{1}(x)-u_{2}(x)$ are defined up to sign. However, (iv) and (vi) determine $u_{1}(x)+u_{2}(x)$ and $u_{1}(x)-u_{2}(x)$ uniquely. This implies the uniqueness of $u_{1}(x), u_{2}(x)$.

Remark 4. Let a_{1}, a_{2} be distinct elements of K. Let $p:=\operatorname{char}(K)$, and let $x_{0} \in K$ be a root of $\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}$ Since $a_{1} \neq a_{2}$, we get $x_{0} \neq a_{1}$ and $x_{0} \neq 0$, i.e.,

$$
\left(x_{0}-a_{2}\right)^{2 g} \neq 0,\left(x_{0}-a_{1}\right)^{2 g} \neq 0 .
$$

We have

$$
\begin{gathered}
\left(\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}\right)^{\prime}=(2 g+1)\left(x-a_{2}\right)^{2 g}-(2 g+1)\left(x-a_{1}\right)^{2 g}= \\
(2 g+1)\left(\left(x-a_{2}\right)^{2 g}-\left(x-a_{1}\right)^{2 g}\right) .
\end{gathered}
$$

In particular, if p divides $2 g+1$, then $p>2$,

$$
\left(\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}\right)^{\prime}=0,
$$

and

$$
\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}=\left(\left(x-a_{2}\right)^{(2 g+1) / p}-\left(x-a_{1}\right)^{(2 g+1) / p}\right)^{p} ;
$$

in particular, all roots of $\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}$, including x_{0}, are multiple. Now suppose that $\operatorname{char}(K)$ does not divide $2 g+1$. Then

$$
\left(\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}\right)^{\prime} \neq 0 .
$$

Assume additionally that x_{0} is a multiple root of $\left(x-a_{2}\right)^{2 g+1}-(x-$ $\left.a_{1}\right)^{2 g+1}$. This means that

$$
\left(x_{0}-a_{2}\right)^{2 g+1}=\left(x_{0}-a_{1}\right)^{2 g+1},\left(x_{0}-a_{2}\right)^{2 g}=\left(x_{0}-a_{1}\right)^{2 g} .
$$

Dividing the first equality by the second one, we get

$$
x_{0}-a_{2}=x_{0}-a_{1},
$$

and therefore $a_{1}=a_{2}$, which is not the case. The obtained contradiction proves that if char (K) does not divide $2 g+1$, then the polynomial $\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}$ has no multiple roots.

Theorem 4. Let K_{0} be a subfield of K and $g \geq 1$ be an integer. Let a_{1} and a_{2} be distinct elements of K_{0}. Let $u_{1}(x), u_{2}(x) \in K_{0}[x]$ be polynomials such that $\operatorname{deg}\left(u_{i}\right) \leq g$ for $i=1,2$ and

$$
u_{1}(x) u_{2}(x)=\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1} .
$$

Assume additionally that if char (K) does not divide $2 g+1$, then $\operatorname{deg}\left(u_{1}\right)=$ $\operatorname{deg}\left(u_{2}\right)=g$. Let us consider the monic degree $2 g+1$ polynomial

$$
f_{a_{1}, a_{2} ; u_{1}, u_{2}}(x)=\left(x-a_{1}\right)^{2 g+1}+\left(\frac{u_{1}(x)+u_{2}(x)}{2}\right)^{2} .
$$

Then the following conditions hold.
(a)

$$
f_{a_{1}, a_{2} ; u_{1}, u_{2}}(x)=\left(x-a_{2}\right)^{2 g+1}+\left(\frac{u_{1}(x)-u_{2}(x)}{2}\right)^{2}=f_{a_{2}, a_{1} ; u_{1},-u_{2}}(x) .
$$

$$
\begin{equation*}
f_{a_{1}, a_{2} ; u_{1}, u_{2}}\left(x+a_{1}\right)=f_{0, a ; \tilde{u}_{1}, \tilde{u}_{2}}(x)=x^{2 g+1}+\left(\frac{\tilde{u}_{1}(x)+\tilde{u}_{2}(x)}{2}\right)^{2} \tag{b}
\end{equation*}
$$

where
$a:=a_{2}-a_{1} \in K_{0}^{*}, \tilde{u}_{1}(x):=u_{1}\left(x+a_{1}\right) \in K_{0}[x], \tilde{u}_{2}(x)=u_{2}\left(x+a_{1}\right) \in K_{0}[x]$.
In addition,

$$
\tilde{u}_{1}(x) \tilde{u}_{2}(x)=(x-a)^{2 g+1}-x^{2 g+1} .
$$

(c) Suppose that $f_{a_{1}, a_{2} ; u_{1}, u_{2}}(x)$ has no multiple roots. Then
(c1) $u_{1}^{\prime}(x) \neq 0, u_{2}^{\prime}(x) \neq 0$. In particular, neither $u_{1}(x)$ nor $u_{2}(x)$ is a constant.
(c2) Let us consider the odd degree genus g hyperelliptic curve

$$
\mathcal{C}_{a_{1}, a_{2} ; u_{1}, u_{2}}:=\mathcal{C}_{f_{a_{1}, a_{2} ; u_{1}, u_{2}}}: y^{2}=f_{a_{1}, a_{2} ; u_{1}, u_{2}}(x),
$$

which is defined over K_{0}. Then

$$
\begin{aligned}
& P_{a_{1}, a_{2} ; u_{1}, u_{2}}=\left(a_{1}, \frac{u_{1}\left(a_{1}\right)+u_{2}\left(a_{1}\right)}{2}\right) \text { and } Q_{a_{1}, a_{2} ; u_{1}, u_{2}}=\left(a_{2}, \frac{u_{1}\left(a_{2}\right)-u_{2}\left(a_{2}\right)}{2}\right) \\
& \text { are points of order } 2 g+1 \text { in } \mathcal{C}_{a_{1}, a_{2} ; u_{1}, u_{2}}\left(K_{0}\right) .
\end{aligned}
$$

Proof.

$$
\begin{gathered}
f_{a_{1}, a_{2} ; u_{1}, u_{2}}(x)-\left(\left(x-a_{2}\right)^{2 g+1}+\left(\frac{u_{1}(x)-u_{2}(x)}{2}\right)^{2}\right) \\
=\left(x-a_{1}\right)^{2 g+1}+\left(\frac{u_{1}(x)+u_{2}(x)}{2}\right)^{2}-\left(x-a_{2}\right)^{2 g+1}-\left(\frac{u_{1}(x)-u_{2}(x)}{2}\right)^{2} \\
=\left(\frac{u_{1}(x)+u_{2}(x)}{2}\right)^{2}-\left(\frac{u_{1}(x)-u_{2}(x)}{2}\right)^{2}+\left(\left(x-a_{1}\right)^{2 g+1}-\left(x-a_{2}\right)^{2 g+1}\right) \\
=u_{1}(x) u_{2}(x)-u_{1}(x) u_{2}(x)=0 .
\end{gathered}
$$

This proves (a).
Let us prove (b). Clearly, $\operatorname{deg}\left(u\left(x+a_{1}\right)\right)=\operatorname{deg}(u(x))$ for every polynomial $u(x) \in K[x]$. This implies that $\operatorname{deg}\left(\tilde{u}_{1}\right)=\operatorname{deg}\left(u_{1}\right), \operatorname{deg}\left(\tilde{u}_{2}\right)=$ $\operatorname{deg}\left(u_{2}\right)$. It follows that $\operatorname{deg}\left(\tilde{u}_{1}\right)=\operatorname{deg}\left(\tilde{u}_{2}\right)=g$ if $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{2}\right)=$ g. We have

$$
\begin{aligned}
(x-a)^{2 g+1}-x^{2 g+1} & =\left(\left(x+a_{1}\right)-a_{2}\right)^{2 g+1}-\left(\left(x+a_{1}\right)-a_{1}\right)^{2 g+1} \\
& =u_{1}\left(x+a_{1}\right) u_{2}\left(x+a_{1}\right)=\tilde{u}_{1}(x) \tilde{u}_{2}(x) .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
f_{a_{1}, a_{2} ; u_{1}, u_{2}}\left(x+a_{1}\right) & =\left(\left(x-a_{1}\right)+a_{1}\right)^{2 g+1}+\left(\frac{u_{1}\left(x+a_{1}\right)+u_{2}\left(x+a_{1}\right)}{2}\right)^{2} \\
& =(x-0)^{2 g+1}+\left(\frac{\tilde{u}_{1}(x)+\tilde{u}_{2}(x)}{2}\right)^{2}=f_{0, a ; \tilde{u}_{1}, \tilde{u}_{2}}(x)
\end{aligned}
$$

Let us prove (c1). We put $p:=\operatorname{char}(K)$. Assume that, say, $u_{1}^{\prime}(x)=0$. We need to arrive to a contradiction. Under our assumption one of the following condition holds.
(i) $u_{1}(x)$ is a nonzero constant, i.e., $\operatorname{deg}\left(u_{1}\right)=0<g$. This implies that $\operatorname{char}(K)$ is a prime dividing $2 g+1$.
(ii) p is a prime and there exists a polynomial $w_{1}(x) \in K[x]$ such that $u_{1}(x)=w_{1}^{p}(x)$.
Clearly, in both cases p is a prime dividing $2 g+1$, and there exists a polynomial $w_{1}(x) \in K[x]$ such that $u_{1}(x)=w_{1}^{p}(x)$. We have

$$
\begin{gathered}
w_{1}^{p}(x) u_{2}(x)=u_{1}(x) u_{2}(x)=\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}= \\
\left(\left(x-a_{2}\right)^{(2 g+1) / p}-\left(x-a_{1}\right)^{(2 g+1) / p}\right)^{p}
\end{gathered}
$$

It follows that $w_{1}(x)$ divides $\left(x-a_{2}\right)^{(2 g+1) / p}-\left(x-a_{1}\right)^{(2 g+1) / p}$ in $K[x]$, i.e., there exists a polynomial $w_{1}(x) \in K[x]$ such that

$$
w_{1}(x) w_{2}(x)=\left(x-a_{2}\right)^{(2 g+1) / p}-\left(x-a_{1}\right)^{(2 g+1) / p}
$$

and therefore
$\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}=\left(w_{1}(x) w_{2}(x)\right)^{p}=w_{1}^{p}(x) w_{2}^{p}(x)=u_{1}(x) w_{2}^{p}(x)$.
We have $u_{2}(x)=w_{2}^{p}(x)$. Consequently,

$$
\begin{aligned}
& f_{a_{1}, a_{2} ; u_{1}, u_{2}}(x)=\left(x-a_{1}\right)^{2 g+1}+\left(\frac{w_{1}^{p}(x)+w_{2}^{p}(x)}{2}\right)^{2} \\
& =\left(\left(x-a_{1}\right)^{(2 g+1) / p}+\left(\frac{w_{1}(x)+w_{2}(x)}{\sqrt[p]{2}}\right)^{2}\right)^{p}
\end{aligned}
$$

Hence $f_{a_{1}, a_{2} ; u_{1}, u_{2}}(x)$ is a p th power in $K[x]$, and therefore all its roots are multiple, which contradicts our assumptions. Therefore, $u_{1}^{\prime}(x) \neq 0$. By the same token, $u_{2}^{\prime}(x) \neq 0$. This ends the proof of (c1).

In order to prove (c2), notice that, from the very definition of $f_{a_{1}, a_{2} ; u_{1}, u_{2}}(x)$, it follows that $P_{a_{1}, a_{2} ; u_{1}, u_{2}}$ lies on $\mathcal{C}_{a_{1}, a_{2} ; u_{1}, u_{2}}$. The fact that $Q_{a_{1}, a_{2} ; u_{1}, u_{2}}$ lies on $\mathcal{C}_{a_{1}, a_{2} ; u_{1}, u_{2}}$ follows from (a). Applying two times Theorem 2 to $a=$ $a_{1}, v(x)=\left(u_{1}(x)+u_{2}(x)\right) / 2$ and to $a=a_{2}, v(x)=\left(u_{1}(x)-u_{2}(x)\right) / 2$, we conclude that both $P_{a_{1}, a_{2} ; u_{1}, u_{2}}$ and $Q_{a_{1}, a_{2} ; u_{1}, u_{2}}$ are points of order $2 g+1$ in $\mathcal{C}_{a_{1}, a_{2} ; u_{1}, u_{2}}\left(K_{0}\right) \subset \mathcal{C}_{a_{1}, a_{2} ; u_{1}, u_{2}}(K)$. In addition,

$$
\frac{u_{1}\left(a_{1}\right)+u_{2}\left(a_{1}\right)}{2} \neq 0, \frac{u_{1}\left(a_{2}\right)-u_{2}\left(a_{2}\right)}{2} \neq 0
$$

i.e., $u_{1}\left(a_{1}\right)+u_{2}\left(a_{1}\right) \neq 0, u_{1}\left(a_{2}\right)-u_{2}\left(a_{2}\right) \neq 0$.

Remark 5. Let a_{1}, a_{2} be distinct elements of a subfield $K_{0} \subset K$ and let $u_{1}(x), u_{2}(x) \in K_{0}[x]$ be polynomials that satisfy

$$
u_{1}(x) u_{2}(x)=\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1} .
$$

Then

$$
\begin{aligned}
& u_{1}\left(a_{1}\right) u_{2}\left(a_{1}\right)=\left(a_{1}-a_{2}\right)^{2 g+1}-\left(a_{1}-a_{1}\right)^{2 g+1}=\left(a_{1}-a_{2}\right)^{2 g+1} \neq 0, \\
& u_{1}\left(a_{2}\right) u_{2}\left(a_{2}\right)=\left(a_{2}-a_{2}\right)^{2 g+1}-\left(a_{2}-a_{1}\right)^{2 g+1}=\left(a_{1}-a_{2}\right)^{2 g+1} \neq 0 .
\end{aligned}
$$

In particular,

$$
u_{1}\left(a_{1}\right) \neq 0, u_{2}\left(a_{1}\right) \neq 0, u_{1}\left(a_{2}\right) \neq 0, u_{2}\left(a_{2}\right) \neq 0
$$

Remark 6. Let a_{1}, a_{2} be distinct elements of a subfield $K_{0} \subset K$, and let $u_{1}(x), u_{2}(x) \in K_{0}[x]$ be polynomials that satisfy

$$
u_{1}(x) u_{2}(x)=\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1} .
$$

Then $-u_{1}(x),-u_{2}(x) \in K_{0}[x]$ and

$$
\begin{aligned}
\left(x-a_{2}\right)^{2 g+1} & -\left(x-a_{1}\right)^{2 g+1}=\left(-u_{1}(x)\right)\left(-u_{2}(x)\right) \\
& =u_{2}(x) u_{1}(x)=\left(-u_{2}(x)\right)\left(-u_{1}(x)\right) .
\end{aligned}
$$

Assume additionally that $\operatorname{deg}\left(u_{1}\right) \leq g, \operatorname{deg}\left(u_{2}\right) \leq g$, and the equalities hold if $\operatorname{char}(K)$ does not divide $2 g+1$. Then

$$
f_{a_{1}, a_{2} ; u_{1}, u_{2}}(x)=f_{a_{1}, a_{2} ;-u_{1},-u_{2}}(x)=f_{a_{1}, a_{2} ; u_{2}, u_{1}}(x)=f_{a_{1}, a_{2} ;-u_{2},-u_{1}}(x) .
$$

If, in addition, $f_{a_{1}, a_{2} ; u_{1}, u_{2}}(x)$ has no multiple roots, then

$$
\mathcal{C}_{a_{1}, a_{2} ; u_{1}, u_{2}}=\mathcal{C}_{a_{1}, a_{2} ;-u_{1},-u_{2}}=\mathcal{C}_{a_{1}, a_{2} ; u_{2}, u_{1}}=\mathcal{C}_{a_{1}, a_{2} ;-u_{2},-u_{1}} .
$$

So, in all four cases we get the same odd degree hyperelliptic curve. However, it follows readily from Theorem $4(\mathrm{c} 1)$ that

$$
\begin{gathered}
P_{a_{1}, a_{2} ;-u_{1},-u_{2}}=\iota\left(P_{a_{1}, a_{2} ; u_{1}, u_{2}}\right), Q_{a_{1}, a_{2} ;-u_{1},-u_{2}}=\iota\left(Q_{a_{1}, a_{2} ; u_{1}, u_{2}}\right), \\
P_{a_{1}, a_{2} ; u_{2}, u_{1}}=P_{a_{1}, a_{2} ; u_{1}, u_{2}}, Q_{a_{1}, a_{2} ; u_{2}, u_{1}}=\iota\left(Q_{a_{1}, a_{2} ; u_{1}, u_{2}}\right) \\
P_{a_{1}, a_{2} ;-u_{2},-u_{1}}=\iota\left(P_{a_{1}, a_{2} ; u_{1}, u_{2}}\right), Q_{a_{1}, a_{2} ; u_{2}, u_{1}}=Q_{a_{1}, a_{2} ; u_{1}, u_{2}} .
\end{gathered}
$$

Remark 7. Let a_{1}, a_{2} be distinct elements of a subfield $K_{0} \subset K$, and let $u_{1}(x), u_{2}(x), \tilde{u}_{1}(x), \tilde{u}_{2}(x) \in K_{0}[x]$ be polynomials that satisfy

$$
u_{1}(x) u_{2}(x)=\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}=\tilde{u}_{1}(x) \tilde{u}_{2}(x) .
$$

Let us assume that $\operatorname{deg}\left(u_{1}\right) \leq g, \operatorname{deg}\left(u_{2}\right) \leq g$. In addition, we also assume that the equalities hold if $\operatorname{char}(K)$ does not divide $2 g+1$.

Suppose that

$$
f_{a_{1}, a_{2} ; u_{1}, u_{2}}(x)=f_{a_{1}, a_{2} ; \tilde{u}_{1}, \tilde{u}_{2}}(x),
$$

i.e.,
$\left(x-a_{1}\right)^{2 g+1}+\left(\frac{u_{1}(x)+u_{2}(x)}{2}\right)^{2}=\left(x-a_{1}\right)^{2 g+1}+\left(\frac{\tilde{u}_{1}(x)+\tilde{u}_{2}(x)}{2}\right)^{2}$.
This means that

$$
\left(\frac{u_{1}(x)+u_{2}(x)}{2}\right)^{2}=\left(\frac{\tilde{u}_{1}(x)+\tilde{u}_{2}(x)}{2}\right)^{2}
$$

i.e.,

$$
\tilde{u}_{1}(x)+\tilde{u}_{2}(x)= \pm\left(u_{1}(x)+u_{2}(x)\right) .
$$

Since

$$
u_{1}(x) u_{2}(x)=\tilde{u}_{1}(x) \tilde{u}_{2}(x)=\left(-u_{1}(x)\left(-u_{2}(x)\right),\right.
$$

we conclude that one of the following four conditions holds.

- $\tilde{u}_{1}(x)=u_{1}(x), \tilde{u}_{2}(x)=u_{2}(x)$;
- $\tilde{u}_{1}(x)=-u_{1}(x), \tilde{u}_{2}(x)=-u_{2}(x) ;$
- $\tilde{u}_{1}(x)=u_{2}(x), \tilde{u}_{2}(x)=u_{1}(x)$;
- $\tilde{u}_{1}(x)=-u_{2}(x), \tilde{u}_{2}(x)=-u_{1}(x)$.

Theorem 5. Let $p=\operatorname{char}(K)$ be an odd prime, and let g be a positive integer such that $2 g+1=p^{k}$ for a positive integer k. (E.g., $g=$ $(p-1) / 2$.) Let $f(x) \in K[x]$ be a monic degree $2 g+1$ polynomial without multiple roots and $\mathcal{C}_{f}: y^{2}=f(x)$ be the corresponding odd degree genus g hyperelliptic curve. Then $\mathcal{C}_{f}(K)$ contains at most two points of order p^{k}.
Proof. Assume that $\mathcal{C}_{f}(K)$ contains at least three points of order $p^{k}=$ $2 g+1$. Let $P \in \mathcal{C}_{f}(K)$ be one of them. Then $P=\left(a_{1}, c_{1}\right)$ with

$$
a_{1}, c_{1} \in K, c_{1} \neq 0, c_{1}^{2}=f\left(a_{1}\right)
$$

Consequently, $\iota(P)=\left(a_{1},-c_{1}\right) \in \mathcal{C}_{f}(K)$ also has order $2 g+1$. Hence there exists another point $Q \in \mathcal{C}_{f}(K)$ of order $2 g+1$ that is neither P nor $\iota(P)$. This implies that $Q=\left(a_{2}, c_{2}\right)$ with

$$
a_{2}, c_{2} \in K, c_{2} \neq 0, c_{2}^{2}=f\left(a_{2}\right), a_{2} \neq a_{1}
$$

By Theorem3(applied to $K_{0}=K$), there exist polynomials $u_{1}(x), u_{2}(x) \in$ $K[x]$ such that
$u_{1}(x) u_{2}(x)=\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}, f(x)=\left(x-a_{1}\right)^{2 g+1}+\left(\frac{u_{1}(x)+u_{2}(x)}{2}\right)^{2}$.
Since $2 g+1=p^{k}$ and $p=\operatorname{char}(K)$, the difference

$$
\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}=\left(x-a_{2}\right)^{p^{k}}-\left(x-a_{1}\right)^{p^{k}}=\left(a_{1}-a_{2}\right)^{p^{k}}
$$

is a nonzero element of K. It follows that both $u_{1}(x)$ and $u_{2}(x)$ are also nonzero elements of $K, u_{1}(x)=b_{1} \in K^{*}, u_{2}(x)=b_{2} \in K^{*}$. Consequently,

$$
f(x)=\left(x-a_{1}\right)^{p^{k}}+\left(\frac{b_{1}+b_{2}}{2}\right)^{2}=\left(x-a_{1}+b\right)^{p^{k}}
$$

where

$$
b=\left(\sqrt[p^{k}]{\frac{b_{1}+b_{2}}{2}}\right)^{2}
$$

Therefore, $f(x)$ has multiple roots, which gives us the desired contradiction.

Remark 8. The case $p=5, g=2, k=1$ of Theorem 5 was done in [2, Lemma 3.1].

Remark 9. Let us consider the case when $p=\operatorname{char}(K)=3$ and $f(x)$ is a degree 3 polynomial without multiple roots. Then the equation $y^{2}=f(x)$ defines an elliptic curve over the field K of characteristic 3. It is well known that an elliptic curve in characteristic 3 has at most
two points of order 3. Theorem 5 may be viewed as a generalization of this fact, where $3=3^{1}$ is replaced by any odd prime p and 1 by any positive integer k.

4. FAMILIES OF HYPERELLIPTIC CURVES

Theorem 6. Let us assume that char (K) does not divide $2 g+1$. Let $w_{1}(x), w_{2}(x) \in K[x]$ be degree g polynomials without common roots. Then for all but finitely many $\lambda \in K^{*}$ the degree $2 g+1$ polynomial

$$
h_{\lambda}(x)=\lambda x^{2 g+1}+\left(\lambda w_{1}(x)+w_{2}(x)\right)^{2}
$$

has no multiple roots.
Proof. Fix $x_{0} \in K$. Then

$$
h_{\lambda}\left(x_{0}\right)=w_{1}^{2}\left(x_{0}\right) \lambda^{2}+\left(x_{0}^{2 g+1}+2 w_{1}\left(x_{0}\right) w_{2}\left(x_{0}\right)\right) \lambda+w_{2}\left(x_{0}\right)^{2}
$$

is a polynomial in λ of degree ≤ 2 such that at least one of its coefficients does not vanish. Indeed, either its coefficient $w_{1}^{2}\left(x_{0}\right)$ at λ^{2} is not 0 or its constant term $w_{2}\left(x_{0}\right)^{2}$ does not vanish, because either $w_{1}\left(x_{0}\right) \neq 0$ or $w_{2}\left(x_{0}\right) \neq 0$. This implies that there exist at most two $\lambda \in K$ such that $h_{\lambda}\left(x_{0}\right)=0$. Hence, in order to prove the theorem, it suffices to check that there are only finitely many $x_{0} \in K$ for which there is $\lambda \in K^{*}$ such that $h_{\lambda}\left(x_{0}\right)=h_{\lambda}^{\prime}\left(x_{0}\right)=0$. Our plan is to produce several polynomials in x that do not depend on λ and such that our x_{0} is a root of one of them.

We have

$$
h_{\lambda}^{\prime}(x)=(2 g+1) \lambda x^{2 g}+2\left(\lambda w_{1}(x)+w_{2}(x)\right)\left(\lambda w_{1}^{\prime}(x)+w_{2}^{\prime}(x)\right) .
$$

Suppose that $x_{0} \in K$ and $\lambda \in K^{*}$ satisfy $h_{\lambda}\left(x_{0}\right)=h_{\lambda}^{\prime}(x)=0$, i.e., x_{0} is a multiple root of $h_{\lambda}(x)$. This means that x_{0} is a solution of the system

$$
\begin{gathered}
\lambda x^{2 g+1}+\left(\lambda w_{1}(x)+w_{2}(x)\right)^{2}=0 \\
(2 g+1) \lambda x^{2 g}+2\left(\lambda w_{1}(x)+w_{2}(x)\right)\left(\lambda w_{1}^{\prime}(x)+w_{2}^{\prime}(x)\right)=0
\end{gathered}
$$

Multiplying the second equation by x and the first equation by $2 g+1$, and subtracting one from the other, we obtain that x_{0} is a solution of the equation

$$
(2 g+1)\left(\lambda w_{1}(x)+w_{2}(x)\right)^{2}-2 x\left(\lambda w_{1}(x)+w_{2}(x)\right)\left(\lambda w_{1}^{\prime}(x)+w_{2}^{\prime}(x)\right)=0 .
$$

Hence either
(i) $\lambda w_{1}\left(x_{0}\right)+w_{2}\left(x_{0}\right)=0$
or
(ii) $(2 g+1)\left(\lambda w_{1}\left(x_{0}\right)+w_{2}\left(x_{0}\right)\right)-2 x_{0}\left(\lambda w_{1}^{\prime}\left(x_{0}\right)+w_{2}^{\prime}\left(x_{0}\right)\right)=0$.

Case (i). Since the set of roots of $w_{1}(x)$ is finite, we may assume that x_{0} is not one of them and get $\lambda=-w_{2}\left(x_{0}\right) / w_{1}\left(x_{0}\right)$. It follows from the first equation of the system that x_{0} is a solution of the equation

$$
-\frac{w_{2}(x)}{w_{1}(x)} x^{2 g+1}+\left(-\frac{w_{2}(x)}{w_{1}(x)} w_{1}(x)+w_{2}(x)\right)^{2}=0
$$

This means that $-w_{2}\left(x_{0}\right) x_{0}^{2 g+1} / w_{1}\left(x_{0}\right)=0$, which implies that case (i) holds only for finitely many values of x_{0}, namely if either $x_{0}=0$ or x_{0} is one of the roots of $w_{2}(x)$.

Case (ii). In this case we have

$$
\left((2 g+1) w_{1}\left(x_{0}\right)-2 x_{0} w_{1}^{\prime}\left(x_{0}\right)\right) \lambda=2 x_{0} w_{2}^{\prime}\left(x_{0}\right)-(2 g+1) w_{2}\left(x_{0}\right)
$$

Since $\operatorname{deg}\left(w_{1}\right)=g \neq(2 g+1) / 2$, the polynomial $(2 g+1) w_{1}\left(x_{0}\right)-$ $2 x_{0} w_{1}^{\prime}(x)$ has degree g and the set of its roots is finite. So, we may assume that x_{0} is not one of them, i.e., $(2 g+1) w_{1}\left(x_{0}\right)-2 x_{0} w_{1}^{\prime}\left(x_{0}\right) \neq 0$ and

$$
\lambda=\frac{2 x_{0} w_{2}^{\prime}\left(x_{0}\right)-(2 g+1) w_{2}\left(x_{0}\right)}{(2 g+1) w_{1}\left(x_{0}\right)-2 x_{0} w_{1}^{\prime}\left(x_{0}\right)}
$$

Plugging this expression for λ in the first equation of the system, we get that x_{0} is a solution of the equation

$$
\begin{aligned}
& \frac{2 x w_{2}^{\prime}(x)-(2 g+1) w_{2}(x)}{(2 g+1) w_{1}(x)-2 x w_{1}^{\prime}(x)} x^{2 g+1} \\
+ & \left(\frac{2 x w_{2}^{\prime}(x)-(2 g+1) w_{2}(x)}{(2 g+1) w_{1}(x)-2 x w_{1}^{\prime}(x)} w_{1}(x)+w_{2}(x)\right)^{2}=0
\end{aligned}
$$

This means that x_{0} is a root of the polynomial

$$
\begin{aligned}
& H(x):=\left(2 x w_{2}^{\prime}(x)-(2 g+1) w_{2}(x)\right)\left((2 g+1) w_{1}(x)-2 x w_{1}^{\prime}(x)\right) x^{2 g+1} \\
& +\left(\left(2 x w_{2}^{\prime}(x)-(2 g+1) w_{2}(x)\right) w_{1}(x)+\left((2 g+1) w_{1}(x)-2 x w_{1}^{\prime}(x)\right) w_{2}(x)\right)^{2} .
\end{aligned}
$$

Since $\operatorname{deg}\left(w_{1}\right)=\operatorname{deg}\left(w_{2}\right)=g \neq(2 g+1) / 2$, both polynomials $\left(2 x w_{2}^{\prime}(x)-\right.$ $\left.(2 g+1) w_{2}(x)\right)$ and $\left((2 g+1) w_{1}(x)-2 x w_{1}^{\prime}(x)\right)$ have degree g. This implies that the first term in the formula for $H(x)$ is a polynomial of degree $g+g+(2 g+1)=4 g+1$. On the other hand, the second term in the formula for $H(x)$ is a polynomial of degree $\leq 2 \cdot(g+g)=4 g$. Therefore, $\operatorname{deg}(H)=4 g+1$ and the set of roots of $H(x)$ is finite.

To summarize: there are only finitely many $x_{0} \in K$ such that there exists $\lambda \in K^{*}$ for which x_{0} is a multiple root of $h_{\lambda}(x)$. This ends the proof.

Theorem 7. Let us assume that char(K) does not divide $2 g+1$. Let a_{1}, a_{2} be distinct elements of K, and let $u_{1}(x), u_{2}(x) \in K[x]$ be degree
g polynomials that satisfy

$$
u_{1}(x) u_{2}(x)=\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1} .
$$

Then the following conditions hold.
(i) If $\mu \in K^{*}$, then $\mu u_{1}(x), \mu^{-1} u_{2}(x) \in K[x]$ are degree g polynomials that satisfy

$$
\left(\mu u_{1}(x)\right)\left(\mu^{-1} u_{2}(x)\right)=u_{1}(x) u_{2}(x)=\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1} .
$$

(ii) There are only finitely many $\mu \in K^{*}$ such that the polynomial

$$
f_{a_{1}, a_{2} ; \mu u_{1}, \mu^{-1} u_{2}}(x)=\left(x-a_{1}\right)^{2 g+1}+\left(\frac{\mu u_{1}(x)+\mu^{-1} u_{2}(x)}{2}\right)^{2}
$$

has a multiple root.
Proof. Using Theorem 4(b), we may and will assume that $a_{1}=0$, $a_{2}=a \neq 0$, and

$$
f_{a_{1}, a_{2} ; \mu u_{1}, \mu^{-1} u_{2}}(x)=f_{0, a ; \mu u_{1}, \mu^{-1} u_{2}}(x) .
$$

We have

$$
u_{1}(x) u_{2}(x)=(x-a)^{2 g+1}-x^{2 g+1}
$$

and

$$
u_{i}(0) \neq 0, u_{i}(a) \neq 0 \text { for } i=1,2
$$

Since $\operatorname{char}(K)$ does not divide $2 g+1$, Remark 4 tells us that the polynomial $(x-a)^{2 g+1}-x^{2 g+1}$ has no multiple roots. This implies that $u_{1}(x)$ and $u_{2}(x)$ have no common roots. We have

$$
\begin{aligned}
f_{0, a ; \mu u_{1}, \mu^{-1} u_{2}}(x) & =x^{2 g+1}+\left(\frac{\mu u_{1}(x)+\mu^{-1} u_{2}(x)}{2}\right)^{2} \\
& =x^{2 g+1}+\left(\mu w_{1}(x)+\mu^{-1} w_{2}(x)\right)^{2}
\end{aligned}
$$

where $w_{1}(x)=u_{1}(x) / 2, w_{2}(x)=u_{2}(x) / 2$. Clearly, $w_{1}(x)$ and $w_{2}(x)$ are degree g polynomials without common roots. We have

$$
\mu^{2} f_{0, a ; \mu u_{1}, \mu^{-1} u_{2}}(x)=\mu^{2} x^{2 g+1}+\left(\mu^{2} w_{1}(x)+w_{2}(x)\right)^{2} .
$$

It follows from Theorem 6 that there is a finite set $S \subset K^{*}$ such that if $\mu^{2} \notin S$, then $\mu^{2} f_{a_{1}, a_{2} ; \mu u_{1}, \mu^{-1} u_{2}}(x)$ has no multiple roots and therefore $f_{0, a ; \mu u_{1}, \mu^{-1} u_{2}}(x)$ also has no multiple roots. Consequently, $f_{0, a ; \mu u_{1}, \mu^{-1} u_{2}}(x)$ has no multiple roots for all but finitely many $\mu \in$ K^{*}.

Theorem 8. Let us assume that $p:=\operatorname{char}(K)>0, p$ divides $2 g+1$, but $2 g+1$ is not a power of p. Let $w_{1}(x), w_{2}(x) \in K[x]$ be nonconstant polynomials such that

$$
\operatorname{deg}\left(w_{1}\right) \leq g, \operatorname{deg}\left(w_{2}\right) \leq g ; w_{1}^{\prime}(x) \neq 0, w_{2}^{\prime}(x) \neq 0 ; w_{1}(0) \neq 0, w_{2}(0) \neq 0
$$

Assume also that

$$
\left(w_{1}(x) w_{2}(x)\right)^{\prime}=0 .
$$

Then for all but finitely many $\lambda \in K^{*}$ the degree $2 g+1$ polynomial

$$
h_{\lambda}(x)=\lambda x^{2 g+1}+\left(\lambda w_{1}(x)+w_{2}(x)\right)^{2}
$$

has no multiple roots.
Proof. Fix $x_{0} \in K$. Then

$$
h_{\lambda}\left(x_{0}\right)=w_{1}^{2}\left(x_{0}\right) \lambda^{2}+\left(x_{0}^{2 g+1}+2 w_{1}\left(x_{0}\right) w_{2}\left(x_{0}\right)\right) \lambda+w_{2}\left(x_{0}\right)^{2}
$$

is a polynomial in λ of degree ≤ 2 such that at least one of its coefficients does not vanish. Indeed, if

$$
w_{1}^{2}\left(x_{0}\right)=0, w_{2}\left(x_{0}\right)^{2}=0, x_{0}^{2 g+1}+2 w_{1}\left(x_{0}\right) w_{2}\left(x_{0}\right)=0,
$$

then

$$
w_{1}\left(x_{0}\right)=0, w_{2}\left(x_{0}\right)=0, x_{0}=0
$$

which means that

$$
x_{0}=0, w_{1}(0)=0, w_{2}(0)=0 .
$$

However, $x_{0}=0$ is not a zero of $w_{1}(x)$, which gives us the desired contradiction.

This implies that for any given $x_{0} \in K$ there exist at most two $\lambda \in K$ such that $h_{\lambda}\left(x_{0}\right)=0$. Hence, in order to prove the theorem, it suffices to check that there are only finitely many $x_{0} \in K$ for which there is $\lambda \in K^{*}$ such that $h_{\lambda}\left(x_{0}\right)=h_{\lambda}^{\prime}\left(x_{0}\right)=0$. Our plan is to produce (as in the proof of Theorem (6) several polynomials in x that do not depend on λ and such that our x_{0} is a root of one of them. From the very beginning, we may exclude finally many values of x_{0}. In particular, we may and will assume that

$$
\begin{equation*}
x_{0} \neq 0, w_{1}\left(x_{0}\right) \neq 0, w_{1}^{\prime}\left(x_{0}\right) \neq 0, w_{2}\left(x_{0}\right) \neq 0, w_{2}^{\prime}\left(x_{0}\right) \neq 0 \tag{5}
\end{equation*}
$$

Since the derivative of $w_{1}(x) w_{2}(x)$ is identically 0 , we get

$$
0=w_{1}^{\prime}\left(x_{0}\right) w_{2}\left(x_{0}\right)+w_{2}^{\prime}\left(x_{0}\right) w_{1}\left(x_{0}\right)
$$

and therefore

$$
\begin{equation*}
\frac{w_{2}^{\prime}\left(x_{0}\right)}{w_{1}^{\prime}\left(x_{0}\right)}=-\frac{w_{2}\left(x_{0}\right)}{w_{1}\left(x_{0}\right)} . \tag{6}
\end{equation*}
$$

We have

$$
\begin{aligned}
h_{\lambda}^{\prime}(x) & =(2 g+1) \lambda x^{2 g+1}+2\left(\lambda w_{1}(x)+w_{2}(x)\right)\left(\lambda w_{1}^{\prime}(x)+w_{2}^{\prime}(x)\right) \\
& =2\left(\lambda w_{1}(x)+w_{2}(x)\right)\left(\lambda w_{1}^{\prime}(x)+w_{2}^{\prime}(x)\right) .
\end{aligned}
$$

Suppose that $x_{0} \in K$ and $\lambda \in K^{*}$ satisfy $h_{\lambda}\left(x_{0}\right)=h_{\lambda}^{\prime}\left(x_{0}\right)=0$, i.e., x_{0} is a multiple root of $h_{\lambda}(x)$. This means that x_{0} is a solution of the system

$$
\begin{array}{r}
\lambda x^{2 g+1}+\left(\lambda w_{1}(x)+w_{2}(x)\right)^{2}=0, \\
\left(\lambda w_{1}(x)+w_{2}(x)\right)\left(\lambda w_{1}^{\prime}(x)+w_{2}^{\prime}(x)\right)=0 .
\end{array}
$$

Hence either
(i) $\lambda w_{1}\left(x_{0}\right)+w_{2}\left(x_{0}\right)=0$
or
(ii) $\lambda w_{1}^{\prime}\left(x_{0}\right)+w_{2}^{\prime}\left(x_{0}\right)=0$.

Case (i). Since $w_{1}\left(x_{0}\right) \neq 0$, we get $\lambda=-w_{2}\left(x_{0}\right) / w_{1}\left(x_{0}\right)$. It follows from the first equation of the system that x_{0} is a solution of the equation

$$
-\frac{w_{2}(x)}{w_{1}(x)} x^{2 g+1}+\left(-\frac{w_{2}(x)}{w_{1}(x)} w_{1}(x)+w_{2}(x)\right)^{2}=0
$$

Consequently,

$$
-\frac{w_{2}\left(x_{0}\right)}{w_{1}\left(x_{0}\right)} x_{0}^{2 g+1}=0
$$

which is not the case, since $x_{0} \neq 0$ and $w_{2}\left(x_{0}\right) \neq 0$. So, the case (i) does not occur.

Case (ii). Since $w_{1}^{\prime}\left(x_{0}\right) \neq 0$, we get $\lambda=-w_{2}^{\prime}\left(x_{0}\right) / w_{1}^{\prime}\left(x_{0}\right)$. In light of (6),

$$
\lambda=\frac{w_{2}\left(x_{0}\right)}{w_{1}\left(x_{0}\right)} .
$$

It follows from the first equation of the system that x_{0} is a solution of the equation

$$
\frac{w_{2}(x)}{w_{1}(x)} x^{2 g+1}+\left(\frac{w_{2}(x)}{w_{1}(x)} w_{1}(x)+w_{2}(x)\right)^{2}=0
$$

i.e., x_{0} is a solution of the equation

$$
\frac{w_{2}(x)}{w_{1}(x)} x^{2 g+1}+\left(2 w_{2}(x)\right)^{2}=0
$$

Multiplying this equation by $w_{1}(x)$, we obtain that x_{0} is a root of the polynomial

$$
w_{2}(x) x^{2 g+1}+4\left(w_{2}(x)\right)^{2} w_{1}(x)=w_{2}(x)\left(x^{2 g+1}+4 w_{1}(x) w_{2}(x)\right) .
$$

Since $w_{2}\left(x_{0}\right) \neq 0, x_{0}$ is a root of the polynomial $H(x)=x^{2 g+1}+$ $4 w_{1}(x) w_{2}(x)$. Since both $\operatorname{deg}\left(w_{i}\right) \leq g$, we have $\operatorname{deg}\left(w_{1}(x) w_{2}(x)\right) \leq$ $2 g<2 g+1$, and therefore $H(x)$ is a polynomial of degree $2 g+1$. In particular, the set of roots of $H(x)$ is finite.

To summarize: there are only finitely many $x_{0} \in K$ for which there exists $\lambda \in K^{*}$ such that x_{0} is a multiple root of $h_{\lambda}(x)$. This ends the proof.

Theorem 9. Let us assume that $p:=\operatorname{char}(K)>0$ and p divides $2 g+1$, but $2 g+1$ is not a power of p. Let a_{1}, a_{2} be distinct elements of K, and let $u_{1}(x), u_{2}(x) \in K[x]$ be polynomials that satisfy

$$
\begin{gathered}
u_{1}(x) u_{2}(x)=\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1} \\
\operatorname{deg}\left(u_{1}\right) \leq g, \operatorname{deg}\left(u_{2}\right) \leq g, u_{1}^{\prime}(x) \neq 0, u_{2}^{\prime}(x) \neq 0
\end{gathered}
$$

Then the following conditions hold.
(i) If $\mu \in K^{*}$, then $\mu u_{1}(x), \mu^{-1} u_{2}(x) \in K[x]$ are polynomials of degree $\leq g$ such that

$$
\left(\mu u_{1}(x)\right)^{\prime} \neq 0, \quad\left(\mu u_{2}(x)\right)^{\prime} \neq 0
$$

$$
\left(\mu u_{1}(x)\right)\left(\mu^{-1} u_{2}(x)\right)=u_{1}(x) u_{2}(x)=\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1}
$$

(ii) There are only finitely many $\mu \in K^{*}$ such that the polynomial

$$
f_{a_{1}, a_{2} ; \mu u_{1}, \mu^{-1} u_{2}}(x)=\left(x-a_{1}\right)^{2 g+1}+\left(\frac{\mu u_{1}(x)+\mu^{-1} u_{2}(x)}{2}\right)^{2}
$$

has a multiple root.
Proof. (i) is obvious. Let us prove (ii). Using Theorem 4(b), we may and will assume that $a_{1}=0, a_{2}=a \neq 0$,

$$
\begin{gathered}
f_{a_{1}, a_{2} ; \mu u_{1}, \mu^{-1} u_{2}}(x)=f_{0, a ; \mu u_{1}, \mu^{-1} u_{2}}(x), \\
u_{1}(x) u_{2}(x)=(x-a)^{2 g+1}-x^{2 g+1}
\end{gathered}
$$

and

$$
u_{i}(0) \neq 0, u_{i}(a) \neq 0 \text { for } i=1,2 .
$$

Since char (K) divides $2 g+1$, the derivatives of both $(x-a)^{2 g+1}$ and $x^{2 g+1}$ are 0 . This implies that

$$
\left(u_{1}(x) u_{2}(x)\right)^{\prime}=0 .
$$

We have

$$
\begin{aligned}
f_{0, a ; \mu u_{1}, \mu^{-1} u_{2}}(x) & =x^{2 g+1}+\left(\frac{\mu u_{1}(x)+\mu^{-1} u_{2}(x)}{2}\right)^{2} \\
& =x^{2 g+1}+\left(\mu w_{1}(x)+\mu^{-1} w_{2}(x)\right)^{2}
\end{aligned}
$$

where $w_{1}(x)=u_{1}(x) / 2, w_{2}(x)=u_{2}(x) / 2$. Clearly, $w_{1}(x)$ and $w_{2}(x)$ are polynomials of degree $\leq g$ and

$$
w_{1}^{\prime}(x) \neq 0, w_{2}^{\prime}(x) \neq 0, \quad\left(w_{1}(x) w_{2}(x)\right)^{\prime}=0
$$

Since

$$
\mu^{2} f_{0, a ; \mu u_{1}, \mu^{-1} u_{2}}(x)=\mu^{2} x^{2 g+1}+\left(\mu^{2} w_{1}(x)+w_{2}(x)\right)^{2}
$$

it follows from Theorem 8 that there is a finite set $S \subset K^{*}$ such that if $\mu^{2} \notin S$, then $\mu^{2} f_{a_{1}, a_{2} ; \mu u_{1}, \mu^{-1} u_{2}}(x)$ has no multiple roots, and therefore $f_{0, a ; \mu u_{1}, \mu^{-1} u_{2}}(x)$ also has no multiple roots. It follows that $f_{0, a ; \mu u_{1}, \mu^{-1} u_{2}}(x)$ has no multiple roots for all but finitely many $\mu \in$ K^{*}.

5. Rationality Questions

The aim of this section is to discuss the cases in which there are at most two K_{0}-rational points of order $2 g+1$ on every odd degree genus g hyperelliptic curve.

Theorem 10. Let K_{0} be a subfield of K and $g \geq 1$ be an integer. Let us assume that $2 g+1$ is not divisible by $\operatorname{char}(K)$ and the degree $2 g$ monic polynomial

$$
\frac{x^{2 g+1}-1}{x-1}=\sum_{i=0}^{2 g} x^{i} \in K_{0}[x]
$$

does not have a factor in $K_{0}[x]$ of degree g or equivalently cannot be represented as a product of two degree g polynomials with coefficients in $K_{0}[x]$.

Let $f(x) \in K_{0}[x]$ be a monic degree $2 g+1$ polynomial without multiple roots and $\mathcal{C}_{f}: y^{2}=f(x)$ be the corresponding odd degree genus g hyperelliptic curve defined over K_{0}. Then $\mathcal{C}_{f}\left(K_{0}\right)$ contains at most two torsion points of order $2 g+1$.

Proof. Assume that $\mathcal{C}_{f}\left(K_{0}\right)$ contains at least three points of order $2 g+1$. Let $P \in \mathcal{C}_{f}\left(K_{0}\right)$ be one of them. Then $P=\left(a_{1}, c_{1}\right)$ with

$$
a_{1}, c_{1} \in K_{0}, c_{1} \neq 0, c_{1}^{2}=f\left(a_{1}\right)
$$

The point $\iota(P)=\left(a_{1},-c_{1}\right) \in \mathcal{C}_{f}\left(K_{0}\right)$ also has order $2 g+1$. Hence there exists another point $Q \in \mathcal{C}_{f}\left(K_{0}\right)$ of order $2 g+1$ that is neither P nor $\iota(P)$. This implies that $Q=\left(a_{2}, c_{2}\right)$ with

$$
a_{2}, c_{2} \in K_{0}, c_{2} \neq 0, c_{2}^{2}=f\left(a_{2}\right), a_{2} \neq a_{1} .
$$

In particular, $\mathcal{C}_{f}\left(K_{0}\right)$ has four distinct points of order $2 g+1$,

$$
\begin{equation*}
P=\left(a_{1}, c_{1}\right), \iota(P)=\left(a_{1},-c_{1}\right), Q=\left(a_{2}, c_{2}\right), \iota(Q)=\left(a_{2},-c_{2}\right) \in \mathcal{C}_{f}\left(K_{0}\right) . \tag{7}
\end{equation*}
$$

By Theorem 3 applied to the torsion K_{0}-points $P=\left(a_{1}, c_{1}\right)$ and $Q=$ $\left(a_{2}, c_{2}\right)$ of order $2 g+1$, there exist degree g polynomials $u_{1}(x), u_{2}(x) \in$ $K_{0}[x]$ such that

$$
\begin{gathered}
\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{2}\right)=g, u_{1}(x) u_{2}(x)=\left(x-a_{2}\right)^{2 g+1}-\left(x-a_{1}\right)^{2 g+1} \\
u_{1}\left(a_{1}\right) \neq 0, u_{2}\left(a_{1}\right) \neq 0, u_{1}\left(a_{2}\right) \neq 0, u_{2}\left(a_{2}\right) \neq 0 .
\end{gathered}
$$

This implies that

$$
\begin{equation*}
(x-a)^{2 g+1}-x^{2 g+1}=u_{1}\left(x+a_{1}\right) u_{2}\left(x+a_{1}\right)=\tilde{u}_{1}(x) \tilde{u}_{2}(x), \tag{8}
\end{equation*}
$$

where

$$
a=a_{2}-a_{1} \in K^{*}, \tilde{u}_{1}(x):=u_{1}\left(x+a_{1}\right), \tilde{u}_{2}(x):=u_{2}\left(x+a_{1}\right) .
$$

Clearly, both $\tilde{u}_{1}(x)$ and $\tilde{u}_{2}(x)$ are polynomials of degree g with coefficients in K_{0}, and their constant terms $\tilde{u}_{1}(0)=u_{1}\left(a_{1}\right)$ and $\tilde{u}_{2}(0)=$ $u_{2}\left(a_{1}\right)$ do not vanish. It follows from (8) that

$$
\tilde{u}_{1}(x) \tilde{u}_{2}(x)=(x-a)^{2 g+1}-x^{2 g+1}=(-a) \frac{(x-a)^{2 g+1}-x^{2 g+1}}{x \cdot(-a / x)} .
$$

On the other hand, dividing both sides of the latter equality by $x^{2 g}$, we get

$$
\frac{\tilde{u}_{1}(x)}{x^{g}} \frac{\tilde{u}_{2}(x)}{x^{g}}=(-a) \frac{(x-a)^{2 g+1}-x^{2 g+1}}{x^{2 g+1}((-a / x)}=(-a) \frac{(1-a / x)^{2 g+1}-1}{(-a / x)} .
$$

Since both $\tilde{u}_{1}(x)$ and $\tilde{u}_{2}(x)$ are degree g polynomials in $K_{0}[x]$ with nonzero constant terms, it follows from Lemma 2 that there exist degree g polynomials $w_{1}(x)$ and $w_{2}(x)$ in $K_{0}[x]$ such that

$$
\frac{\tilde{u}_{1}(x)}{x^{g}}=w_{1}(-a / x), \frac{\tilde{u}_{1}(x)}{x^{g}}=w_{1}(-a / x) .
$$

This implies that

$$
w_{1}(-a / x) w_{2}(-a / x)=(-a) \frac{(1-a / x)^{2 g+1}-1}{-a / x}
$$

Hence

$$
w_{1}(x) w_{2}(x)=(-a) \frac{(x+1)^{2 g+1}-1}{x}
$$

and therefore

$$
\frac{(x+1)^{2 g+1}-1}{x}=\frac{w_{1}(x)}{-a} w_{2}(x) .
$$

It follows that the polynomial

$$
\frac{x^{2 g+1}-1}{x-1}=\frac{w_{1}(x-1)}{-a} w_{2}(x-1)
$$

splits into a product of two degree g polynomials $w_{1}(x-1) /(-a)$ and $w_{2}(x-1)$ with coefficients in K_{0}, which contradicts our assumptions. The obtained contradiction proves the desired result.

Example 3. Suppose that $g=1$ and $\operatorname{char}(K) \neq 3$. Assume that

$$
\frac{x^{3}-1}{x-1}=x^{2}+x+1
$$

does not split into a product of linear factors, i.e., K_{0} does not contain a primitive cubic root of unity. On the other hand, $f(x)$ is a cubic polynomial and \mathcal{C}_{f} is an elliptic curve. It follows from Theorem 10 that $\mathcal{C}_{f}\left(K_{0}\right)$ contains at most two points of order 3 (which is well known). In this case one may give a direct proof. Namely, suppose $\mathcal{C}_{f}\left(K_{0}\right)$ contains at least three points of order 3, then one may find two of them say, $P, Q \in \mathcal{C}_{f}\left(K_{0}\right)$ such that $Q \neq P, \iota(P)=-P$, and therefore the value of the corresponding Weil pairing $e_{3}(P, Q)$ between them is a primitive cubic root of unity. Since both P and Q lie in $\mathcal{C}_{f}\left(K_{0}\right)$, the root $e_{3}(P, Q)$ lies in K_{0}, which contradicts our assumptions.

Corollary 5.1. Suppose that K is the field \mathbb{C} of complex numbers and K_{0} is its subfield \mathbb{R} of real numbers. Suppose that g is a positive odd integer, $f(x) \in \mathbb{R}[x]$ is a monic degree $2 g+1$ polynomial without multiple roots, and $\mathcal{C}_{f}: y^{2}=f(x)$ is the corresponding odd degree genus g hyperelliptic curve over \mathbb{R}. Then $\mathcal{C}_{f}(\mathbb{R})$ contains at most two points of order $2 g+1$.
Proof. Notice that the polynomial $\left(x^{2 g+1}-1\right) /(x-1)$ has no real roots, because $2 g+1$ is odd. Suppose that it splits into a product

$$
\frac{x^{2 g+1}-1}{x-1}=w_{1}(x) w_{2}(x)
$$

of two real polynomials $w_{1}(x)$ and $w_{2}(x)$, both of degree g. Since g is odd, both $w_{1}(x)$ and $w_{2}(x)$ have a real root, and therefore $\left(x^{2 g+1}-\right.$ 1) $/(x-1)$ also has a real root, which is not true. So, $\left(x^{2 g+1}-1\right) /(x-1)$ does not split into a product of two real polynomials of degree g. Now the desired result follows from Theorem [10,

Theorem 11. Let K_{0} be an infinite subfield of K and $g \geq 1$ be an integer. Let us assume that $2 g+1$ is not divisible by $\operatorname{char}(K)$. Then the following conditions are equivalent.
(i) The degree $2 g$ monic polynomial

$$
\frac{x^{2 g+1}-1}{x-1}=\sum_{i=0}^{2 g} x^{i} \in K_{0}[x]
$$

has a factor in $K_{0}[x]$ of degree g or equivalently can be represented as a product of two degree g polynomials with coefficients in K_{0}.
(ii) There exists a monic degree $2 g+1$ polynomial $f(x) \in K_{0}[x]$ without multiple roots that enjoys the following property. If \mathcal{C}_{f} : $y^{2}=f(x)$ is the corresponding odd degree genus g hyperelliptic curve defined over K_{0}, then $\mathcal{C}_{f}\left(K_{0}\right)$ contains at least four torsion points of order $2 g+1$.

Proof. The implication (ii) \Longrightarrow (i) follows from Theorem 10 and its proof.

Suppose (i) holds, i.e., there exist two degree g polynomials $w_{1}(x), w_{2}(x) \in$ $K_{0}[x]$ such that

$$
w_{1}(x) w_{2}(x)=\frac{x^{2 g+1}-1}{x-1}=\sum_{i=0}^{2 g} x^{i} .
$$

In particular,

$$
w_{1}(1) w_{2}(1)=2 g+1 \neq 0
$$

and therefore $w_{1}(1) \neq 0, w_{2}(1) \neq 0$. This means that

$$
\tilde{w}_{1}(x) \tilde{w}_{2}(x)=\frac{(x+1)^{2 g+1}-1}{x}
$$

where

$$
\begin{aligned}
\tilde{w}_{1}(x) & =w_{1}(x+1) \in K_{0}[x], \quad \tilde{w}_{2}(x)=w_{2}(x+1) \in K_{0}[x], \\
\tilde{w}_{1}(0) & =w_{1}(1) \neq 0, \tilde{w}_{2}(0)=w_{2}(1) \neq 0 .
\end{aligned}
$$

Clearly, both $\tilde{w}_{1}(x), \tilde{w}_{2}(x)$ are degree g polynomials with nonzero constant terms. We have

$$
\begin{equation*}
(1+1 / x)^{2 g+1}-(1 / x)^{2 g+1}=\frac{(x+1)^{2 g+1}-1}{x^{2 g+1}}=\frac{\tilde{w}_{1}(x)}{x^{g}} \frac{\tilde{w}_{2}(x)}{x^{g}} . \tag{9}
\end{equation*}
$$

By Lemma 2, there exist degree g polynomials $u_{1}(x), u_{2}(x) \in K_{0}[x]$ such that

$$
u_{1}(1 / x)=\frac{\tilde{w}_{1}(x)}{x^{g}}, u_{2}(1 / x)=\frac{\tilde{w}_{2}(x)}{x^{g}} .
$$

It follows from (9) that

$$
(1+1 / x)^{2 g+1}-(1 / x)^{2 g+1}=u_{1}(1 / x) u_{2}(1 / x),
$$

and therefore

$$
(x+1)^{2 g+1}-x^{2 g+1}=u_{1}(x) u_{2}(x)
$$

Since K_{0} is infinite, it follows from Theorem 7 that there exists $\mu \in K_{0}^{*}$ such that the polynomial

$$
f_{0,-1 ; \mu u_{1}, \mu^{-1} u_{2}}(x)=x^{2 g+1}+\left(\frac{\mu u_{1}(x)+\mu^{-1} u_{2}(x)}{2}\right)^{2}
$$

has no multiple roots. By Theorem 4, the odd degree genus g hyperelliptic curve

$$
\mathcal{C}_{0,-1 ; \mu u_{1} \mu^{-1} u_{2}}: y^{2}=f_{0,-1 ; \mu u_{1}, \mu^{-1} u_{2}}(x)
$$

over K_{0} has two distinct points

$$
P_{0,-1 ; \mu u_{1}, \mu^{-1} u_{2}}, Q_{0,-1 ; \mu u_{1}, \mu^{-1} u_{2}} \in \mathcal{C}_{0,-1 ; \mu u_{1}, \mu^{-1} u_{2}}\left(K_{0}\right)
$$

of order $2 g+1$ with abscissas 0 and -1 , respectively, and with nonzero ordinates. Consequently,

$$
P_{0,-1 ; \mu u_{1}, \mu^{-1} u_{2}}, Q_{0,-1 ; \mu u_{1}, \mu^{-1} u_{2}}, \iota\left(P_{0,-1 ; \mu u_{1} \mu^{-1}, u_{2}}\right), \iota\left(Q_{0,-1 ; \mu u_{1}, \mu^{-1} u_{2}}\right)
$$

are four distinct K_{0}-rational points of order $2 g+1$ on $\mathcal{C}_{0,-1 ; \mu u_{1}, \mu^{-1} u_{2}}$. This implies that (ii) holds.

Example 4. Suppose that $g=2 d$ is an even positive integer, $K=$ $\mathbb{C}, K_{0}=\mathbb{R}$. Then the $2 g$-element set of complex roots of $\left(x^{2 g+1}-\right.$ 1) $/(x-1)$ consists of g complex-conjugate pairs $\left\{\zeta_{1}, \bar{\zeta}_{1} ; \ldots ; \zeta_{g}, \bar{\zeta}_{g}\right\}$. Let us consider the degree g polynomials

$$
w_{1}(x)=\prod_{i=1}^{d}\left(x-\zeta_{i}\right)\left(x-\bar{\zeta}_{i}\right), w_{2}(x)=\prod_{i=d+1}^{g}\left(x-\zeta_{i}\right)\left(x-\bar{\zeta}_{i}\right)
$$

Clearly,

$$
w_{1}(x), w_{2}(x) \in \mathbb{R}[x], w_{1}(x) w_{2}(x)=\frac{x^{2 g+1}-1}{x-1}
$$

It follows from Theorem 11 that there exists a monic degree $2 g+1$ polynomial $f(x) \in \mathbb{R}[x]$ without multiple roots such that the odd degree genus g hyperelliptic curve $\mathcal{C}_{f}: y^{2}=f(x)$ contains at least four real torsion points of order $2 g+1$.

Theorem 11 suggests the following definition.
Definition 12. Let $\varphi(n)$ be Euler's totient function. An odd integer $2 g+1 \geq 3$ is called hyperelliptic if it enjoys the following obviously equivalent properties.
(i) There is a set S of divisors of $2 g+1$ that does not contain 1 and such that

$$
\sum_{d \in S} \varphi(d)=g
$$

(ii) One may partition the set of all divisors of $2 g+1$ except 1 into two nonempty subsets S_{1} and S_{2} such that

$$
\sum_{d \in S_{1}} \varphi(d)=\sum_{d \in S_{2}} \varphi(d)
$$

Theorem 13. Suppose that K is the field \mathbb{C} of complex numbers and K_{0} is its subfield \mathbb{Q} of rational numbers. Suppose that g is a positive odd integer. Then the following conditions are equivalent.
(i) $2 g+1$ is a hyperelliptic number.
(ii) There exists a monic degree $2 g+1$ polynomial $f(x) \in \mathbb{Q}[x]$ with rational coefficients and without multiple roots that enjoys the following property. If $\mathcal{C}_{f}: y^{2}=f(x)$ is the corresponding odd degree genus g hyperelliptic curve defined over \mathbb{Q}, then $\mathcal{C}_{f}(\mathbb{Q})$ contains at least four torsion points of order $2 g+1$.

Proof. Let $D(2 g+1)$ be the set of all divisors of $2 g+1$ except 1 . Then the monic polynomial $\left(x^{2 g+1}-1\right) /(x-1)$ coincides with the product $\prod_{d \in D(2 g+1)} \Phi_{d}(x)$ of distinct cyclotomic polynomials $\Phi_{d}(x)$, each of which is irreducible over \mathbb{Q}. This implies that each factor $w(x)$ of $\left(x^{2 g+1}-1\right) /(x-1)$ in $\mathbb{Q}[x]$ is of the form $r \cdot \prod_{d \in S} \Phi_{d}(x)$, where S is a subset in $D(2 g+1)$ and $r \in \mathbb{Q}^{*}$. Since $\operatorname{deg}\left(\Phi_{d}\right)=\varphi(d)$, we have

$$
\operatorname{deg}(w)=\sum_{d \in S} \varphi(d)
$$

The desired result follows readily from Theorem 11 applied to $K_{0}=$ Q.

Example 5. Let $K_{0}=\mathbb{Q}, K=\mathbb{C}$.
(i) Let us take $g=52$. Then $2 g+1=105=3 \cdot 5 \cdot 7$,

$$
\varphi(105)=48, \varphi(5)=4,52=48+4=\varphi(105)+\varphi(5) .
$$

Hence 105 is a hyperelliptic number and there exists a degree 105 polynomial $f(x) \in \mathbb{Q}[x]$ without multiple roots such that the corresponding odd degree genus 52 hyperelliptic \mathbb{Q}-curve $\mathcal{C}_{f}: y^{2}=f(x)$ has at least four \mathbb{Q}-points of order 105.
(ii) Let us take $g=82$. Then $2 g+1=165=3 \cdot 5 \cdot 11$,

$$
\varphi(165)=80, \varphi(3)=2,82=80+2=\varphi(165)+\varphi(3)
$$

This implies that 165 is a hyperelliptic number and there exists a degree 165 polynomial $f(x) \in \mathbb{Q}[x]$ without multiple roots such that the corresponding odd degree genus 82 hyperelliptic \mathbb{Q}-curve $\mathcal{C}_{f}: y^{2}=f(x)$ has at least four \mathbb{Q}-points of order 165 .

Corollary 5.2. Suppose that K is the field \mathbb{C} of complex numbers and K_{0} is its subfield \mathbb{Q} of rational numbers. Suppose that g is a positive integer enjoying one of the following properties.
(i) There exist a prime ℓ and a positive integer k such that $2 g+1=$ ℓ^{k}.
(ii) There exist distinct odd primes ℓ_{1} and ℓ_{2}, and positive integers k_{1} and k_{2} such that $2 g+1=\ell_{1}^{k_{1}} \ell_{2}^{k_{2}}$.
(iii) There exist distinct odd primes $\ell_{1}, \ell_{2}, \ell_{3}$ and positive integers k_{1}, k_{2}, k_{3} such that $2 g+1=\ell_{1}^{k_{1}} \ell_{2}^{k_{2}} \ell_{3}^{k_{3}}$ and none of ℓ_{i} is 3 .
(iv) $g \leq 100$ and $g \notin\{52,82\}$.

Then:
(i) $2 g+1$ is not a hyperelliptic number.
(ii) Let $f(x) \in \mathbb{Q}[x]$ be a monic degree $2 g+1$ polynomial without multiple roots and $\mathcal{C}_{f}: y^{2}=f(x)$ the corresponding odd degree genus g hyperelliptic curve defined over \mathbb{Q}. Then $\mathcal{C}_{f}(\mathbb{Q})$ contains at most two points of order $2 g+1$.

Proof. In light of Theorem 13, it suffices to check that $2 g+1$ is not a hyperelliptic number. Let us assume the contrary, i.e., that one may partition $D(2 g+1)$ into two subsets S_{1} and S_{2} such that

$$
\sum_{d \in S_{1}} \varphi(d)=g=\sum_{d \in S_{2}} \varphi(d) .
$$

Case (i). We have $\ell \geq 3$ and

$$
\varphi(2 g+1)=(\ell-1) \ell^{k-1} \geq \frac{2}{3} \ell^{k}>\frac{2}{3} 2 g=\frac{4}{3} g>g .
$$

Case (ii). We may assume that $\ell_{2}>\ell_{1}$, and therefore $\ell_{1} \geq 3, \ell_{2} \geq 5$. We have

$$
\begin{gathered}
\varphi(2 g+1)=\left(\ell_{1}-1\right) \ell_{1}^{k-1}\left(\ell_{2}-1\right) \ell_{2}^{k_{2}-1} \geq \\
\frac{2}{3} \ell_{1}^{k_{1}} \cdot \frac{4}{5} \ell_{2}^{k_{2}}=\frac{8}{15}\left(\ell_{1}^{k_{1}} \cdot \ell_{2}^{k_{2}}\right)=\frac{8}{15}(2 g+1)>\frac{16}{15} g>g .
\end{gathered}
$$

Case (iii). We may assume that $\ell_{3}>\ell_{2}>\ell_{1}>3$, and therefore

$$
\ell_{1} \geq 5, \ell_{2} \geq 7, \ell_{3} \geq 11
$$

We have

$$
\begin{gathered}
\varphi(2 g+1)=\left(\ell_{1}-1\right) \ell_{1}^{k-1}\left(\ell_{2}-1\right) \ell_{2}^{k_{2}-1}\left(\ell_{3}-1\right) \ell_{3}^{k_{3}-1} \geq \\
\frac{4}{5} \ell_{1}^{k_{1}} \cdot \frac{6}{7} \ell_{2}^{k_{2}} \cdot \frac{10}{11} \ell_{3}^{k_{3}}=\frac{48}{77}\left(\ell_{1}^{k_{1}} \ell_{2}^{k_{2}} \ell_{3}^{k_{3}}\right)=\frac{48}{77}(2 g+1)>\frac{96}{77} g>g
\end{gathered}
$$

In all three cases $\varphi(2 g+1)>g$. Since $2 g+1 \in S_{i}$ for $i=1$ or 2 ,

$$
g=\sum_{d \in S_{i}} \varphi(d) \geq \varphi(2 g+1)>g
$$

which gives us a desired contradiction.
Let us assume that case (iv) holds. It follows from Corollary 5.1 that we may assume that g is even. We may also assume that g satisfies neither (i) nor (ii). Since g satisfies neither (i) nor (ii), $2 g+1$ is divisible by at least three distinct odd primes, hence $2 g+1 \geq 3 \cdot 5 \cdot 7=105$, i.e., $g>51$. So, we may assume that $52<g \leq 100$.

If $2 g+1$ is not divisible by 3 , then $2 g+1 \geq 5 \cdot 7 \cdot 11=385$, i.e., $g>191>118$. Hence $2 g+1$ is divisible by 3 . Since g is even, it is congruent to 4 modulo 6 . This implies that $g \in\{58,64,70,76,88,94,100\}$. However,
$2 \cdot 58+1=3^{2} \cdot 13,2 \cdot 64+1=3 \cdot 43,2 \cdot 70+1=3 \cdot 47,2 \cdot 76+1=3^{2} \cdot 17$,

$$
2 \cdot 88+1=3 \cdot 59,2 \cdot 94+1=3^{3} \cdot 7,2 \cdot 100+1=3 \cdot 67 .
$$

Consequently, every $g \in\{58,64,70,76,88,94,100\}$ satisfies (ii). This ends the proof.

Remark 10. Our results show that there are only two hyperelliptic numbers $2 g+1 \leq 201$, namely, 105 and 165. However, recently Vlad Matei [5] proved that the set of hyperelliptic numbers is infinite.

The following assertion may be viewed as a counterpart in characteristic zero to Theorem [5.

Theorem 14. Let ℓ be an odd prime and K_{0} a complete discrete valuation field of characteristic 0 with residue field of characteristic ℓ and such that the ramification index e_{K} is 1 , i.e., ℓ is a uniformizer. (E.g., K_{0} is the field \mathbb{Q}_{ℓ} of ℓ-adic numbers or its finite unramified extension). Let K be an algebraic closure of K_{0}. Suppose that there exists a positive integer k such that $g=\left(\ell^{k}-1\right) / 2$, i.e., $2 g+1=\ell^{k}$.

Let $f(x) \in K_{0}[x]$ be a monic degree ℓ^{k} polynomial without multiple roots and $\mathbb{C}_{f}: y^{2}=f(x)$ the corresponding odd degree genus $\left(\ell^{k}-1\right) / 2$ hyperelliptic curve over K_{0}. Then $\mathbb{C}_{f}\left(K_{0}\right)$ has at most two points of order ℓ^{k}.

6. Odd degree genus g Hyperelliptic curves with two PAIRS OF TORSION POINTS OF ORDER $2 g+1$.

In this section we assume that K is an algebraically closed field of characteristic $\neq 2$. We will need the following definition.

Definition 15. Let g be a positive integer. An ordered pair of polynomials

$$
u_{1}(x), u_{2}(x) \in K[x]
$$

is called a nice pair of degree g over K if it enjoys the following properties.
(i) $\operatorname{deg}\left(u_{1}\right) \leq g, \operatorname{deg}\left(u_{2}\right) \leq g$.
(ii) $u_{1}(x) u_{2}(x)=(x+1)^{2 g+1}-x^{2 g}$.
(iii) If $\operatorname{char}(K)$ does not divide $2 g+1$, then $\operatorname{deg}\left(u_{1}\right)=g$, $\operatorname{deg}\left(u_{2}\right)=g$.
(iv) $u_{1}^{\prime}(x) \neq 0, u_{2}^{\prime}(x) \neq 0$.

If $\left(u_{1}(x), u_{2}(x)\right)$ is a nice pair of degree g and the polynomial

$$
\begin{array}{r}
f(x)=f_{0,-1 ; u_{1}, u_{2}}=x^{2 g+1}+\left(\frac{u_{1}(x)+u_{2}(x)}{2}\right)^{2} \\
=(x+1)^{2 g+1}+\left(\frac{u_{1}(x)-u_{2}(x)}{2}\right)^{2}
\end{array}
$$

has no multiple roots, then the pair $\left(u_{1}(x), u_{2}(x)\right)$ is called very nice.
Remark 11. Suppose that $\left(u_{1}(x), u_{2}(x)\right)$ is a nice pair of degree g.
(i) It follows from Remark 5 that

$$
u_{1}(0) \neq 0, u_{2}(0) \neq 0, u_{2}(-1) \neq 0, u_{2}(-1) \neq 0
$$

In particular,

$$
u_{2}(x) \neq \pm u_{1}(x) .
$$

In addition, if $\left(u_{1}(x), u_{2}(x)\right)$ is very nice, then it follows from Theorem 4 that

$$
u_{1}(0)+u_{2}(0) \neq 0, u_{2}(-1)-u_{2}(-1) \neq 0
$$

(ii) Obviously, the pairs

$$
\left(-u_{1}(x),-u_{2}(x)\right),\left(u_{2}(x), u_{1}(x)\right),\left(-u_{2}(x),-u_{1}(x)\right)
$$

are also nice of degree g. It follows from (i) that all four nice pairs (including $\left(u_{1}(x), u_{2}(x)\right)$ are distinct. However, they all give rise to the same polynomial $f(x)$ (see Remark 6). In particular, they all are very nice if and only if $\left(u_{1}(x), u_{2}(x)\right)$ is very nice.
(iii) If $\mu \in K^{*}$, then obviously $\left(\mu u_{1}(x), \mu^{-1} u_{2}(x)\right)$ is a nice pair of degree g. It follows from Theorems 8 and 9 that $\left(\mu u_{1}(x), \mu^{-1} u_{2}(x)\right)$ is actually very nice for all but finitely many μ.
(iv) Let $\left(w_{1}(x), w_{2}(x)\right)$ be a nice pair of degree g such that

$$
f_{0,-1 ; w_{1}, w_{2}}(x)=f_{0,-1 ; u_{1}, u_{2}}(x) .
$$

Then $\left(w_{1}(x), w_{2}(x)\right)$ is one of four pairs described in (ii). Indeed, we immediately get

$$
\begin{aligned}
& \left(\frac{w_{1}(x)+w_{2}(x)}{2}\right)^{2}=\left(\frac{u_{1}(x)+u_{2}(x)}{2}\right)^{2} \\
& \left(\frac{w_{1}(x)+w_{2}(x)}{2}\right)^{2}=\left(\frac{u_{1}(x)+u_{2}(x)}{2}\right)^{2} .
\end{aligned}
$$

It follows that we have at most four choices for

$$
\left(w_{1}(x)+w_{2}(x), w_{1}(x)-w_{2}(x)\right),
$$

and therefore at most four choices for $\left(w_{1}(x), w_{2}(x)\right)$. However, in (ii) we already described the four choices, and therefore $\left(w_{1}(x), w_{2}(x)\right)$ is one of them.

Definition 16. A monic degree $2 g+1$ polynomial $f(x) \in K[x]$ is called decorated if there exists a nice pair $\left(u_{1}(x), u_{2}(x)\right)$ of degree g such that $f(x)=f_{0,-1 ; u_{1}, u_{2}}(x)$. If this is the case, then $\left(u_{1}(x), u_{2}(x)\right)$ is called a decoration of $f(x)$. It follows from Remark 11 that a decorated polynomial admits precisely four decorations.

These definitions allow us to restate results of Section 3 in the following way.

Theorem 17. Let $f(x)$ be a monic polynomial of degree $2 g+1$ without multiple roots, and let $\mathcal{C}_{f}: y^{2}=f(x)$ be the corresponding odd degree genus g hyperelliptic curve over K.
(i) Let P and Q be points in $\mathcal{C}_{f}(K)$ such that

$$
x(P)=0, x(Q)=-1
$$

Then both P and Q have order $2 g+1$ if and only if $f(x)$ is decorated.
(ii) Suppose that $f(x)$ is decorated. Then each decoration $\left(u_{1}(x), u_{2}(x)\right)$ of $f(x)$ gives rise to points

$$
\begin{equation*}
P_{u_{1}, u_{2}}:=\left(0, \frac{u_{1}(0)+u_{2}(0)}{2}\right), Q_{u_{1}, u_{2}}:=\left(-1, \frac{u_{1}(-1)-u_{2}(-1)}{2}\right) \in \mathcal{C}_{f}(K) \tag{10}
\end{equation*}
$$

of order $2 g+1$.
Conversely, for each pair of points $P, Q \in \mathcal{C}_{f}(K)$ with

$$
x(P)=0, x(Q)=-1
$$

there exists exactly one decoration $\left(u_{1}(x), u_{2}(x)\right)$ of $f(x)$ such that

$$
\begin{equation*}
P=\left(0, \frac{u_{1}(0)+u_{2}(0)}{2}\right), Q=\left(-1, \frac{u_{1}(-1)-u_{2}(-1)}{2}\right) . \tag{11}
\end{equation*}
$$

In addition, both P and Q have order $2 g+1$.
Proof. (i) Suppose P and Q have order $2 g+1$. It follows from Theorem 3 and Theorem4(c1) applied to $a_{1}=0, a_{2}=-1$ that $f(x)$ is decorated. Conversely, suppose $f(x)$ is decorated. It follows from Theorem 4 (c1) applied to $a_{1}=0, a_{2}=-1$ that there exist torsion points $P_{1}, Q_{1} \in$ $\mathcal{C}_{f}(K)$ of order $2 g+1$ such that

$$
x\left(P_{1}\right)=0, x\left(Q_{1}\right)=-1 .
$$

This implies that $P=P_{1}$ or $P=\iota\left(P_{1}\right)$ and $Q=Q_{1}$ or $Q=\iota\left(Q_{1}\right)$. In all the cases, P and P_{1} have the same order, Q and Q_{1} have the same order. This implies that both P and Q have order $2 g+1$.
(ii) Suppose that $f(x)$ is decorated.

Let $\left(u_{1}(x), u_{2}(x)\right)$ be a decoration of $f(x)$. It follows from Theorem [4(c1) applied to $a_{1}=0, a_{2}=-1$ that $P_{u_{1}, u_{2}}$ and $Q_{u_{1}, u_{2}}$ are indeed torsion points in $\mathcal{C}_{f}(K)$ and have order $2 g+1$.

Let $P, Q \in \mathcal{C}_{f}(K)$ and $x(P)=0, x(Q)=-1$. It follows from (i) that both P and Q have order $2 g+1$. Now it follows from Theorem 3 and Theorem 4(c1) applied to $a_{1}=0, a_{2}=-1$ that there is precisely one decoration $\left(u_{1}(x), u_{2}(x)\right)$ of $f(x)$ such that P and Q are defined by (11).

Definition 18. (i) An enhanced hyperelliptic curve of genus g over K is an ordered quadruple (\mathcal{C}, O, P, Q), where (\mathcal{C}, O) is a pointed odd degree genus g hyperelliptic curve and P, Q are points of order $2 g+1$ such that $Q \neq P, \iota P$.

We call an enhanced hyperelliptic curve of genus g over K normalized if there exists a polynomial $f(x) \in K[x]$ of degree $2 g+1$ without multiple roots such that $\mathcal{C}=\mathcal{C}_{f}$, i.e., if \mathcal{C} is the smooth projective model of $y^{2}=f(x), O=\infty$, and $x(P)=$ $0, x(Q)=-1$.
(ii) By an isomorphism $\phi:(\mathcal{C}, O, P, Q) \rightarrow\left(\mathcal{C}_{1}, O_{1}, P_{1}, Q_{1}\right)$ of enhanced hyperelliptic curves we mean a K-biregular map $\phi: \mathcal{C} \rightarrow$ \mathcal{C}_{1} such that $\phi(O)=O_{1}, \phi(P)=P_{1}$, and $\phi(Q)=Q_{1}$. We call an isomorphism $\phi:(\mathcal{C}, O, P, Q) \rightarrow\left(\mathcal{C}_{1}, O_{1}, P_{1}, Q_{1}\right)$ of enhanced hyperelliptic curves a marking if $\mathcal{C}_{1}=\mathcal{C}_{f_{1}}$ is the smooth projective model of $y_{1}^{2}=f\left(x_{1}\right)$, where $f\left(x_{1}\right) \in K\left[x_{1}\right]$ is a degree $2 g+1$ polynomial without multiple roots, O_{1} the infinite point
∞_{1} of $\mathcal{C}_{f_{1}}$ and $x_{1}\left(P_{1}\right)=0, x_{1}\left(Q_{1}\right)=-1$. In other words, a marking of (\mathcal{C}, O, P, Q) is an isomorphism between (\mathcal{C}, O, P, Q) and a normalized enhanced hyperelliptic curve.

Remark 12. (i) Notice that if $\phi:(\mathcal{C}, O) \rightarrow\left(\mathcal{C}_{1}, O_{1}\right)$ is a K-biregular map of pointed hyperelliptic curves and P is a K-point of \mathcal{C} having order $2 g+1$ on the Jacobian $J(\mathcal{C})$ of \mathcal{C}, then the K-point $\phi(P)$ of \mathcal{C}_{1} has order $2 g+1$ on the Jacobian $J\left(\mathcal{C}_{1}\right)$ of \mathcal{C}_{1}. Consequently, every K-biregular map $\phi:(\mathcal{C}, O) \rightarrow\left(\mathcal{C}_{1}, O_{1}\right)$ of pointed hyperelliptic curves yields an isomorphism $\phi:(\mathcal{C}, O, P, Q) \rightarrow$ $\left(\mathcal{C}_{1}, O_{1}, P_{1}, Q_{1}\right)$ of enhanced hyperelliptic curves, where P and Q are arbitrary points of order $2 g+1$ on C and $P_{1}=\phi(P)$, $Q_{1}=\phi(Q)$.
(ii) Recall (Section 2) that every pointed genus g hyperelliptic curve (\mathcal{C}, O) is K-isomorphic to $\left(\mathcal{C}_{f}, \infty\right)$, where \mathcal{C}_{f} is the odd degree genus g hyperelliptic curve defined by the equation $y^{2}=f(x)$ (i.e., the normalization of the projective closure of the smooth plane affine curve $y^{2}=f(x)$) and ∞ is the unique "infinite" point on C_{f}. Therefore, every enhanced hyperelliptic curve is isomorphic to a enhanced hyperelliptic curve $\left(\mathcal{C}_{f}, \infty, P, Q\right)$.

Theorem 19. Let (\mathcal{C}, O, P, Q) be an enhanced genus g hyperelliptic curve, where \mathcal{C}_{f} is the odd degree genus g hyperelliptic curve defined by the equation $y^{2}=f(x)$. Then there exists a degree $2 g+1$ monic polynomial $f_{1}(x) \in K[x]$ without multiple roots and an enhanced genus g hyperelliptic curve $\left(\mathcal{C}_{f_{1}}, \infty, P_{1}, Q_{1}\right)$ that enjoys the following properties.
(i) $x\left(P_{1}\right)=0$ and $x\left(Q_{1}\right)=-1$, i.e., $\left(\mathcal{C}_{f_{1}}, \infty, P_{1}, Q_{1}\right)$ is normalized.
(ii) The enhanced hyperelliptic curves $\left(\mathcal{C}_{f_{1}}, \infty, P_{1}, Q_{1}\right)$ and (\mathcal{C}, O, P, Q) are isomorphic.
In other words, every enhanced genus g hyperelliptic curve admits a marking.

Proof. Without loss of generality we may assume that

$$
\mathcal{C}=\mathcal{C}_{f}: y^{2}=f(x),
$$

where $f(x) \in K[x]$ is a degree $2 g+1$ monic polynomial without multiple roots. Let

$$
P=(a, b) \in \mathcal{C}_{f}(K), Q=(c, d) \in \mathcal{C}_{f}(K)
$$

Then a and c are distinct elements of K, none of which is a root of $f(x)$, i.e., $b \neq 0, d \neq 0$. Let us consider the monic degree $2 g+1$ polynomial

$$
f_{1}(x)=\frac{f((a-c) x+a)}{(a-c)^{2 g+1}} \in K[x]
$$

without multiple roots and the hyperelliptic curve \mathcal{C}_{1} defined by the equation $y^{2}=f_{1}(x)$. Let us choose

$$
r=\sqrt{a-c} \in K^{*} .
$$

Then we get a K-isomorphism of pointed hyperelliptic curves

$$
\phi:\left(\mathcal{C}_{f}, \infty\right) \rightarrow\left(\mathcal{C}_{f_{1}}, \infty\right), \phi(x, y)=\left(\frac{x-a}{a-c}, r(a-c)^{g} y\right)
$$

which gives rise to a K-isomorphism

$$
\phi:\left(\mathcal{C}_{f}, \infty, P, Q\right) \rightarrow\left(\mathcal{C}_{f_{1}}, \infty, P_{1}, Q_{1}\right)
$$

of enhanced hyperelliptic curves, where $P_{1}=\phi(P)=\left(0, r(a-c)^{g} b\right)$ and $Q_{1}=\phi(Q)=\left(-1, r(a-c)^{g} d\right)$.

Remark 13. Let $\left(\mathcal{C}_{f_{1}}, \infty, P_{1}, Q_{1}\right)$ and $\left(\mathcal{C}_{f_{2}}, \infty, P_{2}, Q_{2}\right)$ be two normalized enhanced hyperelliptic curves. In particular, the abscissas of both P_{1} and P_{2} equal 0 and the abscissas of both Q_{1} and Q_{2} equal -1 .
(i) If there exists an isomorphism

$$
\psi:\left(\mathcal{C}_{f_{1}}, \infty, P_{1}, Q_{1}\right) \cong\left(\mathcal{C}_{f_{2}}, \infty, P_{2}, Q_{2}\right)
$$

of enhanced hyperelliptic curves, then it follows from Remark 1 that

$$
f_{1}(x)=f_{2}(x), \mathcal{C}_{f_{1}}=\mathcal{C}_{f_{2}}
$$

and ψ is either the identity map or ι. Consequently, either $P_{2}=P_{1}, Q_{2}=Q_{1}$ or $P_{2}=\iota P_{1}, Q_{2}=\iota Q_{1}$. This implies that every automorphism $\left(\mathcal{C}_{f_{1}}, \infty, P_{1}, Q_{1}\right) \cong\left(\mathcal{C}_{f_{1}}, \infty, P_{1}, Q_{1}\right)$ of a normalized enhanced hyperelliptic curve is the identity map.
(ii) Let (\mathcal{C}, O, P, Q) be an enhanced genus g hyperelliptic curve over K. Suppose that
$\phi_{1}:(\mathcal{C}, O, P, Q) \rightarrow\left(\mathcal{C}_{f_{1}}, \infty, P_{1}, Q_{1}\right), \phi_{1}:(\mathcal{C}, O, P, Q) \rightarrow\left(\mathcal{C}_{f_{2}}, \infty, P_{2}, Q_{2}\right)$ are two markings of (\mathcal{C}, O, P, Q). Then

$$
\psi:=\phi_{2} \circ \phi_{1}^{-1}:\left(\mathcal{C}_{f_{1}}, \infty, P_{1}, Q_{1}\right) \rightarrow\left(\mathcal{C}_{f_{2}}, \infty, P_{2}, Q_{2}\right)
$$

is an isomorphism of enhanced hyperelliptic curves that satisfies conditions (i). It follows that

$$
f_{1}(x)=f_{2}(x), \mathcal{C}_{f_{1}}=\mathcal{C}_{f_{2}},
$$

and either $\psi_{2}=\psi_{1}$ or $\psi_{2}=\psi_{1} \circ \iota_{\mathcal{C}}$. Therefore, every enhanced hyperelliptic curve has exactly two markings, one is obtained from the other by composing with the hyperelliptic involution.

Remark 14. Let ($\mathcal{C}_{f}, \infty, P_{2}, Q_{2}$) be a normalized enhanced hyperelliptic curve over K. By Theorem 17, there exists precisely one decoration $\left(u_{1}(x), u_{2}(x)\right)$ of $f(x)$ such that

$$
\begin{equation*}
P=\left(0, \frac{u_{1}(0)+u_{2}(0)}{2}\right), Q=\left(-1, \frac{u_{1}(-1)-u_{2}(-1)}{2}\right) . \tag{12}
\end{equation*}
$$

It follows from Remarks 6 and 11 that the same pointed hyperelliptic curve $\left(\mathcal{C}_{f}, \infty\right)$ gives rise to three other normalized enhanced hyperelliptic curves $\left(\mathcal{C}_{f}, \infty, \iota P, \iota Q\right),\left(\mathcal{C}_{f}, \infty, P, \iota Q\right),\left(\mathcal{C}_{f}, \infty, \iota P, Q\right)$ that correspond to the very nice pairs

$$
\left(-u_{1}(x),-u_{2}(x)\right),\left(u_{2}(x), u_{1}(x)\right),\left(-u_{2}(x),-u_{1}(x)\right),
$$

respectively.
Now our goal is to describe the nice pairs $\left(u_{1}(x), u_{2}(x)\right)$ explicitly. In what follows we write $\#(A)$ for the cardinality of a finite set A.
6.1. The case when $\operatorname{char}(K)$ does not divide $2 g+1$. Recall that in this case each of the polynomials $u_{1}(x)$ and $u_{2}(x)$ has degree g. Let us put

$$
M(2 g+1):=\left\{\varepsilon \in K, \varepsilon^{2 g+1}=1, \varepsilon \neq 1\right\}
$$

The degree $2 g$ polynomial $(x+1)^{2 g+1}-x^{2 g+1}$ has leading coefficient $2 g+1$ and $2 g$ distinct roots

$$
\eta(\varepsilon)=\frac{1}{\varepsilon-1}, \text { where } \varepsilon \in M(2 g+1)
$$

We write

$$
\mathrm{H}_{I}(x)=\prod_{\varepsilon \in I}(x-\eta(\varepsilon)) \in K[x]
$$

for each subset $I \subset M(2 g+1)$. Clearly, $\mathrm{H}_{I}(x)$ is a degree $\#(I)$ monic polynomial; $\mathrm{H}_{I}^{\prime}(x)=0$ if and only if $I=\emptyset$. It is also clear that if $\complement I$ is the complement of I in $M(2 g+1)$, then

$$
\mathrm{H}_{I}(x) \mathrm{H}_{C I}(x)=\mathrm{H}_{M(2 g+1)}(x)=\frac{(x+1)^{2 g+1}-x^{2 g+1}}{2 g+1}
$$

Remark 15. Since $\#(M(2 g+1))=2 g$, the equality $\#(I)=g$ holds if and only if $\#(C I)=g$.

Theorem 20. (i) Nice pairs $\left(u_{1}(x), u_{2}(x)\right)$ of degree g over K are exactly the pairs $\left(\mu \mathrm{H}_{I}(x), \frac{2 g+1}{\mu} \mathrm{H}_{\mathrm{CI}}(x)\right)$, where I is any g-element subset of $M(2 g+1)$ and μ is any element of K^{*}.
(ii) Let I be a g-element subset of $M(2 g+1)$. If $\mu \in K^{*}$, then the corresponding polynomial

$$
\begin{aligned}
f_{I, \mu}(x) & :=f_{0,-1 ; \mu \mathrm{H}_{I}, \frac{2 q+1}{\mu} \mathrm{H}_{\mathrm{C} I}}=x^{2 g+1}+\left(\frac{\mu \mathrm{H}_{I}(x)+\frac{2 q+1}{\mu} \mathrm{H}_{\mathrm{CI}_{I}}(x)}{2}\right)^{2} \\
& =(x+1)^{2 g+1}+\left(\frac{\mu \mathrm{H}_{I}(x)-\frac{2 g+1}{\mu} \mathrm{H}_{\mathrm{CI}}(x)}{2}\right)^{2}
\end{aligned}
$$

decorated by $\left(\mu \mathrm{H}_{I}(x), \frac{2 g+1}{\mu} \mathrm{H}_{\mathrm{CI}}(x)\right)$ has no multiple roots for all but finitely many μ.
(iii) If $\left(\mathcal{C}_{f}, \infty, P, Q\right)$ is a normalized enhanced genus g hyperelliptic curve $y^{2}=f(x)$ over K, then there is precisely one pair (I, μ), where I is a g-element subset of $M(2 g+1)$ and $\mu \in K^{*}$ such that $f(x)=f_{I, \mu}(x)$ and

$$
\begin{equation*}
P=\left(0, \frac{\mu \mathrm{H}_{I}(0)+\frac{2 g+1}{\mu} \mathrm{H}_{\mathrm{C} I}(0)}{2}\right), Q=\left(-1, \frac{\mu \mathrm{H}_{I}(-1)-\frac{2 g+1}{\mu} \mathrm{H}_{\mathrm{C}_{I}}(-1)}{2}\right) . \tag{14}
\end{equation*}
$$

(iv) Let I be a g-element subset of $M(2 g+1)$ and $\mu \in K^{*}$ such that $f_{I, \mu}(x)$ has no multiple roots. Then $\mathcal{C}_{f_{I, \mu}}: y^{2}=f_{I, \mu}(x)$ is an odd degree genus g hyperelliptic curve over K, and (14) defines torsion points $P, Q \in \mathcal{C}_{f_{I, \mu}}(K)$ of order $2 g+1$. In other words, $\left(\mathcal{C}_{f_{I, \mu}}, \infty, P, Q\right)$ is a normalized enhanced genus g hyperelliptic curve.

Proof. (i) Since char (K) does not divide $2 g+1$, the polynomial

$$
(x+1)^{2 g+1}-x^{2 g+1}
$$

has no multiple roots, its degree is $2 g$, and the leading coefficient is $2 g+1$. It follows that each factor of $(x+1)^{2 g+1}-x^{2 g+1}$ is of the form $\mu \mathrm{H}_{I}(x)$, where I is a subset of $M(2 g+1)$ and $\mu \in K^{*}$. This implies that for every factorization of $(x+1)^{2 g+1}-x^{2 g+1}$ into a product of two polynomials $u_{1}(x)$ and $u_{2}(x)$ we have

$$
\begin{equation*}
u_{1}(x)=\mu \mathrm{H}_{I}(x), u_{2}(x)=\frac{2 g+1}{\mu} \mathrm{H}_{C I}(x), \tag{15}
\end{equation*}
$$

where I is a subset of $M(2 g+1)$ and μ is an element of K^{*}. Nice pairs $\left(u_{1}(x), u_{2}(x)\right)$ must satisfy $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{2}\right)=g$. In light of (15) and Remark [15, this condition is satisfied if and only if $\#(I)=g$.

Conversely, if I is a g-element subset of $M(2 g+1)$ and μ is an element of K^{*}, then

$$
\begin{gathered}
\left(\mu \mathrm{H}_{I}(x)\right)\left(\frac{2 g+1}{\mu} \mathrm{H}_{C I}(x)\right)=(x+1)^{2 g+1}-x^{2 g+1}, \\
\operatorname{deg}\left(\mu \mathrm{H}_{I}\right)=g=\operatorname{deg}\left(\frac{2 g+1}{\mu} \mathrm{H}_{C I}\right)
\end{gathered}
$$

i.e., $\left(\mu \mathrm{H}_{I}(x), \frac{2 g+1}{\mu} \mathrm{H}_{C I}(x)\right)$ is a nice pair. This proves (i).
(ii) follows from Remark 11(iii).
(iii) follows from (i) combined with Theorem 17 ,
(iv) follows from (i) combined with Theorem 17 ,

Example 6. Let $g=2$. Then there are exactly 3 families of genus 2 hyperelliptic curves with two pairs of torsion points of order 5. (See [3, Sect. 3].)
6.2. The case when $\operatorname{char}(K)$ divides $2 g+1$. We write \mathbb{Z}_{+}for the set of nonnegative integers. Let us assume that $\operatorname{char}(K)=p>0$ and $2 g+1=p^{k}(2 l+1)$, where k and l are positive integers and $p \nmid(2 l+1)$. We put

$$
M(2 l+1):=\left\{\varepsilon \in K, \varepsilon^{2 l+1}=1, \varepsilon \neq 1\right\}, \eta(\varepsilon)=\frac{1}{\varepsilon-1} \forall \varepsilon \in M(2 l+1)
$$

If $v: M(2 l+1) \rightarrow \mathbb{Z}_{+}$is a function on $M(2 l+1)$ with values in Z_{+}, then we define its degree

$$
\operatorname{deg}(v)=\sum_{\varepsilon \in M(2 l+1)} v(\varepsilon) \in Z_{+}
$$

and the monic polynomial

$$
\begin{equation*}
\Upsilon_{v}(x)=\prod_{\varepsilon \in M(2 l+1)}(x-\eta(\varepsilon))^{v(\varepsilon)} \in K[x] ; \operatorname{deg}\left(\Upsilon_{v}\right)=\operatorname{deg}(v) \tag{16}
\end{equation*}
$$

The polynomial

$$
\begin{align*}
\left((x+1)^{2 l+1}\right. & \left.-x^{2 l+1}\right)^{p^{k}}=(x+1)^{2 g+1}-x^{2 g+1}=\left(x^{p^{k}}+1\right)^{2 l+1}-\left(x^{p^{k}}\right)^{2 l+1} \tag{17}\\
& =(2 l+1) x^{2 l p^{k}}+\binom{2 l+1}{2} x^{(2 l-1) p^{k}}+\cdots+\binom{2 l+1}{1} x^{p^{k}}+1
\end{align*}
$$

has degree $2 l p^{k}$ and leading coefficient $2 l+1$. Its roots have multiplicity p^{k} and coincide with the roots of the polynomial $(x+1)^{2 l+1}-x^{2 l+1}$. Hence the set of roots coincides with

$$
\{\eta(\varepsilon) \mid \varepsilon \in M(2 l+1)\}
$$

We will need the following elementary statement.
Lemma 3. Let $v: M(2 l+1) \rightarrow \mathbb{Z}_{+}$be a function and $\mu \in K^{*}$.
(i) The derivative $\left(\mu \Upsilon_{v}(x)\right)^{\prime} \neq 0$ if and only if there is $\varepsilon \in M(2 l+1)$ such that p does not divide $v(\varepsilon)$.
(ii) The polynomial $\mu \Upsilon_{v}(x)$ divides $(x+1)^{2 g+1}-x^{2 g+1}$ if and only if

$$
\begin{equation*}
v(\varepsilon) \leq p^{k} \forall \varepsilon \in M(2 l+1) \tag{18}
\end{equation*}
$$

(iii) If inequalities (18) hold, then

$$
\begin{equation*}
(x+1)^{2 g+1}-x^{2 g+1}=\left(\mu \Upsilon_{v}(x)\right) \cdot \frac{2 l+1}{2} \Upsilon_{\bar{v}}(x) \tag{19}
\end{equation*}
$$

where the function $\bar{v}: M(2 l+1) \rightarrow \mathbb{Z}_{+}$is defined by

$$
\begin{equation*}
\bar{v}(\varepsilon)=p^{k}-v(\varepsilon) \forall \varepsilon \in M(2 l+1) \tag{20}
\end{equation*}
$$

In addition, $\left(\mu \Upsilon_{v}(x)\right)^{\prime} \neq 0$ if and only if $\left(\frac{2 l+1}{2} \Upsilon_{\bar{v}}(x)\right)^{\prime} \neq 0$. If a polynomial $u(x) \in K[x]$ divides $(x+1)^{2 g+1}-x^{2 g+1}$, then there exist precisely one $v: M(2 l+1) \rightarrow \mathbb{Z}_{+}$and one $\mu \in K^{*}$ such that $u(x)=\mu \Upsilon_{v}(x)$. In addition, v satisfies (18).

Proof. (i) The derivative of a nonzero polynomial $u(x) \in K[x]$ is not 0 if and only if this polynomial is not a p th power in $K[x]$ of a polynomial, i.e., if it has a root whose multiplicity is not divisible by p. Since the set of roots of $\mu \Upsilon_{v}(x)$ coincides with $\{\eta(\varepsilon) \mid \varepsilon \in M(2 l+1), v(\varepsilon) \neq 0\}$ and the multiplicity of $\eta(\varepsilon)$ equals $v(\varepsilon)$, we obtain that there is $\varepsilon \in M(2 l+1)$ such that $v(\varepsilon) \neq 0$ and p does not divide $v(\varepsilon)$. This ends the proof of (i).
(ii) Recall that each $\eta(\varepsilon)$ is a root of $(x+1)^{2 g+1}-x^{2 g+1}$ with multiplicity p^{k}. This implies that $\mu \Upsilon_{v}(x)$ divides $(x+1)^{2 g+1}-x^{2 g+1}$ if and only if $\eta(\varepsilon)$, viewed as a root of $\mu \Upsilon_{v}(x)$, has multiplicity $\leq p^{k}$, i.e., $v(\varepsilon) \leq p^{k}$. This ends the proof of (ii).

Assume now that $\left(\mu \Upsilon_{v}(x)\right)^{\prime} \neq 0$. By (i), there is $\varepsilon \in M(2 l+1)$ such that $v(\varepsilon) \neq 0$ and p does not divide $v(\varepsilon)$. Then $\bar{v}(\varepsilon)=p^{k}-v(\varepsilon)$ is also not divisible by p. Assertions (iii) and (iv) are obvious.

Definition 21. We call a function $v: M(2 l+1) \rightarrow \mathbb{Z}$ admissible if it enjoys the following properties.

$$
\begin{equation*}
0 \leq v(\varepsilon) \leq p^{k} \forall \varepsilon \in M(2 l+1) \tag{i}
\end{equation*}
$$

(ii) There exists $\varepsilon \in M(2 l+1)$ such that $v(\varepsilon) \not \equiv 0(\bmod p)$.
(iii)

$$
\sum_{\varepsilon \in M(2 l+1)} v(\varepsilon) \leq g, \quad \sum_{\varepsilon \in M(2 l+1)}\left(p^{k}-v(\varepsilon)\right) \leq g .
$$

Remark 16. If $v: M(2 l+1) \rightarrow \mathbb{Z}$ is an admissible function, then

$$
\bar{v}: M(2 l+1) \rightarrow \mathbb{Z}, \varepsilon \mapsto p^{k}-v(\varepsilon)
$$

is also an admissible function.
Example 7. Let us partition the $2 l$-element set $M(2 l+1)$ into a disjoint union of two l-element sets I and J and define a function

$$
\begin{gathered}
v_{I, J}: M(2 l+1) \rightarrow \mathbb{Z}_{+} \\
v_{I, J}(\varepsilon)=\frac{p^{k}+1}{2}<p^{k} \forall \varepsilon \in I, v_{I, J}(\varepsilon)=\frac{p^{k}-1}{2}<p^{k} \forall \varepsilon \in J .
\end{gathered}
$$

None of $v_{I, J}(\varepsilon)$ is divisible by p and

$$
v_{J, I}(\varepsilon)=p^{k}-v_{I, J}(\varepsilon) \forall \varepsilon \in M(2 l+1) .
$$

The function $v_{I, J}$ is admissible, because

$$
\sum_{\varepsilon \in I} \frac{p^{k}+1}{2}+\sum_{\varepsilon \in J} \frac{p^{k}-1}{2}=l p^{k}<\frac{(2 l+1) p^{k}-1}{2}=g .
$$

Theorem 22. (i) Nice pairs $\left(u_{1}(x), u_{2}(x)\right)$ of degree g over K are exactly the pairs $\left(\mu \Upsilon_{v}(x), \frac{2 l+1}{\mu} \Upsilon_{\bar{v}}(x)\right)$, where v is an admissible function on $M(2 l+1)$ with

$$
\operatorname{deg}(v) \leq g, \operatorname{deg}(\bar{v}) \leq g
$$

and $\mu \in K^{*}$.
(ii) Let v be an admissible function on $M(2 l+1)$. If $\mu \in K^{*}$, then the corresponding polynomial

$$
\begin{aligned}
f_{v, \mu}(x) & :=f_{0,-1 ; \mu \Upsilon_{v}, \frac{2 l+1}{\mu} \Upsilon_{\bar{v}}}=x^{2 g+1}+\left(\frac{\mu \Upsilon_{v}(x)+\frac{2 l+1}{\mu} \Upsilon_{\bar{v}}(x)}{2}\right)^{2} \\
& =(x+1)^{2 g+1}+\left(\frac{\mu \Upsilon_{v}(x)-\frac{2 l+1}{\mu} \Upsilon_{\bar{v}}(x)}{2}\right)^{2}
\end{aligned}
$$

decorated by $\left(\mu \Upsilon_{v}(x), \frac{2 l+1}{\mu} \Upsilon_{\bar{v}}(x)\right)$ has no multiple roots for all but finitely many μ.
(iii) If $\left(\mathcal{C}_{f}, \infty, P, Q\right)$ is a normalized enhanced genus g hyperelliptic curve $y^{2}=f(x)$ over K, then there is precisely one pair (v, μ), where v is an admissible function on $M(2 l+1)$ and $\mu \in K^{*}$ such that $f(x)=f_{v, \mu}(x)$ and
$P=\left(0, \frac{\mu \Upsilon_{v}(0)+\frac{2 l+1}{\mu} \Upsilon_{\bar{v}}(0)}{2}\right), Q=\left(-1, \frac{\mu \Upsilon_{v}(-1)-\frac{2 l+1}{\mu} \Upsilon_{\bar{v}}(-1)}{2}\right)$.
(iv) Let v be an admissible function on $M(2 l+1)$ and $\mu \in K^{*}$ such that $f_{v, \mu}(x)$ has no multiple roots. Then $\mathcal{C}_{f_{v, \mu}}: y^{2}=f_{v, \mu}(x)$ is an odd degree genus g hyperelliptic curve over K, and (22) defines torsion points $P, Q \in \mathcal{C}_{f_{v, \mu}}(K)$ of order $2 g+1$.
Proof. (i) follows from Lemma 3 and (16).
(ii) follows from (i) combined with Remark 11(iii).
(iii) follows from (i) combined with Theorem 17 ,
(iv) follows from (i) combined with Theorem 17 ,

7. Computations of Weil pairings

We will use the notation of Subsection 6.1. In this section we assume that char (K) does not divide $2 g+1$; our goal is to compute the value of the Weil pairing between torsion points P and Q in $\mathcal{C}(K)$ of order $2 g+1$, where $\operatorname{alb}(P) \neq \pm \operatorname{alb}(Q)$. We may assume that the curve is defined by the equation $y^{2}=x^{2 g+1}+v_{1}(x)^{2}$, where

$$
v_{1}(x)=\frac{\mu}{2} \mathrm{H}_{I}(x)+\frac{2 g+1}{2 \mu} \mathrm{H}_{\mathrm{CI}}(x),
$$

while

$$
x^{2 g+1}+v_{1}^{2}=(x+1)^{2 g+1}+v_{2}(x)^{2},
$$

where

$$
v_{2}(x)=\frac{\mu}{2} \mathrm{H}_{I}(x)-\frac{2 g+1}{2 \mu} \mathrm{H}_{\mathrm{CI}}(x) .
$$

In this case we may assume that $P=\left(0, v_{1}(0)\right)$ and $Q=\left(-1, v_{2}(-1)\right)$.
Let us consider the degree zero divisors $D_{P}=(P)-(\infty)$ and $D_{Q}=$ $(Q)-(\infty)$ on \mathcal{C}. We know that their linear equivalence classes have order $2 g+1$. Let us consider a Weierstrass point $\mathfrak{W}=(w, 0)$ on our curve, where α is a root of $x^{2 g+1}+v_{1}(x)^{2}$. The linear equivalence class of the divisor $D_{\mathfrak{W}}:=(\mathfrak{W})-(\infty)$ has order 2 . Therefore, the linear equivalence class of the divisor

$$
D=D_{P}-D_{\mathfrak{W J}}=(P)-(\mathfrak{W})
$$

has order $2(2 g+1)$. Since $\operatorname{div}(x-w)=2(\mathfrak{W})-(\infty))$, the divisor $2 D$ is linearly equivalent to $2 D_{P}$.

We have

$$
\begin{array}{r}
e_{2(2 g+1)}(P, Q)=e_{2(2 g+1)}\left(D, D_{Q}\right)=e_{2 g+1}\left(2 D, D_{Q}\right) \\
=e_{2 g+1}\left(2 D_{P}, D_{Q}\right)=\left(e_{2 g+1}\left(D_{P}, D_{Q}\right)\right)^{2}
\end{array}
$$

Let us put

$$
g_{Q}=\left(y-v_{2}(x)\right)^{2}
$$

Then

$$
\operatorname{div}\left(g_{Q}\right)=2 \operatorname{div}\left(y-v_{2}(x)\right)=2(2 g+1)(Q)-2(2 g+1)(\infty)
$$

Let us put

$$
g_{P}=\frac{\left(y-v_{1}(x)\right)^{2}}{(x-w)^{2 g+1}}
$$

Since

$$
\operatorname{div}\left(y-v_{1}(x)\right)=(2 g+1)(P)-(2 g+1)(\infty)
$$

and

$$
\operatorname{div}(x-w)=2(\mathfrak{W})-2(\infty)
$$

we have

$$
\operatorname{div}\left(g_{P}\right)=2(2 g+1)(P)-2(2 g+1)(\mathfrak{W})
$$

Evaluating $g_{P}\left(D_{Q}\right)$, we get

$$
\begin{array}{r}
g_{P}\left(D_{Q}\right)=\frac{g_{P}(Q)}{g_{P}(\infty)}=-\frac{\left(v_{2}(-1)-v_{1}(-1)\right)^{2}}{(1+w)^{2 g+1}} \\
=-\left(\frac{2 g+1}{\mu}\right)^{2} \frac{\mathrm{H}_{\complement_{I}}^{2}(-1)}{(1+w)^{2 g+1}},
\end{array}
$$

since $g_{P}(\infty)=1$. Now let us evaluate $g_{Q}(D)$. We have

$$
g_{Q}(D)=\frac{g_{Q}(P)}{g_{Q}(W)}=\frac{\left(\left(v_{1}(0)-v_{2}(0)\right)^{2}\right.}{v_{2}(w)^{2}}=\left(\frac{2 g+1}{\mu}\right)^{2} \frac{\mathrm{H}_{\complement I}^{2}(0)}{v_{2}(w)^{2}}
$$

Notice that since w is a root of $(x+1)^{2 g+1}+v_{2}^{2}(x)$, then

$$
v_{2}(w)^{2}=-(1+w)^{2 g+1}
$$

which gives us

$$
g_{Q}(D)=-\left(\frac{2 g+1}{\mu}\right)^{2} \frac{\mathrm{H}_{\mathrm{CI}}^{2}(0)}{(1+w)^{2 g+1}}
$$

Therefore,

$$
e_{2(2 g+1)}(P, Q)=\frac{g_{P}\left(D_{Q}\right)}{g_{Q}(D)}=\frac{\mathrm{H}_{\complement I}^{2}(-1)}{\mathrm{H}_{\mathrm{C} I}^{2}(0)}=\frac{\prod_{i \in \mathrm{CI}}(1+\eta(\varepsilon))^{2}}{\prod_{i \in \complement I} \eta(\varepsilon)^{2}}=\left(\prod_{\varepsilon \in С I} \varepsilon\right)^{2}
$$

since $(1+\eta(\varepsilon)) / \eta(\varepsilon)=\varepsilon$. This implies that

$$
e_{2 g+1}(P, Q)= \pm \prod_{\varepsilon \in \complement_{I}} \varepsilon .
$$

Since $e_{2 g+1}(P, Q)$ and all ε are $(2 g+1)$ th roots of unity, and $2 g+1$ is odd, we get at last

$$
e_{2 g+1}(P, Q)=\prod_{\varepsilon \in \mathrm{C} I} \varepsilon .
$$

References

[1] B.M. Bekker, Yu.G. Zarhin, The divisibility by 2 of rational points on elliptic curves. Algebra i Analiz 29:4 (2017), 196-239; St. Petersburg Math. J. 29 (2018), 683-713.
[2] J. Boxall and D. Grant, Examples of torsion points on genus two curves. Trans. Amer. Math. Soc. 352 (2000), no. 10, 4533-4555.
[3] J. Boxall, D. Grant and F. Leprévost, 5-torsion points on curves of genus 2. J. Lond. Math. Soc. (2) 64 (2001), 29-43.
[4] P. Lockhart, On the discriminant of a hyperelliptic curve. Trans. Amer. Math. Soc. 342 (1994), 729-752.
[5] V. Matei, Infinitely many hyperelliptic numbers. Preprint, UC Irvine, May 2019.
[6] M. Raynaud, Courbes sur une variét'e abeliennes et points de torsion. Invent. Math. 71:1 (1983), 207-233.
[7] K. Ribet and M. Kim, Torsion points on modular curves and Galois Theory. arXiv:math/0305281 [math.NT].
[8] P. Tsermias, The Manin-Mumford Conjecture: A Brief Survey. Bull. Lond. Math. Soc., Vol. 32, Issue 6, (2000), 641-652.
[9] Yu. G. Zarhin, Division by 2 on odd-degree hyperelliptic curves and their jacobians. Izvestiya RAN Ser. Mat. 83:3 (2019), 83-102; Izvestiya Mathematics 83:3(2019), 501-520.

St. Petersburg State University, Department of Mathematics and Mechanics, Universitates prospect, 28, Peterhof, St. Petersburg, 198504, RUSSIA

E-mail address: bekker.boris@gmail.com
Pennsylvania State University, Department of Mathematics, University Park, PA 16802, USA

E-mail address: zarhin@math.psu.edu

[^0]: 2010 Mathematics Subject Classification. 14H40, 14G27, 11G10, 11G30.
 Key words and phrases. Hyperelliptic curves, Jacobians, torsion points.
 The second named author (Y.Z.) was partially supported by Simons Foundation Collaboration grant \# 585711. This project was started in May-July 2018 when Y.Z. visited the Max Planck Institut für Mathematik (Bonn, Germany), whose hospitality and support are gratefully acknowledged. Both authors are grateful to the organizers of the workshop "Arithmetic of curves" (August 2018) at Baskerville Hall (Wales) for excellent working conditions that enabled them to complete the project.

