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In Europe, three widespread extreme summer drought and heat (DH) events
have occurred in 2003, 2010 and 2018. These events were comparable in
magnitude but varied in their geographical distribution and biomes affected.
In this study, we perform a comparative analysis of the impact of the DH
events on ecosystem CO2 fluxes over Europe based on an ensemble of
11 dynamic global vegetation models (DGVMs), and the observation-
based FLUXCOM product. We find that all DH events were associated
with decreases in net ecosystem productivity (NEP), but the gross summer
flux anomalies differ between DGVMs and FLUXCOM. At the annual
scale, FLUXCOM and DGVMs indicate close to neutral or above-average
land CO2 uptake in DH2003 and DH2018, due to increased productivity
in spring and reduced respiration in autumn and winter compensating for
less photosynthetic uptake in summer. Most DGVMs estimate lower gross
primary production (GPP) sensitivity to soil moisture during extreme sum-
mers than FLUXCOM. Finally, we show that the different impacts of the DH
events at continental-scale GPP are in part related to differences in veg-
etation composition of the regions affected and to regional compensating
or offsetting effects from climate anomalies beyond the DH centres.

This article is part of the theme issue ‘Impacts of the 2018 severe drought
and heatwave in Europe: from site to continental scale’.
1. Introduction
In the last two decades, Europe has been affected by extreme summer drought
and heat (DH) events, each characterized by record-breaking climate anomalies
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and large associated economic, social and environmental costs
[1–3]. Both the 2003 and 2010 extreme summers in western
Europe and western Russia, respectively, were caused by a
combination of atmospheric circulation anomalies and land-
atmosphere feedbacks [4–6], on top of anthropogenic climate
change [7]. The summer in 2018 was exceptionally warm and
dry in central and northern Europe, resulting in major losses
in crop productivity [8] and in increased fire occurrence in
high-latitude ecosystems [9].

The DH events in 2003, 2010 and 2018 (DH2003, DH2010
and DH2018, respectively) were similar in that all were charac-
terized by preceding rainfall deficits and strong feedbacks
between air temperature and soil-water anomalies [5,6]. Still,
each event differed in: (i) their geographical distribution and
biomes affected; (ii) the preceding climate conditions; and
(iii) the resulting impacts on ecosystems. DH2018 affected
higher latitude and less drought-prone regions compared to
DH2003, which was centred in western Europe, including
Mediterranean ecosystems [1]. DH2010 affected a very large
area inwestern Russia including high-latitude forests and crop-
lands and grasslands in temperate regions [3,10]. In DH2003
and DH2010, severe preceding rainfall deficits in late winter
and spring contributed to soil desiccation and amplified the
summer DH [3,6]. In 2003, increased evapotranspiration in
spring also contributed to amplify drought conditions [11]. In
2018, the extreme warm and sunny conditions in spring and
concurrent increase in evapotranspiration have contributed
significantly to amplify the summer drought.

While warm and bright conditions are expected to stimu-
late photosynthesis in many temperate regions, especially
when ecosystems are not water-limited [12], the associated
increases in vapour-pressure deficit (VPD) and evapotran-
spiration rates impose progressively increased water-stress
and lead to stomatal closure. Eventually plant productivity
may collapse when DH are too intense and prolonged, or if
high temperatures lead to leaf damage. Tree ring records docu-
ment that warm summers (even extremely warm ones) in
northern boreal Europe are associated with higher growth
whereas in temperate and southern forests, the opposite is
true [13].

For DH2003, observation-based and modelling studies
agree on severe negative impacts on ecosystem productivity
and net CO2 uptake [1,14,15]. Schewe et al. [16] though have
reported systematic underestimation of the negative impacts
of DH2003 on ecosystem compared to satellite-based data.
Both DH2010 and DH2018 were characterized by sharp
north/south differences in ecosystem response to extreme
summer heat and drying. In the case of DH2010, a strong
decrease in productivity was found in observation-based data,
with only a small northern area having enhanced summer
productivity [10]. Flach et al. [10] prosed that differences in the
observed impact of DH2010 on ecosystem productivity was
related to differences in land cover and water-use efficiency
over the growing season. Forests, predominant in the northern
regions, use water more conservatively during drought [17]
and have deeper roots, thereby being able to sustain increased
photosynthesis for longer compared to crops and grasses,
which predominate in the southern part of DH2010.

Given their similarity in extent and magnitude, but their
differences in geography, biomes affected and preceding cli-
mate conditions, these three events constitute case studies
that can improve our understanding of large-scale impacts of
DH in the carbon cycle. In this study, we compare large-scale
observations of ecosystem productivity over Europe from
an eddy covariance (EC) measurement and remote-sensing
observation-driven dataset and 11 Dynamic Global Vegetation
Models (DGVMs), in order to address the following questions:

(a) Considering their different characteristics including
different spatial patterns/extents, how did DH2003,
DH2010 and DH2018 comparatively affect ecosystems’
productivity at the European scale?

(b) How well do DGVMs simulate the carbon flux anomalies
during DH2003, DH2010 and DH2018, compared to
observation-based datasets?

(c) Can asymmetries in the observed responses to DH events
be explained by different sensitivities to similar climate
anomalies between different ecosystems?

2. Data
(a) Climate fields
In this study, climate fields are obtained from the ERA5
Reanalysis from the European Center for Medium-range
Weather Forecast (ECMWF). We used 2 m surface temperature
(T ), total precipitation (P) and its partitioning into rain and
snow fall (Rf, Sf, respectively), surface downward short-wave
radiation (SWR), long-wave radiation (LWR) and sea-level
pressure fields (SLP) at 0.25° spatial and hourly temporal resol-
ution from January 1979 until December 2018. These variables
were used as forcing for DGVM simulations and FLUXCOM
runs. Additionally, volumetric soil-water content from levels
1–4 (0–289 cm) fields (referred to as soil moisture, SM) were
used for drought assessment and DGVM evaluation. ERA5
has been shown to have improved performance over Europe
relative to other datasets in precipitation [18], irradiance [19]
and SM [20]. There is good agreement of the anomalies in
SM over Europe reported by ERA5 and microwave satellite-
based measurements from the SMOS sensor (shown in
Bastos et al. [21]).

(b) FLUXCOM
FLUXCOM combines carbon and energy fluxes and meteoro-
logical measurements at site level from EC measurement sites
with gridded spatial–temporal information from remote-
sensing and meteorological datasets, using machine learning
techniques (ML) to scale up these fluxes to global extents
[22]. These estimates are purely data-driven and therefore
independent to DGVM model output. In this study, we use
the RS+METEO data based on the daily ERA5 meteorological
fields for the period 1979–2018 described in Jung et al. [23]:
a 6-member ensemble of gross primary production (GPP)
and total ecosystem respiration (TER) from three ML methods
(ANN, MARS, RF) together with two flux partitioning
methods [24,25]. Net ecosystem production (NEP) is calculated
for the three ML methods. The data are provided on a 0.5°
regular latitude/longitude grid and daily time-steps. The
FLUXCOM relies on a Water-Availability Index (WAI), which
was calculated from the ERA5 fields at 0.25° latitude/
longitude spatial resolution at daily time-steps.

The FLUXCOM dataset has been evaluated against site-
level data [22] and independent estimates of global carbon
fluxes [23]. FLUXCOM is known to show weak performance
in estimating inter-annual variability in in situ carbon fluxes
[22], and to systematically underestimate the magnitude of
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variability [23]. However, Jung et al. [23] have shown a high
correlation of NEP with observation-based estimates at a
global scale. Moreover, Tramontana et al. [22] have shown
that fluxes in boreal and temperate regions showed better
agreement with observations. Given that this study focuses
on large-scale anomaly patterns over continental Europe, we
use FLUXCOM as an additional data-driven estimate of
carbon fluxes. However, because of the known underestima-
tion of the variability magnitude, we divide the NEP, GPP
and TER fluxes by their respective variance.

(c) Dynamic global vegetation models
In addition to FLUXCOM,weused an ensemble of 11DGVMs to
assess carbon and water exchanges in response to drought:
CABLE-POP [26], ISBA-CTRIP integrating ISBA-CTRIP [27],
DLEM [28], ISAM [29], JSBACH [30], LPJ-GUESS [31], LPX-
Bern [32], OCN [33], ORCHIDEE [34], ORCHIDEE-MICT [35]
and SDGVM [36]. The models were forced with observed CO2

concentration from Dlugokenky & Tans [37] and changing cli-
mate between 1979 and 2018 from ERA5 (see ‘climate fields’
section). A fixed land-cover map from 2010 was used as land-
cover forcing, since we are interested in non-anthropogenic
disturbances, and was obtained from the LUH2v2 h dataset
[38]. For those models including nitrogen cycling (CABLE-POP,
DLEM, JSBACH, LPJ-GUESS, LPX-Bern, OCN), nitrogen forcing
from the NMIP project was used [28]. The model simulations
were run for most models at 0.25° spatial and hourly temporal
resolution for the European domain between 32–75oN and
−11o–65oE, following a spin-up to equilibrate carbon pools.

In this study, we analyse GPP, TER, the net land-atmosphere
carbon fluxes and SM from individual DGVMs. Since most
models do not simulate fire emissions at a monthly time scale
(except ISBA-CTRIP, JSBACH, ORCHIDEE-MICT), and the
land-cover map is fixed, the net land-atmosphere carbon
fluxes correspond to net ecosystem productivity (NEP) and are
comparable to FLUXCOM. For DGVMs that ran at coarser
spatial resolutions (ISBA-CTRIP, LPJ-GUESS, JSBACH, OCN),
the simulated fields were resampled to the common 0.25° grid
using an area conservative interpolation method. For each
DGVM, daily and monthly GPP and SM were then extracted
for EC site locations, in order to compare simulated values
and their sensitivity to SM with site-level data (see below).
3. Methods
All datasets were first deseasonalized and detrended on a pixel
basis by subtracting the mean seasonal cycle for the period 1979–
2018 from daily/monthly fields and a long-term linear trend.
Since DGVMs simulate soil layers of variable depths, the variance
in simulated SM should differ between DGVMs, impacting the
magnitude of SManom. Therefore, to reduce the influence of differ-
ent soil schemes in SManom, standardized anomalies in SM from
ERA5 and from DGVMs were used. The FLUXCOM dataset
produced for this study shows too weak variance of anomalies
in gross and net carbon fluxes, which is a known issue with this
product [23]. The DGVMs also show considerable differences in
the inter-annual variability amplitudes. Therefore, we analysed
standardized anomalies in GPP, TER and NEP as in other studies
based on this dataset [23]. As different datasets from FLUXCOM
are available, they can provide a data-driven estimate of anomalies
in carbon fluxes and their spread to compare with those simulated
by DGVMs. Because of the standardization, the anomalies in GPP
and TER do not necessarily add up to those in NEP.
We analyse for each individual model (i) the continental-scale
spatial relationship between summer GPP and (SM,T ) anomaly
pairs individually for each DH event and for other years in the
2000s and (ii) the temporal sensitivity of daily fluxes to water-
stress during extreme summers and for the remaining years in
the 2000s. The spatial sensitivities to T and SM were estimated
by an Ordinary Least-Squares fit of a multiple linear regression
on each individual dataset for all the pixels in the continental
domain, i.e. GPP = f(T,SM), where GPP, T and SM are arrays of
size 1 × n, and n is the number of pixels in the European
domain. Even though the multiple linear regression controls
for correlation between variables, the strong correlation between
T and SM adds uncertainty to the sensitivity estimates. The SM
data used to estimate DGVM sensitivities were the simulated
SM fields, while for FLUXCOM, the WAI [23] was used. We
use the six runs from FLUXCOM as observation-based reference.

We then analysed GPPanom in each DH event for pixels
within different drought and land-cover classes, corresponding
to SManom ranging between −3σ and 3σ, grouped into 0.5σ
bins, and of forest or crop cover ranging from 0 to 100%, grouped
into 10% bins The number of pixels within each group was also
calculated to evaluate the incidence of each DH event in distinct
land-cover types. Because FLUXCOM does not report GPP
separately for different land-cover types, and since DGVMs
also differ in the number of plant functional types represented,
we assigned forest and crop cover classes to pixels using as refer-
ence the land-cover map used as DGVM forcing, i.e. LUH2v2 h
map for the year 2010, which has been calibrated using the
European Space Agency’s CCI Land Cover product [39].
4. Results
(a) Impacts of the drought and heat events at

continental scale
Anomalies in climate fields from ERA5 indicate strong warm
and dry conditions along with increased solar radiation in
western Europe in 2003 and in western Russia in 2010 (elec-
tronic supplementary material, figures S1 and S2). In 2018,
the DH anomaly affected mainly central Europe and Scandi-
navia. While in 2003 and 2010, large sub-regions outside the
centre of DH registered wetter and cooler summer conditions,
in 2018 drought was more widespread, except for the Medi-
terranean region, and warmer than average conditions were
registered in the whole continent.

We compare the summer and annual standardized
NEPanom (figure 1, top and bottom panels, respectively) from
DGVMs with observation-based estimates from an ensemble
of runs of the FLUXCOM data-driven product (filled box-
plots). The corresponding absolute anomalies are shown in
electronic supplementary material, figure S3. In summer,
FLUXCOM and DGVMs estimate weakly negative NEPanom
in DH2003 and strongly negative NEPanom in DH2010, both
DH events associated with positive TERanom, but differing on
the sign of GPPanom. In DH2018, FLUXCOM indicates negative
NEPanom linked with negative summer GPPanom and neutral
TERanom, while DGVMs tend to estimate positive NEPanom,
mainly due to positive GPPanom.

At the annual scale, DGVMs and FLUXCOM estimate
negative NEPanom in DH2010, mainly attributed to negative
GPPanom, and close to neutral anomalies in DH2003 and
DH2018. DGVMs and FLUXCOM show, however, disagree-
ments in the sign of gross and net fluxes in DH2003 and
DH2018. The interquartile range of DGVM estimates is,
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though, often much higher than the estimated anomalies
both in summer and annually, especially in 2003 and
2018. Therefore, the sign of anomalies cannot be robustly
constrained by DGVMs.

(b) Spatial distribution of summer water and carbon
anomalies

The multi-model ensemble mean (MMEM) simulates well
the large-scale patterns and intensity of standardized summer
SManom for all events, with high spatial correlation with ERA5
anomaliesR = [0.88, 0.90] for the three summers (electronic sup-
plementarymaterial, figure S2). The individual DGVMs tend to
agree on the signs of anomalies, but those models simulating
shallower soil layers have smaller absolute and standardized
anomalies (maximum depth of soil-water balance of DGVMs
from 0.5 m to greater than 6 m). The spread inDGVMestimates
is mostly smaller than ±1σ, compared to SManom in the centres
of the DH events below −1.5σ. As DGVMs, FLUXCOM was
forced by ERA5, but a WAI was estimated independently as a
predictor used to upscale flux tower data to the continent,
WAI being calculated with a two-layer bucket model assuming
a water holding capacity of 15 and 100 mm in upper and lower
layer, respectively [22]. The spatial patterns of WAI also show
good, but slightly lower, agreement with ERA5 (R = [0.82,
0.88], electronic supplementary material, figure S2).

We compare the spatial patterns of summerGPP (electronic
supplementary material, figure S4) and NEP (electronic
supplementary material, figure S5) from FLUXCOM and
DGVMs. The MMEM and the mean of the six FLUXCOM
datasets indicate negative GPPanom in the central regions of
DH events with the exception of some regions in Scandinavia
during DH2018, which show above-average GPP. Despite
the good spatial match of GPPanom between the MMEM
and FLUXCOM (spatial correlation R = [0.71,0.83]), several
DGVMs estimate opposite sign to FLUXCOM, especially in
the transitional areas between DH centres and the surround-
ings in 2010 and 2018 (electronic supplementary material,
figure S4, bottom panel). The spatial patterns of summer
NEPanom from theMMEM (electronic supplementary material,
figure S5) show good agreement with FLUXCOM for DH2003
and DH2010 (R = 0.81 and 0.82, respectively), but poor agree-
ment in DH2018 (R = 0.51), especially in Scandinavia. More
models agree on the sign of the NEPanom with FLUXCOM
than of GPPanom (more regions with greater than five models
agreeing on the sign of anomalies), except in DH2018. In Scan-
dinavia inDH2018, amajority ofmodels estimate opposite sign
of NEPanom (positive) than that of FLUXCOM (negative).
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(c) Sensitivity of gross primary productivity to drought
and heat

The spatial sensitivity of summer GPP to SM and tempera-
ture (T ) at continental scale was calculated using a multiple
linear regression model fit on individual FLUXCOM runs
and DGVM estimates and is shown in figure 2 (xx-axes) for
the three DH events (see Methods), and compared to non-
extreme summers in the 2000s (electronic supplementary
material, figure S6). Simulated SM was used for DGVMs,
while the analysis of FLUXCOM was based on the respective
WAI. Sensitivities were calculated by performing a multiple
linear regression using SM and T as predictors. A positive
sensitivity (δGPP/δSM, δGPP/δT) means that GPP decreases
when SM or temperature decrease.

All FLUXCOM runs estimate positive values of δGPP/
δSM, yet stronger during DH2003 and DH2018 than during
other summers since the year 2000 (compare slopes of
regression lines in electronic supplementary material, figure
S6). The DGVMs show weaker sensitivities of GPP to SM
than FLUXCOMduringnon-extreme summers and amoderate
increase during DH2003 and DH2010, with a decrease in
DH2018. Furthermore, individual DGVMs show very different
sensitivities to SM, with some models estimating negative
δGPP/δSM values (i.e. higher GPP during drought conditions)
even during DH events.

A positive sensitivity of GPP to T indicates a stimulation
of productivity in warmer conditions, which is the case for
non-extreme years in the 2000s. By contrast, both the MMEM
and FLUXCOM indicate a decrease (i.e. increasingly negative)
in the GPP sensitivity to T during the three DH events,
which switches from slightly positive in DH2003 (and normal
summers) to negative during DH2010 and DH2018. As in the
case of SM though, individual DGVMs show a very large
spread in the δGPP/δT values, especially during theDHevents.

At continental scale, individual model differences in simu-
lated GPPanom (figure 2) can be explained (R2 of linear fit
between DGVM estimates) by differences in the sensitivity of
GPP to either T or SM, depending on the DH event.
InDH2003, theGPPanom simulated byDGVMs showa stronger
relationship to δGPP/δSM (explaining 42% of the between-
model variability) compared to δGPP/δT (10% of the
between-model variability). In both DH2010 and DH2018,
differences in δGPP/δT are a better predictor of differences in
modelled GPP between DGVMs (61% and 70% of the
between-model variability, respectively) than δGPP/δSM
(22% and 9% in DH2010 and DH2018, respectively). The
slopes of the regression lines (figure 2) are also steeper in
DH2010 and DH2018, indicating a greater contribution of
δGPP/δT to differences in the simulated GPPanom (i.e. larger
under- or overestimation of the sensitivity is associated with
bigger differences in simulated GPPanom). The MMEM is
generally closer to FLUXCOM for the three events, while
individual DGVMs show variable results between events.
(d) Land-cover contribution to gross primary
productivity responses

The differences in continental-scale GPPanom and sensitivity
to drought might be related with the distinct geographical
distribution of each event, affecting regions with different
land-cover composition, and imposing distinct climate
anomalies in the surrounding regions. To isolate these effects,
we calculate GPPanom for different SM anomaly classes, forest
or crop cover fraction, and their corresponding extent for each
DH event for FLUXCOM and DGVM MMEM (figure 3).

Generally, for the same drought class (individual columns
with SM anomaly [−3, 0]), pixels with higher crop cover tend
to show stronger negative GPPanom. The inverse can be found
for forest cover, with pixels with more than 80% forest cover
showing less negative or even positive GPPanom for negative
SManom (DH2003 and DH2018). This is consistent with results
from Flach et al. [17] and Walther et al. [40]. In DH2010,
though, even regions with SManom between +1 and +1.5σ
(wet conditions) showed negative GPPanom, especially in
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forest-dominated regions, explaining the strong negative
GPPanom at continental scale in this event (figure 1). On the
contrary, in DH2018, some of the classes with 50% or more
forest cover registered positive GPPanom for negative SManom.
Only regions with SManom below −2σ showed strong negative
GPPanom in the higher forest cover classes. In DH2018, the
regions affected by strong drought conditions are mostly
associated with crop fractions below 50%. Comparing with
DH2018, drought conditions in DH2003 and DH2010 affected
more pixels dominated by croplands (size of the markers).
Wetter than average conditions affected less forest-dominated
pixels in DH2018 and especially in DH2003.
DGVMs show similar results as FLUXCOM but tend to
simulate weaker GPPanom than FLUXCOM in regions with
higher forest cover and the opposite response to drought in
pixels with 90–100% forest cover in DH2010 and DH2018.
5. Discussion
The three DH events in 2003, 2010 and 2018 imposed strong
drought and extreme heat anomalies over large areas in
Europe, all having a clear signal at the continental scale [3,21].
FLUXCOM and DGVMs estimate strong anomalies in carbon
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fluxes at the continental-scale summer carbon fluxes during
these events. However, DGVMs tend to show a large spread
for NEPanom and GPPanom and even disagreement on the sign
of anomalies (figure 1; electronic supplementary material,
figures S4 and S5). Generally, the DGVMs tend to simulate
higher summer GPPanom (more positive or less negative) than
FLUXCOM in all events (figure 1) and theMMEM showsmod-
erate agreement in the spatial distribution of flux anomalies
(electronic supplementary material, figures S4 and S5). More-
over, the differences between DGVMs and FLUXCOM in the
spatial patterns in GPP and NEPanom differ for the three DH
events. The flux anomalies in response to DH2003 and
DH2010 show better agreement between DGVMs and FLUX-
COM at both continental and pixel scale than for DH2018
(electronic supplementary material, figures S4 and S5). In par-
ticular, the disagreement in the magnitude and sign of
anomalies is particularly large in Scandinavia during
DH2018. This might be because DGVMs do not simulate well
drought-induced mortality, or because they underestimate soil
organic carbon and consequently TER in the high latitudes.
However, the disagreement might also be because FLUXCOM
lacks information about carry-over effects from the previous
spring warming, or because of its known limited performance
in simulating inter-annual variability [22,23].

To assess the skill of both DGVMs and FLUXCOM in esti-
mating the DH2018 anomalies in carbon fluxes, we compared
their estimates of NEP and GPP with those of a compilation of
52 eddy covariance (EC) sites [41]. FLUXCOM shows generally
better agreement with in situ NEP than GPP (electronic sup-
plementary material, figure S7), while the opposite is found
for DGVMs. For most sites, EC NEP or GPP anomalies are
within the range of FLUXCOM and DGVMs. The results
from the EC data seem to support positive GPP and anomalies
in higher latitude sites, consistent with DGVMs, but in fewer
high-latitude sites does this result in positive NEP anomalies,
more consistent with FLUXCOM. Part of the disagreements
can be explained by the coarse resolution of the datasets and
the fact that the fluxes from EC sites correspond to a single eco-
system type, while the pixels of both FLUXCOM and DGVMs
aremixed. FLUXNET sites are, therefore, not necessarily repre-
sentative of the climate and composition of the grid cell
modelled by DGVMs or FLUXCOM. For sites closely located
but with different ecosystem types, the DGVMs and FLUX-
COM estimates correspond roughly to the average anomaly
over all ecosystem types. For an accurate comparison,
DGVMswould need to be forced with the local environmental
conditions for the FLUXNET sites.

Using global runs from DGVMs, Schewe et al. [16] pro-
posed that all models underestimated the magnitude of
GPPanom in response to DH2003, compared to those from
the MODIS (moderate resolution imaging spectroradiometer)
product. However, the MODIS data are also partly modelled
and do not simulate well the sensitivity to SM [42]. Even
though we find a similar tendency for underestimation of
negative GPPanom (or overestimation of positive values in
2018) during DH events, the agreement between DGVMs
and FLUXCOM is event dependent. Moreover, some
DGVMs show values very close to those of the FLUXCOM
mean, and some even report stronger negative standardized
anomalies (figures 1 and 2). It is possible that part of the
better agreement of estimated anomalies between DGVMs
and FLUXCOM compared to the results of Schewe et al.
[16] is due to the use of the most recent ERA5 forcing and
of high spatial and temporal resolution runs, which should
better represent extremes in space and in time. Moreover,
by using different runs of the FLUXCOM model we can
report uncertainties in observation-based flux estimates,
which is not the case for most remote-sensing products.

Because of the good agreement of simulated SM and of
FLUXCOM WAI with ERA5 (electronic supplementary
material, figure S2), the differences between the DGVMs and
FLUXCOM are not likely to be due to poor simulation of the
hydrology by DGVMs, but might rather indicate that DGVMs
have too weak or too strong controls of water limitation on
photosynthesis, or by missing the variable sensitivity of photo-
synthesis to specific climate conditions during droughts. Such
differencesmay be due to differences across DGVMs and FLUX-
COM in the storage capacity of moisture within the soil. Fu et al.
[43] indicated that extreme drought affected the magnitude of
the sensitivity of GPP from EC measurements to climate con-
ditions, particularly SM, but the change in the sensitivity of
productivity to drought was partly dependent on ecosystem
type. Consistent with their results, FLUXCOM reports generally
higher sensitivity of GPP to SM andmore negative sensitivity to
Tat continental scale during theDHevents as compared to other
years (electronic supplementary material, figure S6). In FLUX-
COM, the increase in δGPP/δSM is particularly pronounced
for DH2003 and DH2018, while the decrease in δGPP/δT is
stronger for DH2010 and DH2018. These changes in sensitivity
to SM and T are consistent with a continental-scale transition
from a temperature-limited regime to a water-limited regime
during the extreme summers. Even though all data have been
detrended, it is possible that the increasingly negative sensitivity
of GPPanom to T during summer is linked to progressively
warmer background conditions imposing increasing water
stress. Moreover, it has been shown that increased vapour
pressure deficit in combination with reduced stomatal conduc-
tance under elevated CO2 concentration might increase heat
stress in plants, due to reduced evaporative cooling [44].

The relative strengths of δGPP/δSM and δGPP/δT indicate
that continental-scale GPP response to the three events
differs in the relative importance of T and SM: DH2003 was
mainly driven by SManom, DH2018 mainly by temperature,
and DH2010 by both. Consistently, the differences between
DGVMs in simulated continental-scale GPPanom for each event
can be mainly explained by the modelled GPP sensitivity to
SM in DH2003, and to T in DH2010 and DH2018. Because of
the distinct role of T versus SM in explaining the large-scale
anomalies in GPP, it is not possible to single out the best per-
forming DGVMs, since a given DGVM may perform better for
some DH events than others. However, the MMEM is generally
more stable and shows better performance than individual
models, which shows that using ensembles of DGVMs might
reduce the impact of model errors in carbon flux estimates.

We find that the difference between the continental-scale
impacts of the DH events on summer GPP and the changes in
the large-scale sensitivity of GPP to SM can be traced back to
the regional fingerprint of each event. DH2010 registered
the lowest GPP at continental scale since the negative impacts
of DH were combined with negative GPPanom in many forest-
dominated regions experiencing wet conditions (figure 3), for
example, Scandinavia and parts of central Europe (electronic
supplementary material, figures S2 and S4). In DH2018, the
opposite was found, with some of the forest-dominated
regions under moderate drought registering increased GPP
(figure 3), in parts of Scandinavia and north-western Russia
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(electronic supplementary material, figure S4). In most of
Scandinavia and western Russia, ecosystems are temperature
and light limited [12]. Therefore, wet conditions associated
with more cloudiness in DH2010 lead to a negative impact
on GPP rather than a positive one, and the drought con-
ditions in DH2018 promoted increased productivity due to
sunnier and warmer conditions.

Several studies have shown a relevant contribution of
atmospheric circulation anomalies (e.g. blocking conditions)
to the occurrence of temperature extremes in the northern
hemisphere [3,4,45]. These persistent atmospheric circulation
conditions affect not only the climate anomalies in the centres
of DH events, but might also impose opposite anomalies
in temperature or rainfall in the surrounding regions.
Depending on whether these conditions are favourable for
ecosystem productivity or not, they might lead to anomalies
of the same sign of the DH events or offset the productivity
losses in the DH regions. This is possibly the case for the
wet conditions in Scandinavia in DH2010 and southern
Europe in DH2018. Climate models suggest an eastward
shift in blocking conditions in Europe [46]. Whether this
could result in more frequent DH2010-like events in terms
of European carbon balance remains unclear.

Despite negative (or weakly positive in 2018) NEPanom in
summer months, these extreme events were associated with
increased CO2 uptake at annual scale in both DGVMs and
FLUXCOM. This can be explained by offsetting effects of
both the preceding spring and the subsequent autumn seasons.
On the one hand, all events were preceded by mild, although
drier than average, springs which resulted in increased GPP
and NEP, despite concurrent TER increase. Even if increased
spring GPP might have contributed to amplify summer
drought [11,21], it contributes to partly offset summer losses.
Such offsetting effect of spring to summer had also been pre-
viously reported by Flach et al. [10] for some regions affected
by DH2010, based on another set of FLUXCOM estimates.
On the other hand, DGVMs predict that NEP recovered
rather quickly following the extreme summers. The decrease
in GPP during the extreme summer implies less substrate for
decomposition during the months following the DH events,
reducing TER during the release period. However, tree ring
data indicate that unfavourable August–October climate con-
ditions led to growth impairment over subsequent years in
Europe [47]. The fast recovery in DGVMs may be an artefact
because most models do not represent drought-induced mor-
tality (included only in CABLE-POP and LPJ-GUESS) and
possibly miss other long-term effects on growth.

If warm springs would be a precursor of extreme summers
[5], then the positive effects of earlier growing-season start
could be expected to offset the consequent impacts of
summer DH. However, it is not clear if, with increasing temp-
eratures, the negative effects of warming might start
dominating the response of ecosystems [44]. Our sample of
extreme events is too small to conclude about large-scale
changes in the sensitivity of carbon fluxes to climate anomalies.
Nevertheless, the progressively decreasing sensitivity of GPP
to T found for the three DH events might support the hypoth-
esis of increasingly negative effects, for example, through
increase in VPD, superimposed on year-to-year variability, or
accumulated effect of more frequent disturbances.
6. Conclusion
In this study, we have compared the impacts of the three
extreme summers in the past two decades on European ecosys-
tems’ CO2 uptake. The events differed in regions affected, the
climate anomalies preceding each event, as well as in the rela-
tive strength of drought versus heat anomalies.We find that the
resulting impact of summer DH on continental carbon fluxes
differs between events, but the relative contribution of GPP
and TER to the net carbon balance cannot be constrained
with confidence given the uncertainty of our estimates.

We find that, at continental scale, two of the three extreme
summers did not result in strong negative anomalies in annual
net CO2 uptake, which can be explained in part by the offsetting
effects of increased productivity from warm springs and
decreased respiration in autumnand in part by regional compen-
sation of anomalies. However, we also find that regional
compensation in climate anomalies might act to reduce ecosys-
tem productivity, depending on their geographical distribution
and biomes affected, as was the case in 2010. Whether such sea-
sonal and spatial compensation effects are limited to Europe (e.g.
specific biome composition, large-scale atmospheric patterns) or
can be found in other extreme events elsewhere is not clear.

We find a progressively stronger negative effect of heat
anomalies on ecosystem productivity between each event,
which might indicate a transition towards a more water-lim-
ited regime at continental scale, and a progressive increase of
the negative effects of temperature on ecosystems.
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