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Condensation in globally coupled populations of chaotic dynamical systems
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~Received 14 August 1997!

The condensation transition, leading to complete mutual synchronization in large populations of globally
coupled chaotic Ro¨ssler oscillators, is investigated. Statistical properties of this transition and the cluster
structure of partially condensed states are analyzed.@S1063-651X~97!06012-1#

PACS number~s!: 05.45.1b, 05.20.2y, 05.90.1m
e
i

th
-
ffe
la
v-
s

s

rs
e

fa

co
ly
th
rm

ng

ing
u
lin
e
d

th
n
o

iza
ap
,
th
s

u-
di-

an
illa-

f
the
ri-
s

fore
ical
illa-

t
ke

y

d
s
s,

l
i-

u-
by

o-
ro-

n
,

The appearance of condensates is an important prop
of quantum and classical systems. When a population of
teracting Bose particles~such as, e.g., superfluid liquid4He!
is considered, a condensate is formed by a finite fraction
particles occupying the same quantum state@1#. Condensa-
tion of electron-hole pairs in metals is responsible for
phenomenon of superconductivity@2#. Condensation phe
nomena in classical systems are closely related to the e
of mutual synchronization of oscillations. In large popu
tions of globally coupled limit-cycle oscillators, one or se
eral groups of oscillators following exactly the same pha
trajectory can spontaneously appear@3–7#. A similar behav-
ior in populations of globally coupled logistic or circle map
has been found by Kaneko@8,9#. Mutual synchronization of
several coupled chaotic oscillators has been studied~see,
e.g.,@10#!. However, large populations of chaotic oscillato
may also be globally coupled. This is typical, for instanc
for surface chemical reactions where a great number
nanoscale dynamical microreactors on the catalytic sur
are globally coupled through the gas phase@11#. The behav-
ior of a large population of globally coupled chaotic Ro¨ssler
oscillators has recently been investigated@12#, but only weak
synchronization leading to the appearance of statistical
relations has been discussed. In contrast to this, we ana
in this paper the statistical properties of a transition to
fully synchronous state that is found when a different fo
of global coupling is applied to the same system.

We find that the synchonization begins at low coupli
intensities with the appearance of small coherent groups
the background of the rest of the population perform
asynchronous oscillations. The elements belonging to s
groups consititute a dynamical condensate. As the coup
strength is increased, the number of particles in the cond
sate grows and eventually the whole population becomes
vided into several coherent clusters. Within each cluster,
elements follow the same chaotic dynamical trajectory. U
der further increase of the global coupling, the number
coherent clusters gets reduced until full mutual synchron
tion is achieved. The aims of our study are to introduce
propriate order parameters for this condensation transition
investigate distributions over the clusters, and to analyze
dependence of the condensation behavior on the system
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We also consider how full mutual synchronization is infl
enced when random variations in the parameters of in
vidual chaotic oscillators are introduced.

Not every form of global coupling between elements c
lead to mutual synchronization. Synchronous chaotic osc
tions are possible if ‘‘vector’’ coupling~with identical cou-
pling coefficients for all oscillator variables! is employed
@13#. Asymptotic synchronization conditions in the limit o
high coupling intensities have also been constructed for
case when coupling involves only one of the oscillator va
ables@10#. However, only the linear stability of synchronou
oscillations is proven in both of these cases and there
even for a strong coupling the presence of other dynam
attractors, corresponding to persistent asynchronous osc
tions, cannot be excluded@14#.

In this paper a different form of global coupling tha
yields more robust synchronization is introduced. We ta
an arbitrary dynamical system withm variables w(t)
5$w1(t), . . . ,wm(t)% whose evolution is determined b
equations

ẇ5f~w!, ~1!

where f(w) are some known functions. A globally couple
population consisting of N such dynamical system
( i 51,2, . . . ,N) is constructed by adding the coupling term
so that the resulting evolution equations are

ẇi5f~wi !1«Â~w̄2wi !1«8@ f~w̄!2f~wi !#, ~2!

where w̄ is the global average,w̄(t)5N21( i 51
Nwi(t), the

positive parameters« and«8 specify the intensity of globa
coupling, andÂ is a constant matrix. Note that the prev
ously used forms of coupling correspond to a choice«850;
the ‘‘vector’’ coupling is obtained forÂ5I where I is the
identity matrix.

When«851 Eq. ~2! reduces to

ẇi5«Â~w̄2wi !1f~w̄!. ~3!

They describe linear motion of elements forming the pop
lation under action of a force that is collectively produced
all of them. The evolution of the deviationsdwi(t)
5wi(t)2w̄(t) is then determined by anexact linear set of
equationsdẇi52«Âdwi . Therefore, these deviations exp
nentially decrease with time, and global stability of synch

es
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57 277CONDENSATION IN GLOBALLY COUPLED . . .
nous oscillations is thus guaranteed, if all real eigenvalue
the matrixÂ and the real parts of all its complex eigenvalu
are positive.

Since globally stable synchronous oscilations are pre
in the system~2! at «851, they may also be expected in
neighborhood of this point, i.e., for an interval of couplin
intensities«0,«8,1. As shown below, this interval can b
so wide that even weak coupling leads to synchronizatio

We consider a population of chaotic Ro¨ssler oscillators.
Each elementary oscillator is described now by three v
ables w(t)5$x(t),y(t),z(t)%, and we have f x52y2z,
f y5x1ay, and f z5b2cz1xz, wherea, b, andc are fixed
parameters. The collective dynamics of a globally coup
population ofN identical Rössler oscillators (i 51,2, . . . ,N)
is governed by equations

ẋi52yi2zi ,

ẏi5xi1ayi1K~ ȳ 2yi !, ~4!

żi5b2czi1xizi1K~ x̄ z̄2xizi !,

where x̄ (t), ȳ (t), and z̄ (t) are global averages, such a
x̄ (t)5N21( i 51

N xi(t), andK is the intensity of global cou-
pling. This form of coupling is derived from Eq.~2! by tak-
ing «5«85K and choosing a matrixÂ whose elements ar
zero except for Axy5Axz52Ayx51, Azz5c, and
Ayy512a. The system~4! reduces to a set of independe
identical Rössler oscillators@15# for K50.

The eigenvalues of the matrixÂ are l15c and

l2,35
1
2 (12a)6 1

2 A(12a)224. All three eigenvalues~or
their real parts! are positive ifa,1. Therefore, forK51 all
deviations from the global averages exponentially decre
with time and the states of all elements in the populat
asymptotically converge. We see that atK51 the oscillator
population~4! possesses a global attractor that correspo
to coherent motion of all elements of the system. This attr
tor coincides with the attractor of a single Ro¨ssler oscillator
and is chaotic for the parametersa50.15, b50.4, and
c58.5 used in our simulations. Thus, the population~4! of
globally coupled chaotic Ro¨ssler oscillators should underg
condensation as the coupling intensityK is gradually in-
creased towardsK51. To investigate the condensation ph
nomena, we have typically performed numerical simulatio
of a population ofN51000 such oscillators under varyin
intensityK of global coupling.

The distancesdi j 5@(xi2xj )
21(yi2yj )

21(zi2zj )
2#1/2

between the states of allN(N21)/2 possible pairs of ele
ments (i , j ) have been computed. When condensation occ
the distances between some of the elements would decr
and asymptotically approach zero. Note, however, that
computer simulation, the variables specifying the states
the elements are defined only up to a certain precision de
mined by the number of digits used to represent real nu
bers. Therefore, any two converging states become indis
guishable when all the digits coincide. Once this h
occurred, the two trajectories remain identical at all sub
quent times. Following@8#, we assume that the distance b
tween such two trajectories is zero.
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To prepare the initial condition, the system is first allow
to evolve up tot5100 without global coupling (K50) so
that its elements get uniformly distributed over the Ro¨ssler
attractor. Global coupling is then introduced, time is rese
zero, and the evolution of the coupled population is start
We see that as time goes on the trajectories of some elem
converge and become identical. These elements form the
namical condensate. The transient is over when the num
of elements in the condensate ceases to increase with tim
our simulations, the transients were always shorter t
t51000. This has been checked by following the evoluti
of the system for longer times at different values of the co
pling intensityK, including the values ofK very close to the
onset of the condensation transition.

To quantitatively characterize the condensation, twoor-
der parameterscan be used. The first of them is given by th
ratio r of the number of pairs with zero distances to the to
number of pairs. In the absence of a condensate,r 50. On
the other hand,r 51 when complete mutual synchronizatio
of the whole population takes place. The second parames
represents the fraction of the population belonging to coh
ent clusters. It is given by the relative number of eleme
that have at least one other element with the same state in
considered population. Therefore,s can be viewed as char
acterizing the size of the condensate.

Figure 1 shows the dependence of the order parameter
and s on the global coupling intensityK obtained by aver-
aging over 20 realizations att52000. Condensation begin
at Kc'0.017 when the condensate first appears and a n
vanishing fraction of identical pairs becomes present. In
interval fromKc to K'0.06, nonmonotonous dependence
both order parameters on the coupling intensity is observ
At higher coupling intensitiesK, the condensate size and th
fraction of identical pairs grow until full condensatio
(r 51) is established forK.K0, with K0'0.1. Under con-
ditions of partial condensation, the condensate size and
number of identical pairs vary from one realization to a
other. Bars in Fig. 1 indicate statistical dispersion of t
simulation data at a few selected values of the global c

FIG. 1. Order parametersr ands of the condensation transition
as a function of the coupling constantK. Averaging over 20 inde-
pendent realizations with random initial conditions is performe
bars indicate statistical dispersion~mean square deviation! of data
at several selected points.
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278 57D. H. ZANETTE AND A. S. MIKHAILOV
pling intensity. Note that the dispersion reveals a degene
in the asymptotic properties of this system in the partia
condensed state.

The order parametersr ands characterize the overall de
gree of condensation, but are not sensitive to the conden
structure. To determine the detailed structure of the pop
tion, distributions over pair distances between the state
all elements at a fixed time moment (t52000) have been
analyzed. Histograms of such distributions at four differe
coupling intensitiesK are shown in Fig. 2. They are con
structed by counting pairs with distances lying within sub
quent intervals of widthDd50.25. The number of pairs in
side each interval, divided by the total number of pa
N(N21)/2, yields the height of the respective bar. In t
absence of global coupling, elements are relatively uniform
distributed over the single-oscillator attractor and a smo
distribution over distancesd is thus observed@Fig. 2~a!#.
When global coupling is introduced but remains below
critical point Kc of the condensation transition, the distrib
tion is modified@Fig. 2~b!#. Now, pairs with small distance
have already appeared, though identical pairs are still ab
~cf. Fig. 1!. Slightly above the critical point, a strongly non
uniform distribution with narrow peaks is seen@Fig. 2~c!#.
The distributions found at larger intensities of global co
pling @e.g., Fig. 2~d!# are formed by several distinct lines
When complete condensation has taken place (r 51), the
histogram has only one line located atd50 ~not shown!.

Distributions formed by several lines are characteristic
situations when the whole population breaks down into
number of coherent clusters. All elements in a cluster foll
the same dynamical trajectory and, hence, distances betw
pairs of elements belonging to the same cluster are z
When elements from two different clusters are chosen, t
distances are all equal. IfM such clusters are present, th
distribution over pair distances would consist
M (M21)/211 individual lines. For instance, four line
seen in Fig. 2~d! correspond to a condensate with three cl
ters. We have checked that the coherent motion of elem
inside the clusters is not degenerated to simple periodic

FIG. 2. Normalized histograms of the distribution over pair d
tancesd between elements in a population ofN51000 globally
coupled Ro¨ssler oscillators at different stages of the condensa
transition:~a! K50; ~b! K50.01; ~c! K50.02; ~d! K50.05.
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cillations and therefore this chaotic clustering is differe
from the behavior previously known for large populations
globally coupled limit-cycle oscillators~see@6#!.

The cluster structure of the condensate as a function of
global coupling intensityK has been analyzed. The dots
Fig. 3 show the numbers of clusters found at different co
pling intensities separated by intervalsDK5331024. For
each value ofK, a single simulation starting from random
initial conditions has been performed. We see that the nu
ber of clusters is strongly fluctuating and may be larg
different even for close values of the global coupling inte
sity. Even when the coupling intensity was fixed, the num
of clusters varied from one simulation to another. Figure
shows the mean number of clusters as a function of the
tensity K, averaged over 20 independent realizations. T
bars show the statistical dispersion of the data.

The mean number of clusters can be estimated using
two order parameterss andr . The total number of element
belonging to the condensate issN. Assuming that the con-
densate consists ofM clusters of equal size, each clust

-

n

FIG. 3. Number of clusters counted at different values of
global coupling intensityK separated by intervals ofDK5331024

for a single simulation with random initial conditions at each poi

FIG. 4. Mean number of clusters~bold curve! and its estimate as
s2/r ~dash curve! as a function ofK. Averaging over 20 indepen
dent realizations at each point; bars show the data dispersion.
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57 279CONDENSATION IN GLOBALLY COUPLED . . .
would containn5sN/M elements. The distances betwe
the elements within any cluster are zero. Therefore, if
numbern of elements in each cluster is large, the total nu
ber of identical pairs in a single cluster would be appro
mately given byn2/2. Hence, the total number of identic
pairs in the condensate isMn2/2. Since the total possible
number of pairs is approximatelyN2/2, the order parameterr
is

r 5
Mn2

N2
5

s2

M
. ~5!

Thus, the number of clusters can be estimated asM5s2/r .
The dashed curve in Fig. 4 displays the mean numbe

clusters obtained using this estimate, which is valid if t
clusters have equal sizes. It can be seen that genera
shows a reasonable agreement with the data obtained b
rect counting of clusters. The deviations are due to the
that the clusters have a distribution of sizes and some
them may be small. Note that the mean relative size o
cluster can be estimated asn/N'r /s. Figure 5 shows the
dependence of the mean cluster size, obtained using thi
timate, on the coupling intensity.

Thus, the condensation transition leading to complete m
tual synchronization of the whole population can be d
scribed as follows. The condensate appearing above the
sition point includes only a small fraction of elements,
that the order parameters is small in this region. The con
densed elements are distributed over a few small clusters
represent nuclei of the condensed state. The rest of the p
lation has asynchronous dynamics, though it is already
sentially influenced by global coupling between the e
ments, as evidenced by the histogram shown in Fig. 2~c!.
When the coupling intensity is increased, the number of c
ters rapidly grows and reaches a maximum of about 10
K'0.03. At the same time, the mean size of clusters slo
increases up to a few tens. After that a sudden desynchr
zation atK'0.04 is observed. The number of clusters dro
down and, in some realizations, synchronization is e
completely lost~Fig. 3!. The few persisting clusters are sma
in this region. Under further increase of the global coupli
intensity, synchronization is gained back. Now, both t

FIG. 5. The relative mean size of a clustern/N5r /s as a func-
tion of the coupling intensityK.
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number of coherent clusters and their mean size stea
grow and approach intermediate saturation in the inter
from aboutK'0.045 toK'0.065. Here the typical size of
cluster is about 150. At the end of this interval the clust
forming the condensate already include almost all popula
members (s'1). At larger coupling intensities, redistribu
tion of elements over a decreasing number of clusters is
served. Eventually, atK'0.1 only one cluster is typically
found ~although occasionally two clusters may also app
close to this point!. This means that full mutual synchron
zation has been achieved.

Complete condensation (r 5s51) has been found within
a wide interval of the global coupling intensity. Starting
this region with random initial conditions for all element
we see that the elements soon form a compact cloud
rapidly shrinks with time. The characteristic radiusR(t) of
this cloud can be defined by

R2~ t !5
1

N (
i 51

N

@dxi
2~ t !1dyi

2~ t !1dzi
2~ t !#, ~6!

wheredxi , dyi , anddzi are the deviations from the respe
tive global averages. The radiusR decreases with time, a
the trajectories of all elements asymptotically converge
the same orbit~in our simulations the convergence was fo
lowed until the trajectories of all elements became identi
up to the computer precision of about 1026). An important
quantitative property of this regime is the characteristic ti
that the system needs to reach the condensed state; th
verse of this time represents the condensation expo
~closely related to the transverse Lyapunov exponents
cussed in Ref.@10#!:

g52 lim
t→`

1

t
ln

R~ t !

R~0!
. ~7!

The simulations show thatg starts to grow from zero a
K5K0, has a maximum atK'0.65, and then slowly de
creases, approaching the valueg'0.38 atK51.

The robustness of the complete condensation sugg
that it might persist in some form even in heterogeneo
populations. To test this, we have carried out simulatio
where the elements forming the population were not ide
cal. Heterogeneity was introduced by replacing the cons
parameterc in Eqs. ~4! by random numbersci that were
uniformly distributed inside the segment@c2sc ,c1sc#. Al-
ternatively, the same procedure was applied to the param
a. Starting from random initial conditions, a compact clo
of elements was again formed in the heterogeneous c
However, the cloud did not shrink until it transformed into
single point. Instead, after an initial decrese, its radiusR(t)
fluctuated around a certain mean value. Figure 6 shows
mean radiuŝ R& as a function of dispersionssc or sa for
K50.2. We see that in a wide interval of heterogeneities
mean radius of the cloud is approximately linear proportio
to the dispersion. Moreover, even for relatively large disp
sions this radius is significantly smaller that the characteri
attractor diameterD, representing the maximal possible pa
distance atK50 @i.e., D'25, cf. Fig. 2~a!#. Therefore, even
though the states of all elements are no longer identical~i.e.,
the complete condensation is destroyed!, their variations re-
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280 57D. H. ZANETTE AND A. S. MIKHAILOV
main small. The elements form a little cloud whose cen
moves along a definite trajectory.

This behavior can be understood by analyzing the ef
of weak heterogeneities at the maximal strength of glo
couplingK51. If the parameterc is replaced byci5c1Dci
with random variationsDci , the population dynamics is de
scribed by

ẋi52yi2zi ,

ẏi5xi1~a21!yi1 ȳ , ~8!

żi5b2cizi1 x̄ z̄ .

Hence, motion of each element is governed by linear eq
tions of motion in the presence of global driving forcesȳ

and x̄ z̄ , which are the same for all elements. Therefo
deviationsdzi from the global average obey the equation

dzi
˙ 52cdzi2Dciz2Dcidzi1Dcidzi . ~9!

If heterogeneities are weak, i.e.,Dci5uz i whereu is a small
parameter, the last two terms in this equation have ordeu2

and can be neglected. Integrating the resulting linear eq
tion, we obtain

dzi~ t !5uz iE
0

`

exp~2ct! z̄~ t2t!dt. ~10!

Considering the behavior of other deviationsdxi and dyi ,
one can similarly show that they are also proportional
Dci5uz i . This means that the radius^R& of the population
cloud depends aŝR&;u on the heterogeneity strength. No
also that in this case all deviations are scaling identical,
for example,dzi(t)5uz iQ(t) where the functionQ(t) is the
same for any elementi . The same results are obtained wh
weak random variations of the parametera are considered.

The simulations have revealed that the linear depende
of the mean radiuŝR& on the dispersionssc and sa , that

FIG. 6. Radius^R& of the cloud formed by a heterogeneo
population as function of dispersionssa ~empty circles! and sc

~filled circles! at K50.2.
r

ct
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has been analytically shown above only atK51, persists in
a wide range of coupling intensities. Moreover, this dep
dence is found even for relatively large dispersions, wh
the parameteru would not be small. This behavior is appa
ently a consequence of a strong compression provided in
entire interval of complete condensation by global couplin

Our analysis has been performed for a population co
prising 1000 chaotic Ro¨ssler oscillators. The question ma
arise whether the statistical behavior found for a populat
of this size is already characteristic for a limit of very larg
systems. To answer it we have done a series of simulat
with varying population sizes. Figure 7 shows the typic
dependence of the order parameterr of the condensation
transition on the total population sizeN, where each point is
obtained by averaging over 20 independent realizations
the intensity of global coupling is kept constant (K50.08).
We see that a strong size dependence is characteristic
relatively small populations (N,500). Starting from a popu-
lation size of aboutN51000, the dependence displays sa
ration, with the remaining small variations lying within th
statistical dispersion range. Hence, the results of our stud
a population with 1000 oscillators might already be repres
tative for the asymptotic behavior in the infinite-size lim
N→`. The condensation transition has been studied ab
for a particular kind of chaotic oscillator and for a certa
form of global coupling. We have, however, checked th
similar results are also obtained when a different~‘‘vector’’ !
form of global coupling is used. This suggests that obser
statistical properties may be typical for various large pop
lations of globally coupled chaotic oscillators undergoing
condensation transition.

Financial support from Fundacio´n Antorchas, Argentina,
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FIG. 7. Dependence of the order parameterr on the population
size N at a fixed intensity of global couplingK50.08. Averaging
over 20 independent realizations; bars indicate statistical disper
of data.
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