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Mutual synchronization in ensembles of globally coupled neural networks
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The collective dynamics in globally coupled ensembles of identical neural networks with random asymmet-
ric synaptic connections is investigated. We find that this system shows a spontaneous synchronization tran-
sition, i.e., networks with synchronous activity patterns appear in the ensemble when the coupling intensity
exceeds a threshold. Under further increase of the coupling intensity, the entire ensemble breaks down into a
number of coherent clusters, until complete mutual synchronization is eventually established.
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Synchronization phenomena in populations of globa
coupled dynamical systems are a subject of intensive th
retical research. Since the pioneering study by Winfree@1#,
much attention has been attracted to investigations of la
oscillator populations~see@2–4#!. However, it is getting in-
creasingly clear that synchronization does not represe
special feature of oscillator systems. For instance, rec
studies have shown that similar behavior is observed in
tems formed by globally coupled Hamiltonian@5# or bistable
@6# elements. Moreover, it is also known that mutual sy
chronization is possible@7# in populations of coupled chaoti
dynamical systems, such as logistic maps@8# or Rössler os-
cillators @9#. A detailed study of the synchronization trans
tion in large populations of stochastic globally coupled s
tems has recently been performed@10#.

The importance of synchronization for functioning of bi
logical systems has been extensively discussed@1,3,8#. It has
been emphasized that these effects should play a signifi
role in operation of the brain~see, e.g.,@11#!. Indeed, theo-
retical investigations show that mutual synchronization e
ily develops in populations of globally coupled individu
neurons@11–13#. Examining the brain functions, one ca
however, note that besides this strong kind of synchron
tion, resulting in identical states of all neurons in a unifo
population, more subtle forms of synchronization should
present. The brain is essentially a system of interacting n
ral networks and the activity patterns of different networ
may perhaps become synchronized while retaining th
complex spatiotemporal dynamics. This puts forward a g
eral theoretical problem of mutual synchronization in e
sembles of coupled neural networks@11#.

In the present paper this problem is addressed by stud
a simple model system where the neurons are represente
dynamical McCulloch-Pitts elements@14#. A network is
formed by such elements linked through activatory or inhi
tory connections of varying weights. When asymmetric co
nection weights are chosen, such a network would gener
exhibit complex spatiotemporal oscillations. We take an
semble of identical networks that are linked together by
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troducing additional global cross-network interactions b
tween neurons occupying equivalent positions in differ
networks of the ensemble. The simulations reveal that
ensemble can easily undergo a spontaneous synchroniz
transition. In the fully synchronous regime, all networks a
characterized by the same complex spatiotemporal acti
pattern of neurons. At lower intensities of the cross-netw
coupling, the ensemble breaks into several coherent clus

We consider ensembles made ofN identical neural net-
works each consisting ofK neurons. The collective dynamic
of an ensemble is described by the following algorithm:
time t11, the activityxk

i of a neuronk51, . . . ,K belonging
to a networki 51, . . . ,N is

xk
i ~ t11!5~12«!Q~hk

i !1«QS (
j 51

N

hk
j D , ~1!

wherehk
i 5( l 51

K Jklxl
i(t) is the signal arriving at this neuro

at timet from all other elements of the same network,Jkl are
the connection weights~the same for all networks!, andQ(z)
is a sigmoidal function.

The two terms on the right-hand side of Eq.~1! have a
clear interpretation. The first of them represents the in
vidual response of a neuron to the total signal received fr
other elements in its own network. The second term depe
on the global signal obtained by summation of individu
signals received by neurons occupying the same position
all networks of the ensemble~and hence it corresponds t
global cross-network interactions!. The parameter« specifies
the strength of global coupling. When global coupling is a
sent («50), the networks forming the ensemble are indep
dent. On the other hand, at«51 the first term vanishes an
the states of respective neurons in all networks must be id
tical, since they are determined by the same global sig
For 0,«,1, the ensemble dynamics is governed by an
terplay between local coupling inside the networks and g
bal coupling across them.

Our analysis is based on numerical investigations. As
first step, we set up the connection weights between neu
in the individual network. Each of the connection weightsJkl
between neurons is chosen at random with equal probab
from the interval between21 to 1. The weights of forward
and reverse connections are independently selected,
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FIG. 1. Time-dependent integral activity o
ten selected networks (K550) in an ensemble of
size N5100 for different intensities of globa
coupling, corresponding to~a! clustering («
50.35) and ~b! full synchronization («50.5).
Synchronization of each signal begins at the c
responding bar. In~a!, clusters are identified by
different letters.
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thereforeJklÞJlk . The sigmoidal function in Eq.~1! has
been taken asQ(z)5@11tanh(bz)#/2, with b510. Most of
the simulations have been performed for ensembles oN
5100 identical networks, each consisting ofK550 neurons.
The connection weights have remained fixed within the
tire series of simulations with varying global coupling inte
sity. The initial conditions for all neurons in all networks
each simulation have been randomly chosen.

Since subsequent states of all neurons in all networks
recorded, and each simulation yields a large volume of d
that should be further analyzed in order to detect cohere
in the collective activity of the ensemble. An important pro
erty is the integral time-dependent activityui(t)
5(k51

K xk
i (t) of each networki 51, . . . ,N in the ensemble.

If global coupling is absent or very weak, the networks a
independent and, since the initial conditions are various
different networks, their activity patterns are not correlat
Therefore, the integral signalsui(t) generated by differen
networks in the ensemble would be asynchronous. On
other hand, if synchronization of the network activity h
-

re
ta
ce
-

e
r
.

e

taken place, the activity patterns of some networks are id
tical and their integral time-dependendent signals will a
coincide.

Figure 1 shows typical integral signals generated by n
works when global coupling is relatively strong. Though t
integral signals of the networks are at first not correlat
starting from a certain moment, some of the networks in
ensemble begin to generate identical~up to the computer
precision! signals, indicating the onset of synchronization
the system. When«50.35 @Fig. 1~a!#, the entire ensemble
breaks down into several synchronous clusters. At a hig
intensity of global coupling@«50.5, Fig. 1~b!#, the activity
of all networks in the ensemble is synchronous.

We have performed a special numerical investigation
the clustering regime shown in Fig. 1~a!. By continuing the
simulation over further 105 time steps, no relaxation to syn
chronous oscillations has been found. Three clusters, for
by time t51000, persisted in the system. Moreover, clust
ing has always been observed when we performed 100 in
pendent runs with randomly chosen initial conditions.
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should be noted that stable partially synchronous sta
where the entire population of globally coupled dynami
systems forms a number of coherent clusters, have pr
ously been reported for relatively simple systems, such
logistic maps@8# or chaotic Ro¨ssler oscillators@10#. Our
present results indicate that both full synchronization a
clustering are also possible in ensembles whose individ
elements represent complex dynamical systems.

The degree of synchronization in the ensemble dynam
can be characterized by the dispersion of activity patte
defined as D(t)5N21( i 51

N (k51
K @xk

i (t)2 x̄k(t)#2 where

x̄k(t)5N21( j 51
N xk

j (t) is the average activity of neurons o
cupying the positionk in all networks of the ensemble a
time t. Fig. 2 shows, on a logarithmic scale, how this pro
erty evolves in time in a typical simulation at a fixed inte
sity «50.5 of global coupling.

To explain this time dependence ofD(t), the process by
which full synchronization is established in the ensem
should be analyzed. As seen in Fig. 1~b!, synchronization
begins with the formation of a coherent nucleus consisting
a few networks. This nucleus grows by an aggregation p
cess, where further networks are subsequently added t
i.e., become entrained. While nonentrained networks rem
the dispersionD(t) remains relatively large, though it gradu
ally decreases with time. When the last network has
proached the coherent cluster, it gets strongly attracted
its distance from the cluster begins to exponentially decre
This rapid decrease is reflected in the final linear steep
seen in Fig. 2.

Though the dispersion serves as a good indicator of
synchronization, it is not sensitive to partial synchronizat
and formation of coherent clusters in the ensemble. To a
lyze clustering, a different statistical method has theref
been employed that involved calculation of pair distan
between activity patterns of all networks. The pair distan
between the activity patterns of two networksi and j is
defined asdi j 5@(k51

K (xk
i 2xk

j )2#1/2. By counting the number
of network pairs in the whole ensemble that have at a gi
time the distances lying within subsequent equal interval
histogram of distribution over pair distances can be c

FIG. 2. Dispersion of the activity patterns of all networks in t
ensemble as function of time under synchronization conditions«
50.5, N5100, K550).
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structed. Figure 3 shows these normalized histograms
several intensities of global coupling.

When global coupling is weak@«50.15, Fig. 3~a!#, the
histogram has a single smooth maximum at a typical dista
between the activity patterns of noncorrelated networks.
creasing the coupling intensity, we find that above a cert
critical point («1'0.17) some pairs of networks in the en
semble have exactly the same activity patterns, so that
distance between them is zero. This corresponds to the p
ence of a peak atd50 in the histogram shown in Fig. 3~b!
for «50.28. When global coupling is further increased, t
number of identical pairs grows@«50.34, Fig. 3~c!#. The
synchronous networks are apparently organized into clus
Indeed, several peaks are seen in this histogram. The p
are located at pair distances between different clusters. H
ever, besides these clusters the ensemble still has a nu
of networks with asynchronous activity. A slight increase
global coupling leads to the emergence of a definite clu
organization@«50.35, Fig. 3~d!#. In this case, every network
belongs to one of a few synchronous clusters. As the c
pling intensity grows, the number of clusters gets smal
until full synchronization is established in the ensemble
«2'0.4 ~this final regime is not shown in Fig. 3!.

We have repeated our simulations and statistical anal
for different random choices of connection weights in t
networks and have observed basically the same sequen
changes leading to clustering and final synchronization in
studied cases, though the respective critical coupling inte
ties have been found to depend on the choice of connec
weights. Moreover, essentially the same results have b
obtained when ensembles consisting of larger networks
100 neurons were studied and when other sigmoidal fu
tions Q(z) in the algorithm~1! were employed.

The considered ensemble can be viewed as a struc
made of horizontal layers that represent individual networ
In addition to lateral interactions within its own layer, th
neurons are involved in global vertical interactions across

FIG. 3. Histograms of distributions over pair distancesd be-
tween activity patterns of all networks in the ensembleN
5100, K550) for various intensities of global coupling corre
sponding to the asynchronous regime~a! «50.15, and different
partially synchronous regimes~b! «50.28, ~c! «50.34, and~d! «
50.35.
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layers. In the model~1! we have assumed that such vertic
cross-network interactions span the system through e
neuron in each of the networks. In some of the poten
applications, it would be, however, more realistic to assu
that only a certain fraction of neurons is taking part in t
global cross-network interactions. With this in mind, w
have also studied a modification of the model~1! where only
a randomly chosen subset of neurons in each of the netw
is involved in global cross-network interactions. In this sit
ation the collective ensemble dynamics is defined by
algorithm xk

i (t11)5(12«jk) Q(hk
i )1«jkQ(( j 51

N hk
j ),

wherejk represent random variables taking the values 0 o
with probability 12p andp, respectively. Thus, onlypK of
neurons in any network are sensitive to global signals.

We have performed a large number of numerical simu
tions of this modified system following the same procedu
as for the original model~1!. New initial conditions have
been independently randomly chosen in each of the sim
tions. Based on this numerical investigation, an approxim
synchronization diagram shown in Fig. 4 has been c
structed. Full synchronization is found inside the dark-g
region and partial synchronization~with clusters of coheren
networks! is observed in the light-grey area. Note that in t
latter case either all networks belong to such coherent c
ters or some of the networks are still not entrained and h
asynchronous activity~cf. Fig. 3!. Examining the diagram in
Fig. 4, one can see that the synchronization persists e
when a significant fraction of cross-network connections
missing. Indeed, partial synchronization can still be obser
even when only about 10% of global cross-network conn
tions remains in the ensemble.

Synchronization of network activity and formation of c
herent network clusters have been found in our study und
random choice of synaptic connections, and for networks
ensembles of various sizes. Moreover, such phenomena
also persisting when many randomly selected cross-netw
connections are erased. All this suggests that mutual
chronization of complex dynamic activity patterns may re
resent ageneric property of globally coupled neural ne
works. Though we have studied in this paper only netwo
with random synaptic connections between neurons, sim
ce
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synchronization properties should apparently be expecte
situations where connection patterns are not arbitrary, but
rather designed in such a way that a neural network is abl
perform certain operations of information processing or c
trol the activity of motor units. Therefore, potential applic
tions of this study may lie in the fields of multiagent roboti
and distributed artificial intelligence.

The authors thank Professor B. Hess for stimulating d
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FIG. 4. Synchronization diagram in the parameter plane («,p)
for an ensemble of 100 networks consisting of 50 neurons w
randomly chosen asymmetric synaptic connections. Full synchr
zation, with identical activity patterns of all networks, is found
the dark-grey area. Partial synchronization, defined by the pres
of at least two networks with identical activity patterns, is observ
in the light grey region.
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