
Chapter 25
Conditional Inference Trees and Random
Forests

Natalia Levshina

Abstract This chapter discusses popular non-parametric methods in corpus lin-
guistics: conditional inference trees and conditional random forests. These methods,
which allow the researcher to model and interpret the relationships between a
numeric or categorical response variable and various predictors, are particularly
attractive in ‘tricky’ situations, when the use of parametric methods (in particular,
regression models) can be problematic, for example, in the situations of ‘small
n, large p’, complex interactions, non-linearity and correlated predictors. For
illustration, the chapter discusses a case study of T and V politeness forms in
Russian based on a corpus of film subtitles.

25.1 Introduction

Conditional inference trees (CITs) and conditional random forests (CRFs) are
gaining popularity in corpus linguistics. They have been fruitfully used in models of
linguistic variation, where the task is to find out which linguistic and extralinguistic
factors determine the use of near-synonyms (e.g. let, allow or permit), alternating
syntactic constructions (e.g. the double-object vs. to-dative) or sociolinguistic
variants (e.g. the type of /r/ used by speakers of a particular dialect). The methods
have been implemented in a user-friendly way in the packages party (Hothorn
et al. 2006b; Strobl et al. 2007) and partykit (Hothorn and Zeileis 2015), which
has contributed to the popularity of the methods.

CITs belong to the family of recursive partitioning methods, which involve the
following basic steps.
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Fig. 25.1 Binary partitioning of a dataset

Step 1. Select the predictor which helps best to distinguish between different values
of the response variable, using some statistical criterion.

Step 2. Make a split in this variable, splitting the data in several data sets. Most
algorithms use binary partitioning, although non-binary splits have also been
implemented.

Step 3. Repeat Steps 1 and 2 recursively until no further splits can be made, based
on certain pre-defined criteria.

Figure 25.1 illustrates the main idea behind binary partitioning. Imagine a set of
objects (circles and stars) that can be white or blue. The shape allows one to separate
the white objects from the blue ones by splitting the entire data set into two subsets,
one with stars and the other with circles. The goal is to achieve maximal purity (or
minimal impurity) in the terminal nodes. In other words, we would like to have as
few blue objects in the bottom left-hand node as possible, and as few white objects
in the bottom right-hand node as possible. In our case, 80% of the objects in the
node with stars are white, and 80% of the objects in the node with circles are blue.
This means that splitting the data according to shape allows us to predict the colour
correctly in 80% of the cases.

Random forests, including CRFs, represent an ensemble method, by which many
individual trees are ‘grown’, and their predictions are averaged. Each tree is based
on a random sample of n observations from the original dataset, usually with
replacement, and on a random sample of k predictors from all predictors in the
model. Random forests usually produce more accurate predictions than single trees.

CITs and CRFs have a number of advantages in some situations when the
use of traditional approaches, such as regression analysis (see Chap. 21), may
be inappropriate (see more details in Sect. 25.2). In addition, CITs allow one to
interpret high-order interactions, which involve more than two predictors, in a very

http://dx.doi.org/10.1007/978-3-030-46216-1_21
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convenient and intuitive way. However, the methods also have their pitfalls (see
Sect. 25.2.6).

25.2 Fundamentals

25.2.1 Types of Data

Although most applications of these methods in corpus linguistics involve categor-
ical response variables and predominantly categorical predictors, CITs and CRFs
can model the relationships between the response variable and predictors at any
scale of measurement. Also, one can fit models with multivariate response variables
and censored data.1 Traditionally, models with numeric response variables are called
regression trees, and models with categorical response variables are referred to as
classification trees.

CITs and CRFs can be particularly useful in the situations of small n, large
p. This may be the case in many subfields of corpus linguistics, where data are
small and costly, e.g. analysis of spoken data (e.g. Tagliamonte and Baayen 2012),
multilingual data (e.g. Levshina 2016) or data from less well documented languages.
For such datasets, logistic regression models would not be suitable. There are no
fixed rules regarding the minimum number of observations, but it is possible to have
a relatively high number of predictors. As an extreme example, one can mention the
study of Strobl et al. (2008), where CRFs are used to investigate a binding property
of 310 amino acid sequences depending on 105 predictors. A multiple regression
analysis of such data would be inappropriate.

CRFs can be used in situations where predictors are highly intercorrelated.
This happens quite often in corpus-linguistic research. For instance, one and
the same underlying theoretical construct, such as transitivity in Hopper and
Thompson’s (1980) sense, can be represented by several correlated semantic and
morphosyntactic variables. Another example is entrenchment of a word, which can
be operationalized as frequency, dispersion and contextual diversity of a word in
a corpus (e.g. Baayen 2010). In such cases, a regression analysis may fail due to
multicollinearity issues.

In addition, CITs and CRFs represent an attractive alternative when some of the
regression assumptions are not met, e.g. the assumptions of homoscedasticity (equal
variability of the response variable across the range of values of the predictors) and
non-linearity (lack of direct proportionality) of the relationship between a predictor
and the outcome. This is particularly convenient if one wants to keep the original
scale of the response variable rather than perform transformations (see, however,

1Censored data are characterised by the presence of some observations that only specify an interval
instead of an exact value, such as age older than 80 years or any size of clothes larger than XXL.
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Chap. 23 on generalized additive models, which represent a tool for modelling non-
linear relationships).

25.2.2 The Assumptions

There are no traditional assumptions that should be met when fitting a CIT or
a CRF, such as constant variance, non-linearity or normally distributed errors.
However, a word of caution should be said about the independence of observations.
At the moment of writing, the only working method for dealing with dependent
observations seems to be including the grouping factor (e.g. the speaker or text IDs)
on a par with all other predictors.2 This has been done, for instance, by Tagliamonte
and Baayen (2012), who added the individual speakers as a covariate in their CITs
and CRFs. This method cannot be regarded as a perfect solution, unfortunately, as
will be shown in Sect. 25.2.6.

25.2.3 Research Questions

The research questions that can be answered with the help of CITs and CRFs are the
same as the ones that are answered with the help of regression analysis. A typical
question is which linguistic factors help to predict the use of particular linguistic
variants. Examples are variation of was/were in York English (Tagliamonte and
Baayen 2012), transitivity patterns with the verb give in South Asian Englishes
(Bernaisch et al. 2014), fore- and backclipping (e.g. technology > tech, but
racoon > coon, cf. Lohmann 2013) and positioning of adverbial concessive clauses
(Wiechmann and Kerz 2012). Most of this work has been done on English data.
Some exceptions are Baayen et al. (2013), who investigate Russian aspectual
prefixes and suffixes, and Levshina’s (2016) study of causative constructions in 15
European languages. Usually, the task is to find the contextual (corpus) variables
that are associated with the choice between two or more linguistic variants. CITs are
particularly useful in multifactorial probabilistic grammar, when one investigates
interactions between contextual variables and the variables representing language
varieties, as in the study of several morphosyntactic alternations in World Englishes
by Szmrecsanyi et al. (2016).

Similar to regression modelling, one can use these methods for explanation and
prediction (including classification). CITs can be particularly useful for explanation
and interpretation, whereas CRFs are usually better in prediction.

2A solution with random effects has been implemented in the package REEMtree, but it is available
only for longitudinal data.

http://dx.doi.org/10.1007/978-3-030-46216-1_23
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25.2.4 The Algorithms

25.2.4.1 The CIT Algorithm

The method is based on testing the null hypothesis that the distribution of the
response variable D(Y) is equal to the conditional distribution of the response
variable given some predictor D(Y|X). The global null hypothesis says that this
holds for all predictors (Hothorn et al. 2006a). In order to test the hypothesis, one
uses permutation (reshuffling) of the labels in the response variable Y. By permuting
Y, its association with the predictor X is broken. As a result of this permutation,
the null distribution is derived directly from the data. In contrast, traditional tests
impose assumptions on the distribution of the data, so that the null distribution of a
test statistic can be derived analytically.

As an illustration, consider the dative alternation in English. Some imaginary
data are provided in Table 25.1. We investigate the dependence between the response
(i.e. the use of the double object dative and the to-dative) and a number of predictors,
including the information status of the Recipient (given or new). A permuted version
of the response is shown in the third column of the table.

Based on this information, one computes a statistic that involves the difference
in the association between response Y and predictor X before and after the
permutation. The greater this difference, the stronger the association between Y
and X. The package party offers two types of test statistics: cquad (the default) and
cmax.The difference in the results can be observed if there are categorical variables
with more than two values (see Hothorn et al. 2006a or 2006b for the details). In
most situations, there is no need to modify the default settings. One could then
compare the statistics from different covariates and choose the largest one as the
best candidate for the next split. However, this is not a very good idea when
the predictors are on different measurement scales. In order to make the statistics
comparable across different variables, the p-values are normally used (the default
option). For the global null hypothesis test, the p-values are adjusted (a simple
Bonferroni correction is used by default).

There are several options for computing the p-values. By default, the algorithm
returns the asymptotic p-values because the test statistics used in the algorithm are

Table 25.1 Permutation of the response variable: an example

Example ID
Observed response
Y (dative variant)

Permuted response
Y (dative variant)

Observed predictor X (information
status of Recipient)

1 To-dative DO-dative New
2 DO-dative DO-dative New
3 To-dative To-dative Given
101 DO-dative DO-dative New
102 To-dative To-dative Given
103 DO-dative To-dative Given
. . . . . . . . . . . .
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shown to tend to well-known distributions. More precisely, a χ2 distribution in the
case of the test statistic cquad and a multivariate normal distribution in the case of
cmax (Hothorn et al. 2006b). Alternatively, one can approximate the p-values by
using a Monte-Carlo method and simulate the distribution of the test statistic by
randomly reshuffling the data. The number of permutations can be specified, as
well.

After the predictor has been selected, the next step is splitting the selected
covariate into two disjoint sets. For variables with many possible splits, the
algorithm computes a statistic for every possible binary split into subsets A and
not-A, similar to how it was done during the process of variable selection. Next,
the split with the maximal test statistic is chosen. The procedure is then repeated
recursively until certain criteria are met, which are the following:

• minimum criterion for a split, which equals 1 - α. If the global null hypothesis
cannot be rejected at a certain level of statistical significance α (by default,
0.05), no further splits are made. This parameter performs two functions: as the
significance criterion (and therefore it should not be changed without a very
good reason, since it strikes a balance between Type I and Type II errors),
and a hyperparameter (i.e. a parameter defined before running the algorithm)
determining the size of a tree;

• the minimum number of cases in a node before a split. If there are fewer cases
than required, no split will be made;

• the minimum number of cases in a node after a split.

Importantly, one can obtain the values predicted by the model for the observa-
tions in the original dataset or for new data. How are these predictions obtained? As
an example, consider a white star in the imaginary data displayed in Fig. 25.1. The
algorithm ‘puts’ all stars in the left-hand terminal node. In that case, the predicted
category (i.e. white or blue) will be determined by the majority vote. Since the
node contains more white objects than blue ones, the predicted colour is white.
The predicted probability will be 0.8 (or 80%) because the white objects represent
80% from the entire number of objects in this node (eight out of ten). In case of
regression trees the mean value of the response variable in all observations in the
relevant terminal node is computed. To find out how to compute the median or
another statistic of interest, see ?party::treeresponse.

25.2.4.2 The CRF Algorithm

A CRF is an ensemble of multiple CITs. The algorithm uses resampling with or
without replacement to create a random sample for each tree. Importantly, only a
sample of candidate predictors is randomly drawn for each individual CITs. Since
only a restricted number of predictors is selected for every individual tree, each
variable has the chance to appear in different contexts with different covariates.
This may better reflect its potentially complex effect on the response variable (Strobl
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et al. 2009). If some variable only matters in a very specific type of contexts, it gets a
chance to tell its story when the stronger variables are out of the competition. This is
particularly important in situations of multicollinearity, where predictors are highly
intercorrelated.

To obtain the predicted values from a CRF, one needs to aggregate the results
from the individual trees. To predict the response value for an individual observation
with particular values of the predictors, the algorithm combines the information
about all relevant observations that have the same properties as the observation
of interest, in all trees. The predicted value for a given observation is then the
average value of the response variable in all those observations (in case of regression
trees with numeric response variables) or the most popular category (in case of
classification trees with categorical response variables).

Importantly, one can distinguish between predicted values for the training
samples and those for the out-of-bag (OOB) samples. Recall that certain data points
are left out during the bootstrap sampling or subsampling before a tree is fitted.
The OOB samples can be used to assess the predictive performance of that specific
model since they were not used to build the model.

Importantly, CRFs also provide a linguist with the so-called conditional variable
importance scores, which show how important each variable is, taking into account
all others and their interactions. To compute this measure for a predictor, the
algorithm averages the results from many trees and measures the decrease in
prediction power if one randomly permutes the predictor. If a predictor is associated
with the response strongly, there will be a substantial decrease in prediction
accuracy. More exactly, a conditional permutation method is applied, as described
by Strobl et al. (2008). For example, if Y is the response, and X and Z are categorical
predictors, the dependence between Y and X is measured within the levels of Z.
Let us revisit the example with the dative alternation. Imagine we are testing two
predictors: information status of the Recipient (given or new) and the semantics
of the Recipient (animate or inanimate). In order to compute the conditional
importance of X (information status) given Z (semantics) in an individual tree, we
will reshuffle the value of X within the levels of Z, as shown in Table 25.2. Next, we
will test how much worse the individual conditional tree with the permuted data will
predict the observed scores of the response variable in comparison with the original
data. The conditional importance score of X for the entire forest is computed as an
average over all trees. One can use the OOB samples or the training data for this
task.

25.2.5 CITs and CRFs Compared with Other Recursive
Partitioning Methods

The methods described in this chapter belong to a large family of recursive parti-
tioning methods used for regression and classification. Other approaches include
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Table 25.2 Conditional permutation scheme: an example

ID of observation Response

Observed X
(information status
of Recipient) Permuted X|Z

Predictor Z
(semantics of
Recipient)

1 To-dative New Given Animate
2 DO New New Animate
3 To-dative Given New Animate
101 DO New Given Inanimate
102 To-dative Given Given Inanimate
103 DO Given New Inanimate
. . . . . . . . . . . . . . .

CART (Classification And Regression Trees), CHAID (CHi-squared Automatic
Interaction Detector), and QUEST (Quick, Unbiased and Efficient Statistical Tree).
An overview of these methods can be found in Loh (2014).

One of the main differences of CITs from the other approaches is that the
p-values are used as a stopping criterion and for choosing the next split (see
Sect. 25.2.4.1). This enables one to compare the predictors at difference scales of
measurement. The other well-known methods use other criteria, e.g. minimization
of impurity in the nodes (the so-called Gini impurity measure) in CART. One of
the consequences of using a statistical significance testing criterion is the decrease
in statistical power as more and more splits are made in the data. As a result,
overfitting is avoided. This approach is quite convenient in practice because it does
not require pruning, i.e. removal of the low branches that do not contribute to
the predictive power of a tree (see Kuhn and Johnson 2016: 177–178). However,
statistical hypothesis tests are not directly related to the predictive performance
of the model and ‘cleanliness’ of the nodes. This should be kept in mind when
comparing the results of a CIT with results of a different recursive partitioning
method.

Another important difference is that the CIT algorithm separates the steps of
variable selection and making of a split, whereas most other methods merge this
in one step. As a result, the variables with multiple splits (e.g. categorical variables
with many different values) do not have advantages in comparison with the variables
with few splits. The same holds for predictors with missing values.

As for CRF, the best known alternative is probably Breiman’s (2001) random
forests (see R package randomForest). An important distinctive feature of CRFs
is that one can compute the conditional variable importance measures, which have
some advantages in comparison with non-conditional ones (Strobl et al. 2008).
Namely, they do not have a bias towards correlated predictors. If X is a real predictor
and Z is a spurious one, and X and Z are correlated, the importance value of Z will
increase if a traditional non-conditional method is used. This undesirable effect can
be avoided if one uses the conditional permutation schema as described in Sect.
25.2.4.2. A disadvantage of conditional variable importance, however, is that it is
computationally intensive.
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Another difference between CRFs and other ensemble methods concerns the
computation of predicted values. In many popular random forest algorithms, the
predicted values are an aggregation of predictions from each individual tree (i.e. the
mean predicted value or the most popular predicted outcome). In contrast, CRFs
make predictions by retaining information about individual observations in each
tree (see Sect. 25.2.4.2). As a result, terminal nodes with many observations play a
greater role because they provide more data points for this calculation.

The conditional inference approaches do not always outperform the other
approaches in terms of prediction or explanation. For example, CART-based random
forests sometimes provide better predictive power than CRFs (Kuhn and Johnson
2016: 200–201). One can also obtain similar results when using alternative, less
computationally intensive methods, such as CART. The conditional inference
framework has been preferred in linguistic studies for two main reasons. First, it
provides realistic estimates of variable importance of highly correlated predictors.
Second, it avoids overfitting the data. A systematic comparison of the available
methods and their practical advantages for corpus linguistics remains a task for
future research.

25.2.6 Situations When the Use of CITs and CRFs May Be
Problematic

There is no universal statistical method that can be used in all circumstances. CITs
and CRFs are no exception to this rule. There are several cases where one might
prefer to use a different method or perform additional checks.

Paradoxically, although CITs can be more successful than regression models in
tricky situations, e.g. with non-linear patterns and high-order interactions, which
involve more than two predictors, CITs may be quite useless in very simple
situations, i.e. when the relationships between the response and the predictors are
linear (i.e. directly proportional) and additive (i.e. there are no interactions). As an
illustration, consider Fig. 25.2. This tree represents an attempt of a CIT to analyse
the relationships between a numeric response variable y and predictors x1 and x2,
which were randomly generated from the normal distribution. The response variable
was created using the following linear regression formula:

(1) y = 0.7 + 5.4 x1–2.8 x2 + ε

where ε contained random normally distributed errors. The predictors do not
interact and the relationship between them and the response variable is linear. One
can see that the tree presentation is not very helpful in modelling these simple
relationships. It creates an illusion of interactions that are not present in the data.
Moreover, the numeric predictors are split multiple times, which masks the linear
relationships between them and the response variable. A multiple regression model
would be a much better choice in such cases (see Chap. 21).

http://dx.doi.org/10.1007/978-3-030-46216-1_21
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Fig. 25.2 A conditional inference tree model of data with a simple linear additive relationship
between two continuous predictors and a continuous response variable

Table 25.3 Distribution of imaginary corpus data of differential argument marking

Role = Subject
Response = marked Response = unmarked

Semantics = animate 5 20
Semantics = inanimate 20 5
Role = object

Response = marked Response = unmarked
Semantics = animate 19 6
Semantics = inanimate 5 20

Moreover, CITs can run into problems when some predictors have a strong
crossover interaction. As an illustration, consider Table 25.3, which contains
imaginary corpus counts of different subjects and objects in a language with
differential subject and object marking. The response variable reflects the presence
of case marking: marked or unmarked. There are two interacting predictors of case
marking: the semantic class (animate or inanimate) and syntactic role (subject or
object). If the argument is a subject, it is usually unmarked when it is animate and
marked when it is inanimate. As for objects, it is the other way round, which is why
we can speak of a near-perfect crossover interaction.

When one fits a logistic regression model by using the lrm function in the rms
package (Harrell Jr 2017), one obtains the coefficients shown in Table 25.4. The
interaction term is highly significant. Figure 25.3, which visualizes the interaction
with the help of the package visreg (Breheny and Burchett 2016), demonstrates
that the effect of semantics is almost perfectly reverse for subjects and objects.
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Table 25.4 The coefficient table of a logistic regression model based on the data in Table 25.3.
Positive coefficients: increased likelihood of the marked form; negative coefficients: increased
likelihood of the unmarked form

Term Coefficient SE Wald Z P-value

Intercept −1.39 0.5 −2.77 0.0056
Semantics = inanimate 2.77 0.71 3.92 <0.0001
Role = object 2.54 0.69 3.71 0.0002
Semantics = inanimate: Role = object −5.31 0.98 −5.4 <0.0001

Fig. 25.3 Cross-over interaction between semantics and syntactic role in imaginary corpus data
of differential argument marking

In such cases, CITs may be unable to identify any splits. Figure 25.4 displays the
result of a CIT analysis with the default settings. It only contains a bar plot with the
marginal proportions of the response categories. No splits are made. The method
thus fails to uncover the underlying relationships between the predictors and the
response.

Moreover, simple CITs may be unstable even when small changes in the data
are made (Strobl et al. 2009; Kuhn and Johnson 2016: 174), especially if the model
contains numerous correlated predictors. This is why individual trees need to be
complemented by a random forest analysis, which aggregates the results from many
individual trees (see an example in Sect. 25.3).

CRFs have their pitfalls, as well. One of them is skewed response. Random
forests of any kind do not predict very well when the response is very skewed
(although other methods, e.g. logistic regression, can experience problems, as well).
For example, if the proportions of two outcomes are 98% and 2%, it is possible to



622 N. Levshina

Fig. 25.4 A bar plot
representing the tree model
with zero splits for the data in
Table 25.3

achieve 98% classification accuracy just by assigning the more frequent category. It
will be difficult to find the predictors that perform better than this (Berk 2006). As
a result, the predicted frequency of the rare category may be zero, i.e. the model
will not discriminate between the categories. In such situations, one can try to
‘upsample’ the small category and/or ‘downsample’ the large one in order to make
the distribution more balanced. Note, however, that the interpretation of the p-values
in the trees becomes problematic in that case because the statistical power of the
independence tests will change in comparison with the original sample.

As mentioned in Sect. 25.2.2, both CITs and CRFs have a problem with
dependent observations, e.g. multiple examples from the same author, text or
corpus segment. In such situations, one normally uses mixed-effects regression
modelling (see Chap. 22). Some studies have treated the grouping factor as one
of the predictors (e.g. Tagliamonte and Baayen 2012). However, this is not a perfect
solution. First, CITs are based on the permutation framework which measures
the association between the response and a predictor by permuting the response
variable, without taking into account the levels of the grouping factor (see Sect.
25.2.4.1). Therefore, the information about the dependence of the data points is lost.
Moreover, it is not clear how to use the same model with the grouping factor as a
covariate on new data, where the grouping categories (e.g. texts or subcorpora) will
be different. The model will therefore lose generalizability. Finally, as Baayen et al.
(2013) demonstrate, the recursive partitioning methods do not perform very well
when the grouping factor has many levels. In such cases, a mixed-effects model is
the best choice.

http://dx.doi.org/10.1007/978-3-030-46216-1_22
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Finally, one can have computational problems when growing CRFs and com-
puting conditional variable importance on very large datasets. One can run out of
memory, or it may take the algorithm a very long time to complete the computations.
Moreover, there is danger that the trees may become too large and overfit the data.
In that case, it is sometimes recommended to increase the minimum criterion, e.g.
from 0.95 to 0.99.

From all this, it follows that CITs and CRFs should be applied in tandem in order
to counterbalance their strengths and weaknesses, and preferably in combination
with other methods, most importantly, fixed-effects or mixed-effects (generalized)
linear regression models (see Chaps. 21 and 22).

Representative Study 1

Tagliamonte, S., and Baayen, R.H. 2012. Models, forests and trees of
York English: Was/were variation as a case study for statistical prac-
tice. Language Variation and Change 24(2):135–178. doi:https://doi.org/
10.1017/S0954394512000129.

Research question
The study investigates the factors that determine variation between was and
were in plural past tense existential constructions in York English, as in There
was/were a lot of people.

Data
The data come from a corpus of spoken York English at the turn of the
twenty-first century. All plural past tense existential constructions (e.g. There
was/were + PL noun) were extracted. The dataset contains 489 tokens from
83 individuals. Nine covariates are tested, which represent such social factors
as the sex, age and education level of the speakers, and such linguistic factors
as polarity, type of determination and proximity of the copula to its referent.

Methods
The paper utilizes fixed-effects and mixed-effects logistic models, as well as
CITs and CRFs, where the speakers’ IDs are added as a covariate.

Results
The CRFs provides the best prediction. The most important predictors are
the speaker’s age, polarity, type of determination and proximity. There is also
very substantial interspeaker variation. The CIT reveals that linguistic and
social factors play a role only for a subset of speakers. For that subset, the
non-standard form was is more likely to occur in affirmative contexts than in
negative ones. Further, the differentiation by age is only relevant in affirmative
contexts. Younger speakers are more likely to use was than the older speakers.

http://dx.doi.org/10.1007/978-3-030-46216-1_21
http://dx.doi.org/10.1007/978-3-030-46216-1_22
http://dx.doi.org/10.1017/S0954394512000129
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Representative Study 2

Szmrecsanyi, B., Grafmiller, J., Heller, B., and Röthlisberger, M. 2016.
Around the world in three alternations: Modeling syntactic variation
in varieties of English. English World-Wide 37(2):109–137. doi: https://
doi.org/10.1075/eww.37.2.01szm.

Research questions
This study focuses on three alternations in different geographic varieties of
English: the dative alternation, the genitive alternation and variation in particle
placement. The lects include two native varieties (Great Britain and Canada)
and two non-native varieties (India and Singapore). The research questions
are as follows:

1. Do the varieties of English share a core probabilistic grammar?
2. Is there a split between the native and non-native varieties of English?
3. Do the alternations under study differ in terms of their probabilistic

sensitivity to variety effects?

Data
The authors extract tokens of the alternations from the relevant components of
the International Corpus of English. In addition, some frequency information
was collected from the GloWbE corpus. Relevant predictors were coded
manually.

Methods
For each of the three alternations, Szmrecsanyi et al. modelled the data
using conditional inference trees. The varieties of English were tested as a
categorical variable. Next, they performed conditional random forest analysis
and computed the conditional variable importance scores of the predictors. In
addition, in order to interpret the results of the CFR analysis of the particle
placement, predicted probabilities of the alternating variants were computed
for different language varieties.

Results
The results are as follows:

1. The directions of the effects of the contextual variables are stable across the
varieties in all three alternations, although there are quantitative differences
with regard to the effect size.

2. As for the second research question, the data provide no conclusive results.
3. The particle placement alternation exhibits the most robust variety effects,

and the genitive alternation the least. The authors explain this finding by

(continued)

http://dx.doi.org/10.1075/eww.37.2.01szm
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the fact that the particle placement alternation is more tightly associated
with specific lexical items (i.e. verb slots), which makes cross-varietal
indigenization effects more likely.

25.3 A Practical Guide with R

25.3.1 T/V Forms in Russian: Theoretical Background
and Research Question

This case study is a part of a larger project on European T and V politeness forms
(Levshina 2017), which represent different degrees of politeness in addressing the
Hearer, e.g. French tu and vous, German du and Sie, Russian ty and vy, usually
accompanied by a corresponding verb form. This cross-linguistic study is based
on the parallel corpus of film subtitles called ParTy.3 The observations come
from several films of different genres (see below). Since standard English has no
politeness distinctions in the second person, the translators of subtitles to languages
with the T/V distinction have to choose between these forms. This may be a difficult
thing to do because the norms of T/V use are multifactorial and fluid.

According to Brown and Gilman (1960), the politeness forms in European
languages can be described in terms of two dimensions: power and solidarity. Power
means the ability of one person to control the behaviour of another one. In a one-to-
one interaction, the participant with greater power addresses the participant with less
power using T, while the participant with less power uses V. The power dimension
used to play an important role earlier, but has been gradually replaced by solidarity
semantics, with T for intimate communication, e.g. between family members and
friends, and V for formal communication. Virtually any characteristic, e.g. gender,
age, hobbies, political beliefs and even physical appearance (e.g. dreadlocks or
tattoos) can be a basis for the perception of solidarity. See Levshina (2017) for an
overview of these and more recent ideas. In what follows, we will discuss which
factors influence the use of the Russian T and V forms, which are ty (second person
singular) and vy (second person plural), respectively.

3Available at https://github.com/levshina/ParTy-1.0. Accessed 22 May 2019.

https://github.com/levshina/ParTy-1.0
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25.3.2 Data: Film Subtitles

The data for the present study come from online subtitles of nine popular
films of different genres. The films are displayed in Table 25.5. The meta-
information about the year and genres is taken from the International Movies
Database.4

The data set for the study was created as follows. First, 228 interactive contexts
with the pronouns you or yourself were identified in the English data. All plural
references were excluded. Their translations were found in ten other languages,
including Russian. It is important to mention that one should speak about T/V
forms, rather than about T/V pronouns because there are many examples when
the verb form is the only clue that helps us to distinguish between T and V.
Consider an example in (2) from Russian, where the first T form has no explicit
pronominal subject, while the second one has both the pronoun and the verb
form.

(2) Duma-ješ, ona tut? Ty ošiba-eš-sja.

think-PRES.2SG she here you.NOM be.mistaken-PRES.2SG-REFL5

“Do you really think she’s here? You’re mistaken.”

25.3.3 Variables

The film situations with you or yourself were coded for 16 variables, which are
presented in Table 25.6.

Table 25.5 Films represented in the data set

Film Year Genres

Avatar 2009 Action, adventure, fantasy
Black Swan 2010 Drama, thriller
Bridge of Spies 2015 Drama, history, thriller
Frozen 2013 Animation, adventure, comedy
Inception 2010 Action, adventure, sci-fi
Spectre 2015 Action, adventure, thriller
The Grand Budapest Hotel 2014 Adventure, comedy, crime
The Imitation Game 2014 Biography, drama, thriller
The Iron Lady 2011 Biography, drama, history

4www.imdb.com. Accessed 22 May 2019.
5The abbreviations stand for the following. 2SG: second person singular; NOM: Nominative case;
PRES: Present tense; REFL: Reflexive.

http://www.imdb.com/
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Table 25.6 Variables for the case study of T/V forms

Name Meaning Values

Relational (dyadic) variables
Rel_Age Whether the hearer is older or

younger than the speaker
“Same”, “Older” or “Younger”

Rel_Power Whether there is power asymmetry
between the participants in general
or in the given situation, e.g. a
parent and a child, a general and a
soldier, a boss and his/her employee

“Greater” (the hearer has power
over the speaker), “less” (the
speaker has power over the hearer)
or “equal”

Rel_Class The social class difference in the
dyad

“Higher” (the hearer belongs to a
higher social class than the
speaker), “lower” (the hearer
belongs to a lower social class than
the hearer) or “equal”

Rel_Sex The sex of the speaker and the
hearer

“F_F” (female speaker and female
hearer), “F_M” (female speaker and
male hearer), “M_F” (male speaker
and female hearer) and “M_M”
(male speaker and male hearer)

Rel_Circle The social circle to which the
speaker and the hearer belong

“Fam” (family), “Fri” (friends),
“Rom” (romantic partners), “Work”
(colleagues at work), “Str”
(strangers) and “Acq”
(acquaintances)

Speaker-related and hearer-related variables
S_Age, H_Age The Speaker’s age, the Hearer’s age “Child” (younger than 18), “Young”

(approximately 18–35), “Middle”
(approximately 35–60), “Old”
(approximately older than 60)

S_Class, H_Class The Speaker’s social class, the
Hearer’s social class

“Upper” (top-rank politicians and
civil servants, owners of
multinational corporations, etc.),
“Middle” (white-collar workers,
small business owners, military
officers, etc.), “Lower” (blue-collar
workers, servants, etc.) and “Other”
(aliens, animals, as well as
gangsters, tramps, prostitutes and
other declassed elements)

S_Sex, H_Sex The Speaker’s sex, the Hearer’s sex “M” or “F” (there were no
transgenders in the data)

(continued)
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Table 25.6 (continued)

Name Meaning Values

Variables describing the communicative settings
Others The presence of other people who

could hear the speaker
“Yes” or “No”

Office Whether the interaction takes place in
an office, a government building,
prison, school, etc.

“Yes” or “No”

Before68 Whether the action takes place before
1968

“Yes” or “No”

Place Where the action of the film takes
place

“UK” (in the United Kingdom, “US”
in the USA, “Fictive” (in an
imaginary world), “Global” (in
different parts of the world),
“Europe” (somewhere in Europe)

Other variables
Film The film See film titles in Table 25.5.

The dataset and R code (25_CIT_RF.r) are provided in the supple-
mentary materials. In order to access the data, the comma-separated file
25_CIT_RF_tv.csv should be first saved locally in a directory on your
computer. Next, you should read it in R as a data frame called tv. One of the
ways to do so is to choose the file interactively, as shown below.

#read the data in R, choosing the file interactively

tv <- read.csv(file = file.choose())

25.3.4 Software

At the moment of writing, there are two add-on packages in R, in which conditional
inference trees and random forests are implemented. One is party and the other
one is partykit. The latter is a more recent version, which contains a new
improved procedure for CITs. There are also some differences in the R syntax. The
package partykit is still under development, though, and some functionalities
available in party cannot be used at the moment in partykit. For example,
one cannot use the Monte-Carlo resampling method of permutation. Only the
default asymptotic method can be used. This is why the R code provided in the
supplementary materials is based only on the functions from party. You will also
need two other add-on packages: Hmisc and pdp. The packages should be first
installed, as shown below.
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install.packages(c("party", "Hmisc", "pdp"))

library(party)

library(Hmisc)

library(pdp)

25.3.5 Conditional Inference Tree

In order to fit a CIT, the function ctree() should be used:

#fit a CIT

tv.cit <- ctree(Form ∼ ., data = tv)

The code, which uses the default settings, is identical to the following line:

#Identical to:

tv.cit <- ctree(Form ∼ ., data = tv, controls =

ctree_control(teststat = "quad",

testtype = "Bonferroni",

mincriterion = 0.95,

minsplit = 20,

minbucket = 7))

The default settings, which are recommended in most cases, can be changed, if
necessary, in ctree_control():

• quadratic test statistic teststat = "quad". If necessary, one can use
teststat = "max";

• use of p-values with the Bonferroni correction testtype = "Bonferroni".
Alternatively, one can use testtype = "MonteCarlo", which performs
actual reshuffling of the data the number of times specified by nresample
(9999 by default). It may be useful to try both the default test and run the Monte-
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Carlo simulation and compare the results. Note, however, that the permutation
may take a while if the dataset is large and the number of replications is high.
In principle, it is also possible (but not advisable, unless the user knows well
what she or he is doing) to take the p-values without the Bonferroni correction
(testtype = "Univariate") or to use the test statistics themselves
instead of the p-values (testtype = "Teststatistic");

• 0.95 as the minimal 1 – p value needed to implement a split, defined by
mincriterion = 0.95. If no p-values are computed, then this hyperparam-
eter specifies the minimum score of the test statistic. In some situations, it may
be useful to change this setting. For example, fitting a tree with a lower minimal
criterion may be useful in a pilot study performed for exploratory purposes;

• minimum 20 observations in a node for a split to be considered, specified by
minsplit = 20;

• according to the default settings, there should be at least seven observations in
one node after a split, minbucket = 7.

In order to see the tree, one can use the following simple code:

plot(tv.cit)

Figure 25.5 shows an individual CIT fitted to the data with the help of
ctree().The plot should be interpreted from the top down. The top split (Node
1) is made in the variable Rel_Circle. This means that the predictor is the most
important one with regard to the use of ty and vy. The variable selection criteria (i.e.
1 – p) can be obtained with the help of the function node(). Only the first seven
predictors are shown:

Check the variable selection criteria for Node 1:

nodes(tv.cit, 1)[[1]]$criterion$criterion

#Film Rel_Age Rel_Sex Rel_Power Rel_Circle

#0.999800767 0.951730359 0.846906561 0.093920867 0.999999960
#S_Class H_Class

#0.963888397 0.481392221

The data are then split in two subsets. The one on the left includes the situations
when the Speaker and the Hearer are friends, family members or romantic partners.
These contexts are not split further and constitute together a terminal node (Node 2)
with 45 observations. As one can see from the bar plot in that node, the proportion of
ty is very high in those contexts. The right-hand branch from the top node represents
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Fig. 25.5 CIT based on the Russian T/V data

the situations when the Speaker and the Hearer are colleagues, acquaintances or
strangers. Further splits are made in these contexts. The first split is made in H_Age
(Node 3). Let us first look at the right-hand branch, which includes middle-aged
and old Hearers, and the resulting terminal Node 7. The proportions in the bar plot
show that these contexts are characterized by a high chance of vy. No more splits
are made here. As for the left-hand branch from Node 3, which includes the Hearers
who are younger or have no human age at all (like magic creatures), then the relative
social class (Rel_Class) plays a role, and another split is made (Node 4). If the social
classes of the Speaker and Hearer are not equal, then the V form is slightly preferred
(see the proportions in Node 5). If the Hearer and the Speaker belong to the same
class or the class is not identifiable, the T form is strongly preferred (Node 6).

Since there are two non-final, internal splits in the tree, it may be difficult to
interpret them in terms of proportions of T and V. To facilitate the interpretation of
those splits, one can create bar plots with proportions in each node, including the
inner ones:

plot(tv.cit, inner_panel = node_barplot)
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Fig. 25.6 CIT with bar plots in the inner nodes

Such a plot is shown in Fig. 25.6. One can compare, for example, the proportions
of T and V after the first split, looking at the terminal Node 2 and the inner Node
3. The bar plots show clearly that the proportion of V is greater in Node 3 than in
Node 2.

It is also easy to obtain the proportions of T and V in an inner or terminal node
by using the function nodes(). For example, for Node 2 these proportions are as
follows:

#obtain the proportions of T and V in Node 2

nodes(tv.cit, 2)[[1]]$prediction

#[1] 0.8888889 0.1111111 #proportion of T and proportion of V

Finally, we need to estimate how well the tree fits the data. A popular measure for
classification tasks is accuracy, which is defined as the number of correct predictions
divided by the total number of observations.
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#compute the predicted(fitted) values

pred.cit <- predict(tv.cit)
#cross-tabulate the observed and predicted values

table(pred.cit, tv$Form)

#pred.ctree ty vy

# ty 75 15

# vy 33 105
#compute the proportion of correct predictions

(75 + 105)/228

#[1] 0.7894737

The accuracy is 0.79. Another popular measure, which can be used for binary
response variables, is the C-index. It shows the proportion of times when the
randomly sampled observation with outcome A also has a higher probability of
A predicted by the model than a randomly sampled instance of B. It ranges
from 0.5 (the model does not discriminate between the outcomes) to 1 (perfect
discrimination).

#create a vector of predicted probabilities

prob.cit <- unlist(predict(tv.cit, type = "prob"))

[c(FALSE, TRUE)]
#compute the C-index using a function from the Hmisc package

somers2(prob.cit, as.numeric(tv$Form) - 1)

# C Dxy n Missing

# 0.8092593 0.6185185 228.0000000 0.0000000

The C-index of our model is 0.81. One can use the same rule of thumb as the
one for logistic regression models. Namely, a model has acceptable discrimination
between the response categories if C is higher than 0.7, good if it is above 0.8, and
excellent if it is above 0.9.
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25.3.6 Conditional Random Forest

This subsection demonstrates how one can grow a CRF, compute the conditional
variable importance scores, and visualize the partial effects of relevant predictors on
the choice between ty and vy. There are numerous hyperparameters that should be
set before a forest is grown:

• ntree, which specifies the number of trees in the ensemble (500 by default).
According to Strobl et al. (2009), one needs many trees when the number of
predictor variables is large, in order to give each variable a chance to occur in
enough trees;

• mtry, which specifies the number of predictors randomly selected for each
individual tree. For some technical reasons, mtry = 5 by default. One often
sees a recommendation to use the square root of the total number of predictors.
In the presence of many intercorrelated predictors, is may be useful to try a
larger value, so that each variable occurs in a sufficient number of trees, and
its importance is not due to some random variation (Strobl et al. 2009);

• sampling with replacement (replace = TRUE) or without replacement
(replace = FALSE). Traditional random forests use bootstrap, i.e. sampling
with replacement (see Chap. 24). According to Strobl et al. (2007), only
subsampling without replacement can guarantee unbiased variable importance
measures. This is particularly important when a) categorical and continuous
variables are combined, and b) there are categorical variables with different
number of categories;

• various parameters of the individual trees (see Sect. 25.3.5).

These hyperparameters can be specified with the help of different con-
trols. Some default settings are implemented in cforest_unbiased and
cforest_classical, which have the same defaults as cforest_control.
The default settings in cforest_unbiased reproduce the approach in Strobl
et al. (2007), who use subsampling without replacement instead of commonly
accepted bootstrapping with replacement (replace = FALSE). In that case,
the algorithm builds a tree based on a random sample 0.632 times the size of
the original dataset. The number can be changed with the help of the parameter
fraction. This approach also uses teststat = "quad" and testtype =
"Univariate". The behaviour of cforest_classical, in contrast, mimics
the algorithm in randomForest in the eponymous package (Liaw and Wiener
2002) and has the following default settings: testtype = "max", testtype
= "Teststatistic", mincriterion = qnorm(0.9), which equals
approximately 1.28 (a type of z-statistic), and replace = TRUE.

In our data, we have categorical variables with the number of values rang-
ing from two to nine. Following the conclusions made by Strobl et al. (2007)
about the optimal way of treating such diverse predictors, we use the unbiased
approach and will use subsampling without replacement. The default settings of

http://dx.doi.org/10.1007/978-3-030-46216-1_24
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cforest_unbiased are taken, with the exception of mtry = 4 (the square
root of the total number of predictors) and ntree = 2000.

#set the random seed if you want to reproduce the

#results presented in this chapter

set.seed(61)

tv.crf <- cforest(Form ∼ ., data = tv,

controls=cforest_unbiased(mtry = 4, ntree = 2000))

Next, we compute the conditional variable importance scores. By default,
the unconditional scores are computed by varimp(). To change that, add
conditional = TRUE.

set.seed(23)
#compute the conditional variable importance scores. This may

#take a while, depending on the number of trees

#and the size of the dataset

tv.varimp <- varimp(tv.crf, conditional = TRUE)
#create a dot chart with varimp scores

dotchart(sort(tv.varimp), xlab = "Conditional variable
importance")
#add a vertical line to separate important scores from
#unimportant ones

abline(v = abs(min(tv.varimp)),

lty = 2, lwd = 2, col = "red")

Figure 25.7 displays a dot chart with the sorted values. The horizontal axis
represents the conditional variable importance for each predictor, i.e. the average
decrease in the OOB prediction accuracy when this predictor is permuted using
the conditional approach described in Sect. 25.2.4.2. The red line separates the
important scores from the unimportant scores. Note that unimportant predictors
fluctuate randomly around zero, with positive or negative values. Negative values
appear when the randomly permuted versions of a predictor tend to be better than
the original one. The rule of thumb is to take the absolute minimum value as a cut-
off point. Note that the importance scores should only be interpreted with regard
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Fig. 25.7 Conditional
variable importance scores of
the CRF based on Russian
T/V data

to their ranking, and not as absolute values. It would be a mistake to compare the
scores across different models and data.

The plot in Fig. 25.7 demonstrates that the variable Rel_Circle is the most
important predictor. It is followed by the difference in the social class (Rel_Class)
and the Hearer’s age (H_Age). Recall that these three variables were also the ones
that played a role in the CIT. Also, the individual differences between the films
(Film) play a role. One can attribute that to some pragmatic variables that our
course-grained schema does not take into account, or to the translators’ individual
preferences. The place where the action is developing (Office and Place) is of some
importance, as well, followed by the Speaker’s social class and age (S_Class and
S_Age). The age differences (Rel_Age), time period (Before68) and the presence of
others (Others) are only marginally important. Interestingly, the sex of the Speaker
and Hearer seems to play hardly any role. The individual power relationships do not
matter, either.

It is also necessary to evaluate how well the model discriminates between T and
V. As was mentioned in Sect. 25.2.4.2, one can use the learning samples and the
OOB samples (i.e. those left out during the bootstrap sampling or subsampling).
The OOB value is usually more realistic and is closer to the result one can find on
new data or during cross-validation. The measures based on the learning samples
can be naive and over-optimistic estimates of the error rate (Strobl et al. 2009). By
default, the training sample is used. To change that, one should add OOB = TRUE
in predict().
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#measures based on the OOB sample

#get predicted (fitted) values

pred.crf.oob <- predict(tv.crf, OOB = TRUE)
#cross-tabulate the predicted and observed values

table(pred.crf.oob, tv$Form)

#pred.rf ty vy

#ty 80 24

#vy 28 96 #compute the proportion of correct predictions
(accuracy)

(80 + 96)/228

#[1] 0.7719298 #compute the predicted probabilities

prob.crf.oob <- unlist(predict(tv.crf,

type= "prob", OOB=TRUE))[c(FALSE, TRUE)]
#compute C using a function from the Hmisc package

somers2(prob.crf.oob, as.numeric(tv$Form) - 1)

#C Dxy n Missing

#0.8689815 0.7379630 228.0000000 0.0000000
#for comparison, measures based on the learning sample:
pred.crf.train <- predict(tv.crf, OOB = FALSE)
table(pred.crf.train, tv$Form)

#pred.rf ty vy

# ty 92 8

# vy 16 107 (92 + 107)/228

#[1] 0.872807 #accuracy based on the learning sample
prob.crf.train <- unlist(predict(tv.crf,

type = "prob"))[c(FALSE, TRUE)]
somers2(prob.crf.train, as.numeric(tv$Form) - 1)

#C Dxy n Missing

#0.9507716 0.9015432 228.0000000 0.0000000
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Fig. 25.8 Classification accuracy and C-indices of the unbiased and classical methods for different
mtry based on the TV data

In our case, the learning sample accuracy is 0.87, and the corresponding C-index
is 0.95. As expected, the OOB measures are lower: the OOB accuracy is 0.77, and
the OOB C-index is 0.87. The OOB accuracy of the CRF is rather low, even in
comparison with the accuracy of the CIT presented in Sect. 25.3.5. This may be due
to the difference in the roles of the unbiased approach and the classical method. The
unbiased approach with subsampling aims at providing the fairest evaluation of the
variable importance, while the classical approach with bootstrapping is particularly
good in prediction. Figure 25.8 illustrates the differences in the C-values and
accuracy scores between the two methods for different values of mtry, i.e. the
number of randomly sampled predictors. For most values of mtry, the classical
method outperforms the unbiased approach in terms of predictive power. These
results also demonstrate that it is useful to try different values of mtry and other
settings. It is also recommended to run different models with different random seeds,
in order to see whether the results are stable. In our case, as an inspection of several
individual models suggests, the top 5 most influential variables remain the same.
The differences appear in the order of low-importance predictors. This is a usual
result.

25.3.7 Interpretation of the Predictor Effects: Partial
Dependence Plots

Unfortunately, the CRF does not return information similar to regression coeffi-
cients, which would enable us to interpret the effects of individual variables on the
response. Instead, one can use partial dependence plots, which can help to visualize
the relationships between different values of the predictors and the response while
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accounting for the average effect of the other predictors in the model. The plots
shown here are created with the help of the package pdp (Greenwell 2017).

#Figure 9a: predictor "Rel_Circle"

pdp_circle <- partial(tv.crf, "Rel_Circle", prob = TRUE)

plotPartial(pdp_circle, main = "Rel_Circle")
#Figure 9b: predictor "Office"

pdp_office <- partial(tv.crf, "Office", prob = TRUE)

plotPartial(pdp_office, main = "Office")

The left-hand plot in Fig. 25.9 displays the effects of Rel_Circle on the
probability of ty. The vertical axis (‘y-hat’) corresponds to the average predicted
probability of the T form for each value of the predictor. In order to understand
better what the y-hat values represent, take the value “Acq” as an example. The
algorithm copies the original dataset and replaces all original values of Rel_Cicle
with “Acq”. Next, the predicted values are computed for each of the observations.
Finally, the average predicted probabilities are computed. This procedure is repeated
for all other values of the predictor (i.e. “Fam”, “Fri”, etc.). As a result of this
procedure, one can obtain the average predicted probabilities that can be directly
compared with each other because the remaining predictors in the dataset have the
same values. It is also possible to obtain the predicted log-odds of the outcomes (see
Chap. 21) instead of probabilities (not shown here).

The plot suggests a cline of (in)formality or intimacy/distance shown in (3):

(3) Family – Friends – Romance – Work – Acquaintances – Strangers

The more to the left, the higher the probability of the T form.
The right-hand plot shows the effect of Office, which has not been found on

the tree. Being in an office increases the chances of vy. Note, however, that the
difference is very small.

Other plots, which are not shown here, reveal that the probability of ty is higher
in Avatar, Black Swan, Frozen and Inception than in the other films. The model also
predicts a higher proportion of ty when the action takes place in the US or in a fictive
world than in the other places. The probability of ty is the highest when the Speaker
does not belong to any social class, and the lowest when an upper-class person is
speaking. As for the Speaker’s age, young people, children and magic creatures tend
to use ty more often than old people, while middle-aged people are the one who are
the most likely to use vy. The V form is also more probable when in the presence of
other people and before 1968.

http://dx.doi.org/10.1007/978-3-030-46216-1_21
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Fig. 25.9 Examples of
partial dependence plots.
Left: Rel_Circle; right: Office

25.3.8 Conclusions and Recommendations for Reporting
the Results

The case study of T/V forms in Russian has revealed that the solidarity dimension
is the strongest one. There is little evidence of the power dimension playing a role.
Even the asymmetric variables (e.g. Rel_Class) are in fact more related to solidarity
than power: if the communicators belong to the same class or do not belong to any
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class at all, as magic creatures, the T form is preferred. The translators’ perception
of different places and time periods as involving more or less formal communication
is reflected in the choice of ty and vy, as well.

When reporting the results, one should include the following information:

• an individual tree (cf. Figure 25.5) and a verbal description of the splits made
(see Sect. 25.3.5);

• conditional variable importance scores of the forest (e.g. in the form of a plot, as
in Fig. 25.8) and a description (see Sect. 25.3.6);

• measures of predictive accuracy and goodness of fit of the tree and forest (in the
latter case, it is preferable to report the statistics based on the OOB samples).
For example, one can write the following: “The predictive power of the models
is safisfactory. The CIT has the classification accuracy of 0.79 (with the baseline
value of 0.51), whereas the concordance index C is 0.81. As for the CRF, its
out-of-bag classification accuracy is 0.77, and the out-of-bag C is 0.87.”

One also needs to mention in the Methods section the R package and the
hyperparameters that were used to grow the trees and forests. For more general
info about how to report the results of a quantitative corpus-based study, see also
Chap. 26.

To summarize, CITs and CRFs are very flexible and convenient tools that can
be used in many situations when traditional parametric methods will fail. They
provide easily interpretable results and do not require a tedious check of numerous
assumptions. However, these methods may be misleading in some special cases
and therefore must be used in a combination with other methods, most importantly,
mixed-effects logistic models (see Chap. 23). There remain a few open questions.
First of all, we need to have a more generalizable and appropriate way of dealing
with the situations when the observations are not independent. Such situations are
very common in corpus linguistics. In fact, this is a matter of ongoing research
(Torsten Hothorn, p.c.), so hopefully we will see some important innovations in the
near future. Second, the software is currently in a state of flux. We still have to wait
until all functionalities that are available in the R package party are implemented
in the optimized R package partykit.

Further Reading

Strobl, C., Malley, J., and Tutz, G. 2009. An introduction to recursive partition-
ing: Rationale, application, and characteristics of classification and regres-
sion trees, bagging, and random forests. Psychological Methods 14(4):323–
348. doi:10.1037/a0016973.

This paper can be useful to those interested in the statistical details. It contains an
excellent introduction to recursive partitioning methods. One can find the main prin-
ciples of recursive partitioning, its advantages and methodological improvements,
but also its limitations and pitfalls. The R code is provided, as well.

http://dx.doi.org/10.1007/978-3-030-46216-1_26
http://dx.doi.org/10.1007/978-3-030-46216-1_23
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Kuhn, M. & Johnson, K. 2016. Applied Predictive Modeling. New York:
Springer.

This book (more specifically, Chap. 8) can be recommended to those who want
to get a broader perspective on different popular recursive partitioning methods,
including CITs and CRFs. The similarities and differences between these methods
are discussed.

Baayen, R.H., Endresen, A., Janda, L.A., Makarova, A., and Nesset, T. 2013.
Making Choices in Russian: Pros and Cons of Statistical Methods for Rival
Forms. Russian Linguistics 37:253–291.

This paper, which deals with functionally similar Russian constructions, compares
the advantages and disadvantages of several popular methods (CITs and CRFs,
mixed-effects logistic regression models and naïve discriminative learning) along
various dimensions, which are important to quantitative linguists, including classi-
fication accuracy, cognitive realism and ease of interpretation.
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