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Psychology and the social sciences are undergoing a revolution: It has become increasingly 

clear that traditional lab-based experiments are challenged in capturing the full range of 

individual differences in cognitive abilities and behaviors across the general population. Some 

progress has been made toward devising measures that can be applied at scale across 

individuals and populations. What has been missing is a broad battery of validated tasks that 

can be easily deployed, used across different age ranges and social backgrounds, and in 

practical, clinical, and research contexts. Here, we present Skill Lab, a game-based approach 

affording efficient assessment of a suite of cognitive abilities. Skill Lab has been validated 

outside the lab in a crowdsourced broad and diverse sample, recruited in collaboration with the 

Danish Broadcast Company (Danmarks Radio, DR). Our game-based measures are five times 

faster to complete than the equivalent traditional measures and replicate previous findings on 

the decline of cognitive abilities with age in a large cross-sectional population sample. Finally, 

we provide a large open-access dataset that enables continued improvements on our work. 
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Introduction 

Individual cognitive phenotyping holds the potential to revolutionize domains as wide-ranging 

as personalized learning, employment practices, and precision psychiatry. To get there, it will 

require us to rethink how we study and measure cognitive abilities. Much of what cognitive 

and behavioral scientists know about cognitive abilities and psychological behavior has been 

gleaned from studying homogeneous groups in the laboratory. Recent pushes to increase the 

number and diversity of participants (Bauer, 2020) are revolutionizing standards for power and 

generalizability across the cognitive and behavioral sciences. These advances have been 

enabled in part by moving from in-person testing to online equivalents, which are less costly, 

more convenient, and free of confounds such as experimenter expectations and testing fatigue 

(Birnbaum, 2004). The maturation of such tools will be critical in realizing the promise of such 

ambitions as individual cognitive phenotyping or precision psychiatry.  

Going online with more convenient digital versions of traditional tasks makes it possible to 

crowdsource recruitment. Examples include projects such as LabintheWild (Reinecke & Gajos, 

2015), Volunteer Science (Radford et al., 2016), and TestMyBrain (Germine et al., 2012), 

which offer a broad suite of digitized tasks from cognitive and behavioral science to volunteers 

from the general public. These scientific platforms’ success in crowdsourcing data from 

customizable tasks has established them as a fruitful alternative to laboratory studies.  

Online digital participation also opens up the possibility of developing wholly novel forms of 

cognitive assessment that are gamified. Gamified assessment offers the potential to engage 

larger and more diverse participant pools in cognitive experiments than traditional tasks and, 

thus, amplifies the benefits of online crowdsourcing (Baniqued et al., 2013; Lumsden, 

Edwards, et al., 2016). Part of the allure of adding the gamified assessment to crowdsourcing 

is that it motivates players by framing the activity as an entertaining and playful way to 

contribute to a meaningful scientific question (Jennett et al., 2014; Sagarra et al., 2016). 

The gamified approach can take different directions. In one direction, the traditional task for 

measuring cognitive abilities is preserved as much as possible, and game-like elements, such 

as graphics, points, and narratives, are added to frame the task as a game. Lumsden, Skinner, 

et al. (2016) is an excellent example of this, where the Go/No-Go task is gamified by adding 

wild west illustrations and framing the task as a game, where the villains should be shoot and 

the innocent should be left alive. These game-like tasks have been demonstrated to be more 

engaging and produce similar results as their more traditional counterpart (Hawkins et al., 

2013).  

In another direction, new games are designed through an evidence-centered design process 

(Mislevy et al., 2003). By designing a complete game from scratch around specific cognitive 

abilities, researchers can obtain richer information than the traditional pen and paper version 

(Hagler et al., 2014). The games can be more complex and dynamic, which allows for more 

interesting cognitive modeling (Leduc-McNiven et al., 2018). The richer information and more 

complex activities could be the key to enable cognitive assessment at an individual level, rather 

than between groups that have been the sensitivity level of traditional tasks (Hedge et al., 2018). 

The cognitive assessment games often apply stealth assessment (Shute et al., 2016), where the 

cognitive ability measures are derived from the players’ in-game behavior. Thus, the players 



Cognitive Abilities in the Wild  3 

 

 

are immersed in the game experience rather than being constantly aware of being tested (Shute 

et al., 2016), which can help alleviate testing fatigue (Valladares-Rodríguez et al., 2016).  

Prominent examples of new games built for cognitive assessment and applied at a large scale 

are Sea Hero Quest (Coughlan et al., 2019) and The Great Brain Experiment (H. R. Brown et 

al., 2014). Sea Hero Quest truly feels like a casual game experience and has reached 2.5 million 

participants, which yielded important insights into spatial navigation impairments in adults at 

risk of Alzheimer’s disease (Coutrot et al., 2018). By design, Sea Hero Quest is only intended 

to measure spatial navigation; thus, if the goal is to measure a portfolio of distinct cognitive 

abilities, it would be a considerable effort to perform similar studies for each cognitive ability 

of interest. The Great Brain Experiment is a collection of smaller games that assess multiple 

cognitive abilities. Through a large-scale deployment, the games yielded new insights into age-

related changes in working memory performance (McNab et al., 2015) and patterns of bias in 

information-seeking behavior (Hunt et al., 2016). These studies demonstrated the viability of 

large-scale cognitive ability testing (H. R. Brown et al., 2014) but relied on small, laboratory-

based samples to validate their gamified cognitive ability measures. This raises an important 

question: Can we motivate large groups of players to both play the games and perform the less 

entertaining and more time-consuming traditional cognitive tasks in order to provide a robust 

within-subject validation of game-based cognitive ability measures? 

Here, we present Skill Lab, an original suite of games that take advantage of online 

recruitment’s demonstrated power to validate novel assessments of a broad portfolio of 

cognitive abilities. Our comprehensive mapping of multiple abilities allows us to assess their 

interrelations, as well as correlations with participant demographic factors, in a broad cross-

section of a national population. Finally, whereas in this study, we aim to preserve a firm 

grounding in established theory, the benefits of the gamified approach discussed above could, 

in the long run – when combined with appropriate clinical tests – provide for an alternative 

path to developing a framework with a higher degree of construct and ecological validity. 

Methods 

In order to set up a study with the potential to contribute with new knowledge on the assessment 

of cognitive abilities in a crowd-focused game setup, we designated an ambitious suite of 

games. This process started by identifying how cognitive abilities have been operationalized 

and measured in laboratories. From this literature search, we selected 14 cognitive abilities (Fig 

1)  that we found suitable for gamification and ensures broad coverage of areas with importance 

for every day cognitive functioning (Lezak et al., 2012). To determine the suitability for 

gamfication of a cognitive ability, we had workshop sessions with game designers in which we 

brainstormed game-mechanics that activate the ability. The cognitive abilities we selected are 

related in a hierarchy where the abilities can be understood as distinct - but not necessarily 

orthogonal - components in different layers of cognition where more nuances are added as we 

move down the layers (Carroll, 1993; Deary, 2011; Jensen, 1998; Knopik et al., 2017; 

Mackintosh, 1998). At the top, we have a single layer representing general cognitive ability, 

which we subdivide into the domains of executive functioning, language, problem-solving, and 

visual function. The cognitive abilities that we aim to measure are sub-components of these 

domains.  
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Game-Based Cognitive Ability Assessment 

The game mechanics that were found during the brainstorming sessions were combined into 

the six games through the evidence-centered design process: Rat Catch, Relic Hunt, Electron 

Rush, Shadow Match, Robot Reboot, and Chemical Chaos (Fig 2a–f, see Supplemental 

Information for complete descriptions of the designs). These six games were collected into a 

single application called Skill Lab: Science Detective. Skill Lab contained an overarching 

structure and a narrative intended to motivate and guide the participant between the games. 

However, for this paper, we limit the scope of our analysis to the measures derived from 

participants’ behavior within the six games. 

The games were designed to measure the cognitive abilities via stealth assessment (Shute et 

al., 2016). We created the games with the distinctive feel of a casual game while activating the 

targeted cognitive abilities. A consequence of this design is that the games are not a one-to-one 

redesign of any particular standard cognitive task. However, there are significant shared 

elements allowing connections to be drawn between the cognitive abilities most likely to be 

activated. We could, as an example, take the relationship between the classic Go/No-Go task 

(Lee et al., 2009) and the Rat Catch game (Fig 2b). The Go/No-Go task, which is typically 

administered in test batteries, measures Response Inhibition, Baseline Reaction Time, and 

Choice Reaction Time (when facing distractors) by presenting a participant with a series of 

stimuli. If the stimulus is the correct type, the participant must react as quickly as possible; 
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Fig 1 
The 14 cognitive abilities (white boxes) that we aim to measure within the hierarcical theorethical framewordk (grey boxes). 
This hierarchy only expresses the relationship between the cognitive abilities that we will measure through Skill Lab, and is 
not a complete representation of all possible cognitive abilities, and we have not mapped all the possible relation between the 
components. 
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otherwise, the participant should refrain from reacting. This test procedure has an analog in the 

first two levels of Rat Catch. In the first level, a rat appears for a limited time at a random 

position; the player is asked to tap the rat as quickly as possible, providing Baseline Reaction 

Time measures. The rats disappear faster and faster as the level progresses. Once the player 

misses three rats, this level of play ends. 

In the second level of the game, there is a 50% chance that an “angry” red rat will appear. The 

player is instructed not to react to red rats but to still tap all other rats as quickly as possible. 

The level then follows the same progression as the first level, ending after three errors have 

been made (either tapping a red rat or not tapping the other rats). This taps into Choice Reaction 

Time and Response Inhibition. Further Rat Catch levels add variations, such as an increasing 

number of stimuli or moving targets that have no analog in the Go/No-Go task. These additions 

give indicators of visuospatial reasoning components, such as 2D spatial representation and 

movement perception. Through the scripted behavioral pattern assessment (Shute et al., 2016) 

of the game, several important game indicators and their theoretically founded relation to 

cognitive abilities were identified, such as average reaction time and accuracy in the different 

levels (see Supplemental Information). 

Convergent Validity of the Game-Based Cognitive Ability Measures 

Many traditional cognitive ability tasks aim to assess a single ability under strict conditions 

that minimize distractions and maximize experimental control (Salthouse, 2011). However, 

most tasks are thought to reflect multiple abilities; e.g., the Trail Making task can be used to 

measure Category Detection and Switch, Response Inhibition, Prospective Memory in Problem 

Solving, Visuospatial Sketchpad, and Central Executive Functioning (Rabin et al., 2005). In 

contrast, the Skill Lab games are designed to engage multiple cognitive processes, 

simultaneously measuring multiple abilities within a convenient, engaging, and scalable 

package that aims to increase ecological validity (Schmuckler, 2001) of the cognitive ability 

measures by creating a more realistic context and gameplay compared to traditional tasks.  

Fig 2 
The six games making up Skill Lab. a) Rat Catch is designed to test Response Inhibition, Baseline Reaction Time, and Choice 
Reaction Time, b) Shadow Match to test visuospatial reasoning in 3D, c) Robot Reboot to test reading comprehension and 
instruction following, d) Relic Hunt to test visuospatial reasoning and executive functions for simple strategy making in 2D 
visuospatial scenarios, e) Electron Rush to test how people navigate and make decisions, and f) Chemical Chaos to measure 

visuospatial working memory. 
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To test the convergent validity of the cognitive abilities’ measures from the six games, we 

administered 14 standard cognitive ability tasks in a separate section of Skill Lab (see 

Supplemental Information for full descriptions):  

 Corsi Block (Kessels et al., 2000) 

 Deary-Liewald (Deary et al., 2011) 

 Eriksen-Flanker (Eriksen, 1995) 

 Groton Maze (Papp et al., 2011) 

 Mental Rotation (Ganis & Kievit, 2015) 

 Go/No-Go (Lee et al., 2009) 

 Stop Signal (Verbruggen & Logan, 2008) 

 Stroop (Zysset et al., 2001) 

 Token Test (Turkyılmaz & Belgin, 2012) 

 Tower of London (Kaller et al., 2011) 

 Trail Making (Fellows et al., 2017) 

 Visual Pattern (L. A. Brown et al., 2006) 

 Visual Search Letters (Treisman, 1977) 

 Visual Search Shapes (Treisman, 1977).  

To obtain quantifiable measures of the players’ ability levels, we identified indicators of the 

cognitive abilities assessed (e.g., number of errors in a task) in both the games (45 indicators, 

see Supplemental Information) and the tasks (82 indicators, see Supplemental Information). 

The task indicators were found in the task literature, while the game indicators were identified 

through a task-analysis of the games (Newell, 1966; Newell & Simon, 1972).  

As many tasks conceptually measure aspects of the same cognitive abilities, combining the 

observations from different tasks that have a strong theoretical overlap can give rise to 

composite measures of cognitive abilities that have the potential to be more robust. Measures 

of cognitive abilities from tasks can be defined on a spectrum of computational granularity; 

pure indicators (Salthouse, 2011), linear combinations of indicators (Bollen & Bauldry, 2011), 

all the way to methods like generative models (Guest & Martin, 2020). Here, we form linear 

combinations of indicators, combining indicators from multiple tasks according to a standard 

theoretical interpretation. We recognize that the association between any particular 

combination of indicators is open to debate and offer the specific aggregation of indicators here 

as the most straightforward theoretical proposal. (For a list of the standard tasks indicators 

associated with each of the 14 cognitive abilities, see Supplemental Information) 

Validating Cognitive Abilities “In the Wild”  

Two separate participant samples were collected for Skill Lab: i) an initial sample recruited 

through Amazon’s Mechanical Turk (n = 444) and ii) more than 16,000 people who signed up 

to play the publicly available version (Fig 3a). The game was available in versions running 

either on mobile devices or in the browser of personal computers. Since the interactions 

required vary between mobile and computer versions, each would have to be separately 

validated (Drucker et al., 2013; Muender et al., 2019; Watson et al., 2013). Here, we focus on 

the mobile version since this has the broadest accessibility. Mechanical Turk’s terms of service 

only allow data collection via the Skill Lab’s browser version, so the mobile version’s 

validation was only possible using in-the-wild participation. One of this project’s contributions 

is a demonstration that gamified tasks’ playability allows for validation with in the wild 

recruitment by motivating players to complete both games and tasks (1,351 players in Fig 3a). 

Acknowledging that participant engagement typically has an exponential fall off (Lieberoth et 

al., 2014). A substantial player effort was needed to play both the games and complete the 

validation tasks; thus, broad and efficient recruitment was essential. Skill Lab was therefore 

launched publicly in Denmark in collaboration with the Public Danish Broadcast Company 
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(Danmarks Radio, DR), on the 4th of September 2018 on scienceathome.org, Apple Appstore, 

and Google Play. In Denmark, there is universal access to the internet and communication 

technologies (Danmarks Statistik, 2018).; To attract the broadest possible audience, we drew 

attention to the project through a series of DR news articles with themes varying from AI and 

technology to psychology and computer games (Danmarks Nye Superhjerne - DR Retrieved: 

2020-07-07 https://Www.Dr.Dk/Nyheder/Viden/Nysgerrig/Tema/Danmarks-Nye-Superhjerne, 

2020).  

Results 

The participants who played at least one game represent a broad cross-section of the Danish 

population (Danmarks Statistik, 2020) in terms of gender (5793 female, 7333 male, and 163 

other; or 44%, 55%, and 1%, respectively) and age (Fig 3b), starting at age 16 years — the 

minimum age for granting informed consent according to the EU’s General Data Protection 

Regulations. 

Of those who played at least one game, 63% played the app version (Fig 3a). For our modeling, 

the players were required to have played a specific combination of tasks. We obtained a larger 

Fig 3 
 a) Funnel of wild player recruitment. At each layer of the funnel, fewer players had chosen to play. A small minority of 
players reached the bottom layer, providing enough data for us to assess all cognitive abilities from the tasks. b) Age and 
gender distribution for players who played at least one game in the wild. c) Simultaneous measurement of cognitive abilities 
from the tasks for different sample sizes from players of Skill Lab on MTurk and in the wild and the usual domain of validation 

(L. A. Brown et al., 2006; Deary et al., 2011; Eriksen, 1995; Fellows et al., 2017; Ganis & Kievit, 2015; Kaller et al., 2011; 
Kessels et al., 2000; Lee et al., 2009; Papp et al., 2011; Treisman, 1977; Turkyılmaz & Belgin, 2012; Verbruggen & Logan, 
2008; Zysset et al., 2001). d) Sample size and number of cognitive abilities measured: Skill Lab games compared with other 
population-scale assessment studies (H. R. Brown et al., 2014; Coughlan et al., 2019; Coutrot et al., 2018; Hunt et al., 2016; 
McNab et al., 2015; McNab & Dolan, 2014; R. B. Rutledge et al., 2014; Robb B. Rutledge et al., 2016; Smittenaar et al., 

2015; Teki et al., 2016). 
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sample of wild players (N=1,351) that had played a specific combination of tasks to measure a 

cognitive ability than from MTurk (N=444) (Fig 3c). In addition, we observed detrimental 

trends in parts of the MTurk data set where participants had chosen to sacrifice accuracy for 

speedy task completion. This trend was absent for the ‘wild’ players (see Supplemental 

Information), who chose to solve the tasks more meticulously. Given the long-term importance 

of the mobile platform and the success of player validation, we will present data only from the 

1351 wild recruitment players using the mobile platform below, leaving the detailed 

comparison with MTurk and wild data for the computer platform for future studies. 

Modeling Cognitive Abilities With Games 

To be included in the validation process, a player had to complete at least one specific 

combination of tasks measuring a given cognitive ability (e.g., the three tasks Visual Pattern, 

Groton Maze, and Corsi Block had to be completed for us to evaluate the ability Visuospatial 

Working Memory). 

We trained a linear model that uses game data to predict players’ cognitive abilities as measured 

by the tasks. We started by defining cognitive ability measures by combining indicators - that 

measure the same construct - from different tasks. To determine which indicators to combine, 

we reviewed the tasks (L. A. Brown et al., 2006; Deary et al., 2011; Eriksen, 1995; Fellows et 

al., 2017; Ganis & Kievit, 2015; Kaller et al., 2011; Kessels et al., 2000; Lee et al., 2009; Papp 

et al., 2011; Treisman, 1977; Turkyılmaz & Belgin, 2012; Verbruggen & Logan, 2008; Zysset 

et al., 2001) and identified the indicators ti of a cognitive ability that had a theoretical overlap 

(Beaujean & Benson, 2019; Mayo, 2018). For each of the 82 task indicators ti, we assigned 14 

coefficients 𝛼𝑖𝑗  ∈ {-1,0,1} depending on its theoretical contribution to each of the cognitive 

abilities 𝐶𝑗 by assigning: 0 if there is no contribution, 1 if there is a positive correlation between 

the task indicator and the cognitive ability, and -1 if there is a negative correlation (see 

Supplemental Information for a comprehensive list of coefficients). The task indicators were 

standardized and combined into measures of cognitive abilities (Bollen & Bauldry, 2011) by 

taking weighted (𝛼𝑖𝑗) averages 

𝐶𝑗 =
∑ 𝛼𝑖𝑗𝑡𝑖
82
𝑖=1

∑ |𝛼𝑖𝑗|
82
𝑖=1

. 

For the games, we identified 45 indicators gi from the six games that contained information 

pertaining to the cognitive abilities. Before any modeling was performed, all game indicators 

and cognitive ability measures were standardized to mean = 0 and SD = 1. Only players who 

had produced all the task indicators associated with the respective cognitive ability (see 

Supplemental Information) and at least one game indicator were included in the sample used 
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to fit the linear regression models predicting the cognitive abilities measured from the tasks 

with game indicators (for sample sizes see Table 1). Any missing game indicators were imputed 

using multivariate imputation with chained equations (Buuren & Groothuis-Oudshoorn, 2011), 

which generated one common imputation model for the entire data set. The imputation model 

was generated from game indicators only and contained no information about task indicators 

or demographic information. To prevent overfitting, an elastic-net model 

𝐶𝑗 =∑𝛽𝑖𝑗𝑔𝑖
𝑖

+ 𝑘𝑗 

was fitted using 100 times repeated 5-fold cross-validation (Burman, 1989). If a single game 

indicator or the cognitive ability measured by tasks was more than 3 SD’s from the mean, the 

player was excluded from the fitting of that specific cognitive ability’s prediction model, as the 

fitting would be sensitive to such outliers. The elastic-net model avoids overfitting by 

performing variable selection and shrinking and mitigates multicollinearity issues (Zou & 

Hastie, 2005). The trained models ({𝛽1𝑗,...,𝛽45𝑗}, 𝑘𝑗) (see Supplemental Information) are the 

result of averaging all the 500 individually trained models per cognitive ability. To remove bias 

due to overfitting to the data from the full models’ correlation with the tasks (r, Table 1) we 

estimated an out-of-sample prediction strength (rcv, Table 1), i.e., what the correlation between 

the model predicted and the task measured cognitive abilities would be in an entirely new 

Table 1 
Results of fitting the cognitive abilities with an elastic-net model. rcv (the grey column) is the estimated out-of-sample 
prediction strength from the repeated cross-validation. A negative value of rcv means that the model has no predictive 
power. 

Cognitive Ability n r rcv 
95% Confidence 

Interval for rcv 
pcv 

Choice Reaction Time 58 0.80 0.55 [0.34, 0.70] 0.00001 

Intra Categorical Visual Perception 840 0.56 0.52 [0.47, 0.57] <0.00001 

Central Executive Functioning 185 0.63 0.52 [0.41, 0.62] <0.00001 

Baseline Reaction Time 156 0.61 0.46 [0.33, 0.58] <0.00001 

Response Inhibition 75 0.55 0.35 [0.13, 0.53] 0.00213 

Visuospatial Sketchpad 131 0.52 0.32 [0.16, 0.47] 0.00015 

Category Detection and Switch 88 0.6 0.28 [0.07, 0.46] 0.00771 

Visuospatial Working Memory 197 0.44 0.27 [0.13, 0.39] 0.00016 

Visual Perception in Mental Rotation 314 0.44 0.26 [0.15, 0.36] <0.00001 

Prospective Memory in Problem Solving 117 0.51 0.24 [0.06, 0.40] 0.01011 

Prospective Memory in Mental Rotation 308 0.36 0.15 [0.03, 0.25] 0.00836 

Color Perception 289 0.30 0.14 [0.02, 0.25] 0.01644 

Recognition 160 0.35 0.04 [-0.11, 0.19] 0.62412 

Written Language Comprehension 193 0.28 -0.02 [-0.16, 0.12] 0.74664 
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dataset. The estimate is the average correlation between the model predictions and the task-

measured cognitive abilities on the test samples for each of the repeated cross-validation test 

sets. The fitting and cross-validation process resulted in 10 accepted (rcv >0.2) prediction 

models with medium to strong effect sizes and four rejected models (Table 1).  

Predictive Power of Main Factor 

Since we take the abilities to be hierarchically related (Fig 1), it is essential to distinguish 

between shared variation at different levels of the hierarchy, contributing to the observed 

predictive power. Therefore, we performed an exploratory factor analysis with principal factor 

extraction and no rotation on the cognitive abilities from both the tasks (N = 80) and the games 

(N = 6,369) to identify the main factor in both sets, interpretable as a generalized cognitive 

ability (Knopik et al., 2017). The factor analysis’s exclusion criterion was whether the 

cognitive ability measure was more than 3SD’s from the population mean. This criterion was 

different from the one applied during the fitting procedure, as a single outlier among the game 

indicators could potentially be compensated for in the predictive model, either by all the other 

non-outliers or that a particular game indicator is irrelevant for that particular model. Thus, we 

decided to exclude based on the predicted value rather than at the game indicator level. The 

same criterion is used for all the following analyses in this paper. For the cognitive abilities 

measured by the games, that means 976 (1%) cognitive abilities were excluded from 388 (5%) 

players. For the factor analysis, only the 6,369 players with no excluded cognitive abilities 

from the games were included in the analysis, and 80 out of the 85 players with all cognitive 

abilities measured by the tasks were included. The relatively low task participant number 

reflects that ten cognitive ability tasks were required to be included in the analysis.  

Fig 4 

a) Proportion of variance covered by each factor. b) Loadings of each cognitive ability on the factors.  
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The components in the hierarchical framework are not orthogonal, and unsurprisingly they all 

tap into the general cognitive ability. However, the subsequent factors yielded by the factor 

analysis (principal factor extraction with no rotation) have to be orthogonal to the main factor 

and would not uncover the hierarchy of our theoretical framework. We are only interested in 

the main factor that explains the most variance when evaluating the general cognitive ability 

level’s role. 

The variance explained by the main factor increased from 46% to 72% (Fig 4a) from the tasks 

to the games. This was expected since the number of indicators used to evaluate the cognitive 

abilities had decreased from 82 task indicators to 45 game indicators. Since all the indicators 

are standardized to have zero mean and variance equal to 1 there is less overall variance to be 

explained, yielding a higher proportion of the variance explained by the main factor. 

The main factor loadings are very similar for the tasks and the games and correspond 

approximately to the mean of the cognitive abilities (Fig 4b). In order to tell whether the main 

factor is the driver of the models’ predictive power, we computed partial correlations between 

the tasks and the games while controlling for the games’ main factor. These partial correlations 

reveal to what extent the models predict the nuances contained within each cognitive ability 

that goes beyond the individuals’ overall ability level. We are thus interested in what fraction 

of the correlation between the task and the game-based measures that is not explained by the 

main factor. Thus, we divide the partial correlations with the full correlations (Fig 5), and we 

find that at least 38% of the correlation is not due to the main factor for all the models.  

Temporal Stability of Models 

One of Skill Lab’s potential use cases is as a low cost test battery that could be used to track 

cognitive impairments. We are therefore interested in the stability of the cognitive ability 

measures, in the sense that they are reproduceable within a manageable time frame. We 

assessed the sensitivity (correlation between game-predicted and task-measured) and stability 

(correlation between playthroughs) of cognitive ability measures over repeat playthroughs (Fig 

6). Only participants with at least four playthroughs were included to avoid confounding cohort 

effects due to sample biases. Including all participants produce similar results, indicating little 

to no sample bias in the temporal drift.  

Fig 5 
The proportion of the models’ predictive strength not explained by the main factor. The full corrlations are similar to, but not 
exactly equal to, the r values found in the Table 1. A table with values of the full and partial correlation can be found in the 
Suplementary materials. 
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The sensitivity (Fig 6a) declines with playthroughs as expected. It should be noted that this 

correlation is the full correlation (not the out-of-sample prediction strength rcv), as it does not 

account for overfitting; thus, it will be systematically higher and should primarily be used to 

compare across playthroughs. The second playthrough cognitive ability estimates correlate 

reasonably well with those from the first (Fig 6b). Throughout four playthroughs, the 

correlations with the first playthrough decline. As the data for this repeated play analysis comes 

from a convenience sample, we could not control how much time there was between 

playthroughs, which could also vary for the individual games in a playthrough. We can estimate 

the time between playthroughs by taking the first game’s start as the beginning of a 

playthrough. We note that most repeat plays were on the same day, with three-quarters of all 

return plays occurring within four hours. Thus, we acknowledge that this playthrough 

comparison does not have the same internal validity as a traditional lab-based test-retests study. 

Time Requirement for Participation 

If Skill Lab is to be used as a low cost self-administered alternative to current cognitive 

batteries, one of the relevant parameters to look at is the time it takes to obtain estimates of the 

cognitive abilities. In our case we can compare the time it takes to complete all the games 

combined (Mean:14 min, SD: 5 min) and all the cognitive ability tasks combined (Mean:72 

min, SD:7 min).  

 Differences in Cognitive Abilities Across Age 

We use the trained models to illustrate the cross-sectional cohort distributions of cognitive 

abilities by age for the Danish population (Fig 7 and Fig SI. 48-57). The age bins were 

generated by requiring a minimum of 30 people in each bin — large enough to show differences 

between each bin, but small enough for at least two bins to be generated for the curves extracted 

Fig 6 
a) Temporal sensitivity. The Pearson correlation between the game predicted and the task measured cognitive abilities. b) 

Temporal stability. The Pearson correlation between the game predicted cognitive abilities between the later playthroughs 
and the first playthrough. 
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from the task-measured cognitive abilities. The points were generated by starting at age 16 and 

checking whether 30 players of that age whose data provided a cognitive ability measure. If 

there were enough players, the next point was generated starting with those 1 year older; if not, 

the following ages were added 1 year at a time until a sample size of 30 was reached. Examining 

the distributions obtained from the games across ages, we observed the expected increase in all 

cognitive abilities from age 16 to 20 years, followed by a gradual decline from age 20 years. 

Discussion 

The combination of sample size and breadth of cognitive abilities measured in Skill Lab is 

exemplary (see the orange diamond in Fig. 2d) relative to other game-based population-scale 

assessment studies such as SeaHero Quest and The Great Brain Experiment (H. R. Brown et 

al., 2014; Coughlan et al., 2019; Coutrot et al., 2018; Hunt et al., 2016; McNab et al., 2015; 

McNab & Dolan, 2014; R. B. Rutledge et al., 2014; Robb B. Rutledge et al., 2016; Smittenaar 

et al., 2015; Teki et al., 2016); 6,369 players generated sufficent data for the ten trained models 

to be applied. In this paper, we have worked to establish the construct validity of our measures. 

Fig 1Ten of the models predicting the cognitive abilities from game indicators correlate well 

with the task-based measures demonstrating good convergent validity in line with the goals of 

our design process. The factor analysis revealed a main factor for cognitive abilities that could 

be interpreted as a general cognitive ability for both games and tasks (Fig 4) in line with a priori 

expectations (Fig 1). Via partial correlations (Fig 5) we demonstrated that the shared 

information from the main factor is insufficient to explain a substantial proportion of each 

cognitive ability’s observed agreement between task and game estimates. Each of our 

measures, therefore, captures some of the nuances of the cognitive abilities beyond the 

dominant factor. We defer to future work a closer examination of the relationship between 

these quantities and application-specific standard measures. Although it is possible that more 

advanced modeling of the existing data set can improve these results, the ten accepted models 

already represent a broad, strong, and rapid testing battery.  

Fig 7 
Cognitive abilities across age groups. 6369 wild players played the games; fewer played the combination of tasks that allowed 

for assessing a specific ability. The shaded areas around the curves are the standard error of the mean. Each age point in the 
graph includes at least 30 players (the curves for the remaining cognitive abilities can be found in the Supplemental 
Information). The grey lines indicate where the population crosses zero. b) Central Executive Functioning (ntask = 257), a) 
Baseline Reaction Time (ntask = 230).  
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The cognitive ability estimates are reasonably stable over repeat playgiven the short interaction 

time.This stabilityis encouraging for one-shot assessment applicationssuch as screening for 

cognitive impairments. We take the close relationship between estimates derived from first and 

second playthroughs as a test of how effectively the elastic-net could avoid overfitting and give 

well-calibrated estimates of out-of-sample prediction strengths. For potential applications 

involving monitoring over an extended time, it’s worth noting that we also observe some 

systematic changes in the distribution of cognitive abilities over repeat play (Fig SI.59-68). 

This drift is partially due to learning effects: the games Electron Rush, Shadow Match, and 

Chemical Chaos show strategy heterogeneity effects at later playthroughs, as demonstrated by 

the high rate of extreme estimates at higher playthroughs for constructs that depend heavily on 

indicators from these games. Here we excluded observations that appear to be from distinct 

minority play strategies in these games, deferring detailed study of strategy heterogeneity and 

learning effects to future work. We are planning a more stringent test-retest set-up, in which 

we control the time between playthroughs to neutralize learning effects and ensure all the 

games have been played in both playthroughs.This would provide a more properreliability 

measurethat  would  befit  to  evaluate  againstthe standard. Currently, we have only trained 

models on the first playthrough. It is not unreasonable to expect that we could achieve even 

more consistent estimates by training models dependent on the playthrough number, 

compensating for learning effects due to the player familiarizing themselves with the tasks. 

As an example of what our Skill Lab models can already allow us to do, we used our population 

sample to replicate previous findings regarding the age distribution of cognitive abilities by 

age. Our study offers a cross-sectional snapshot of the Danish population, comprising the 

largest open normative dataset of these cognitive abilities. The observed patterns (Fig 7) follow 

the previously established expectations (Lindenberger, 2014; Salthouse, 2019), which supports 

Skill Lab’s validity as an assessment tool. This dataset may serve as a normative benchmark 

for future applications, not only within psychology but also for the social sciences, clinical 

applications, and education. These finely stratified age norms will be of particular importance 

when Skill Lab addresses questions that require age-based controls.  

If we want to establish more general age norms than those we have collected on the Danish 

population, we would naturally have to expand our recruitment efforts. As part of these efforts 

we have prepared a Spanish translation of Skill Lab in addition to the Danish and English 

translations that already existed. Furthermore, we have worked on improving the support 

structure around the games. This entailed improving the instructions introducing the games and 

removing the narrative. The narrative introduced a meta-game with a detective story that in a 

branching narrative guided the players from game to game.  User feedback, however, told us 

that it hindered progress by being too hard, confusing, and buggy. With these improvements 

implemented we are currently planning to launch the game internationally. 

Parallel to our efforts of scaling the recruitment we are also working on improving our 

modelling of the cognitive abilities as measured by the games. An alternative to the approach 

we present in this paper of aggregating indicators from multiple tasks is testing the feasibility 

of predicting individual task indicators from game data, which is more in line with the 

conventional literature (Salthouse, 2011). However, predicting individual indicators is not very 

robust, so we made the pragmatic choice of defining aggregated cognitive abilities measures 
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(Bollen & Bauldry, 2011) while being careful only to combine task indicators associated with 

a cognitive ability in the literature to strengthen its interpretation. In the current work, we 

exposed these choices to potential disconfirmation by examining their agreement across 

independent estimates and reject four of fourteen while accepting ten: since the data set is open, 

it is also open for a preliminary exploration of alternative choices. We are taking preliminary 

steps in this direction by pursuing a theory-driven approach, in which we only include the game 

indicators that are theoretically associated with a specific cognitive ability during the fitting 

process. The results are qualitatively similar to the ones presented here but somewhat lower in 

quantitative effects as expected from a restricted model. Further work in this direction may 

help the iterative development toward games that are optimally suited for high-quality 

assessment of each ability. 

The models that have already been developed through our work with Skill Lab has illustrated 

the viability of a crowdsourcing approach in validating a cognitive assessment tool, which has 

several key implications. First, it allows scientists to create better human cognition models and 

test and validate cognitive abilities, potentially providing efficient ways to scale insights into 

particular cognitive abilities and how they are related to solving problems (Woolley et al., 

2010). Second, we have generated a unique and open dataset, which includes normative 

benchmarks, that can be used as a basis for other studies. Finally, Skill Lab allows normative 

data for diverse populations, cultures, and languages to be collected in the future, facilitating 

the much-needed broadening of the samples typically tested in psychological and social science 

studies (Henrich et al., 2010). An advantage of Skill Lab over the traditional tests is that it is 

faster to play all six games once than to go through all the traditional cognitive tasks. Thus, the 

games could provide a low-cost self-administered test suitable for extensive deployment. This 

could be of great value to, e.g., the psychiatric sector in which current cognitive test batteries 

are burdensome to administer (Baune et al., 2018), leading to cognitive impairments often 

going unrecognized (Groves et al., 2018; Jaeger et al., 2006). 
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