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The orbitofrontal cortex (OFC) has been implicated in goal-directed planning and model-based decision-making. One key prerequisite for model-

based decision-making is learning the transition structure of the environment—the probabilities of transitioning from one environmental state to 

another. In this work, we investigated how the OFC might be involved in learning this transition structure, by using fMRI to assess OFC activity while 

humans experienced probabilistic cue–outcome transitions. We found that OFC activity was indeed correlated with behavioral measures of learning 

about transition structure. On a trial-by-trial basis, OFC activity was associated with subsequently increased expectation of the more probable 

outcome; that is, with subsequently more optimal cue–outcome predictions. Interestingly, this relationship was observed no matter what outcome 

occurred at the time of the OFC activity, and thus is inconsistent with an interpretation of the OFC activity as representing a “state prediction error” 

that would facilitate learning transitions via error-correcting mechanisms. Finally, OFC activity was related to more optimal predictions only for 

subsequent trials involving the same cue that was observed at the time of OFC activity—this relationship was not observed for subsequent trials 

involving a different cue. All together, these results indicate that the OFC is involved in updating or reinforcing a learned transition model on a trial-

by-trial basis, specifically for the currently observed cue–outcome associations. 
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To flexibly plan for the future, we must be able to predict which states of the world lead to which (i.e., we need to learn a model of the “transition 

structure” of the world). For example, to decide whether to drink warm milk or coffee, we need to know that warm milk makes us sleepy, but coffee 

wakes us up. This type of planning has been termed “model-based decision-making,” in contrast to “model-free decision-making,” which does not 

require such a model (Daw et al., 2005). 

The orbitofrontal cortex (OFC) has been shown to be particularly important for model-based decision-making (Baxter et al., 2000; De Wit et al., 

2009; Izquierdo et al., 2004; McDannald et al., 2011; Rudebeck & Murray, 2011; Valentin et al., 2007; Walton et al., 2010). However, previous 

research has focused on showing that OFC activity relates to the expected values of future rewards (Fellows, 2007; Gottfried et al., 2003; Hampton 

et al., 2006; Hare et al., 2008; Monosov & Hikosaka, 2012; Padoa-Schioppa & Assad, 2006; Wallis & Kennerley, 2011). Recently, we have instead 

proposed that the OFC represents the current state of the task (Schuck et al., 2016) and that the OFC is especially critical for making decisions in 

situations where environmental stimuli do not unambiguously determine the task-relevant state (e.g., whether the state is “Thursday evening” and it 

is bedtime, vs. “Friday evening,” in which case I don’t want to become sleepy as I am going to a party; Bradfield et al., 2015; Chan et al., 2016; 

Nogueira et al., 2017; Wilson et al., 2014). However, both value and state representation are important in model-free as well as model-based decision-

making, and therefore these two lines of research do not explain why the OFC is critical specifically for the latter. 

Yet another line of research provides a potential explanation for the OFC’s particular prominence in model-based planning. This research suggests 

that the OFC is important for learning about the state-to-state “transition structure” of the world—the tendencies of 
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certain environmental states to lead to other states. One study showed that OFC-lesioned rats couldn’t learn about changes in the transitions from 

cues to outcomes (cue–outcome associations; McDannald et al., 2011), while a study in humans linked fMRI surprise signals in lateral OFC with 

updates in the hippocampus of a model of transition structure (Boorman et al., 2016). Some newer studies have observed such surprise signals in 

the midbrain (Sharpe et al., 2017; Stalnaker et al., 2019; Takahashi et al., 2017), or in a set of areas including the midbrain and lateral OFC (Howard 

& Kahnt, 2018; Suarez et al., 2019). Howard and Kahnt (2018) additionally found that midbrain identity prediction errors were correlated with a cue–

outcome learning and changes in outcome identity representations in the OFC. The hypothesized link between OFC and learning transition structure 

could also explain OFC’s centrality to model-based decision-making, given that transition structure is a critical component of the “model” in such 

decision-making. One cannot plan and mentally simulate the future result of current actions without an accurate model of how state transitions are 

likely to unfold in the future. 

How exactly might the OFC be involved in learning about transition structure? The OFC might itself compute or represent a prediction error at the 

time of unexpected outcomes, which can be used to update an internal model of the transition structure. Such “state prediction error” signals would 

occur upon observing state transitions that are unexpected, and could be used to guide learning so that transitions are better predicted in the future 

(e.g., Glascher et al., 2010). Note that these error signals are analogous to—but distinct from—reward prediction errors that are used for learning to 

associate states with their reward values (e.g., Montague et al., 1996; Rescorla & Wagner, 1972). However, the existing research does not make 

specific predictions about the role of OFC in representing or learning about transition structure, and state prediction errors are just one possible way. 

We, therefore, set out here to test whether the OFC might be involved in error-driven learning via signaling of state prediction errors and whether 

OFC activity could predict behavior related to learning transition structure. We also tested the two dominant hypotheses of OFC function—

representing the current state and representing expected value. 

In our experiment, black-and-white image cues led stochastically to M&M candies of different quantities and colors (outcomes). In the critical trials, 

the number of M&Ms was fully predictable, but their color was not, so as to generate state prediction errors in the absence of reward prediction 

errors. Using fMRI, we investigated activity in the human OFC at the time of these outcomes, and its relationship with participants’ behavioral 

predictions of state transitions. 

 

 

Materials and Methods 
 

Subjects 
 

Twenty-four volunteers from the Princeton University community participated in exchange for monetary compensation ($20 per hour + up to $10 

performance-related bonus). All subjects were right-handed (14 female, age range 18–34 years) and stated that they liked M&Ms. Informed written 

consent was obtained from all subjects, and the study protocol was approved by the Institutional Review Board for Human Subjects at Princeton 

University. 

 

Experimental Design 
 

Each trial began with .5–8 s of fixation (truncated exponential distribution, mean 2.4 s). Then one of four black-and-white image cues depicting 

outdoor scenes appeared for 1.2 s (see Figure 1a). On 75% of the trials, this was followed by the opening of a box around the image (.2 s). Then, a 

set of M&Ms appeared below the image and fell into a bowl, over the course of .9 s. As the M&Ms fell into the bowl, one clinking sound was emitted 

for each M&M in the set. A tally at the bottom of the screen (not shown in Figure 1a) indicated the total number of M&Ms received so far, for each of 

the four possible colors. 

Each of the four image cues was associated with different numbers and colors of M&Ms according to a predetermined schedule of reinforcement 

(Figure 1b). Cue A and Cue B were designed to elicit state prediction errors throughout the experiment due to a probabilistic schedule of M&M color, 

but not reward prediction errors, because they always dropped exactly 2 M&Ms. Cue C, in contrast, was associated with 2 M&Ms of a fixed color, 

thus eliciting no prediction errors once the contingencies had been learned. Finally, Cue D was designed to elicit only reward prediction errors—

itdroppedeither1or 4 M&Ms of a fixed color (as with the other image cues, Cue D led to 2 M&Ms on average, such that all 4 cues were equated for 

average reward value). For each subject, the images and M&M colors were assigned randomly from a pool of 20 images and 5 M&M colors. 

Subjects earned one real M&M of a given color for every 17 “virtual” M&Ms that they received in the task. Subjects were requested to refrain from 

eating or drinking (except water) for at least 3 hr prior to the experiment, so that the M&Ms would be especially rewarding. Nonstandard M&M colors 

were chosen to circumvent preexisting preferences for specific M&M colors and to achieve perceptually distinct outcomes that are of equal value. 

Note also that our analyses of state prediction error always combine Cue A and Cue B trials, so that any potential value differences between the two 

colors cancel out. In a postexperiment questionnaire, subjects rated the appeal of the M&Ms on a scale from 1 (not appealing at all) to 5 (very 

appealing). The mean rating was 3.8 ± .2. 

Twenty-five percent of all trials (pseudorandomly distributed) were “guess trials.” On these trials, the appearance of the black-andwhite image cue 

was followed by a prompt reading “Guess: COLOR” or “Guess: NUMBER.” At the appearance of the prompt, the image cue disappeared. Subjects 

were given 1.5 s to guess what color/number of M&Ms would have fallen on that trial. Subjects received 10¢ for every question correctly answered. 

The purpose of the guess trials was to encourage subjects to pay attention to the image cue and to actively make a prediction of the upcoming M&M 

outcome on every trial—because the allowed response time was so short, subjects had to prepare an answer upon viewing the image cue in case 

a guess prompt followed. 

Subjects performed 72 training trials outside of the scanner, to familiarize themselves with the task and to learn the stimulus– outcome 

contingencies. During training, subjects received and ate the M&Ms they earned (approximately 7 M&M candies). They were then informed that 

future M&Ms they earned would be given to them after the ensuing scanning session, and they performed another 420 trials in the MRI scanner. At 

the end of the experiment, subjects received all M&Ms earned while in the scanner. The 420 trials were evenly distributed between the 4 image 

cues, with trial order pseudorandomized so that the total number of



 

Originally published in: Behavioral Neuroscience, 135, 2021, p. 489 

Figure 1 

Experimental Design 

 
Note. Trials began with fixation. then, one of four image cues (four different “start states”) appeared. On most trials, the box around the image opened, and a number of colored M&Ms dropped 

from the image, clinking as they fell into a bowl (five different “end states”). On the randomly interspersed “guess” trials, the image cue was instead followed by a prompt to guess (within 1.5 

s) either the color or number of M&Ms that would have fallen on that trial. (b) Cue–outcome contingencies for each of the four images (transition matrix for the experiment). Numbers in table 

indicate probability of each end state (M&M outcome) given each start state (image cue). Larger state prediction errors are expected for rarer outcomes (smaller transition probabilities). 

Images and M&M colors were assigned randomly for each subject. our analyses focused on cue A and cue B trials, which were designed to elicit state prediction errors in the absence of 

reward prediction errors PE = prediction error. 

 

 

M&Ms collected increased at the same rate for every color. The experiment was divided into five scan sessions of approximately 10 min each. 

 

Behavioral Measures 
 

We evaluated three types of behavioral measures, computed separately for each subject and for each prediction trial type (image cue type × 

number/color prediction): (a) overall performance over the course of the experiment, (b) change in performance over the course of the experiment, 

and (c) sensitivity to the most recent outcome (a proxy for learning rate). 

To assess overall performance, we computed the fraction of responses that were optimal (i.e., for which the subject selected the common outcome), 

across all scan sessions. To measure the change in performance, we computed the difference in performance from the beginning to the end of the 

experiment as the fraction of optimal responses in the last scan session minus the fraction of optimal responses in the training session. To assess 

sensitivity to the previous outcome, we computed the probability of predicting the
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common outcome after observing the common outcome on the previous trial with the same image cue, compared to the probability of predicting the 

common outcome after observing the uncommon outcome on the previous trial with the same image cue. The difference between these two quantities 

served as a proxy for learning rate—subjects with high learning rate would be more sensitive to the most recent outcome and would show a larger 

difference between the two quantities. 

 

fMRI Acquisition 
 

Functional brain images were acquired using a 3T MRI scanner (Skyra; Siemens Erlangen, Germany), and were preprocessed using FSL 

(http://fsl.fmrib.ox.ac.uk/fsl/). An echoplanar imaging sequence was used to acquire 40 slices of 2-mm thickness with a 1-mm gap (repetition time 

(TR) = 2.4s, echo time (TE) = 27 ms, flip angle = 71°, the field of view = 196 mm, phase encoding direction = anterior to posterior). We optimized 

our fMRI sequence for OFC signal acquisition by including a gap between slices, using shimming and fieldmap unwarping, and tilting the slices by 

approximately 30° from the axial plane toward a coronal orientation (Deichmann et al., 2003). Fieldmaps consisted of forty 3-mm slices, centered at 

the centers of the echoplanar slices, with TR = 500 ms, TE1 = 3.99 ms, TE2 = 6.45 ms, field of view = 196 mm. At the end of the five functional 

scanning sessions, an MPRAGE anatomical scan was acquired, consisting of 176 1-mm axial slices, TR = 2.3s, TE = 3.08 ms, flip angle = 9°, and 

field of view = 256 mm. 

 

Preprocessing 
 

All functional images were preprocessed using high-pass filtering (filter at 1/100 Hz), motion correction (six-parameter rigid body transformation), 

correction for B0 magnetic inhomogeneities (fieldmap unwarping), spatial smoothing (Gaussian kernel with a full width at half maximum of 5 mm), 

and coregistration of functional and structural scans. For General Linear Model (GLM) results, we additionally performed spatial normalization of 

subject-level results to match a template in Montreal Neurological Index (MNI) space (12-parameter affine transformation). 

 

Functional Parcellation of Orbitofrontal Cortex 
 

Regions of interest for the OFC were obtained from Kahnt et al. (2012), who used k-means clustering of functional connectivity patterns to parcellate 

OFC into subregions. We used the parcellation of OFC into two clusters, which correspond with medial–lateral subdivisions of OFC found in studies 

of cytoarchitectonic structure and of intraregional anatomical connectivity (Carmichael & Price, 1996; Öngür & Price, 2000). 

 

Obtaining Mean Percent Signal Change at M&M Outcomes 
 

Using the FSL toolbox (http://fsl.fmrib.ox.ac.uk/fsl/), we performed a GLM analysis with the following regressors: One regressor for the onsets of 

each type of image cue (A, B, C, D); one regressor for the onsets of the M&M outcomes for Cue C; one regressor for the onsets of the uncommon 

outcomes for each of the image cues A, B, and D (three regressors total); one regressor for the onsets of the common outcomes for each of the 

image cues A, B, and D (three regressors total); and one parametric regressor for the clinks of the M&Ms into the bowl (one, two, or four clinks). 

These 12 regressors were convolved with a standard hemodynamic response function. In addition, the design matrix included 6 motion regressors 

and an intercept (constant) term. 

Regressor weights for each voxel and each scan session were converted to percent signal change (PSC) by multiplying by the appropriate scale 

factor for events of length 0.1 s convolved with the standard double-gamma hemodynamic response function, and then dividing by the mean of the 

voxel’s timecourse for that scan session. These per-scan numbers were averaged across scans for each subject. To obtain the PSC for a region of 

interest, the PSC was averaged across all voxels in the region of interest. 

 

Obtaining Trial-by-Trial Estimates of Percent Signal Change at M&M Outcomes 
 

To obtain trial-by-trial estimates of PSC in a region of interest (ROI) at each M&M outcome, we fit a separate GLM for each trial. This GLM was 

identical to the one used for estimating mean PSC (above), except that the regressor for the condition of the trial of interest was split into two—one 

regressor modeled the onset for the trial of interest only, and a second regressor modeled the onsets of all other trials in that condition (Mumford et 

al., 2012). These GLMs were fitted to data that were preprocessed in FSL, but the GLMs themselves were fitted using in-lab code written in MATLAB, 

for computational reasons. 

 

Multivariate Pattern Analysis Classification 
 

The purpose of our multivariate pattern analysis (MVPA) analyses was to test whether activity in OFC at the time of the M&M outcomes contained 

information about the start state and end state (stimulus and outcome) for each transition. We analyzed the trials that were designed to elicit state 

prediction errors (Cue A and Cue B trials). 

Given our rapid event-related design, we first used a GLM to deconvolve neighboring events, regress out motion artifacts, and to de-noise 

examples through averaging (Mumford et al., 2012). To maximize power, we divided each scan in two (1st and 2nd half). The GLM then included, 

for each half of each scan session, regressors modeling the appearance of the M&Ms for each of four trial types of interest (Cue A followed by M&M 

Color 1, Cue A followed by M&M Color 2, Cue B followed by M&M Color 1, Cue B followed by M&M Color 2), totaling 8 regressors per scan. The 

regressors were convolved with a canonical hemodynamic response function. In addition, for each scan session, we modeled head motion using six 

motion regressors and the mean activity using an intercept regressor. We estimated this GLM on each subject’s smoothed, motion-corrected fMRI 

data using the FSL toolbox (http://fsl.fmrib.ox.ac.uk/fsl/). 

We used the resulting patterns of voxel-wise regressor weights for the four trial types (two regressor weights per run and trial type; z-scored within 

voxels) as training and testing examples for a support vector machine (SVM) classification algorithm with a linear kernel (nu-SVM, as implemented 

in LIBSVM; Chang & Lin, 2011), under a leave-one-out cross-validation scheme, using the Princeton MVPA Toolbox 

(https://code.google.com/p/princeton-mvpa-toolbox).

http://fsl.fmrib.ox.ac.uk/fsl/
http://fsl.fmrib.ox.ac.uk/fsl/
http://fsl.fmrib.ox.ac.uk/fsl/
http://fsl.fmrib.ox.ac.uk/fsl/
https://code.google.com/p/princeton-mvpa-toolbox


 

Originally published in: Behavioral Neuroscience, 135, 2021, p. 491 

 

We used a standard cost (nu) parameter of 1 for the SVM (results did not depend strongly on this parameter). 

To classify the start state, we classified training and testing examples according to the image cue (Cue A or Cue B). To classify end state, we 

classified training and testing examples according to the M&M color (Color 1 or Color 2). 

 

 

Results 
 

Behavioral Performance 
 

For the prediction task, the optimal strategy was to predict the most common outcome on every trial, given that this would maximize subjects’ 

payout. Overall, subjects predicted the most common outcome 77 ± 2% of the time. The 23% nonoptimal guesses may have resulted from a 

combination of probability matching (for probabilistic transitions, Erev & Barron, 2005; Vulkan, 2000), imperfect knowledge of transition probabilities, 

and noise. Figure 2 a shows subjects’ performance on each trial type. Subjects performed significantly above chance for all trial types (p < 10−6; 

one-sided bootstrap test). 

 

Overall Learning Across the Experiment 
 

Subjects became predicted the more common outcome more often as the experiment progressed, as measured by the difference between 

performance on the last scan session compared to performance during the training session (before entering the scanner) (Figure 2b). The only 

exception was in predicting the number of M&Ms for Cue D. Here, the optimal prediction was 1 M&M; however, participants predicted this amount 

on only around half the prediction trials and predicted the rare 4 M&Ms otherwise, possibly because of the high salience and appeal of the 4 M&Ms 

outcome. That is, although the 4 M&M outcome was delivered on only 1/3 of the trials involving Cue D, participants may have been confused 

regarding its frequency, or they may have predicted 4 M&Ms as a form of “wishful thinking.” Over the course of the 

 

Figure 2 

Behavioral Performance Evidenced Learning Throughout the Task 
 

 

Note. Hatched bars indicate that the outcomes were probabilistic for that cue and dimension (i.e., cue D for number, and cues A and B for color). Error bars indicate standard error of the 

mean. (a) Subjects performed above chance in all prediction tasks. plotted is the probability of choosing the more common outcome (the optimal prediction) for number prediction trials and 

color prediction trials across the whole experiment. Dashed line: chance. (b) Subjects’ performance improved significantly across the experiment, except for color prediction for cue C (which 

only improved numerically) and number prediction for cue D. Plotted is the difference in probability of choosing the more common outcome in the last session compared to the training session. 

positive differences indicate learning during the task. 

* p < .05. ** p < .01. *** p < .0001. 
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task, predictions of the outcome of this cue did not improve and even got worse numerically (Figure 2b). 

 

Learning From Recent Outcomes 
 

We evaluated each subject’s sensitivity to the most recent outcome as a behavioral proxy for learning rate—a subject with a high learning rate 

should be relatively more likely to expect an outcome that she recently experienced, while a subject with a low learning rate should be less affected 

by recent experience. To measure this, we compared the probability of the subject predicting the common outcome for a specific cue after most 

recently experiencing the common outcome for that cue, versus after most recently experiencing the uncommon outcome. Stronger sensitivity to the 

most recent outcome, that is, higher learning rates, should manifest as larger differences between the two quantities. We evaluated learning for the 

scan sessions, as these were the sessions for which we could correlate learning with brain activity. 

For color prediction on Cue A and Cue B trials, subjects showed significantly greater probability of choosing the common outcome if the most 

recent outcome was common, suggesting that subjects were learning about Cue A and B outcomes from experience during the scan sessions 

(Figure 3a, left). This pattern of learning was not apparent for Cue D number prediction trials, consistent with the low overall accuracy and low 

improvement across the experiment for predicting the number of M&Ms for Cue D (Figure 3a, right). 

 

Figure 3 

Subjects’ Predictions Were Sensitive to the Most Recent Outcomes for Cues A and B, Evidencing Trial-by-Trial Learning  
 

 

Note. (a) Subjects were more likely to predict the common color (for cue A and B trials, where color of the M&M outcome varied; left) after observing the common outcome (as opposed to the 

uncommon outcome) on the most recent trial with the same image cue. This pattern did not hold for predictions of number in the condition where number of M&Ms varied (number prediction 

on cue D trials; right). Means ± SEM. (b) There was no correlation between sensitivity to recent outcomes (calculated as the difference between the probability of predicting the common 

outcome after recently observing the common outcome versus the uncommon outcome for the same cue; see panel a) and performance improvement across the experiment (calculated as 

the difference in proportion of optimal predictions between the last session and the training session; see Figure 2b). 
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Figure 4 

M&M Outcomes, But Not Image Cues, Were Classifiable From Multivariate OFC Patterns of Activity 
 

 

Note. (a) Subregions of OFC, displayed on the orbital surface of the brain. These regions of interest were obtained on a different dataset by Kahnt et al. (2012), who parcellated the OFC using 

k-means clustering of functional connectivity. (b) cross-validated classification performance (across subjects) for start state (image cue) and end state (M&M color) for cue A and B trials, using 

multivariate linear classifiers on OFC activity. error bars indicate SEM. * p < .05. (c and d) No significant differences in univariate BOLD responses for common versus uncommon outcomes 

were observed, except for cue D (for which uncommon outcomes also corresponded to larger rewards) in lateral OFC. Plotted is percent signal change in subregions of OFC at the time of the 

common outcomes and the uncommon outcomes. *** p < .005. 

 

 

Note that higher sensitivity to recent outcomes does not necessarily imply a greater improvement in performance across the experiment, because 

high learning rates can, in fact, lead to more highly fluctuating responses. Indeed, as shown in Figure 3b, we did not find evidence for a correlation 

between sensitivity to recent outcomes and improvement across the experiment in Cue A and B color prediction, and we found a marginally negative 

correlation with improvement in Cue D number prediction. 

 

Identity of Outcomes (But Not of Image Cues) was Decodable From Multivariate Orbitofrontal Cortex Activity—Orbitofrontal 

Cortex Does Not Simply Represent Perceptual Input 
 

To evaluate OFC representations of the current state, we used multivariate classification methods to classify the outcome states (Color 1 vs. Color 

2) at the time of the M&M outcome for Cue A and Cue B trials. We analyzed a predefined OFC ROI (Figure 4a). Cross-validated classifier performance 

was significantly above chance (50%) for classifying M&M outcome (classification accuracy 53.9% and 54.0%, p = .013 and .012, for medial and 

lateral OFC respectively; one-sided bootstrap test), indicating reliable representations of outcome state in both medial and lateral OFC (Figure 4b). 

In contrast, we did not find above-chance classifier performance for the image cue (Cue A vs. Cue B) at the time of the outcome (classification 

accuracy 49.6% and 48.5%, p = .61 and .75, for medial and lateral OFC respectively; one-sided bootstrap test). This is despite the fact that, on each 

trial, the image cue was still on the screen at the time that the M&M outcome appeared, and in fact occupied a much larger area of the screen than 

the M&Ms, indicating that OFC representations of the current state do not simply reflect perceptual input. 

 

Univariate Orbitofrontal Cortex Responses at the Time of Outcome Did Not Signal State Prediction Errors 
 

In general, we did not observe significant differences in univariate BOLD responses for common versus uncommon outcomes (corresponding to 

hypothesized small vs. large prediction errors). The exception was in lateral OFC for Cue D, where the BOLD response was more negative for the 

common (1 M&M) outcome as compared to the uncommon 4 M&M outcome (Figure 4c, d; p < .005, one-sided bootstrap test), suggesting possible 

sensitivity to reward value or salience in lateral OFC in particular.
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Figure 5 

Greater OFC Activity at the Time of Both Common and Uncommon Outcomes Was Related to Higher Probability of Predicting the Common Outcome 
on Ensuing Trials With the Same Cue 
 

 
Note. (a) Within-subject, trial-by-trial correlations of OFC activity with learning from recent outcomes, for cue A and B trials. Plotted is the mean slope term from logistic regression of [probability 
of predicting the common outcome] on [percent signal change in OFC subregion at the time of outcome, for the most recent trial with the same image cue], fit for each subject separately, and 
also separately for trials where the previous outcome was the common outcome or where the previous outcome was the uncommon outcome. * p < .05. ** p < .01. (b) OFC activity at outcomes 
was not related to the probability of predicting the common outcome on ensuing trials with a different cue. Plotted is the mean slope term from logistic regression of [probability of predicting 
the common outcome] on [percent signal change in OFC subregion at previous outcome, for the most recent trial with a different image cue], fitted for each subject separately bars indicate 
mean slope terms across subjects ± SEM. 

 

 

Trial-by-Trial Correlations of Orbitofrontal Cortex Activity With Learning From the Most Recent outcome 

 
Given that subjects’ behavior demonstrated learning from the most recent outcome for Cues A and B during the scan sessions (Figure 3a, Section 

“Learning From Recent Outcomes”), we evaluated whether OFC activity could predict this learning, on a trial-bytrial basis. For each subject, we used 

logistic regression on OFC activity at the time of an outcome to predict whether the subject would choose the common outcome in the subsequent 

“guess” trial involving the same cue. The results of this analysis indicated an involvement of OFC in learning about transitions, but they were not 

consistent with a straightforward interpretation of OFC activity as reflecting a state prediction error. 

Based on a prediction-error account of OFC, we would expect that the slope term of the logistic regression would be positive for the common 

outcomes and negative for the uncommon outcomes—that is, if greater OFC activity at the time of an outcome indicates a larger prediction error 

(and therefore more learning to predict that outcome), then it should lead to a greater probability of the subject predicting the same outcome on the 

next trial (common after observing a common outcome, and uncommon after observing an uncommon outcome). Instead, we found that the fit slope 

terms were positive for both trials where the most recent outcome was the common outcome, as well as for trials where the most recent outcome 

was the uncommon outcome. In other words, no matter the outcome (common or uncommon), greater BOLD activity in OFC at the time of an 

outcome was correlated with a higher probability of subjects predicting the common outcome on the next trial with the same cue (Figure 5a). These 

results suggest the OFC’s involvement on a trial-by-trial basis in learning task contingencies. 

To investigate the possibility that the result in Figure 5a was driven by OFC activity simply indicating an increased level of task engagement or 

task structure representation, we performed a second, analogous analysis in which we regressed subjects’ predictions on OFC activity at the most 

recent outcome involving a different cue. Note that this regression predicts choice from trials that were, on average, temporally closer than the trials 

used in the above analysis, since different-cue trials are more common (15.0 ± .4 s between subsequent different-cue trials, 38.6 ± 1.0 s between 

subsequent same-cue trials). As a result, we might expect the relationship between OFC activity and choice to be even stronger in this analysis. 

Contrary to this prediction, we found that the regression slope terms were not significantly different from zero, as shown in Figure 5b. Thus OFC 

activity at the time of an outcome only seemed to affect behavioral predictions on ensuing trials when those trials involved the same cue. Together, 

these analyses suggest that the OFC is involved in updating or reinforcing a learned transition model on a trial-by-trial basis, specifically for the 

currently observed cue– outcome associations. 

 

 

Discussion 
 

Lesion and inactivation studies have shown that the OFC is particularly important for planning and model-based decisionmaking. However, prior 

work implicating OFC in the representation of expected values did not necessarily explain why this area should be important for model-based 

decision-making in particular, since expected values are generated in both model-based and model-free learning. Here, we have shown that OFC 

activity at the time of an outcome is related to learning about the transition structure of a task (the tendencies of certain states to lead to other states), 

which
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is necessary for accurate planning, shedding new light on the question of why the OFC is critical for model-based decisions. 

Using an experimental design that permits constant updating of (probabilistic) transitions between states, we showed that activity in the OFC is 

correlated with behavioral measures of learning about transition structure. Greater OFC activity at the time of an outcome was positively correlated 

with the likelihood of optimally predicting the outcome on the next trial with the same image cue, supporting the hypothesized involvement of the 

OFC in learning of transition structure. 

State-transition learning in our experiment was distinct from value-based learning that is thought to be implemented in the dopaminergic system 

(Jocham et al., 2011; Kravitz et al., 2012), because the trials of interest always led to a predictable number of 2 M&Ms. Our analyses also combined 

conditions (Cue A and Cue B trials) in which the identities (M&M colors) of the common and uncommon outcomes were reversed, so that any 

potential differences in value for different M&M colors would cancel out. Therefore, our results positively identify a role for the OFC in learning a 

nonvalue-related quantity. 

In particular, our results suggest a role for OFC in the activation or reinforcement of an already-learned transition model (and thus the reinforcement 

of the more optimal prediction), which may be in line with previous work indicating OFC representation of a cognitive map of task space (Chan et al., 

2016; Schuck et al., 2016; Schuck & Niv, 2019; Wilson et al., 2014). At the same time, our results are agnostic as to where exactly this model is 

stored or accessed from— they show only the involvement of OFC in updating or reinforcing an internal model of the transition structure. 

What kind of learning might underlie the observed relationships between OFC activity and behavior? Both Hebbian and error-based learning might 

lead to the pattern of results we observed, though these algorithms would require additional signals to drive the learning process (e.g., from a learned 

model), in order for increased OFC activity to strengthen the relationship between a cue and the common outcome, rather than the currently observed 

outcome. Other, yet unknown algorithms, may of course also be possible—in contrast to our increasingly detailed understanding of how world models 

are used for deploying goal-directed behavior (Daw, 2018), the mechanism for learning world models has not been well described in the literature 

as of yet (Niv, 2019; O’Doherty et al., 2017). 

Previous work has proposed a state prediction-error algorithm for learning state transitions, analogous to learning about state values from reward 

prediction errors observed in dopaminergic neurons. A state prediction error would signal surprise-related information at the time of an unexpected 

state (regardless of the state’s value) and could be used to adjust internal estimates of transition probabilities by increasing the estimated probability 

of transitioning to the just-observed state. However, our results did not straightforwardly affirm the hypothesis that the OFCsupportsstate-

transitionlearningbyrepresentingastateprediction error signal. At the least, we did not find evidence for the encoding of this error signal in the OFC’s 

univariate response to outcomes, as we did not observe differences in OFC activity for common versus uncommon outcomes (corresponding to 

small vs. large state prediction errors). Further, univariate OFC activity at the time of an outcome was not correlated with greater subsequent 

expectations of that particular outcome. Instead, OFC activity was related to the greater subsequent expectation of the more common outcome (i.e., 

more optimal prediction by subjects), regardless of whether the OFC activity was measured at the time of a common or uncommon outcome. 

Previous works have found mixed evidence of state prediction errors being represented in the OFC. Howard and Kahnt (2018) and Suarez et al . 

(2019) discovered evidence of state prediction errors in the midbrain, OFC, piriform cortex, amygdala, lateral prefrontal cortex, and posterior parietal 

cortex. Boorman et al. (2016) found correlations of state prediction errors with univariate activity in lateral OFC, but only when signed positively or 

negatively according to whether the update increased or decreased the odds of a preferred outcome. However, Glascher et al. (2010) tested for 

univariate correlations with the (unsigned) magnitude of an inferred state prediction error signal and implicated the dorsolateral prefrontal cortex and 

intraparietal sulcus (but not the OFC) in their analysis. 

It is possible that the discrepancy between our findings and previous work showing state prediction errors in OFC is due to the specific differences 

between our experiment and previous work—differences that perhaps highlight the specific circumstances required for observation of state prediction 

errors in the OFC. First, state transition probabilities in the current experiment (and in Glascher et al., 2010) were stationary (though stochastic), 

whereas the aforementioned previous works used nonstationary distributions with sudden reversals in cue–outcome contingencies. Recent work 

has indicated that humans and animals interpret large changes in the environment differently from small surprises, with large surprises taken as 

indicating a new underlying “latent state” of the environment (Collins & Frank, 2013; Dunsmoor et al., 2015; Gershman et al., 2010, 2017). The 

process of latent state inference and representation has been associated with both the hippocampus and the OFC (Niv, 2019; Schuck & Niv, 2019). 

A second difference is that our main analyses averaged over any differences in value for different outcomes by aggregating across Cue A and 

Cue B, in order to disentangle reward prediction errors and state prediction errors. Glascher et al. also analyzed state prediction errors only in the 

absence of rewards and did not find evidence for state prediction errors in OFC. Indeed, for the trial type where we purposefully did not take these 

measures to disentangle state and reward prediction errors (Cue D trials, where the image cues led probabilistically to varying numbers—rather than 

colors— of M&Ms), we did find evidence of univariate differences in activation of lateral OFC for uncommon vs. common (i.e., high vs. low value) 

outcomes. This is reminiscent of the results from Boorman et al. (2016), who found correlations with state prediction errors in lateral OFC only when 

the inferred errors were signed positively or negatively according to the change in the value of a state transition. Howard and Kahnt (2018) also 

showed that responses to (unsigned) identity and positive value prediction errors were correlated across participants, at least in the midbrain. These 

results suggest some kind of shared neural response between state and reward prediction errors in these studies. 

Previous work in rats that implicated the OFC in learning about transition structure, concentrated on the lateral OFC (McDannald et al., 2011), and 

fMRI work in humans also specifically implicated the lateral OFC in this type of process (Boorman et al., 2016; Howard & Kahnt, 2018; Suarez et al., 

2019). We tested our hypotheses in the entirety of the OFC, using a previously determined functional connectivity-based parcellation of OFC into 

medial and lateral subregions (Kahnt et al., 2012). Medial and lateral OFC
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showed very similar results across all our analyses. Of course, this does not rule out the possibility that there may exist a different parcellation of 

OFC that would lead to differing results across subregions. We note also that the homology of OFC between rodents and humans is currently unclear, 

and OFC subdivisions are particularly complex given observed considerable anatomical variability within individuals (Chiavaras & Petrides, 2000; 

Wallis, 2012). We should also take care in interpreting the negative BOLD response in OFC—this negative BOLD response has been previously 

observed (e.g., Boorman et al., 2009), but is not yet fully understood. 

It is important to note that our secondary analyses did provide further support for two other mainstream theories of OFC function, in addition to the 

theory of a role in learning transition structure. First, we found that we could decode representation of outcome identity in OFC using MVPA of BOLD 

activity at the times of the outcomes, consistent with a recent theory implicating OFC in the representation of the current state (Wilson et al., 2014), 

for which evidence is increasingly amassing (e.g., Bradfield et al., 2015; Chan et al., 2016; Howard et al., 2020; Klein-Flügge et al., 2013; Nogueira 

et al., 2017; Schuck et al., 2016; Zhou et al., 2020). Second, we found evidence for value sensitivity in univariate BOLD responses in lateral OFC in 

a separate task condition (Cue D), in which the number (but not color) of M&Ms was unpredictable, consistent with previous work demonstrating that 

OFC represents the value of rewards (Fellows, 2007; Gottfried et al., 2003; Hampton et al., 2006; Hare et al., 2008; Monosov & Hikosaka, 2012; 

Padoa-Schioppa & Assad, 2006; Wallis & Kennerley, 2011; though note that value might be construed as just one feature in the representation of 

the current state; Lopatina et al., 2015). 

In conclusion, the present results provide support for an emerging understanding of the relationship between the OFC and acquisition of state-to-

state transition structure. Our findings may suggest a role for OFC in reactivation and reinforcement of an already learned state-transition model, 

relating to proposals that the OFC stores such a model (Wilson et al., 2014). Our findings also build upon previous work showing that rats with OFC 

lesions show impaired learning about changes in state transitions (McDannald et al., 2011) and that surprise signals in human OFC are related to 

changes in hippocampal representations of state transitions (Boorman et al., 2016). Importantly, while our results are not straightforwardly aligned 

with a state prediction error hypothesis, at least in this learning regime, they do still indicate OFC’s involvement in learning about transition structure. 

Our findings may therefore serve to constrain future models of the particular learning algorithms that may underlie learning about transition structure, 

facilitating a fuller understanding of the involvement of OFC in learning and model-based decision-making. 

 

 

References 

 

Baxter, M. G., Parker, A., Lindner, C. C. C., Izquierdo, A. D., & Murray, E. A. (2000). Control of response selection by reinforcer value requires interaction of amygdala 

and orbital prefrontal cortex. The Journal of Neuroscience, 20, 4311–4319. 

Boorman, E. D., Behrens, T. E. J., Woolrich, M. W., & Rushworth, M. F. S. (2009). How green is the grass on the other side? Frontopolar cortex and the evidence in 

favor of alternative courses of action. Neuron, 62, 733–743. 

Boorman, E. D., Rajendran, V. G., O’Reilly, J. X., & Behrens, T. E. (2016). Two anatomically and computationally distinct learning signals predict changes to stimulus-

outcome associations in hippocampus. Neuron, 89, 1343–1354. 

Bradfield, L. A., Dezfouli, A., van Holstein, M., Chieng, B., & Balleine, B. W. (2015). Medial orbitofrontal cortex mediates outcome retrieval in partially observable task 

situations. Neuron, 88, 1268–1280. 

Carmichael, S. T., Price, J. L. (1996) Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. Journal of Comparative Neurology 

371, 179–207. 

Chan, S. C. Y., Niv, Y., & Norman, K. A. (2016). A probability distribution over latent causes, in the orbitofrontal cortex. The Journal of Neuroscience, 36(30), 7817–

7828. https://doi.org/10.1523/JNEUROSCI.0659-16.2016 

Chang, C.-C., & Lin, C.-J. (2011) LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), Article 27. 

Chiavaras, M. M., & Petrides, M. (2000). Orbitofrontal sulci of the human and macaque monkey brain. Journal of Comparative Neurology, 422(1), 35–54. 

Collins, A. G. E., & Frank, M. J. (2013). Cognitive control over learning: Creating, clustering, and generalizing task-set structure. Psychological Review, 120(1), 190–

229. https://doi.org/10.1037/a0030852  

Daw, N. D. (2018). Are we of two minds? Nature Neuroscience, 21(11), 1497–1499. 

Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 

8, 1704–1711. 

De Wit, S., Corlett, P. R., Aitken, M. R., Dickinson, A., & Fletcher, P. C. (2009). Differential Engagement of the ventromedial prefrontal cortex by goal-directed and 

habitual behavior toward food pictures in humans. The Journal of Neuroscience, 29, 11330–11338. 

Deichmann, R.,Gottfried,J., Hutton,C.,& Turner, R. (2003).Optimized EPI for fMRI studies of the orbitofrontal cortex. NeuroImage, 19, 430–441. 

Dunsmoor, J. E., Niv, Y., Daw, N., & Phelps, E. A. (2015). Rethinking extinction. Neuron, 88(1), 47–63. https://doi.org/10.1016/j.neuron.2015.09.028 

Erev, I., & Barron, G. (2005). On Adaptation, Maximization, and Reinforcement Learning Among Cognitive Strategies. Psychological Review, 112(4), 912–931. 

https://doi.org/10.1037/0033-295X.112.4.912 

Fellows, L. K. (2007). The role of orbitofrontal cortex in decision making. Annals of the New York Academy of Sciences, 1121, 421–430. 

Gershman, S. J., Blei, D. M., & Niv, Y. (2010). Context, learning, and extinction. Psychological Review, 117(1), 197–209. https://doi.org/10.1037/a0017808 

Gershman, S. J., Monfils, M. H., Norman, K. A., & Niv, Y. (2017). The computational nature of memory modification. eLife, 6, Article e23763. 

Glascher, J., Daw, N., Dayan, P., & O’Doherty, J. P. (2010). States versus rewards: Dissociable neural prediction error signals underlying modelbased and model-free 

reinforcement learning. Neuron, 66, 585–595. 

Gottfried, J. A., O’Doherty, J., & Dolan, R. J. (2003). Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science, 301, 1104–1107. 

Hampton, A. N., Bossaerts, P., & O’Doherty, J. P. (2006). The Role of the Ventromedial Prefrontal Cortex in Abstract State-Based Inference during Decision Making in 

Humans. The Journal of Neuroscience, 26(32), 8360– 8367. https://doi.org/10.1523/JNEUROSCI.1010-06.2006 

Hare, T. A., O’Doherty, J., Camerer, C. F., Schultz, W., & Rangel, A. (2008). Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal 

values and prediction errors. The Journal of Neuroscience, 28, 5623–5630. 

Howard, J. D., & Kahnt, T. (2018). Identity prediction errors in the human midbrain update reward-identity expectations in the orbitofrontal cortex. 

Nature Communications, 9(1), Article 1611.

https://doi.org/10.1523/JNEUROSCI.0659-16.2016
https://doi.org/10.1037/a0030852
https://doi.org/10.1016/j.neuron.2015.09.028
https://doi.org/10.1037/0033-295X.112.4.912
https://doi.org/10.1037/a0017808
https://doi.org/10.1523/JNEUROSCI.1010-06.2006


 

Originally published in: Behavioral Neuroscience, 135, 2021, p. 497 

Howard, J. D., Reynolds, R., Smith, D. E., Voss, J. L., Schoenbaum, G., & Kahnt, T. (2020). Targeted stimulation of human orbitofrontal networks disrupts outcome-

guided behavior. Current Biology, 30(3), 490–498.e4. https://doi.org/10.1016/j.cub.2019.12.007 

Izquierdo, A., Suda, R. K., & Murray, E. A. (2004). Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward 

contingency. The Journal of Neuroscience, 24, 7540–7548. 

Jocham, G., Klein, T. A., & Ullsperger, M. (2011). Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-

based choices. The Journal of Neuroscience, 31, 1606–1613. 

Kahnt, T., Chang, L. J., Park, S. Q., Heinzle, J., & Haynes, J.-D. (2012). Connectivity-based parcellation of the human orbitofrontal cortex. The Journal of Neuroscience, 

32, 6240–6250. 

Klein-Flügge, M. C., Barron, H. C., Brodersen, K. H., Dolan, R. J., & Behrens, T. E. J. (2013). Segregated encoding of reward–identity and stimulus–reward associations 

in human orbitofrontal cortex. The Journal of Neuroscience, 33, 3202–3211. 

Kravitz, A. V., Tye, L. D., & Kreitzer, A. C. (2012). Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nature Neuroscience, 15, 816–818. 

Lopatina, N., McDannald, M. A., Styer, C. V., Sadacca, B. F., Cheer, J. F., & Schoenbaum, G. (2015). Lateral orbitofrontal neurons acquire responses to upshifted, 

downshifted, or blocked cues during unblocking. eLife, 4, Article e11299. 

McDannald, M. A., Lucantonio, F., Burke, K. A., Niv, Y., & Schoenbaum, G. (2011). Ventral striatum and orbitofrontal cortex are both required for model-based, but not 

model-free, reinforcement learning. The Journal of Neuroscience, 31, 2700–2705. 

Monosov, I. E., & Hikosaka, O. (2012). Regionally distinct processing of rewards and punishments by the primate ventromedial prefrontal cortex. The Journal of 

Neuroscience, 32, 10318–10330. 

Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. The Journal of 

Neuroscience, 16, 1936–1947. 

Mumford, J. A.., Turner, B. O., Ashby, F. G., & Poldrack, R. A. (2012). Deconvolving BOLD activation in event-related designs for multivoxel pattern classification 

analyses. NeuroImage, 59, 2636–2643 

Niv, Y. (2019). Learning task-state representations. Nature Neuroscience, 22(10), 1544–1553. 

Nogueira, R., Abolafia, J. M., Drugowitsch, J., Balaguer-Ballester, E., Sanchez-Vives, M. V., & Moreno-Bote, R. (2017). Lateral orbitofrontal cortex anticipates choices 

and integrates prior with current information. Nature Communications, 8, Article 14823. 

O’Doherty, J. P., Cockburn, J., & Pauli, W. M. (2017). Learning, reward, and decision making. Annual Review of Psychology, 68(1), 73–100. 

https://doi.org/10.1146/annurev-psych-010416-044216 

Öngür, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex, 10, 206–

219. 

Padoa-Schioppa, C., & Assad, J. A. (2006). Neurons in the orbitofrontal cortex encode economic value. Nature, 441, 223–226. 

Rescorla, R. A., & Wagner, A. R. (1972). A theory of pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. 

F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). Appleton-Century-Crofts. 

Rudebeck, P. H., & Murray, E. A. (2011). Dissociable effects of subtotal lesions within the macaque orbital prefrontal cortex on reward-guided behavior. The Journal 

of Neuroscience, 31, 10569–10578. 

Schuck, N. W., Cai, M. B., Wilson, R. C., & Niv, Y. (2016). Human orbitofrontal cortex represents a cognitive map of state space. Neuron, 91, 1402–1412. 

Schuck, N. W., & Niv, Y. (2019). Sequential replay of nonspatial task states in the human hippocampus. Science, 364(6447), Article eaaw5181. 

https://doi.org/10.1126/science.aaw5181 

Sharpe, M. J., Chang, C. Y., Liu, M. A., Batchelor, H. M., Mueller, L. E., Jones, J. L., Niv, Y., & Schoenbaum, G. (2017). Dopamine transients are sufficient and 

necessary for acquisition of model-based associations. Nature Neuroscience, 20(5), 735–742. https://doi.org/10.1038/nn.4538 

Stalnaker, T.A., Howard, J.D., Takahashi, Y.K., Gershman, S. J., Kahnt, T.,& Schoenbaum, G. (2019). Dopamine neuron ensembles signal the content of sensory 

prediction errors. eLife, 8, Article e49315. https://doi.org/10.7554/eLife.49315 

Suarez, J. A., Howard, J. D., Schoenbaum, G., & Kahnt, T. (2019). Sensory prediction errors in the human midbrain signal identity violations independent of perceptual 

distance. eLife, 8, Article e43962. https://doi.org/10.7554/eLife.43962 

Takahashi, Y. K., Batchelor, H. M., Liu, B., Khanna, A., Morales, M., & Schoenbaum, G. (2017). Dopamine neurons respond to errors in the prediction of sensory 

features of expected rewards. Neuron, 95(6), 1395–1405.e3. https://doi.org/10.1016/j.neuron.2017.08.025 

Valentin, V. V., Dickinson, A., & O’Doherty, J. P. (2007). Determining the neural substrates of goal-directed learning in the human brain. The Journal of Neuroscience, 

27, 4019–4026. 

Vulkan, N. (2000). An economist’s perspective on probability matching. Journal of Economic Surveys, 14(1), 101–118. 

Wallis, J. D. (2012). Cross-Species studies of orbitofrontal cortex and valuebased decision-making. Nature Neuroscience, 15(1), 13–19. https://doi.org/10.1038/nn.2956 

Wallis, J. D., & Kennerley, S. W. (2011). Contrasting reward signals in the orbitofrontal cortex and anterior cingulate cortex. Annals of the New York Academy of 

Sciences, 1239, 33–42. 

Walton, M. E., Behrens, T. E. J., Buckley, M. J., Rudebeck, P. H., & Rushworth, M. F. S. (2010). Separable learning systems in the macaque brain and the role of 

orbitofrontal cortex in contingent learning. Neuron, 65, 927–939. 

Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., & Niv, Y. (2014). Orbitofrontal cortex as a cognitive map of task space. Neuron, 81, 267–279. 

Zhou, J., Zong, W., Jia, C., Gardner, M. P. H., & Schoenbaum, G. (2020). Prospective representations in rat orbitofrontal ensembles. Neuroscience. Advance online 

publication. https://doi.org/10.1101/2020.08.27.268391 

https://doi.org/10.1016/j.cub.2019.12.007
https://doi.org/10.1146/annurev-psych-010416-044216
https://doi.org/10.1126/science.aaw5181
https://doi.org/10.1038/nn.4538
https://doi.org/10.7554/eLife.49315
https://doi.org/10.7554/eLife.43962
https://doi.org/10.1016/j.neuron.2017.08.025
https://doi.org/10.1038/nn.2956
https://doi.org/10.1101/2020.08.27.268391

