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Adaptive cognition is fostered by knowledge about the structure
and value of our environment. Here, we hypothesize that these
two kinds of information are inherently intertwined as value-
weighted schemas in the medial prefrontal cortex (mPFC).
Schemas (e.g., of a social network) emerge by extracting com-
monalities across experiences and can be understood as graphs
comprising nodes (e.g., people) and edges (e.g., their relation-
ships). We sampled information about unique real-life environ-
ments (i.e., about personally familiar people and places) and
probed the neural representations of their schemas with fMRI.
Using representational similarity analysis, we show that the
mPFC encodes indeed both, the nodes and edges of the schemas.
Critically, as hypothesized, the strength of the edges is not only
determined by experience and centrality of a node but also by
value. We thus account for the involvement of the mPFC in dis-
parate functions and suggest that valuation emerges naturally
from encoded memory representations.
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Introduction

Our rich knowledge of the past allows us to readily make
sense of the present. It also facilitates adaptive planning for
the future, for example by supporting simulations of prospec-
tive events (1-5). Critically, these capacities are not exclu-
sively dependent on individual memories of unique past ex-
periences. Instead, they are also based on generalized knowl-
edge about our environment that is derived from multiple ex-
periences (e.g., knowledge about relationships between fa-
miliar people)(3, 6).

A type of such generalized knowledge structures are mem-
ory schemas (7-9). These representations of our environment
can be understood as graphs comprising information about
nodes (e.g., individual people) and their edges (e.g., their re-
lationships) (8, 10-12). Schemas are formed by extracting
commonalities across related events (7, 8, 13). They thereby
reduce the complexity of our experience into simplified mod-
els of the world (e.g., about the people we know or about the
locations we frequently visit) (8, 14). Such models, in turn,
foster planning and facilitate adaptive decisions (15-17).

However, beyond a representation of the environment’s struc-

ture, adaptive cognition also requires a representation of
what’s valuable within that environment (18). Here, we test
the hypothesis that these two kinds of information are inher-
ently intertwined in the rostral and ventral medial prefrontal
cortex (mPFC) (19-22). As detailed below, this proposal ac-
counts for the involvement of this region in two seemingly
disparate functions: representing memory schemas and value.

Evidence from humans (23, 24) and rodents(20, 25) indicates
a critical role for the mPFC in mediating memory schemas
(26, 27). Activity patterns in this region have been shown
to code for individual nodes of the environment, such as for
familiar people (19, 28) and places(19, 29). However, it re-
mains unclear whether the mPFC encodes representations of
the nodes in isolation or whether these representations also
entail information about their edges (i.e., their relationships
to other nodes).

A largely independent line of research has associated the
mPFC with the representation of affect and value (21, 30-
32). Activity in this region tracks the value of objects, people,
or places that we currently perceive or imagine (19, 30, 33—
35). Moreover, in humans, focal lesions disrupt value judge-
ments (36, 37). The mPFC has thus been argued to represent
value in a common currency that allows for flexible decision
making in a wide range of contexts (30, 31, 38). Notably,
evidence from human neuroimaging (1, 19, 33, 35, 39) and
rodent single cell-recordings (20, 22) has shown that repre-
sentations of memories and of value are supported by over-
lapping parts of the mPFC. We thus reconcile the common at-
tribution of these functions by hypothesizing that the schemas
encoded by this region are shaped by value.

Specifically, we propose that the mPFC encodes represen-
tations of individual nodes (e.g., individual familiar people)
and that the representations also entail information about
their edges (e.g., the overall associations between the people).
Critically, we suggest that nodes that are more important for
a person exhibit stronger edges.

We hypothesize that the importance of a given node is jointly
determined by three features: Given that schemas build up
with experience (8), we first expect that more familiar nodes
should be more prominently embedded in the overall graph
(33). Secondly, for the same reason, we expect stronger em-
bedding of nodes that are more central to the respective en-
vironment (11). Finally, given the role of the mPFC in af-
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fect and valuation (21, 30), we propose the edges are also
weighted by the nodes’ value (19, 20, 40). The encoded
schemas would thus emphasize connections of behaviorally
relevant elements of the environment, reminiscent of the hip-
pocampal weighting of rewarded locations (41, 42).

Here, we test this hypothesis by probing the neural repre-
sentations of two distinct and individually unique schemas:
about people’s social networks and about places from their
everyday environment. This allows us to examine whether
the suggested coding principles generalize across these indi-
vidual schemas. Participants provided names of people and
places they personally know and arranged these names in cir-
cular arenas according to their associations (43). This al-
lowed us to quantify the centrality of each exemplar (e.g.,
a person) to its respective schema (e.g., the social network).
Participants also indicated their familiarity with each person
and place (as an index of experience) and their liking of each
of these exemplars (as an index of affective value). In a sub-
sequent session, we measured their brain activity using func-
tional magnetic resonance imaging (fMRI) while they imag-
ined interacting with each person and being at each place. We
took the ensuing activity patterns to assess the neural repre-
sentations of the individual nodes and their edges using rep-
resentational similarity analysis (RSA) (44).

First, we hypothesized that the mPFC encodes unique rep-
resentations of the nodes that get reinstated during mental
simulation (19, 28, 29). We thus predicted similar activity
patterns to emerge in the mPFC whenever participants imag-
ine the same person or place. Second, we hypothesized that
the structure of neural activity patterns across nodes reflects
the structure of their edges. That is, we reasoned that pairs
of nodes that are more strongly connected (i.e., that exhibit
stronger edges) are encoded by more overlapping neuronal
populations (1, 45-47). This, in turn, should be reflected in
overall greater neural similarity for nodes with particularly
strong edges. As a consequence, if more important nodes
have stronger edges, they should also exhibit overall greater
neural similarity.

In addition, we further gauge the regional specificity of such
value-weighted schemas to the mPFC. Therefore, we also ex-
amine the posterior cingulate cortex and the hippocampus,
two regions that have similarly been associated with memory
(48-51) and valuation (30, 34, 52).

Results

The medial prefrontal cortex codes for the nodes of partici-
pants’ real-life schemas

We first examined the hypothesis that the medial prefrontal
cortex encodes representations of personally familiar people
and places, i.e., the nodes of the respective schemas. When-
ever we simulate an event involving a particular node, its rep-
resentation should get reinstated in the mPFC. We thus took
the ensuing fMRI activity patterns as proxies of their respec-
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tive neural representations (19, 53) and examined their repli-
cability using an RSA searchlight approach (radius = 8§ mm,
4 voxels) (44).

In regions that encode the nodes of the schema, we predicted
overall greater pattern similarity for simulations featuring the
same node (same-item similarity) than for simulations featur-
ing different nodes (different-item similarity) (54). Note that
the different-item measure was only based on the similarity of
activity patterns for nodes of the same kind (i.e., either people
or places). This ensured that the results are not influenced by
potential categorical differences in the representation of peo-
ple versus places (Figure 1A and 1B) (19, 53).

Corroborating our previous finding (19), we obtained this ef-
fect in the mPFC. This region thus yielded replicable activ-
ity patterns that were specific to individual exemplars (Fig-
ure 1C, Table S1). Moreover, we also observed evidence for
such replicable pattern reinstatement in a number of other
brain regions that are typically engaged during the recol-
lection of past memories and the simulation of prospective
events (50, 55, 56). These regions included the posterior cin-
gulate cortex (PCC), the precuneus and parts of the lateral
parietal and temporal cortices. Notably, there was no evi-
dence for pattern reinstatement in the hippocampus.

The data thus support our hypothesis that the mPFC encodes
unique representations of individual nodes. In the following,
we further examine the edges between nodes in the mPFC and
PCC regions of interest (ROI) identified by this analysis. We
also test for these effects in the hippocampus, even though
this region showed no evidence of node coding.

Note that the subsequent analyses of the edges are based on
different parts of the neural representational similarity matrix
(RSM) than the ones used to determine node coding. Further,
they are based on comparisons of model RSMs that are also
independent of the node coding model. In the supplement,
we provide complementary and consistent results based on
anatomically defined masks (see Tables S2, S3, S4; Figure
S1 and S2).

Centrality, experience, and affective value load on a common
principal component that quantifies importance

We had hypothesized that a node’s centrality, experience, and
also its affective value contribute to its importance. These
three features may thus share a common latent factor. First,
to assess centrality, participants positioned the names of the
people and places in circular arenas (Figure 2A). They were
instructed to arrange nodes close together if they associate
them strongly with each other and far apart if they do not
(43). We calculated the centrality of each node as the sum
of its inverse distances to all other nodes. Participants then
arranged the people and places on continuous scales provid-
ing estimates of their familiarity with each node (as an index
of experience) and of their liking (as an index of affective
value). All three features were assessed separately for people
and places.

Paulus etal. | Value shapes schematic representations in the mPFC


https://doi.org/10.1101/2020.08.21.260950
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.21.260950; this version posted February 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

same-item different-item
similarity similarity
run 1 r run 2 D > .
Clara Paulus Clara Paulus ‘ H
1
2 Clara PCC mPFC PCC
$ Justus
‘; Q Antonia
Sa o Katharina
=98 _ < Hans-Peter
—g S Ann-Kristin
3 Martha
;é’ 2 C_D Jakob
~ g 3 person 30 [N (]
c = TOTBTH5EC T O
= g §3888528 8 L
3 22 C3Z£%%25 3 t
e 5 “3ge g . 35
people places people places < radius of sphere: 8 mm,
run 1 run 2 run 1 p < .05, voxel FWE, k. > 30 0 t =583 11

Figure 1. Representations in the mPFC and PCC code for the nodes of participants’ real-life schemas

(A) We examined whether the mPFC encodes representations of the nodes by testing for the replicability of activity patterns for the same people and places across the two
functional runs. Each row and column of the representational similarity matrix corresponds to a single simulation trial. (B) Regions coding for the nodes should show more
similar activity patterns for the repeated simulations of the same person or place (same-item similarity) than for simulations entailing different nodes of the same category
(different-item similarity). (C) The searchlight analysis identified regions coding for the nodes of real-life schemas. These entailed the mPFC and PCC. mPFC = medial

prefrontal cortex, PCC = posterior cingulate cortex.

To test whether centrality, experience, and affective value
load on a common latent factor, we z-scored each vector
of values separately for each category (people, places) and
within each participant. This approach prevents between-
participant variance from influencing the factor solution. We
then performed principal component analyses, separately for
the people and places. The respective first principal compo-
nent explained, across all participants, 61% of variance for
people and 46% for places.

Critically, as predicted, both of these principal components
exhibited significant positive correlations not only with ex-
perience and centrality but also with affective value (Figure
2B). We thus take them to quantify the importance of each
individual node to its respective schema. In the next step,
we used the individual importance values of the respective
principal component to predict the structure of the schemas’
edges.

The medial prefrontal cortex encodes the edges of value-
weighted schemas

We had hypothesized that more important nodes — as indi-
cated by the principal component — exhibit stronger edges.
We had further reasoned that the strength of edges is reflected
in the neural similarity of the connected nodes. Specifically,
we assumed that more strongly connected nodes are also en-
coded by more overlapping neuronal populations (1, 20, 57).
As a consequence, we had predicted that more important
nodes should exhibit overall greater neural similarity.

We tested this prediction by constructing models of the ex-
pected structure of representations in the mPFC. The mod-
els were based on the importance values derived from the
respective principal component. Specifically, we predicted
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the similarity between any two nodes by the product of their
respective principal component scores (i.e., importance val-
ues). Thus, we expected more important nodes to yield over-
all greater pattern similarity (Figure 3B).

We then determined the neural similarity structure in the
mPFC, PCC, and in the hippocampus (Figure 3A). We con-
strained the broader cluster containing the PCC to the parts
covering this region using an anatomical mask (58). We used
an anatomical mask from the same atlas to examine the repre-
sentational structure for the hippocampus. All analyses were
conducted in subject space.

Finally, we tested for the correspondence between our predic-
tion and the actual structure of neural representations by com-
puting the correlation of the respective parts of the lower tri-
angular vectors of both matrices (Figure 3C). This was done
separately for people and places to examine whether the ef-
fect is present for either category. Using Kendall’s 7, as a
conservative estimate (59), we indeed observed significant
correlations in the mPFC for both people (mean 1, = 0.039,
tested with a Wilcoxon test, W = 562, p < .001, d = 0.63,
one-tailed, due to a deviation from normality indicated by a
Shapiro-Wilk test, W = 0.92, p = 0.01) and places (mean 7,
= 0.026, 1(35) = 3.72, p < .001, d = 0.62, one-tailed) - with
no significant differences between the two (#(35) = 1.04, p =
307, d = 0.17, two-tailed).

Similarly, the correlations were also significant in the PCC
for people (mean 1, = 0.046, #(35) = 3.91, p < .001, d =
0.65, one-tailed) and places (mean 1, = 0.026, 1#(35) = 3.61,
p < .001, d = 0.60, one-tailed), again with no significant dif-
ferences between the two (#(35) = 1.42, p = .165, d = 0.24,
two-tailed). However, the same analyses of the hippocampal
data did not yield evidence for a match between the predicted
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Figure 2. Centrality, experience, and affective value load on a common principal component that quantifies importance

(A) Participants arranged the familiar people and places on circular arenas according to their associations, thus providing a measure of centrality. Participants also provided
measures of experience and affective value by indicating their familiarity with the people and places as well as their liking. (B) Centrality, experience, and affective value load
on a common principal component as indicated by significant positive correlations (* - p < .05, *** - p < .001; one-tailed; df = 35). This component thus summarizes the
importance of the nodes (i.e., the people and places) to the schema. CE = centrality, EX = experience, AV = affective value, PC = principal component.

and actual structure of representations (people: mean 7, =
0.003, #35) = 0.41, p = .341, d = 0.07, one-tailed; places:
(mean 14 = 0.007, #(35) = 1.15, p = .13, d = 0.19, one-
tailed). We obtained qualitatively identical results in analy-
ses based on purely anatomically defined ROIs (see Table S2
and S3; Figure S1). The results are also in accordance with
a whole-brain searchlight analysis (radius = 8 mm, 4 vox-
els) (see Table S5). We thus show that representations in the
mPFC generally align with the predicted structure of value-
weighted schematic representations. However, it remains to
be determined whether importance is indeed the best model
to account for the structure of representations in any of our
ROIs.

The importance model accounts best for the structure of
mPFC representations only

Does the structure of representations predicted from the prin-
cipal component account best for the data or would any of the
individual contributing features provide at least a comparable
or even a better fit? If the mPFC does encode value-weighted
schemas, we would expect the model based on the conglom-
erate index of importance to outperform models only based
on centrality, experience, or affective value. Furthermore, we
would expect some degree of regional specificity, i.e., that
only representations in the mPFC are best accounted for by
importance.

We formally tested these predictions by setting up alterna-
tive models that were solely based on either centrality, expe-
rience, or affective value. We then compared these models
with the importance model that was based on the principal
component. In brief, we set up linear mixed effects models
to account for the structure of representations as a function of
each of these individual features. In each of these models, we
included a factor of category (people, places) and the maxi-
mum possible random effects structure that would converge
across all models and regions of interest. We thus accounted
for between participant variance by including a random inter-
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cept per participant and run, as well as random slopes for our
fixed effects of category and the respective predictor (e.g., the
principal component scores). We then performed model com-
parisons within each ROI to determine the model that best fits
the neural similarity structure. The comparisons were based
on Log Evidence Ratios (LER) derived from Akaike’s Infor-
mation Criterion (60). We regarded LER differences greater
than two as decisive evidence for the better model (61).

Consistent with our hypothesis, in the mPFC, the princi-
pal component model accounted best for the data. It per-
formed decisively better than affective value (LER = 4.19),
experience (LER = 14.8) and centrality (LER = 35.16) (Fig-
ure 3D). The model parameters of this winning model en-
tailed a significant main effect of category, reflecting over-
all higher neural pattern similarity for people than places
(Bcategory place = -0.026, SE = 0.008, x? = 11.61, p
< .001). Critically, they also included a significant pos-
itive parameter estimate for the principal component, in-
dicating overall greater neural pattern similarity for nodes
of greater importance (8pyincipalComponent = 0.048, SE =
0.012, x2 = 17.12, p < .001). Moreover, the main effect
of the principal component did not interact with category

(BCategory_place:PrincipalComponent =-0.005, SE = 0.008,
Y2 =0.36, p = .546).

By contrast, in both control regions, other models were better
suited to account for the structure of representations. For the
hippocampus, the model comparison yielded the best fit for
centrality, though there was only a minimal advantage for this
model over affective value (LER = 0.49). Notably, both mod-
els performed decisively better than the ones based on either
the principal component (LER = 2.68) or experience (LER
= 3.46). However, of the model parameters, only the main
effect of category was significant, indicating overall higher
pattern similarity for places than for people (Bcategory_place
=0.02, SE = 0.004, x? = 31.49, p < .001). There was neither
a main effect of centrality (Bcentratity = -0.007, SE = 0.004,
x? = 0.9, p = .342) nor an interaction of category with cen-
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Figure 3. Only the structure of representations in the mPFC is best accounted for by the principal component model that reflects importance

(A) Construction of the neural RSM. Each row and column of the matrix corresponds to a single simulation trial. In this analysis, we examine the similarity of activity patterns
elicited by simulations of different people or places. (B) Construction of the model predictions. We predicted more similar representations for people and places with overall
higher principal component scores, given that these more important exemplars should be more strongly embedded in their overall schema. To this end, we computed the
combined importance of any two people or places from the product of their principal component scores. (C) Correlation of neural RSM and model prediction. Asterisks denote
significant positive correlations as tested in a t-test on the Fisher-z transformed correlation coefficients (*** - p < .001; one-tailed; df = 35). Box-plots: center line, median; box
limits, first and third quartile; whiskers, 1.5x interquartile range. (D) Comparisons of linear mixed models further support the hypothesis: only the structure of representations
in the mPFC is best explained by the principal component. The figure displays Log Evidence Ratios (LER). Smaller values indicate better fit. By definition, the best model
assumes a value of zero. The dotted red line demarks a relative LER difference of two, regarded as decisive. mPFC = medial prefrontal cortex, HPC = hippocampus, PCC =
posterior cingulate cortex, CE = centrality, EX = experience, AV = affective value, PC = principal component.

trality (BCategory_place:Cent'r‘ality = 0.007, SE = 0.004, X2
=3.04, p = .081). The same pattern (i.e., only a main effect
of category) also emerged for the model based on affective
value (see Table S4).

Paulus etal. | Value shapes schematic representations in the mPFC

For the PCC, the model based on affective value performed
decisively better than any other model: principal component
(LER = 4.14), experience (LER = 6.82), and centrality (LER
=33.99) (Figure 3D). The main effect of affective value was
significant, indicating overall greater neural pattern similarity
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(A) Construction of the noise models. On 1,000 iterations, we sampled 30 values for each category type from a standard normal distribution to create a vector of noise
values. We then used these vectors to construct a random noise model (N) by performing the same processing steps as for the other models. This approach also allowed
us to create a sorted noise model (N+). Here, we first sorted the vector of noise values in descending order. This model mirrors the order in which participants tend to list
people and places, i.e., by starting with ones that are more familiar and liked. (B) Comparisons with noise null models. Points depict the mean model performance across
comparisons with 1,000 random noise models (N) and sorted noise models (N+), whiskers indicate the standard deviation. Smaller values indicate better fit. The dotted red
line demarks a relative LER difference of two, regarded as decisive. mPFC = medial prefrontal cortex, HPC = hippocampus, PCC = posterior cingulate cortex, CE = centrality,
EX = experience, AV = affective value, PC = principal component, N = random noise, N+ = sorted noise.

for nodes of higher affective value (84 ¢ fectivevaiue = 0.026,
SE =0.007, X2 =10.71, p =.001). There was no main effect
of category (Bcategory_place = 0.014, SE = 0.009, X2 =1.51,
p =.219), but an interaction of affective value with category,
reflecting a stronger effect of affective value for people than

places (QCategory_place:AffectiveValue =-0.01, SE =0.005,
X2 =3.92, p =.048) (see Table S4 for all model parameters).

In summary, the model based on the principal component was
the clear winner in the mPFC, whereas it was outperformed
by alternative models in the control regions. This pattern
thus suggests some regional specificity of value-weighted
schemas. Note that we obtained consistent results when ex-
amining the structure of representations in the purely anatom-
ically defined ROIs (see Figure S2; Table S4).

Finally, we sought to ensure that the winning models in each
ROI perform better null models based on noise. To this end,
for each familiar person and place, we randomly sampled
a value from a standard normal distribution. We then used
these values to construct a noise model by performing the
identical processing steps as for the other predictors.

Moreover, this allowed us to derived a second noise model
by first sorting the vector of noise values in descending order
prior to constructing the model. This model mirrors the or-
der in which participants tend to list people and places, i.e.,
by starting with people and places they like and know better.
As a consequence, nodes that are listed earlier tend to also
have higher values on the principal component. By sorting
the noise vectors in descending order, we imposed a similar
dependence between the noise values and their serial posi-
tions (Figure 4A).

Separately for each ROI, we then compared model perfor-
mance of random noise and sorted noise against the winning
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model. Because there was no clear single winning model
for the hippocampus, we included the models based on cen-
trality and on affective value (LER < 2) in this comparison.
We repeated this process 1,000 times to obtain an estimate of
the expected performance of the noise models and the win-
ning model. As expected, in the mPFC, the principal com-
ponent remained the best model (mean LER =0, SD = 0.04),
performing decisively better than sorted noise (mean LER =
15.56, SD = 2.51) and random noise (mean LER = 25.81, SD
=6.03).

For the hippocampus, the initial model comparisons had pro-
vided only minimal evidence for centrality over affective
value. We therefore compared both of these models with the
noise models. Again, there was minimal evidence for supe-
riority of centrality (mean LER = 0.09, SD = 0.53) over af-
fective value (mean LER = 0.58, SD = 0.53). Both models
performed decisively better than sorted noise (mean LER =
4.4, SD = 1.09) and random noise (mean LER = 5.32, SD =
2.38). The model comparisons in the PCC revealed strong,
though not decisive, evidence for a superiority of affective
value (mean LER = 1.15, SD = 2.1) over sorted noise (mean
LER = 2.89, SD = 3.37). However, both did perform deci-
sively better than random noise (mean LER = 29.46, SD =
9.01) (see Figure 4B).

The results thus provide further evidence for the hypothe-
sis that the mPFC encodes both the nodes and the edges of
value-weighted schematic representations. The model com-
parison moreover supports this account with some regional
specificity.
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Discussion

Human adaptive cognition is fostered by representations of
the structure of our environment (7, 15, 17). Such structured
representations act as templates that allow us to facilitate rec-
ollections of the past, to make sense of the present, and to
flexibly anticipate the future (6, 8, 13, 33, 62). Structured
representations have been described in the mPFC for vari-
ous domains, ranging from spatial and conceptual to abstract
state spaces (63-67).

Our results support the hypothesis that the mPFC supports
a specific form of such structured representations: value-
weighted schemas of our environment. Generally, the mPFC
has long been argued to mediate memory schemas (26, 27,
62), yet the exact contribution of this region has remained
unclear. It has been suggested that the mPFC serves to detect
congruency of incoming information with schematic knowl-
edge that is represented in posterior areas (27). This region
would thus not necessarily represent any kind of schematic
knowledge by itself. Our data indicate that the contribution
of the mPFC goes beyond congruency detection: It directly
encodes schematic representations of the environment (11,
see also 19).

These representations could act as pointer functions that
guide the reinstatement of relevant distributed information
(26, 27, 68, 69). This suggestion fits with broader accounts
that situate the mPFC on top of a cortical hierarchy as a con-
vergence zone (48, 70) that integrates information from di-
verse brain networks (33, 55).

Critically, our results support the hypothesis that schematic
representations in the mPFC (e.g., of one’s social network)
inherently entail the value of the encoded nodes (e.g., how
much we like individual people). That is, the structure of the
edges could best be accounted for by a model based on a la-
tent factor that quantifies the importance of the nodes. As
predicted, this factor was not only influenced by the nodes’
centrality (11, 40) and familiarity (19, 29, 33), but also by
their affective value (19-21). We obtained this pattern across
schemas for personally familiar people and places. The con-
vergent results thus demonstrate that this coding scheme in
the mPFC generalizes to different kinds of environmental
representations.

The model comparison also suggested some degree of re-
gional specificity for value-weighted schemas. The impor-
tance model was neither the best fit to the data obtained from
the PCC nor from the hippocampus. Whereas even the best
model did not decisively outperform a noise model in the
PCC, there was some evidence that the structure of the edges
in the hippocampus could best be accounted for by either cen-
trality or affective value. These results are consistent with
evidence showing that the hippocampus encodes map-like
representations of relational abstract (45, 71) and social (72)
knowledge and that it is involved in value learning (73, 74).

More broadly, a functional dissociation between the hip-
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pocampus and mPFC is also consistent with the suggested
involvement of these regions in two complementary learning
systems. Whereas the hippocampus is critical for the reten-
tion of individual episodes, the mPFC may extract common-
alities across similar events and bind these into consolidated
representations (13, 17, 41, 75, cf. 76). The mPFC would
thus reduce the complexity of our experience into schematic
summary representations.

Indeed, a recent study provided convergent evidence for such
dimension reduction in this region. It demonstrated that the
mPFC compresses rich perceptual input to only those fea-
tures that are currently task-relevant — akin to a principal
component analysis (14). While such dimension reduction
entails the loss of specific details, it also affords generaliz-
ability and cognitive flexibility (8, 77). These representa-
tions can thus augment planning (6, 78, 79) and also be flex-
ibly used for the construction and valuation of novel events
(1, 33).

The emergence of schemas in the mPFC could be fostered by
hippocampal replay of past events (80-82). Such replay, con-
veyed by monosynaptic efferent projections into the mPFC
(83), can potentially provide a teaching signal that facilitates
neocortical consolidation (41). Moreover, to the degree that
replay is biased towards valuable information, it may lead to a
stronger weighting of those experiences that are of particular
importance (41, 42). However, the mPFC likewise receives
direct projections from areas such as the amygdala and the
striatum (84) that could also contribute to a shaping of the
schematic representations by value (see also 21).

Importantly, the highlighted structure of representations in
the mPFC provides a common account for the involvement of
this region in both memory schemas and valuation. That is,
when we think about an individual element from our environ-
ment (e.g., a known person), its representation in the mPFC
is activated. This activation then spreads throughout the net-
work of connected nodes. Critically, we suggest that there is a
wider spread from nodes that are more valuable and that are
thus more strongly embedded in their overarching schema.
This wider spread, in turn, may manifest as greater regional
univariate activity. According to this account, the valuation
signal that has been attributed to the mPFC (30, 34) thus con-
stitutes an emergent property of the structure of its encoded
representations (85).

This interpretation similarly accounts for the stronger en-
gagement of the mPFC when individuals think about them-
selves as compared to others (86, 87). The self can be con-
sidered a super-ordinate schema that entails abstracted repre-
sentations of all our personal experiences (68). Instantiating
this schema would thus presumably lead to wide spread activ-
ity, whereas thinking about specific other people would only
co-activate neural representations of more restricted nodes.
Moreover, the net activity would be lower for other people
that we feel less connected to and that we have less experi-
ence with (33, 88-90).
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To conclude, this study provides evidence that the medial pre-
frontal cortex represents the structure of our environment in
the form of value-weighted schemas. These schemas reflect
our experience with individual nodes as well as their central-
ity. Critically, they also inherently encode information about
their affective value. These schematic representations thus
prioritize information that is critical for adaptive planning
and ultimately promotes our well-being and survival.

Methods

RESOURCE AVAILABILITY
Lead contact

Further information and requests for resources should be di-
rected to and will be fulfilled by the Lead Contact, Philipp C.
Paulus (paulus @cbs.mpg.de).

Materials availability

This study did neither use nor generate new materials.

Data and code availability

Participants did not give consent for their MRI data to be re-
leased publicly within the General Data Protection Regula-
tion 2016/679 of the EU. We can thus only share data with
individual researchers upon reasonable request. The second
level #-map for the node coding searchlight analysis (Figure
1C) and the functional masks of the mPFC and PCC ROI are
available at neurovault: https://identifiers.org/
neurovault.collection:8129

Custom code is publicly available via the Open Sci-
ence Framework: https://osf.io/6h58e/?view_
only=b21fa36180a845e69671f222al1l10bac8

EXPERIMENTAL MODEL AND SUBJECT DETAILS
Participants

We recruited 39 right handed healthy unmedicated adults (23
females; mean age = 25.4 years, SD = 2.6 years) from the
study database of the Max Planck Institute for Human Cog-
nitive and Brain Sciences. All participants had normal or
corrected to normal vision, provided written informed con-
sent and received monetary compensation for their partici-
pation. The experimental protocol was approved by the lo-
cal ethics committee (Ethical Committee at the Medical Fac-
ulty, Leipzig University, Leipzig, Germany; Proposal num-
ber: 310/16-ek). Three participants had to be excluded from
analysis either because of a recording error (n = 1), or exces-
sive movement (n = 2). Excessive movement was defined as
absolute movement > 3 mm within either run or a total of >
5 episodes of movement > 0.5 mm. We thus included 36 par-
ticipants (22 females; mean age = 25.2 years, SD = 2.5 years)
in the analyses.
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METHOD DETAILS
Task and procedures

The procedure, adapted from ref. 19, comprised two ses-
sions. During the first session, participants provided names
of personally familiar people and of such places. Participants
tend to start by listing people and places that they are most
familiar with and that they like the most. We therefore asked
them to provide us with 90 people and 90 places and then
randomly sampled 30 of each to ensure a greater variability
in these variables of interest.

Arrangement tasks: Assessing the schema

To quantify the centrality of each node to its schema, partici-
pants arranged the names of the people and places on separate
two-dimensional circular arenas using the multiple arrange-
ments task (43) (Figure 2A). We instructed participants to
position names closer to each other that they also associate
more strongly. The inverse of the distance thus serves as a
measure of associatedness between any two nodes. We quan-
tified the centrality of each person and place to its schema by
computing their centrality, i.e., the sum of their associated-
ness values.

We then assessed how much experience participants had with
each person and place. The participants therefore placed the
names on continuous familiarity scales ranging from “not at
all familiar” to “very much familiar”. Finally, participants
provided a measure of affective value for each person and
place by arranging their names on continuous liking scales
ranging from “not at all liked” to “very much liked” (Figure
2A). All arrangements were done separately for people and
places.

Simulation task: Assessing neural representations

The participants returned for a separate session (median de-
lay: 1 day; range: 1-4 days) to complete the episodic sim-
ulation task in the fMRI scanner. Each trial of the simula-
tion task began with a fixation period of 0.5 s followed by
the name of a person or a place for 7.5 s. During this time,
participants imagined interacting with the person in a typical
manner or being at the place engaging in a location specific
activity. Participants were instructed to imagine the episode
as vividly as possible, so that they have a clear mental pic-
ture of the respective person or place. Participants then rated
the vividness of their imagination on a five-point scale within
a maximum of 3 s. Trials for which participants failed to
press a button within that time period were later removed
from analysis. If there was time left from the response win-
dow, it was added to the subsequent inter trial interval. This
lasted for at least 3 s plus an additional jittered period (0 to
8 s in 2 s intervals). The screen during the inter trial interval
was blank. Each person and place was presented once in each
of the two functional runs that followed different random or-
ders. Before entering the scanner, participants practiced the
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simulation task with people and places that they had previ-
ously provided but that did not feature in the simulation task
proper.

After the simulation task, participants were presented with
people-places and faces-places localizers. Outside the scan-
ner, they provided further information regarding the associ-
ations and identities of the individual people and places, in-
cluding their addresses and locations. They also completed
a number of standard questionnaires. These data were not
analyzed for the current study.

QUANTIFICATION AND STATISTICAL ANALYSIS
fMRI data acquisition

Participants were scanned with a 3 Tesla Siemens Magnetom
PRISMA MRI scanner with a 32-channel head coil. We ac-
quired anatomical images with a T1-weighted magnetization-
prepared rapid gradient-echo sequence (MPRAGE, 256 sagit-
tal slices, TR = 2,300 ms, TE = 2.98 ms, flip angle = 9°,
1 x 1 x 1 mm3 voxels, FoV = 240 mm, GRAPPA factor
= 2). For each of the two functional runs of the simula-
tion task, we acquired 469 volumes of blood-oxygen-level-
dependent (BOLD) data with a T2*-weighted echo-planar
imaging (EPI) pulse sequence (91, 92). This sequence em-
ployed multiband RF pulses with the following parameters:
72 interleaved axial-oblique slices (angled 15° towards coro-
nal from AC-PC), TR = 2,000 ms, TE = 25 ms, flip angle =
90°, 2 x 2 x 2 mm? voxels, 6/8 partial Fourier, FoV = 192 mm,
MF = 3). The first five volumes of each run were discarded
to allow for T1 equilibration effects.

Pre-processing

Data were analyzed using SPM12 (93)(www.fil.ion.
ucl.ac.uk/spm) in Matlab (version 9.3). The func-
tional images were corrected for slice acquisition times, re-
aligned, corrected for field distortions, and co-registered with
the anatomical scan. Correction for field distortions was
achieved using FSL topup (94, 95) as implemented in FSL
5.0 (https://fsl.fmrib.ox.ac.uk/).

General linear model

We then decomposed the variance in the BOLD time-series
using a general linear model (GLM) in SPM12 (93). Each
model included six regressors representing residual move-
ment artifacts, plus regressors modeling the intercepts of
block and session. The additional regressors in the GLM
coded for the effects of interest.

Specifically, we modeled each trial as a separate condition
yielding a total of 120 regressors — one for each of the two
simulations of the 30 people and 30 places. The trial re-
gressors were convolved with the canonical hemodynamic
response function. A 1/128-Hz high-pass filter was applied
to the data and the model. We computed #-maps for the
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estimated parameters of interest (i.e., for each simulation)
against the implicit baseline. The ensuing parameters were
used for representational similarity analysis (RSA) (44, 59).

Whole brain searchlight analysis: Node coding

To identify brain regions that encode representations of indi-
vidual people and places (i.e., the nodes of the schemas), we
employed an RSA searchlight analysis (spheres with a radius
of 8mm, 4 voxels) across all gray matter voxels. This analy-
sis was based on the RSA toolbox 59 and compared activity
patterns across functional runs (54, 96). It identified regions
where two simulations of the same person or place yielded
more similar activity patterns (same-item similarity) than any
two simulations of different people or places (different-item
similarity). Specifically, we assessed same-item similarity as
the Pearson correlation between the activity pattern of the ini-
tial simulation of any given node in the first and its repeated
simulation in the second run. Different-item similarity was
computed as the average correlation of the initial simulation
of a node in the first run with all other nodes of the same cat-
egory (people or places) in the second run. By constraining
the different-item similarity to items of the same category,
we ensure that it is not affected by general differences in the
neural representation of people versus places. Finally, we de-
termined the magnitude of the node coding as the difference
score between same- and different-item similarity (19, 54).

This searchlight analysis yielded a node-coding map for each
individual participant. For second level analyses, we Fisher-
z-transformed these maps, normalized them into MNI space
using the DARTEL (97) estimated deformation fields, and
smoothed them with a Gaussian Kernel of 8 mm radius at
full-width-half-maximum. We then masked the smoothed
map with the normalized gray matter masks and tested the
significance of the node-coding effect using a simple ¢-
contrast at each voxel. We used voxel-level inference at p
< 0.05 (family-wise-error-corrected) and regarded only clus-
ters that comprised at least 30 contiguous voxels.

ROIl-based analyses: Examining the edges

The second RSA examined whether regions that code for
the nodes of the schema also code for the predicted relation-
ships between the nodes (i.e., their edges). This analysis thus
examined data from regions-of-interest based on the thresh-
olded node-coding map. Note that the two sets of analyses
are based on different parts of the neural RSM and on com-
parisons of model RSMs that are independent from the node-
coding model.

For the mPFC, we joined the two rostral and ventral clusters.
For the PCC, we took the conjunction of a broad cluster that
included this region and an anatomical PCC mask from the
Brainnetome atlas (58) (regions 175, 176, 181, 182). For the
hippocampal ROI, we merged its rostral and caudal parts of
the same atlas (regions 215 — 218). Voxels were included if
they had at least 50% probability of being part of the mask

bioRxiv | 9


www.fil.ion.ucl.ac.uk/spm
www.fil.ion.ucl.ac.uk/spm
https://fsl.fmrib.ox.ac.uk/
https://doi.org/10.1101/2020.08.21.260950
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.08.21.260950; this version posted February 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and gray matter.

As complementary analyses, we also examined the data
solely based on an anatomical mask of the ventral mPFC used
by ref. 19 (see also 98), a more spatially extended mask in-
cluding the rostral mPFC (comprising Brainnetome regions
13, 14, 41, 42, 47 — 50, 187, 188), and said anatomical mask
of the PCC. All masks were inverse normalized into subject
space using the DARTEL estimated deformation fields and
constrained using the implicit mask estimated from the first
level GLMs.

Extraction of the importance weights

We had hypothesized that centrality, experience, and affec-
tive value would jointly contribute to the importance of a
node and expected that they would share a common latent
factor. We thus applied principal component analysis (PCA)
to the three features and computed the latent factor that ex-
plained the most variance. The PCAs were conducted sepa-
rately for people and places and were based on values of each
variable that had been z-scored for each participant. This
approach ascertained that neither between-category variance
nor between-participant variance would bias the factor solu-
tion. We then extracted, across all participants, the respective
first principal component for people and places. These princi-
pal components were positively correlated not only with cen-
trality and experience but also with affective value, consistent
with our proposal that all three contributing features jointly
quantify the importance of a given node. We thus refer to
these principal components as importance factors.

Predicting the structure of the edges

We used the importance values to predict the structure of
schematic representations in the mPFC. We had hypothesized
that more important nodes should, overall, exhibit greater
neural similarity with the other nodes. We thus predicted
the similarity for any pair of nodes by the product of their
respective importance values. We scaled the vectors to the
interval of zero (lowest importance) and one (highest impor-
tance) prior to multiplication. We then arranged the com-
bined importance values in square matrices for each category
(people, places). In initial analyses, we examined the struc-
ture of representations separately for the schemas comprising
people and places. Note that all analyses are only based on
the lower triangular vector of the representational similarity
matrices.

Model comparisons using Linear Mixed Models

We set up a series of linear mixed effects models in R (ver-
sion 3.5.1, www.r—-project.orqg), using LME4 (99), to
test which of several alternative predictors accounted best for
the structure of representations in the ROIs. These models
accounted for the neural similarity data as a function of the
full fixed effects of category (people, places) and predictor
of interest (i.e., centrality, experience, affective value, or the
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principal component). We further accounted for between par-
ticipant variance by including random effects: one random
intercept for participant and run as well as random slopes for
category and the respective predictor. Hence, all models were
of the form:

Neural similarity ~ category = predictor +
(1 + category + predictor|participant) +
(1l|participant:run)

We estimated the models separately for each ROI and subse-
quently performed model comparisons based on the relative
Log Evidence Ratios (LER) derived from Akaike’s Informa-
tion Criterion (60). The best model assumes, by definition, a
relative LER of zero, and we regard relative LER differences
greater than two as decisive evidence for the better model
(61).

We further examined whether the winning models in each
ROI are also substantially superior to models based on ran-
dom Gaussian noise. We thus created null models by ran-
domly sampling 30 values from a standard normal distribu-
tion for both people and places. We then rescaled these val-
ues to the interval from zero to one. Subsequently, we con-
structed a noise null model by computing the product of ev-
ery combination of two values, just as we had done for our
predictors of interest. We also created a second null model
by sorting the same random noise values in descending or-
der prior to multiplication. This was done to account for
the inherent order of the original lists of people and places
provided by the participants that tended to start with more
familiar and pleasant exemplars. Thus, people and places
that were named first always received larger random numbers
than those named later.

We then fit linear mixed effect models for these two noise null
models, and performed a model comparison with the win-
ning model(s) from the respective ROI. We repeated this es-
timation process 1,000 times to compute average model per-
formance. Critically, if the winning model(s) in each ROI
constitute(s) a good approximation of the structure of neural
representations, they should consistently outperform both the
random noise and the sorted noise models.
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