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An encryption–decryption 
framework to validating 
single‑particle imaging
Zhou Shen1,2, Colin Zhi Wei Teo1,2, Kartik Ayyer3,4 & N. Duane Loh1,2,5*

We propose an encryption–decryption framework for validating diffraction intensity volumes 
reconstructed using single-particle imaging (SPI) with X-ray free-electron lasers (XFELs) when the 
ground truth volume is absent. This conceptual framework exploits each reconstructed volumes’ 
ability to decipher latent variables (e.g. orientations) of unseen sentinel diffraction patterns. Using 
this framework, we quantify novel measures of orientation disconcurrence, inconsistency, and 
disagreement between the decryptions by two independently reconstructed volumes. We also study 
how these measures can be used to define data sufficiency and its relation to spatial resolution, 
and the practical consequences of focusing XFEL pulses to smaller foci. This conceptual framework 
overcomes critical ambiguities in using Fourier Shell Correlation (FSC) as a validation measure for 
SPI. Finally, we show how this encryption-decryption framework naturally leads to an information-
theoretic reformulation of the resolving power of XFEL-SPI, which we hope will lead to principled 
frameworks for experiment and instrument design.

X-ray free-electron lasers (XFELs) are a promising tool for studying the three-dimensional (3D) structures of 
macromolecular assemblies1,2. The short and intense XFEL pulses make it possible to collect diffraction patterns 
of a macromolecule before the XFEL-damaged atomic nuclear motions become substantial3–7.

XFEL pulses are sufficiently intense and coherent for single-particle imaging (SPI), where a single macromol-
ecule can scatter enough photons for us to infer its 3D orientation, hence structure8–11. XFEL-SPI makes the dif-
ficult task of growing large, well-diffracting macromolecular crystals (even micrometer size ones12) unnecessary.

Instead, desiccated samples are randomly injected at unknown orientations into a regular train of XFEL 
pulses. To understand how orientations are defined in SPI, consider what happens when a scatterer, whose 3D 
diffraction volume is denoted W, is presented to the SPI laboratory reference frame (Fig. 1).

Collected diffraction patterns are identified and analyzed in various ways including: determining the 3D 
structures that most likely produced the ensemble of SPI patterns13, or studying the range of 3D morphologies 
spanned by the XFEL scatterers14–16.

Reconstructing a set of 3D structure from many SPI patterns comprises three sequential stages, each of which 
can be considered for validation6. These stages are: recovering a set of 3D diffraction intensities W from many 
two-dimensional (2D) SPI patterns; using phase-retrieval to reconstruct the 3D realspace scattering density 
from W; fitting atomic coordinates to the scattering density. Separate validation routines between these stages 
can help diagnose where resolution loss might have occurred.

This work focuses on validating the first stage, where we reconstruct W by inferring the latent 3D orienta-
tions of SPI diffraction patterns. This inference is challenging for small macromolecules that produce weak 
diffraction patterns. In these cases, the Fourier Shell Correlation (FSC)17, which is typically used to validate 3D 
structures recovered using cryo-electron microscopy, has become increasingly popular for estimating spatial 
resolution13,16,18–29.

However, the use of FSC, as well as other proposed measures of reconstruction errors6,30, to characterize 
XFEL-SPI resolution suffers three main issues. First, and most importantly, Fig. 2 illustrates how the resolution 
reported using the popular half-bit FSC criterion actually improves with increased orientation blurring. This 
occurs because XFEL-SPI reconstructions approach the same virtual powder average as their input patterns 
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become more misoriented. Consequently the ‘noise terms’ between two independently reconstructed volumes 
(see Eq. (3) in31) become correlated. Hence the FSC measure, which is invariant to isotropic filtering, can para-
doxically report better resolutions when the orientation uncertainty of patterns increases. Second, the threshold 
criterion for determining resolution is controversial even in the cryo-electron microscopy community31,32. This 
criterion is demonstrably dependent on the speckle sampling ratio (i.e. size of realspace support), the symmetry 
of the particle, and assumes additive noise31. Unfortunately, there are still prominent violations of these criteria33. 
Third, to compute the FSC between two 3D volumes, their relative orientations must be accurately determined.

To circumvent some of these issues with FSC, we propose examining the source of correlations between two 
independently reconstructed volumes: the ‘disconcurrence’, inconsistency, and agreement between how these 
volumes orient individual patterns. A similar orientation-based approach to validation was explored by Tegze 
and Bortel34, where they proposed using the fraction of patterns that are well-oriented to validate intensity 
reconstructions. However, the so called C-factor that they proposed for validation only considered orientation 
precision but not accuracy nor reproducibility.

It can be useful to recast the XFEL-SPI validation problem in information theoretic terms. Indeed, informa-
tion theory has been insightful for SPI35 as well as coherent diffraction imaging36,37. In fact, the half-bit criterion 
for FSC in cryo-electron microscopy31 established a connection between spatial resolution and information 
theory. There, however, the half-bit criterion merely referred to when the signal-to-noise ratio of an idealized 
noisy channel attained a value of 

√
2− 1 . What this signal-to-noise ratio means for resolving spatial features 

within an object remains unclear.
Looking farther back, Shannon’s original proof of the noisy channel theorem was based on a straightforward 

encoding–decoding scheme38. Below we show how Shannon’s scheme can be explicitly constructed for the 
orientation determination problem in SPI. Doing so, allows us to validate reconstructions using an orientation 
resolution that can be directly related to the mutual information of the SPI experiment.

An SPI reconstruction is similar to probabilistic symmetric-key cryptography, where plaintext messages are 
encrypted into ciphertexts using a correct key plus a randomness scheme. Because of this randomness, the same 
plaintext message can produce different ciphertexts.

The analogous messages in an XFEL-SPI experiment are the hidden orientations of illuminated single 
particles39. The experimental setup itself can be viewed as a cipher algorithm that encrypts these messages as 
noisy two-dimensional (2D) diffraction patterns. When these orientations (messages) are properly decrypted, 
the full three-dimensional (3D) diffraction volume of the target particle can be recovered.

The conundrum for SPI, however, is that these orientations are best decrypted using the ground truth 3D 
diffraction volume. Hence, reconstructing this diffraction volume can be viewed as ‘cracking’ (i.e. guessing) the 
correct symmetric key in probabilistic cryptography. Figure 3 shows the similarities between SPI-validation and 
key-cracking in cryptography, which has the following correspondence:

•	 correct key ↔ ground truth 3D diffraction intensities;
•	 encryption cipher ↔ SPI experiment;
•	 decryption cipher ↔ orientation inference scheme;

Figure 1.   Schematic of how orientations are encoded in XFEL-SPI. A diffraction pattern collected on a detector 
( Kt where t labels the pixels on the detector) of a scatterer is an Ewald tomogram WQt through the 3D diffraction 
volume W. When this scatterer suffers an active random 3D rotation � about its own original reference frame, 
it is equivalent to a passive rotation of said Ewald tomogram in the opposite sense (i.e. �−1 ). Throughout the 
rest of the paper, we parametrize this rotation with unit quaternions Q ≡ �(Q) (primer on unit quaternions in 
Supplementary Appendix).
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•	 ciphertexts ↔ photon patterns collected in experiment;
•	 messages ↔ orientations of individual photon patterns.

Algorithms that discover the orientations of SPI patterns8,10,40,41, analogously, try to recover the unknown key 
(i.e. 3D diffraction intensities) given many ciphertexts (i.e. photon patterns).

Now let us consider how one can check/validate the accuracy/correctness of a recovered key, absent the 
ground truth. An obvious method is to determine whether the recovered key is consistent with known prior 

Figure 2.   Fourier shell correlation (FSC) reports improved resolution despite increased orientational blurring. 
Two disjoint SPI datasets were simulated, A and B, each with 5000 patterns. (A) The FSC was calculated for 
all pairs of reconstructions from the same dataset and with the same orientation blurring δθ (blue curve). 
Diffraction volumes were reconstructed from each dataset by interpolating each pattern back into ten random 
orientations near the true one. The true variance of these orientations is denoted δθ2 , which is proportional to 
the degree of deliberate orientation blurring. The orientation disconcurrence proposed in this paper, �θ (red 
curve), was computed using a third smaller sentinel dataset (1000 patterns) not used in the reconstructions. For 
each dataset, seven 3D volumes were reconstructed by interpolating all patterns back into the 3D diffraction 
volume with δθ = {0.01, 0.02, 0.04, 0.1, 0.2, 0.4, 0.8} . (B–D) The central slices of one of the seven volumes for 
each δθ from dataset A, (E–G) and those from dataset B.

Figure 3.   Analogy between ‘key-cracking’ in cryptography (text in upper rows) and validation for single 
particle imaging (text in lower rows).
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constraints or independent measurements. Such external validations, however, are not always possible in SPI 
especially when resolving novel structural forms.

We know that a correct key must decipher each ciphertext into a unique message. However, this uniqueness 
alone is insufficient to determine correctness, since wrong keys given to a deterministic cipher can yield unique 
but wrong decipherments. An example of this occurs when a recovered key overfits to a set of ciphertexts. 
Nevertheless, we can exploit this uniqueness requirement to design a scheme that detects if at least one of two 
candidate keys is incorrect.

Suppose we are given two disjoint sets of ciphertexts ( {KA}, {KB} ) that are encrypted by the same solution 
key WT . We can independently recover two keys ( WA,WB ), one from each set of ciphertexts. Disagreements 
between how these two keys decipher a third hidden set of ciphertexts {KS} betrays the incorrectness of at least 
one of these two keys. If the first two sets of ciphertexts are sufficiently large and randomly chosen then both 
candidate keys are likely incorrect.

Owing to the randomness in probabilistic encryption, it is practically impossible to guarantee a perfectly 
accurate key given only a finite number of noisy ciphertexts. Analogously, we cannot perfectly recover the ground 
truth SPI diffraction volume only from a finite number of noisy, incomplete photon patterns. Consequently, any 
pair of recovered keys must differ measurably from each other. This difference quantifies the decryption precision 
of these keys, which is the lower bound of their decryption accuracies.

Back to the SPI data analysis, we wish to find the difference in how two independently reconstructed vol-
umes WA and WB decrypt the orientations of a third disjoint set of sentinel photon patterns, {KS} . This difference 
in decryption increases if the disagreement between WA and WB increases. More importantly, it also increases 
as either volume departs farther from the hidden ground truth volume WT . We refer to this difference as the 
orientation disconcurrence between these two volumes.

To define this framework in Fig. 3 requires well-defined encryption and decryption procedures. In an XFEL-
SPI experiment, this encryption is described by how an illuminated scatterer at a certain orientation generates a 
noisy photon pattern (Fig. 1). In a Bayesian framework, the probability that a scatterer’s specific orientation (Q) 
is encrypted as a particular photon pattern (K) is termed the data likelihood. Inversely, the probability that a pat-
tern K will be decrypted as a particular orientation Q is its equivalent orientation posterior distribution (OPD).

This encryption of orientation information into a photon pattern is governed by the physics of photon–parti-
cle interaction, wavefront propagation, and photon measurement on the detector. Under ideal XFEL-SPI experi-
mental conditions the photon pattern Kt is a Poisson sample from an Ewald tomogram, WQt , of a particle at 
orientation Q (Fig. 1). This idealization allows an explicit formulation of the likelihood (see Eq. (10)), and hence 
OPD. Additionally, one might consider factors such as extraneous photon scattering sources, non-linear detector 
artefacts, and the local fluence of the XFEL pulses each particle randomly encounters. Such non-Poissonian OPDs 
were shown to be effective in different XFEL-SPI experiments13,19,39. More generally, there is an infinite number 
of alternatives to the Poissonian OPD that could be used to decrypt particle orientation from photon patterns. 
Exploring the efficacy of these myriad alternatives is clearly beyond the scope of this paper.

The encryption–decryption framework that validates two intensity reconstructions ( WA,WB ) in Fig. 3 is 
indifferent to the algorithms that were used to reconstruct WA and WB . And while the Poissonian OPD chosen 
in this paper was also used in the original EMC algorithm to infer the orientations of photon patterns8, here this 
OPD is used to decrypt orientations for validating 3D intensity volumes WA,WB , which could be reconstructed 
with algorithms other than EMC. Since our validation occurs after WA and WB are separately reconstructed, it 
does not add any computational overhead during their reconstructions.

The OPD that most accurately describes the experiment should be used both to reconstruct and validate 
reconstructions. Hence it is unsurprising that the OPD used in both situations are identical.

Finally, since the validation framework in Fig. 3 compares the ability of two volumes WA and WB to decrypt 
orientations, we are essentially comparing their OPDs from decrypting the orientations of a set of sentinel 
patterns. To compare these OPDs, we evaluate their convolutions in orientation space to produce what we call 
angular displacement distributions (ADD). The orientation disconcurrence between WA and WB are then extracted 
from this ADD. The procedure to compute the orientation disconcurrence given WA and WB is outlined below. 

1.	 Partition the XFEL-SPI photon patterns {K} into three disjoint sets: two larger and equally sized sets, {KA} 
and {KB} , for reconstructions; and a third, smaller set of unseen sentinel patterns {KS} to measure orientation 
disconcurrence.

2.	 Using any algorithm you desire, reconstruct two 3D intensities from the two larger sets of patterns: 
{KA} → WA , and {KB} → WB.

3.	 For each sentinel pattern KS , compute the OPD of the reconstructed volumes WA and WB . This is the prob-
ability that KS corresponds to the Ewald sphere section of orientation � in each reconstructed volume 
(i.e. P(�A|KS,WA) and P(�B|KS,WB) ). This step creates 2 |{KS}| distributions, two for each sentinel pattern, 
where |{KS}| is the number of sentinel patterns used.

4.	 Next, we compute the angular displacement distribution (ADD, defined in Eq. (13)) of the sentinel patterns 
from the OPD of WA and WB . The ADD for each sentinel pattern KS (the red or blue distribution in Fig. 4) 
is essentially a convolution of OPDA and OPDB over the space of relative orientations between WA and WB . 
If OPDA and OPDB were delta functions, then this convolution peaks at the relative orientation between WA 
and WB . The ADDAB (the grey distribution in Fig. 4), which is the normalized sum of these convolutions for 
all sentinel patterns (Eq. (14)), is the distribution of relative orientations between WA and WB as ‘measured 
by’ {KS}.

5.	 Finally, from the ADD of all the sentinel patterns between the volumes WA and WB , estimate their orientation 
disconcurrence.
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Results
Measures of orientation uncertainties.  The orientation disconcurrence between two independently 
reconstructed volumes comprises two aspects: inconsistency and disagreement. By the cryptographic analogy, the 
first aspect characterizes how consistently each volume separately decrypts the orientations of sentinel patterns; 
the second aspect describes how often the decryptions of two (or more) volumes mutually agree. These concepts 
are illustrated in Fig. 5, and defined below.

In the following numerical simulations, we use the disconcurrence between independent reconstructions 
from the same scatterer to estimate the lower bound of their correctness. Recall that this procedure requires 
partitioning a set of photon patterns into three disjoint sets ( {KA}, {KB}, {KS} ). We reconstruct two 3D intensities 
from the first two sets ( WA and WB respectively), while the last sentinel set is reserved for validation. Unlike an 
actual experiment, the true solution intensities WT that generated these patterns are known in these simulations, 
and will provide useful insights. Given these definitions, let us consider different orientation measures at the end 
of the procedure outlined at the end introduction section. 

Figure 4.   Clustering of the angular displacement distribution (ADD) for 1000 sentinel patterns given two 
independently reconstructed volumes WA and WB , in the space of possible unit quaternions. Only the first two 
components of these quaternions ( Q0,Q1 ) are shown. The disks represent the set of most significant relative 
quaternions given each sentinel pattern, {QBA |KS} , as defined by all possible pairs of those in Eq. (12). The 
opacities of these disks are proportional to the value of the ADD at these quaternions. The blue and red disks 
represent the ADDs for two specific sentinel patterns respectively. The yellow disk shows the average overall 
rotation QBA as defined in Eq. (16).

Figure 5.   The orientation disconcurrence for two sentinel patterns ( K1 in blue, and K2 in orange) consists of 
two parts: the inconsistency that each model orients sentinel patterns (disk spanned by dashed-dotted radii), 
and the disagreement between how different models orient these patterns (disk spanned by dashed radii). These 
aspects are affected by the photon counts per pattern (N) and the number of patterns ( Mdata ) respectively.
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1.	 Measure of orientation disconcurrence: �θc(WA,WB) (Eq. (17)) is computed from the width of the angular 
displacement distribution (ADD) between intensities WA and WB that are independently reconstructed from 
two disjoint sets of patterns. �θc measures the difference between the orientations of specific sentinel patterns 
within WA and WB , despite having aligned the centroids of these two distributions (i.e. overall orientations 
of WA and WB).

2.	 Measure of average orientation inconsistency: 

 This is the root-mean-squared (RMS) angular width of the autocorrelation of WA ’s and WB ’s orientation pos-
terior distribution (OPD), which is equivalent to repeating the intensity model labels in Eq. (18). In Fig. 4, the 
angular width of the blue and red points show the orientation inconsistency for decryption the orientations 
of two sentinel patterns ( K1 and K2 ). The RMS of �θ2c (WA,WA) and �θ2(WB,WB) is used to approximate 
the angular width (red or blue distribution) in Fig. 4, because it is expensive to calculate the inconsistency 
between WA and WB for each sentinel patterns and it is a good approximation when the OPD is assumed to 
be a Gaussian distribution (see more details in “A one-dimensional (1D) model” section). Thus �θi simply 
averages this width over all sentinel patterns and both reconstructions WA and WB.

3.	 Measure of orientation disagreement: 

 which is the angular displacement between reconstructions WA and WB that is not due to an overall rotation 
between the two volumes, nor from the angular width �θi of the OPD. In “A one-dimensional (1D) model” 
section, this relation is illustrated with a 1D model in more detail.

4.	 Measure of orientation inconsistency given the ground truth: 

 which measures the angular width of the OPD in determining the patterns’ orientations given the ground 
truth WT . With enough patterns in {KA} and {KB} , such that WA and WB do not over-fit to their respective 
photon patterns, we expect �θi ≥ �θ∗i .

5.	 Measure of orientation disconcurrence with ground truth: 

 which is the angular width of the ADD between the reconstructed and ground truth intensity volumes 
( WA vs WT respectively). Notice that �θc is identical to �θ∗c  above if we replaced WB → WT . Hence, �θ∗c  is 
essentially the orientation disconcurrence between WA and the ground truth.

6.	 Measure of average orientation disconcurrence with ground truth: 

 which is the average angular width of the ADDs between the reconstructed versus the ground truth inten-
sity volumes ( WA,WB vs WT respectively). If only two volumes were reconstructed, WA and WB , then ��θ∗c � 
represents the average orientation disconcurrence against the ground truth.

Factors that influence disconcurrence.  Many experimental factors influence the orientation disconcur-
rence of an SPI intensity reconstruction including: incident photon fluence, number of photon patterns from 
single particles, resolution and sampling of each pattern, amount of missing detector data (i.e. beamstop, gaps 
in compound detectors, inactive pixels), extent of photon background (i.e. from particles’ incoherent scatter-
ing or stray light sources), degree of structural heterogeneity between particles in the ensemble. The choice of 
algorithms and their parameters used to reconstruct the intensities also play important roles. Furthermore, the 
symmetries of the scatterer itself can also affect how the ADD is interpreted (see Fig. 9 and “Methods” section).

In this section, we focus on three of these factors: the average number of photons per pattern N, the fineness 
of orientation space sampling by reconstruction algorithms, and the number of patterns Mdata . In each scenario 
studied below, we simulated diffraction patterns with a small 105 kDa protein (PDB code, 4ZW642) under experi-
mental conditions that were modeled after those at the Tender X-ray endstation at the Linac Coherent Light 
Source (see Table  1). We then used the EMC algorithm to reconstruct two independent 3D volumes each from 
disjoint sets {KA}, {KB} , each with Mdata patterns. For each test condition, a single set of 1000 sentinel patterns 
was reserved {KS} to evaluate the six types of �θ listed above. The user should choose the number of sentinel 
patterns such that the uncertainties of their orientation disconcurrence is acceptably small. Another considera-
tion is whether the range of SO(3) orientations is adequately covered by randomly oriented sentinel patterns 
(see “Sentinel pattern coverage in the SO(3) orientation space” section).

The average number of photons per diffraction pattern (N) is directly related to the mutual information for 
inferring latent parameters (e.g. orientations) as well as the particle’s structure8. N depends on the brightness of 
the X-ray beam, the size of the X-ray focus (i.e. beam intensity), as well as the relative alignment between particle 

(1)�θi(WA,WB) =

√√√√1

2

∑

i∈{A,B}

�θ2c (Wi ,Wi) .

(2)�θa(WA,WB) =

√
(�θc(WA,WB))

2 − (�θi(WA,WB))
2 ,

(3)�θ∗i = �θc(WT ,WT ) ,

(4)�θ∗c (WA) = �θc(WA,WT ) ,

(5)��θ∗c � =

√√√√1

2

∑

i∈{A,B}

(
�θ∗c (Wi)

)2
,
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and X-ray beams. In general, all six types of �θ fall when N increases in Fig. 6. Simply put, more photons per 
pattern reduces orientation disagreement and inconsistency, hence disconcurrence. Additionally, the orientation 
disconcurrence between WA and WB falls with their respective disconcurrences with the ground truth WT . This 
correspondence is consistent with the fact that uniqueness is a necessary condition for correctness (i.e. ‘preci-
sion ≤ accuracy’).

How finely orientations are sampled in XFEL-SPI reconstruction algorithms impacts the quality of recon-
structed results8. Recall, this sampling fineness is different from the adaptive refinement scheme for OPD and 
ADD Eq. (12): the former pertains to the reconstruction algorithm, while the latter evaluates the reconstructed 
results. Fig. 6 shows that a higher sampling level in the EMC reconstruction algorithm generally reduces all 

Table 1.   Range of parameters used to simulate XFEL-SPI photon patterns of a 105 kDa protein (PDB code, 
4ZW6) in this paper. Here we assume that the incident beam energy 3 mJ, transmission efficiency 20%, and a 
binned detector is used here for computational efficiency.

Parameter Value

Photon wavelength (Å) 3.4

Detector distance (mm) 300

Detector pixel size (mm) 1.2

Detector size (pixel) 100× 100

Beamstop radius (pixel) 10

Photon fluence (photons µm−2) 1013 to 5 5× 10
13

Focal area, µm2
0.33

2 to 0.152

Figure 6.   Effects of incident photon counts per pattern and sampling fineness of the latent orientation space. 
Each data point compares two 3D intensity reconstructions with 5000 photon patterns (solid lines), or each one 
of them with a ground truth 3D intensity volume (dashed lines). The rotation group is sampled with refinement 
levels n = 8 or n = 13 . As the average photon counts per pattern increases, all varieties of angular uncertainties 
specified in “Measures of orientation uncertainties” section decrease. The uncertainties involving the ground 
truth ( ∗-superscript, dashed lines here) are typically lower than those with only the reconstructed volumes (solid 
lines). Finer orientation sampling reduces all orientation uncertainties. Furthermore, orientation disconcurrence 
( �θc , red) is dominated by inconsistency ( �θi , blue) as orientation disagreement ( �θa , yellow) is suppressed.
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alignment uncertainties �θ . While the various forms of �θ have a noticeable spread at n = 8 orientation sam-
pling, this spread significantly reduces when this sampling fineness is increased to n = 13 . Numerically, we 
found the average angular separation between the quasi-uniform unit quaternions samples to be 0.161 and 
0.099 radians respectively. This figure complements the information-theoretic heuristic for deciding sampling 
sufficiency in8. With sufficient sampling, Fig. 6 shows that the orientation disconcurrence is dominated by the 
orientation inconsistency rather than orientation disagreement: �θc(WA,WB) ≈ �θi(WA,WB) > �θa(WA,WB).

In an SPI experiment the number of SPI patterns, Mdata , is a product of the fraction of particles that are illu-
minated by x-ray pulses (i.e. hit-rate), the pulse repetition rate, and the total experiment time. One intuitively 
expects that reconstructions improve with larger Mdata , which Fig. 7 confirms. The intrinsic orientation incon-
sistency of each reconstruction, �θi , falls with more patterns (blue curve). The orientation disconcurrence �θc , 
likewise, also falls with more patterns.

We found that in Fig. 7 that �θc and �θi both decrease numerically with the number of patterns as 
αM

−β

data +�θ∗i  , where α is a multiplicative constant, β is a real positive number, and �θ∗i  is the angular width of 
the OPD given the patterns {KS} and ground truth model. Although �θc → �θ∗i  as Mdata → ∞ , we can only 
assert that the reconstructed pairs of models ( WA and WB ) are closer to each other, but not whether either are 
close to the ground truth WT . The former is evident from the ratio of orientation disagreement against discon-
currence, �θ2a /�θ2c  (gray dots in Fig. 7): increasing Mdata eliminates orientation disagreements ( �θa ) between 
two independent reconstructions faster than intrinsic inconsistency ( �θi ). Using Eq. (2) and the fitted forms in 
Fig. 7, this vanishing of the orientation disagreement becomes clear:

where we assumed βc < βi , and γc ≈ γi = γ . Obviously, when Mdata approaches infinity, �θa gets close to 0. 
Simply put, as Mdata increases independently reconstructed volumes become more unique but not necessarily 
more correct.

Relating �θ to spatial resolution.  The 3D speckles in the reconstructed diffraction volume whose angu-
lar width are smaller or comparable to �θc will lose contrast, hence spatial resolution. Let us denote the full 
angular width of these 3D speckles as 2�θsp(q) at spatial frequency q . Naturally, the resolutions of reconstruc-
tions become orientation-limited at the frequencies where �θsp(q) approaches the width of OPD which is about 
�θc/

√
2 (“A one-dimensional (1D) model” section).

We caution that the previous paragraph suggests an inequality rather than strict equality between spatial 
resolution and orientation disconcurrence. To understand why, consider how Fig. 8 shows that it is possible for 
reconstructions whose orientation disconcurrence is smaller than the angular width of a single pixel at the edge 
of the detector �θpix . This situation occurs with very high average number of photons per pattern ( N ≫ 1 ), 
abundant patterns ( Mdata ≫ 1 ), and sufficiently fine sampling of the rotation group during reconstructions 

(6)

�θa =

√
�θ2c −�θ2i

=

√(
αcM

−βc
data + γc

)2
−

(
αiM

−βi
data + γi

)2

≈ M
−βc/2
data

√
(αc + 2γ )αc ,

Figure 7.   Orientation disconcurrence ( �θc ) and inconsistency ( �θi ) converge to �θ∗i  as the number of 
patterns ( Mdata ) increase. Each dot and its error bars represent the average and standard deviation of �θ of all 
pairs among five reconstructions from four different disjoint datasets (average of 355 photons/pattern, rotation 
group sampling n = 13 ). The same 1000 sentinel patterns are used in all four instances. The ratio of orientation 
disagreement �θa to disconcurrence �θc , which is represented by the grey curve (labeled on right vertical axis), 
decreases with increasing Mdata.
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(Fig. 6). Thus, the dynamic range and contrast of the reconstructed 3D diffraction speckles are high up to the 
detector’s maximum captured resolution ( qmax ), which allows us to distinguish arbitrarily small angular varia-
tions between actual diffraction patterns.

We must remember that the reconstructed diffraction volume W does not explicitly contain spatial informa-
tion beyond the maximum spatial resolution qmax . So even if �θc ≪ �θpix , we can only say that spatial resolution 
is not orientation limited. Perhaps with additional priors about the structure of the particle (e.g. know sequence, 
similar structure known, atomicity, etc) is might be possible to extend the resolution beyond qmax . But such 
extensions are beyond the scope of this discussion.

It should now be clear that orientation disconcurrence relates to how effectively one can resolve the orienta-
tion of an average SPI photon pattern. From this section, it should also be clear that spatial resolution can be 
limited by large orientation disconcurrences. More concretely, consider Fig. 8, which simulates an XFEL-SPI 
experiment of a 105 kDa protein at the Tender X-ray endstation at LCLS (Table  1). To resolve this protein to 
10nm-resolution without significant orientation blurring requires more than 5000 patterns each with more than 
600 photons. However, it is premature to define spatial resolution only in terms of orientation concurrence, 
especially since a decryption scheme for the spatial resolution (similar to Fig. 3) is absent. Such detailed discus-
sions, however, are deferred to future studies.

Data sufficiency and mutual information.  The question ‘how many patterns are sufficient?’ frequently 
occur in an XFEL-SPI experiment. The answer to this hypothetical question determines if a proposed experi-
ment is ‘feasible’, as well as how many different samples to inject during the precious dozens of hours of XFEL 
beamtime allocated to each user group. Orientation disconcurrence can be used to define data sufficiency: when 
the number of patterns gives a disconcurrence smaller than the angular width of speckles at a target resolution 
qtarget:

If the ADD peak in Fig. 4 were compact and locally Gaussian (“A one-dimensional (1D) model” section), this 
last condition means that approximately 74% ( 2σ criterion) of the oriented sentinel patterns should intersect 
their target 3D speckle at resolution qtarget.

With the disconcurrence target defined, we can extrapolate data sufficiency with bootstrapping. Given Mdata 
total patterns, one can compute �θc(Mdata) for pairs of models reconstructed from random, non-overlapping, 
equal subsets from the full Mdata dataset similar to the data points in Fig. 7. Repeating this procedure via a simple 
bootstrapping scheme gives the orientation disconcurrence curves in Fig. 7. These curves fit reasonably well to 
a lifted power law, �θc = αcM

−βc
data + γc . The shrinking error bars on �θc from bootstrapping with increasing 

Mdata in Fig. 7 suggests that this fit requires sufficiently many patterns to be robust.
Owing to various constraints, only a finite number of XFEL-SPI patterns are collected each time (say Mexp ). 

To maximize signal-averaging in a reconstruction logically requires the input from all collected patterns. Yet the 
two independent reconstructions in this framework (Fig. 3) only sees only a little less than half of the full dataset 
( < Mexp/2 ). Fortunately, the lifted power law fit in Fig. 7 allows us to extrapolate the orientation disconcurrence 
between a pair of hypothetical independent 3D reconstructions that each used all patterns in an XFEL-SPI data-
set. Specifically, if �θc(Mdata ≤ Mexp/2) were computed between pairs of reconstructed volumes each using up 

(7)2 ·
�θc
√
2

≤ θsp(qtarget) .

Figure 8.   This figure shows how �θc changes by increasing number of patterns (red curve, with N ≈ 355 ) or 
number of photons per pattern (blue curve, with Mdata = 5000 ). The measure of orientation inconsistency given 
the ground truth, �θ∗i  (yellow), is computed for N ≈ 355 . The right axis shows the relation to spatial resolution 
according to Eq. (7) ( 2σ criterion).
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to Mexp/2 bootstrapped photon patterns, then the angular uncertainty of a single volume with all Mexp patterns 
can be extrapolated using the fit: �θc(Mdata = Mexp) = αcM

βc
exp + γc . A similar extrapolation from bootstrapped 

reconstructions was proposed to define spatial resolution in cryo-electron microscopy43.
This lifted power law also helps us extrapolate to a second scenario. Should the target orientation disconcur-

rence be the angular width of a single pixel at the edge of the detector, �θc = �θpix(qmax) , then γc < �θpix(qmax) 
is required. If this requirement is satisfied, then 1

βc
log

[
αc/(�θpix(qmax)− γc)

]
 patterns are needed to reach this 

target.
The lifted power law form of �θc = αcM

−βc
data + γc in Fig. 7 allows us to parametrize data sufficiency in an 

information-theoretic sense. Essentially, the mutual information here can be defined as the reduction in the 
entropy of orienting an average sentinel pattern give a set of Mdata photon patterns {K} . Ignoring factors of order 
unity, this mutual information, is approximately

assuming Mdata ≫ 1.
Equation (8) contains two intuitive results. First, this mutual information is bounded from above by that 

when the solution intensities are known: log
(
2π2/(�θ∗i )

3
)
 . This upper bound can be viewed as the SPI channel 

capacity for decryption orientations, and is computed in the same manner as the mutual information I(K ,�)|W 
in8. Second, the mutual information for decryption orientations increases with the number of patterns. This 
assumes that αc/�θ∗i > 0 and βc > 0 , which are manifest in Fig. 7. Furthermore, βc > 0.5 in Fig. 7, which is 
better than one would expect if patterns were mutually independent (i.e. βc = 0 ). This ‘co-dependence’ arises 
because additional patterns can improve the reconstructed volumes, which in turn help earlier patterns distribute 
their photons more precisely into orientation classes.

Focal spot size affects hit rate and orientation disconcurrence.  The linear size of the XFEL focus 
Lfocus is a critical parameter in an SPI experiment (see Table 1). This choice of focus size can be paraphrased 
simply: given a fixed total number of photons per XFEL pulse, would it be better to ‘distribute’ them into more 
patterns with fewer photons each, or fewer patterns with more photons each? Whereas a larger focus can dra-
matically increase the odds of illuminating randomly injected particles, it also drastically decreases the number 
of scattered photons should a particle be illuminated (N). These odds, also known as the ‘hit-rate’, is effectively 
Mdata per time. In fact, N ∝ L

−2
focus while Mdata/time ∝ L2focus . In this hypothetical scenario, the total number 

of photons measured per time ( NMdata/time ) remains constant despite Lfocus . Suppose that in either case, you 
had enough patterns to adequately sample different views of the scatterer, and were perfectly able to detect par-
ticle hits against background scatter/noise. This same ambivalence to the focus size appears again in the simple 
signal-to-noise ratio (SNR) described in8:

where Mrot is the number of rotation samples used to reconstruct the intensity volumes WA and WB . This SNR is 
motivated by a simple distribution of photons across a limited number of Ewald tomograms, and has been used 
to indicate data sufficiency in the orientation space9.

The discussion above may lead one to believe that there is no ideal focus size. However, if we again used 
a smaller orientation disconcurrence �θc to quantify when things are ‘better’, the preference is to reduce 
Lfocus . Notice that nearly doubling the average number of photons per pattern ( N = 355 to N = 622 given 
Mdata = 5000 ) in Fig. 6 reduces both �θc and �θi more than if we doubled the number of patterns ( Mdata = 5000 
to Mdata = 10000 given N = 355 ) in Fig. 7. The total number of photons in all patterns is approximately equal 
in both cases. Yet doubling the average number of photons per pattern substantially improves the asymptotic 
orientation inconsistency (i.e. �θ∗i  falls).

Discussion
In summary, we propose an encryption–decryption approach to validate 3D intensity volumes reconstructed 
in XFEL-SPI. This validation is based on the volumes’ ability to decrypt the orientations of sentinel patterns 
unused in these reconstructions. While these volumes can be reconstructed from any algorithmic means, they 
must strictly adhere to the data independence scheme laid out in Fig. 3. This scheme can be generalized to vali-
date other latent information inferred within the full dataset (e.g. unmeasured local photon fluence, structural 
class, etc).

From realistic simulations of SPI experiments this approach can validate reconstructions in a principled 
information-theoretic manner. Our approach relates the challenging question of data sufficiency intuitively 
to key experimental variables such as the number of measured photon patterns, and nominal incident photon 
intensity. Furthermore, the various forms of decrypting (orientation) uncertainties shown here can be interpreted 
as disconcurrence, disagreement, and inconsistencies in how confidently the latent variables are inferred. These 
interpretations give a more informative and comprehensive view of the validation exercise.

Whereas there were studies about the expected scattered photon signals from biomolecules in idealized 
XFEL-SPI scenarios44,45, systematic studies of how well these signals can be integrated into a 3D diffraction 

(8)
I(�S, {K}) ≈ log

(
2π2

�θ3c

)

≈ log

(
2π2

�θ∗3i

)
−

3αc

�θ∗i
M

−βc
data ,

(9)SNR =

(
NMdata

Mrot

)1/2

,
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volume despite missing information is still sorely lacking. Our results show that the complex considerations 
that contribute to data sufficiency in XFEL-SPI can be fitted as simple parameters (e.g. α,β , γ ). Relating these 
parameters to basic properties of the target scatterer (e.g. mass, radius of gyration, etc), experimental conditions 
(e.g. beam intensity, photon wavelength, background scattering, etc), and choice of reconstruction algorithms, 
will be useful for experiment design and planning.

An extension of our encryption–decryption approach can be used to define and validate the spatial resolu-
tion of XFEL-SPI and cryo-electron microscopy reconstructions. In principle, the resolving power of an imaging 
instrument should be the reduction in uncertainty of locating spatial features within the sample. Re-framing 
this uncertainty reduction in the encryption–decryption framework of Fig. 3 may give rise to more interpretable 
notions of spatial resolution. This information theoretic formulation of this conceptual framework, similar to 
Eq. (8), also naturally accounts for external priors for localizing spatial features.

Ultimately, our encryption-decryption approach demonstrably overcomes the difficulties of using FSC as 
a validation measure for XFEL-SPI, in spite of FSC’s popularity13,16,18–29. The data throughput from XFELS 
will rapidly increase because of higher pulse repetition rates46, and more efficient sample injection techniques. 
This trend inevitably creates a larger data load, which in turn increases our reliance on statistical techniques to 
assign confidence to de novo structural reconstructions. Such confidence is especially important when imag-
ing structural ensembles with considerable flexibilities, or other structural variations. Despite the specificity of 
our validation routine to orientations, the encryption–decryption framework proposed in Fig. 3 can be readily 
generalized to test the reproducibility of claims of novel reconstructed structures. Such tests, we believe, are 
central to illuminating our path towards novel structural insights as we navigate through the photon-limited 
world of XFEL-SPI.

Methods
Sampling orientations.  A scatterer can take on an infinite number of possible 3D orientations. In practice 
these orientations Q are discretely sampled to angular divisions smaller than the intrinsic angular precision of 
the patterns (see “Relating �θ to spatial resolution” section). We adopt a quasi-uniform sampling scheme based 
on8, which adaptively refines the 600-cell polytope with refinement parameter n. In this scheme the number 
orientation samples scales like n3 , while their angular resolution increases like 1/n.

Orientation posterior distribution (OPD) of sentinel patterns.  The orientation posterior distribu-
tion (OPD) of a particular sentinel pattern KS defines the probability of orienting it within a specific 3D diffrac-
tion volume W. This OPD, written here as P(Q |KS,W) , can be inferred from the likelihood P(KS |Q,W) using 
Bayes’ theorem,

where the prior distribution of orientations, P(Q), is uniformly distributed unless the specimens have a known 
orientation bias. Because the space of orientations is only quasi-uniformly sampled by unit quaternions in our 
discretization scheme, we replace P(Q) with the numerically computed non-uniform weights w(Q)9. Note that 
this OPD can be computed even if KS did not in fact originate from W: such a computation will naturally yield 
highly uncertain orientations of KS.

We presume the likelihood of detecting a sentinel pattern KS (comprising pixels indexed by t) from the Ewald 
tomogram at orientation Q of volume W (see Fig. 1) assuming perfect detection absent background photon 
sources is

This likelihood can be replaced if the true detection statistics departs from this Poissonian form.
Often the posterior and likelihood in Eqs. (10) and (11) of a converged intensity volume is significant only 

for a relatively small set of orientations. For a given pattern KS , we represent this set of important orientations by 
their corresponding important unit quaternions {Q |KS} (written in boldface). For computation efficiency, only 
the probability at {Q |KS} is recorded; those at other quaternions are safely set to zero.

For sufficient orientation coverage, we require these important quaternions to capture at least 99% of the 
total posterior distribution. To implement this, all patterns’ posterior distributions are first sampled by a unit 
quaternion set {Q | n} with 600-cell quaternion sampling strategy8 where n is the sampling refinement level. 
Then we increase n until the smallest set of important quaternions {Q |KS, n}min ⊂ {Q | n} that captures this total 
posterior distribution comprises at least 100 important quaternions:

and the size of every KS , |{Q |KS, n}min| ≥ 100 . To be concise, we omit the subscript ·min in subsequent formulae.

Angular displacement distribution (ADD) between two reconstructed volumes.  Returning to 
our cryptography analogy, our next step is to compare how two diffraction volumes decrypt the orientations of 
a set of sentinel patterns. Three key considerations stand out here. First, the orientation of a noisy sentinel pat-
tern is described by a probability distribution (i.e. OPD) rather than a point estimate. Second, WA and WB would 
almost always differ by an overall mutual 3D rotation QBA because each volume is typically randomly initialized 

(10)P(Q |KS,W) ∝ P(KS |Q,W) P(Q),

(11)P(KS |Q,W) =
∏

t∈detector

e−WQi W
KSt
Qt

KSt !
.

(12)
〈 ∑

Q∈{Q |KS,n}min

P(Q |KS,W)

〉
KS

≥ 0.99 ,
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to avoid reconstruction biases. Hence, the sentinel OPDs for WA and WB would also be displaced by QBA . Third, 
we must average the OPDs for different sentinel patterns to obtain a robust estimate of the orientation discon-
currence between WA and WB . These considerations are captured in the angular displacement distribution (ADD) 
between WA and WB . The ADD allows us to compare the OPD of a single sentinel pattern ( KS ) given WA and WB 
without having to pre-align them in the space of possible orientations.

Mathematically, the ADD for a single sentinel pattern KS is the outer product (or convolution) of its two OPDs 
given WA and WB on their respective important quaternions,

which is computed over the set of important unit quaternions. Here QBA = QBQ
−1
A  represents the possible relative 

orientations between the reconstructed volumes WA and WB over the two sets of important quaternions {QA|KS} 
and {QB|KS} as defined in Eq. (12). Since QBA depends on the sentinel pattern KS , the ADD in Eq. (13) may be 
different for different KS . Averaging the ADD over all the set of sentinel patterns {KS} we get

Given the noise in the diffraction patterns, we expect variations in the decrypted orientations of sentinel patterns. 
To compute this variation, an average of an ADD must be established. When the reconstructed volumes WA and 
WB are similar, the ADD of their many sentinel patterns tend to cluster around the average unit quaternion QAB 
in orientation space. This overall rotation QAB is not a mere linear average of the unit quaternions that sample the 
ADD since this average may not have unit length and hence not correspond to a 3D spatial rotation. To define 
QAB , let us first consider the relative rotation between QBA and a presumptive average overall rotation Q̃ . This 
relative rotation can be written as a quaternion multiplication

which is written here as a four-component vector; n̂ and θ are respectively the axis and magnitude of this relative 
rotation. The magnitude of this relative rotation, θ(QBA, Q̃) , vanishes as Q̃ approaches QBA.

We define the average overall rotation QBA of an ADD between WA and WB as that which minimizes the aver-
age θ against all the rotation samples of the ADDs for the set of sentinel patterns. Specifically, the average overall 
rotation is defined as the unit quaternion that minimizes the angular variance �2:

and the orientation disconcurrence is the minimum value of 
√
�2:

where the angular variance is defined as

A special case here is when WA and WB are identical. In this case, QBA = (1, 0, 0, 0) which is the identity 
quaternion.

Resolving ambiguities from centro‑symmetric diffraction volumes.  To obtain the most compact 
ADD (Eq. (14)), we must eliminate trivial symmetries in the diffraction patterns that broaden the ADD. One 
such example is the centro-symmetry of 3D diffraction intensities from optically thin samples, whose scattering 
density distribution is effectively real-valued. Consequently, at sufficiently low resolutions any two-dimensional 
diffraction pattern is similar to itself after a 180° in-plane rotation about the scattering experiment’s optical axis 
( ̂z ). Each such photon pattern K should have similar posterior probabilities to occur at either rotation Q or QQz:

where the in-plane rotation about the z-axis is Qz = (0, 0, 0, 1) . This two-fold ambiguity plus the fact that Qz is 
its own inverse, means that in ADD, the relative rotation QBA or Q′

BA = QB Qz (QA)
−1 could occur in Eq. (14). 

Hence, for each ADD sample we check the angular closeness of both QBA and Q′
BA to the ADD’s average unit 

quaternion QBA , and keep the one that is closer. This essentially replaces the θ expression in Eq. (18):

(13)

P(QBA|KS,WA,WB) =
∑

QA

P(QA|KS,WA)P(QB|KS,WB)

=
∑
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P(QA|KS,WA)P(QBAQA|KS,WB) ,
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,
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Discrete symmetries in the diffraction volume.  Discrete symmetries in the diffraction volume can 
create multiple clusters in the ADD (Fig. 9). Examples of such symmetries include icosahedral viral capsids13 
and octahedral nanoparticles18. The multiplicity of these clusters arise because each pattern could be oriented at 
different and/or multiple locations of the symmetry orbit within the diffraction volume. As Fig. 9 shows, should 
this symmetry be known we can compute a single orientation disconcurrence by first folding these multiple 
symmetry-related peaks in ADD into its fundamental domain. We emphasize that this folding can be done even 
if this symmetry were not imposed during the reconstructions of WA and WB.

Figure 9 illustrates ADD folding for a particle with chiral octahedral symmetry (O). The reconstructed dif-
fraction intensities of this particle ( WA and WB ) has 24 rotational symmetries (of order 24). Once WA ’s body 
axes are canonically aligned, then each of these symmetry rotations can be represented by a canonical set of 
unit quaternions {QO | [QO] ∈ O} ( [QO] is the equivalence class QO ∼ −QO owing to unit quaternions double 
covering SO(3).

To see how this symmetry manifests in an ADD, consider orienting a particular sentinel pattern KS within WA 
and WB . Note that even though WA and WB have O symmetry, they are not canonically aligned by default. First, 
we focus on a tomogram of WB at QB , T(QB,WB) . Here, the symbol for tomogram is changed from the WQ in the 
main text to avoid multiple level subscript. When we align WB canonically by actively rotating it to Q̃OB[WB] , the 
tomogram should be rotated together to maintain unchanged, where Q̃OB actively rotates WB to Q̃OB[WB] into 
the canonical axes for the symmetry operations in {QO} . In other words, we have

(20)θ2(QBA, Q̃) → min{θ2(QBQ
−1
A , Q̃), θ2(QBQzQ

−1
A , Q̃)} .

(21)T(QB,WB) = T
(
Q̃OBQB, Q̃OB[WB]

)

Figure 9.   Collapsing the ADD of 500 sentinel patterns for a scatterer, whose diffraction volumes is centro-
symmetric and has octahedral symmetry, into the fundamental domain: (A–D). Starting clockwise from (A), 
which shows a projection of the ADD onto two components of each quaternion ( Q = (Q0,Q1,Q2,Q3) ), we 
collapsed the points related by centro-symmetry (since 2D patterns have sufficiently low resolution) to obtain 
a sharper distribution in (B). The red disk throughout the panels represent the average quaternion QAB of the 
ADD. In (C), we rotate the ADD such that QAB = (1, 0, 0, 0) for clarity. The histogram of the ADD vs Q0 is 
shown above panel (C), can sometimes reveal the flavor of symmetry in W. Finally, using the particle’s known 
symmetry group operations we can fold the ADD into the fundamental domain in (D).
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The 24 elements in {QO} give 24 same tomograms at Q̃−1
OBQOQ̃OBQB (all Q−1

O ∈ {QO} also), hence the same ori-
entation posterior probability at these orientations. Recalling the ADD comprises the joint product of OPDs for 
KS to be oriented at QA and QB within WA and WB respectively. We see this multiplicity of ADD in Fig. 9b (main 
text), which contains 48 clusters owing to the unit quaternion double covering SO(3) . The number of clusters 
does not increase even if we include the symmetry operations of WA by assuming WA and WB are similar, for the 
same reason that randomly oriented sentinel patterns in an asymmetric volume still produce a 2-clustered ADD 
(only one branch is plotted in Fig. 4).

For each sentinel pattern KS , we can fold each important unit quaternion QBA in its ADD into the fundamen-
tal domain by exhaustively searching the symmetry operation in 

{
Q̃
−1
OBQOQ̃OBQB

∣∣QO ∈ {QO}
}

 and in-plane 
inversion Qz (either {1, 0, 0, 0} or {0, 0, 0, 1} ) that minimizes the angular variance

Here, Q̃ is the presumptive average relative rotation between WA and WB similar to that in Eq. (16). Like Eq. (20), 
we also minimize over each pattern’s in-plane inversion. Therefore, the optimal relative rotation ( QBA ) and 
canonical realignment ( QOB ) are found by minimizing the total angular variance weighted over all important 
unit quaternions for all sentinel patterns in the ADD:

where

To recapitulate, the orientation disconcurrence between two symmetric volumes WA and WB is defined by Eq. (25) 
as

This computation involves separate optimizations: we iteratively refine Q̃BA → QBA and Q̃OB → QOB by minimiz-
ing Eq. (25); for each presumptive Q̃BA and Q̃OB , find the symmetry operation in {QO} for each sentinel pattern 
that minimizes the quantity in Eq. (24) as well as the most compatible in-plane rotations for each sentinel pattern 
(“Resolving ambiguities from centro-symmetric diffraction volumes” section). The results of these completed 
optimizations are used to fold the ADD into the fundamental domain in Fig. 9.

We note that one can discover the symmetry of WA using a special case of ADD with itself (i.e. WA = WB ). 
This ‘self-ADD’ will be similar to Fig. 9c (main text) since there is no relative rotation between WA and itself. 
Because the first component of every unit quaternions in a symmetry group is independent on the choice of 
canonical axis, we may deduce WA ’s symmetry group from number and positions of their clusters in their Q0 
histograms of its ‘self-ADD’ (panel above Fig. 9c (main text)).

A one‑dimensional (1D) model.  Here, we show the relation between the orientation disconcurrence and 
the disagreement (misalignment of the centers of ADDs) and the inconsistency (the size of each ADDs) with a 
one-dimensional (1D) rotation analogy as opposed to the full 3D rotation version in Fig. 4.

The unit quaternion Q that describes rotation about a 1D ring is a real number θ ∈ [0, 2π) . Suppose that the 
two OPDs (of reconstructed models WA and WB ) that comprise the ADDs for a set of sentinel patterns {KS} are 
mostly constrained within a small segment of this 1D ring. Let us further suppose that their ADD over {KS} can 
be approximated by local Gaussian distribution within this angular segment. We denote the 1D ADD averaged 
over all sentinel patterns {KS} as P(Q | {KS}) ≡ P(Q | {KS},WA,WB) . For a single sentinel pattern KS its ADD, 
P(Q |KS) (blue or red distribution in Fig. 4), we denote its mean as Q(KS) , and variance as �θ2(KS) . Hence the 
mean and variance of this ADD for the entire set of sentinel patterns {KS} are equivalent to the overall orienta-
tion, Q({KS}) , and the square of orientation disconcurrence, �θ2c ({KS}) , defined in Eqs. (17) and  (18) respec-
tively. The square difference between the disconcurrence, �θc({KS}) , and the inconsistency, 

√
��θ2(K)�K∈{KS}

 , 
is equivalent to the RMS distance between Q(KS),KS ∈ {KS} and Q({KS}) , can be thought of as the disagreement, 
�θa(WA,WB) , between reconstructions WA and WB . This relation can be shown by
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Above we use 
√
��θ2(K)�K∈{KS}

 as the inconsistency in Eq. (27) instead of the definition in Eq. (1), because 
these two definitions are approximately the same if Gaussian distributions are assumed for OPDs, P(Qi |KS,Wi) , 
i = A,B . As P(Q |KS) is a convolution of these two Gaussian OPDs, its variance is �θ2(KS) = δ2A + δ2B , where 
δ2A and δ2B are the variances of OPDA and OPDB . Meanwhile, the variances of auto-convolution of two OPDs are 
�2(Qii = 0 |KS,Wi) = 2δ2i  , i = A,B , which gives us

The average of right hand side (RHS) of Eq. (28) over {KS} is consistent with RHS of Eq. (1).
The width of OPD, δ2 , quantifies how well we can identify the orientation for a given pattern. For a pixel at q 

in this pattern, we cannot decide whether this pixel belongs to a diffraction speckle near its most likely orienta-
tion if the speckle’s radii θsp(q) is larger than δ . Strictly, if we want a 74% confidence interval, then we should 
have θsp(q) ≤ 2δ . It should be noted that the confidence interval for 2σ is 74% instead of 95% since OPD is a 3D 
Gaussian distribution even though we simplified the derivation above with a 1D Gaussian distribution. The δ 
is computational expensive, but it can be easily inferred from �θi by δ ≈ �θi/

√
2 if the Gaussian assumption 

discussed above is utilized. Moreover, being more cautious about the conclusion, we replace the �θc instead of 
�θi in Eq. (7).

Sentinel pattern coverage in the SO(3) orientation space.  Comparing a sentinel pattern to a dif-
fraction intensity results in the former’s OPD. This OPD covers a certain region in the SO(3) orientation space. 
The volume of this region should be proportional to the width of the OPD which could be estimated by �θi/

√
2 

as mentioned in Eq. (28). If we crudely partitioned these OPDs with boxes whose average edge length is twice 
the average OPD width then the average volume covered by an OPD is (2�θi/

√
2)3 . Given when the number of 

patterns diverges (the yellow asymptote) in Fig.  7, �θi = 0.24 , then at least we need

OPDs to cover the whole SO(3) space, where π2 is the total volume of SO(3).
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