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Abstract: We investigate the effects of plasma flow on axi-
symmetric self-consistent equilibria in toroidal geometry.
In contrast to previous flow calculations we retain together
with flow, all beta effects. Our description allows a gquite
general discussion of the existence and naturg of the equi-
librium. Explicit results will be presented;//

In toroidal confinement systems the radially outward plasma
flow which leads to losses will, in general, be coupled to
other flow components. Therefore a complete discussion of
plasma loss unavoidably requires a treatment of plasma flow
and an analysis of the nature of this flow coupling.
Examination of the fluid equations shows that there is a linear
coupling of flows by means of the v x B term in Ohm's law, and
a nonlinear coupling via the inertial term in the equation of
motion. Previous treatments have, in general, discussed only
the linear type of coupling. However,the flow calculated in
this approximation can become large so that the neglect of
inertia is suspect.

Recently there has been increased interest in analysing the
nonlinear coupling (i.e.inertial effects), but because of the
complexity of the problem, many approximations were used to
make it mathematically tractable. In particular low beta plas-
ma in a large aspect-ratio system was studied. It is the pur-
pose of this paper to remove such restrictions,

We study a hot, finite beta plasma with longitudinal current
in a toroidal axisymmetric system of arbitrary aspect-ratio
and investigate the possible stationary states. We describe
the ideal plasma flow in terms of the one-fluid MHD equations
with an ideal gas equation of state P-c‘p . where isother-
mality is assumed for convenience (C=const.).The fact that
some integrals of this system can be obtained, allows us to
carry through a rather general discussion of the existence and
type of solution. Explicit results for the case of large aspect-
ratio are readily obtained.

Because of their solencidal nature the magnetic and momentum
fields can, with the aid of the poloidal magnetic and mass
fluxes G and [T , be expressed as
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where f 1is the ignorable angle co-ordinate, and A and L are
functions to be determined. The problem can then be reduced to
three equations, two of which are magnetic differential
equations determining the variation of @ and A on a magnetic
surface, and the third is a partial differential equation
describing radial force balance which determines G in space.

rva'dwgi . gve-\m 4 JGVp +
+ Lrl:‘u.p{ﬁ"[%%-v% —dw%(,i-] iy -1?1%"__9‘ vr‘}=0
where VM' v,

p Aare the meridional and toroidal flow speeds
respectively, and R is the distance from the axis of symmetry.
This latter equation reduces, in the no-flow limit, to the
well-known equilibrium equation discussed by Grad, Shafranov

and others (e.g. see [1]).

An important point to note is that any solution will depend

on four arbitrary surface functions: two of which arise from
the magnetic differential equations and the other two are
and the electric potential §. This arbitrariness can be re-
expressed in terms of four related surface functions M, E
describing the flows and By, B, which are the local meridional
and toroidal beta values.

There are three features of the magnetic differential
equations for 4 and A which should be mentioned at this
point. (1) The equation for p (which is essentially the
stabilizing toroidal field) exhibits flow effects which can be
remarkably large. (2) The equation describing flow effects on p

is a Bernoulli type equation which in the low beta limit
reduces to the equation we discussed some time ago {21. (3)The
symmetry of the flow terms which appear is altered from the
low beta case (where only Mz and 52 terms were obtained)
because a mixed term ME arises.

The solution for p and A depends on IVGl . The partial
differential equation for G contains derivatives of p

and A , and so we see that there will be contributions to
the nature of this eqguation which are directly related to the
solution of p , A Now the solution of the eguations
for p , A is not trivial. Indeed it can be shown that not
all flows lead to continuous solutions i.e. at some point on

a particular magnetic surface for certain flows the solutions
may be discontinuous.

There are also certain critical speeds (see [3] ) corresponding
to acoustic and the three MHD speeds (modified by the

toroidal geometry). All four of these speeds play an important
role in determining the nature of the partial differential
equation for G which is to be solved with the appropriate
boundary conditions.

In the case of large aspect-ratio this partial differential
eguation can be approximated to first order in inverse aspect-—
ratio by two ordinary differential equations which determine
the overall radial force balance and the shift of the plasma
column. The former is a generalisation of the Bennett Pinch
relation to include flows.

The well-known low beta results concerning plasma para- or
dia- magnetism depending on the meridional beta value can be
immediately recovered. Flow acts as an effective pressure and
makes the situation more diamagnetic.

The expression for the plasma displacement is a generalisation
of the static result of Shafranov [1]. The extra terms which
contain the combined effects of plasma beta and flow give
rise to the interesting possibility that the plasma displace-
ment can be made identically zero. There is sufficient
freedom in the flow profiles to do this.
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