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ABSTRACT: In this work we derive general quantum phenomenological equations of grav-
itational dynamics and analyse its features. The derivation uses the formalism developed
in thermodynamics of spacetime and introduces low energy quantum gravity modifications
to it. Quantum gravity effects are considered via modification of Bekenstein entropy by an
extra logarithmic term in the area. This modification is predicted by several approaches to
quantum gravity, including loop quantum gravity, string theory, AdS/CFT correspondence
and generalised uncertainty principle phenomenology, giving our result a general charac-
ter. The derived equations generalise classical equations of motion of unimodular gravity,
instead of the ones of general relativity, and they contain at most second derivatives of
the metric. We provide two independent derivations of the equations based on thermody-
namics of local causal diamonds. First one uses Jacobson’s maximal vacuum entanglement
hypothesis, the second one Clausius entropy flux. Furthermore, we consider questions
of diffeomorphism and local Lorentz invariance of the resulting dynamics and discuss its
application to a simple cosmological model, finding a resolution of the classical singularity.

KEYWORDS: Models of Quantum Gravity, Spacetime Singularities, Black Holes, Classical
Theories of Gravity

ARX1v EPRINT: 2009.03826

OPEN AcCCESs, (© The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP12(2020)196


mailto:ana.alonso.serrano@aei.mpg.de
mailto:liska.mk@seznam.cz
https://arxiv.org/abs/2009.03826
https://doi.org/10.1007/JHEP12(2020)196

Contents

1 Introduction 1
2 Bekenstein entropy, entanglement entropy and corrections to them 3
2.1 Logarithmic corrections to the entanglement entropy )
3 Modified equations of motion 6
3.1 Geodesic local causal diamonds 7
3.2 Derivation from MVEH 8
3.3 Derivation from the Clausius entropy flux 13
3.4 Comparison of the derivations 17
4 Interpretation of the modified dynamics 18
4.1 Diffeomorphism invariance and the equivalence principle 19
4.2 Application to a simple cosmological model 21
5 Discussion 25

1 Introduction

The search for the elusive theory of quantum gravity has been a fundamental pillar of
research in the last decades, and although there are promising candidates, none of them
has yet provided a consistent final theory. In this context, phenomenology of quantum
gravity has acquired interest as an approach to extract information about the possible
dynamical effects of quantum gravity theories in the low energy regime [1-4]. Its results
have mainly focused on the understanding of physics close to classical singularities [5-7].
The limitations of these models lie, on one side, in the extreme simplicity of the studied
cases, whose results also cannot be directly extrapolated to extract more general features
of the theory. On the other side, models attached to a particular theory are not well suited
to provide any general constraints for the final theory of quantum gravity.

The motivation of this paper came precisely from the search for general phenomeno-
logical effects of quantum gravity. The development of complete effective dynamics, that
can also be particularised to specific solutions, would allow one to explore global properties
of spacetime in the presence of quantum gravity effects, which should be recovered by the
candidate theories of quantum gravity. As we will see later, thermodynamics not only pro-
vides tools to deal with the emergence of gravitational dynamics, but also its predictions
are common for most of the candidate theories.

Thermodynamics of spacetime has been revealed as a very useful tool to understand
gravitational mechanics. Since the seminal developments of black hole thermodynamics, it



has been attempted to extend this framework to general spacetimes in order to understand
the relation between thermodynamics and geometry [8, 9]. Along these lines, the derivation
of Einstein equations from thermodynamics of (local virtual) Rindler horizons [10] puts on
the table a new idea for the emergence of classical gravitational dynamics just from thermo-
dynamic concepts applied to gravity. A concept of matter entropy crossing the horizon is
defined via the Clausius relation, dS = §Q /T, where §@Q is the matter-energy flux crossing
the horizon and T’ its associated Unruh temperature. Equilibrium condition between this
entropy and entanglement entropy associated with the horizon, then, implies Einstein equa-
tions; when the entanglement entropy follows the Bekenstein formula and one considers lo-
cal horizons constructed in every point of spacetime. This basic derivation has been further
developed later in the literature, polishing and generalising the original arguments [11-19].

Overall, thermodynamics of spacetime implies equations of motion of general relativity
(GR) and several modified theories of gravity [11, 12, 14, 17-19], and it also provides insight
into situations where the source of gravity are quantum fields rather than classical mat-
ter [16, 19]. Therefore, it appears natural to go one step further and employ thermodynamic
methods for gaining some insight into the low energy gravitational dynamics of quantum
gravity. If we modify thermodynamics of spacetime to include quantum gravity effects, the
corresponding emergent gravitational dynamics can be expected to encode the low energy
limit of quantum gravity and it will provide quantum phenomenological equations of gravi-
tational dynamics that are independent of any specific model of quantum gravity. Moreover,
it generalises the idea of finding equations of motion for spacetime from thermodynamics,
extending the discussion about the interface between gravity and thermodynamics.

Here, we will focus on two recent derivations, extensively reviewed in a previous paper
of the authors [20] (see this reference also for a more detailed historical review of thermody-
namics of spacetime). The first one obtains the dynamics from thermodynamic equilibrium
of geodesic local causal diamonds (GLCD), by performing a simultaneous variation of the
entanglement entropy associated with the horizon of GLCD and the entanglement entropy
of the matter present inside it [10]. The second derivation utilises as the starting point an
expression for the Clausius entropy flux across any null bifurcate surface [15] applied to
the specific case of causal diamonds. Equations of motion are then found by comparing
the decrease of Clausius entropy of the matter fields with the corresponding change of
entanglement entropy of the horizon [20]. As it was shown there, both derivations give
rise to the same gravitational equations of motion in the semiclassical case. The interest
of considering both derivations lies, on one side, in checking the consistency of results,
and, on the other side, in studying the correspondence among the different concepts of
entropy. The most relevant results of the analysis of these derivations were the recovery
of unimodular gravity (UG) instead of GR and the semiclassical equivalence of Clausius
and entanglement entropy [20]. Note that UG implies the same classical dynamics as GR,
but the quantisation of both theories might differ. Then, the introduction of quantum
gravity effects could provide a preferred direction towards one or another theory of gravity.
Likewise, the entropy equivalence reported in [20] might break due to quantum gravity
corrections. These questions provide further motivation for extending thermodynamics of
spacetime into the realm of phenomenological quantum gravity.



In this paper, in order to provide robust and sufficiently general results, we consider the
leading order quantum correction to the Bekenstein entropy formula, namely a logarithmic
term in the horizon area. The presence of a term of that form is predicted by various
approaches to quantum gravity, such as loop quantum gravity (LQG) [21, 22|, string the-
ory [23, 24] and AdS/CFT correspondence [25, 26]. Logarithmic corrections also arise from
phenomenological models such as generalised uncertainty principle (GUP) [5], which adds
an extra non-commutative term to the well-known Heisenberg uncertainty principle, due to
introduction of a minimal length into the theory. GUP is an effective prediction implied by
string theory, path integral gravity and several model-independent thought experiments [2].
Moreover, the entanglement entropy associated with closed causal horizons (even virtual
ones) also develops logarithmic corrections of the same form as Bekenstein entropy. In fact,
it has been broadly proposed in the literature to interpret Bekenstein entropy as the entan-
glement entropy [27-29]. In summary, the presence of logarithmic corrections to horizon’s
entropy appears to be rather universal result. Therefore, the modifications of gravitational
dynamics we obtain are relevant for many different approaches to quantum gravity.

The paper is organised as follows. In section 2, we review calculations of the logarith-
mic corrections to the entanglement entropy associated with local causal horizons and their
connection with quantum gravity effects. In section 3, we first introduce a geometric tool
we will use in the derivation, that is, geodesic local causal diamonds. Then, we use both
above described thermodynamic methods [20] to derive the quantum phenomenological
gravitational equations of motion. Section 4 discusses diffeomorphism and local Lorentz
invariance of the dynamics we obtained. Furthermore, we apply the new equations of
motion to a simple cosmological model. The resulting modified Friedmann and Raychaud-
huri equations suggest a possible replacement of the Big Bang singularity with a quantum
bounce. Lastly, section 5 sums up our results and outlines possible future developments.

Throughout the paper, we work in four spacetime dimensions and use metric signature
(—,+, 4+, +). Definitions of the curvature-related quantities follow [30]. We use lower case
Greek letters to denote abstract spacetime indices and lower case Latin letters for spatial
indices with respect to a (local) Cartesian basis. Unless otherwise explicitly stated, we use
the SI units.

2 Bekenstein entropy, entanglement entropy and corrections to them

In this section, we review the appearance of a logarithmic correction term in the Bekenstein
entropy equation. As we will see, such a term arises due to quantum gravity effects not only
in black hole entropy but also in entanglement entropy associated with observer-dependent
causal horizons. In section 3, we will show how these corrections give rise to quantum
modifications of gravitational dynamics.

Bekenstein equation for black hole entropy states

kA
Spi = B2
BH 4@3 ’

where A is the area of the black hole’s event horizon, [p = \/Gh/c3 is the Planck length and
kp is the Boltzmann constant. Bekenstein entropy is implied by the combination of semi-

(2.1)



classical effects (driven by Hawking radiation) and the fully classical first law of black hole
mechanics [31-33]. Its possible microscopic interpretations draw much attention and many
proposals have been put forward [34]. One of the ideas is that Bekenstein entropy arises
due to quantum entanglement between two causally separated regions [27]. An observer in
one region cannot access information in the other one. Since there are correlations between
vacuum fluctuations in both regions, some information is inaccessible and non-zero entan-
glement entropy arises [27]. It was shown that for a Klein-Gordon field (either massless
or massive) in flat spacetime, this entropy is infinite unless an ultraviolet cutoff length is
introduced [27]. Then, entanglement entropy is directly proportional to the horizon area

S = nA, (2.2)

where 7 can, in principle, depend on the position in spacetime [13]. Since its introduc-
tion [27], this result has been confirmed and expanded to more general cases [28, 29, 35].
Entanglement entropy proportional to area appears whenever a part of spacetime is inacces-
sible to observer measuring the entropy. Thus, it can be associated with any causal horizon,
including observer-dependent ones such as the acceleration (Rindler) horizon [13, 27, 28].
However, calculations of entanglement entropy are unable to fix the proportionality con-
stant 7; which, to recover Bekenstein equation, should have universal value n = kp /41%3.
The main issue with the identification of black hole entropy as entanglement entropy is the
latter’s dependence on the number of fields and their coupling to gravity [29]. Presently,
there is no widely accepted resolution of these issues. Nevertheless, both problems are
resolved for instance in the Sakharov’s induced gravity scenario, as quantum fluctuations
responsible for the entanglement entropy also induce a renormalisation of the Newton’s
gravitational constant in such a model [36].

It has been argued in various contexts [5, 21, 25, 26, 37, 38] that the semiclassical
Bekenstein entropy should be modified when one takes into account quantum gravity ef-
fects. Then, there emerge modifications beyond the linear term in area, generalising the
Bekenstein equation into

k kgl
SpHg = 47; +Ckpln (2}) +0 (’ZP> , (2.3)

where C € R is a dimensionless constant and A is a constant with dimensions of area.
Values of both constants depend on the specific model. Logarithmic modifications to black
hole entropy were found, e.g. in LQG [21, 22], GUP phenomenology [5, 7], entanglement
entropy calculations [29, 37], AdS/CFT duality [25, 26|, string theory [23, 24] and in the
analysis of statistical fluctuations around equilibrium [38].

Of the above mentioned approaches, entanglement entropy calculations are especially
well applicable in our situation. Firstly, they allow us to explicitly find the logarithmic
term even for certain virtual, observer-dependent horizons. Secondly, they tell us that such
corrections will not appear in general, but instead depend on the horizon’s topology. For
these reasons, we will proceed by reviewing the derivation of the logarithmic corrections to a
spherical horizon in flat spacetime. The procedure is described in detail, e.g. in [29, 39, 40].



2.1 Logarithmic corrections to the entanglement entropy

In 4-dimensional Minkowski spacetime consider a 2-sphere of radius [ at ¢ = 0. Then
perform a Wick rotation 7 = it to obtain 4-dimensional Euclidean spacetime. The resulting
Euclidean metric in the spherical spatial coordinates is conformal to

ds? = 12 (dp? + p*dx?) + 1202 (2.4)

This metric describes a direct product of a 2-hyperboloid Ho and a 2-sphere Ss, both
of radius [, where p € [0,00), x € [0,27) are polar coordinates on the 2-hyperboloid,
T = psiny, r = pcosx and d*Q = sin #dfd¢, with 6 € [0,7), ¢ € [0, 27).

Now assume that a massless, Lorentz invariant scalar field is present in the spacetime.
Using the so-called replica trick, we can calculate the entanglement entropy that arises due
to tracing over the sphere’s interior [29, 39

B kpA kg A .
S, = B 180 In T2 + UV finite, (2.5)

where € is the UV cutoff length and the UV finite terms are disregarded. Considering
€ ~ lp, we obtain a result consistent with Bekenstein equation in the leading term, but
with a negative correction logarithmic in the horizon area. The entropy has the same
structure for any minimally coupled quantum field, regardless of its spin and mass [29].

Let us note that logarithmic corrections are connected with the Euler number of the
horizon surface ¥ [29], that for a 2-surface equals 2. However, for a plane (Rindler horizon)
the Euler number is 0. Due to this difference, a logarithmic term is present for spherical
black holes as well as for virtual spherical horizons in flat spacetime, but not for Rindler
horizons. Therefore, in order to exploit the logarithmic term to obtain quantum corrections
to Einstein equations, we need to consider a horizon with closed spatial cross-section, in
contrast with the original Jacobson’s paper [10].

Up to this point, we have only discussed the contribution coming from a single mini-
mally coupled scalar field. The total entropy is, of course, a sum of contributions coming
from all the quantum fields present in spacetime, including gravitons. Graviton contri-
bution also most clearly shows the connection between logarithmic corrections to entan-
glement entropy and quantum gravity. The classical Einstein-Hilbert gravitational action,
S = (1/167G) [ R\/—gd*z, yields only the leading order term in entropy. The term pro-
portional to Ine comes from corrections to the action that are quadratic in curvature.
Finally, the term proportional to In.A is connected with non-local quantum corrections
to gravitational action [40]. For local actions that do not contain derivatives of Riemann
tensor, entanglement entropy can be even related to Wald entropy [8], as both the replica
trick calculation of entanglement entropy and the Wald calculation of entropy as a Noether
charge amount to evaluating the same integral [29].

As we will see, the sign of logarithmic correction term in entropy determines the
physical implications of the modified equations of motion we obtain. Most notably, it
indicates a clear resolution of spacetime singularity for positive signs but not for negative
ones. Therefore, we provide a brief overview of signs obtained in entanglement entropy
calculations, as well as in other approaches that imply logarithmic corrections to entropy.



The logarithmic term arises even in entanglement entropy of black hole horizons. How-
ever, its sign for a Schwarzschild black hole is positive [37]. On the other hand, a negative
sign was obtained for extremal and near extremal Reissner-Nordstrom black holes [29] (the
sign changes at r— = 2r,/3, with r1 being the outer and inner horizon radius). The
reason is that the Schwarzschild spacetime near the horizon is given by the product of a
2-sphere and a 2-disk, while an extremal spherically symmetric black hole near the horizon
has the geometry of the product of a 2-sphere and a 2-hyperboloid. Thus, for a spherical
extremal black hole, the calculations leading to entropy of a sphere in flat spacetime can be
reproduced with minimal modifications [39]. However, these results include only the contri-
bution of a single massless scalar field. When 1-loop corrections from all massless fields are
summed together, the entropy of a non-extremal Reissner-Nordstrom black hole obeys [23]

S = ]11;%)4 + kpCln (;Zt)) , (2.6)
where C is an explicitly known function that depends on the black hole’s mass, M, and
charge, ), as well as on the number of fields and their spins. In the case of the standard
model of particle physics, the logarithmic term is positive for any ). However, the equa-
tion breaks down for an extremal black hole (Q = M in geometrized units). Therefore,
one cannot use it for the case of a 2-sphere in flat spacetime (topologically equivalent to
an extremal Reissner-Nordstrom black hole), which would have to be treated separately.

Regarding other approaches to entropy calculations, LQG and AdS/CFT yield a neg-
ative sign of the logarithmic term [22, 25]. In string theory, the sign varies for different
variants of the theory [23]. In [41], assumptions about quantisation of the horizon area
are used to argue that the coefficient in front of the logarithm is a positive integer. The
analysis of canonical corrections in [42] also yields a positive sign.

Generally speaking, corrections to the Bekenstein formula due to quantum gravity
effects can be divided into two categories. Microcanonical corrections are found by more
precise counting of the microstates at fixed horizon area. Naturally, such a procedure
reduces our uncertainty and, therefore, leads to negative corrections to the entropy [7,
42, 43]. The second category, canonical corrections, arise due to thermal fluctuations of
the horizon area at a fixed temperature. Since fluctuations are an additional source of
uncertainty, it follows that canonical corrections to entropy have a positive sign [7, 42, 43].
Due to this sign ambiguity we will consider the most general form of the quantum modified
Bekenstein entropy (2.3) in the following.

3 DModified equations of motion

In this section, we employ tools developed in thermodynamics of spacetime together with
the logarithmic correction to entanglement entropy in order to obtain modifications to the
gravitational equations of motion. Since the logarithmic term arises as a leading quantum
gravity effect (see subsection 2.1), we, in fact, explore the effective dynamics at the low
energy limit of quantum gravity. Nevertheless, we still assume spacetime to be describable
as a 4-dimensional Lorentzian manifold, i.e. we limit ourselves to length scales significantly



larger than the Planck length. This allows us to directly apply the already known methods
of semiclassical thermodynamics of spacetime.

While derivation of Einstein equations seems to work equally well for Rindler horizons,
causal diamonds and light cones (and probably other types of local causal horizons as well),
logarithmic corrections to entanglement entropy only appear for closed causal horizons as
we have previously discussed. Since the spherical symmetry of the horizon immensely
simplifies the calculations, we essentially have only two kinds of objects worth considering,
a light cone and a causal diamond. The light cones were used to derive Einstein equations
as well as equations of motion for some modified theories of gravity [17]. We instead
choose causal diamonds, as they form a closed region of spacetime with a naturally defined
boundary, making them very well suited for local calculations. However, we expect that
the results for null cones and causal diamonds should be equivalent, as the spatial cross-
section of the causal horizon is a 2-sphere in both cases and both yield the same results in
the semiclassical case. Including the logarithmic corrections in light cone thermodynamics
might thus be a useful double-check of our results.

We carry out the derivation by two independent methods. The first one generalises the
derivation of Einstein equations from the maximal vacuum entanglement hypothesis [16].
The second is based on their derivation from the Clausius entropy flux [20]. However, to
develop these derivations, we first need to introduce a basic geometric tool, the geodesic
local causal diamond.

3.1 Geodesic local causal diamonds

The thermodynamic objects that we will use to obtain gravitational dynamics are geodesics
local causal diamonds (GLCD). Here, we briefly present their construction and basic ge-
ometric properties. More detailed treatment of the causal diamonds is provided, e.g.
in [44-46].

In an arbitrary point P of spacetime pick any unit timelike vector n*. Choose Riemann
normal coordinates (RNC) so that it holds n = /0t + O (I). The RNC metric expansion
around P yields [47]

1 o
gut/(x) = N — gRyau@ (P)x % +0 (333) . (3.1)

The family of geodesics orthogonal to n* departing from P with parameter length [, form
an approximate 3-dimensional ball, ¥g. This ball causally determines a region of spacetime
called a geodesic local causal diamond (see figure 1). For a small enough ! (much smaller
than the local curvature length), the boundary B of ¥ is an approximate 2-sphere of
area [16]

4
A= 42 - §z4GOO (P)+0 (%), (3.2)
where Gog = Gn#n”.
It is straightforward to show that a GLCD possesses (up to O (13) terms) a spherically

symmetric conformal isometry generated by a conformal Killing vector [16] given by

E=0C ((12 — 12— r2) E?t — 27’t8874> , (3.3)



Figure 1. A sketch of a GLCD with the origin in point P (the angular coordinate 6 is suppressed).
Yo is a spatial geodesic ball of radius [ (several of the geodesics forming it are depicted as grey
lines), its boundary an approximate 2-sphere B. Unit timelike vector n* is a normal of ¥y. The
tilted lines from the past apex A, (t = —{/c) to the future apex Ay (t = [/c) represent the null
geodesic generators of the GLCD boundary. The diamond’s base ¥ is the spatial cross-section of
both the future domain of dependence of A, and the past domain of dependence of Ay at t = 0.

where C' denotes an arbitrary normalisation constant. The null boundary of a GLCD thus
corresponds to a conformal Killing horizon. As we will see in the following subsection,
the presence of a conformal Killing vector allows us to define the variation of matter
entanglement entropy inside Xg.

3.2 Derivation from MVEH

Einstein equations can be derived by considering a variation of entanglement entropy of
a GLCD around equilibrium [16]. The main ingredient of the derivation is the maxi-
mal vacuum entanglement hypothesis (MVEH): “When the geometry and quantum fields
are simultaneously varied from maximal symmetry, the entanglement entropy in a small
geodesic ball is maximal at fixed volume” [16]. The formulation of the MVEH implicitly
demands a finite and universal prescription for the area density of the vacuum entangle-
ment entropy. If the prescription for S, coincides with the Bekenstein formula, the MVEH
applied to a first order variation of the quantum fields from their vacuum state implies
Einstein equations [16]. To obtain quantum modifications to gravitational dynamics, we
instead consider the modified entropy with a logarithmic term. The condition of maximal
entanglement entropy can be mathematically stated as 0S¢ 4+ 65, = 0, where S ; denotes
modified vacuum entanglement entropy, S,, entanglement entropy of the matter and we
consider a first order variation of both metric and quantum fields from vacuum, maximally
symmetric spacetime. We evaluate 65, using the expression for the area of B found in
the previous subsection and express 4.5,, in terms of variation of the energy-momentum
tensor expectation value, 6(7},,). To carry out this derivation, we need to consider possi-



ble modifications of Unruh temperature, conformality (or not) of the fields, applicability
of Einstein equivalence principle (EEP) and universality of G (that automatically holds
if strong equivalence principle (SEP) holds). Then, the maximal entanglement entropy
condition implies (albeit with some technical caveats) modified gravitational equations of
motion

2 2

S — oS, + b (Rl = 1) g = "5 (8(T3) = 38(Tg )« (34
where S, = R, — Rguw /4 denotes the traceless part of Ricci tensor. It is worth noting
that these equations present a direct generalisation of the equations of motion of UG rather
than GR, just as it was found in the semiclassical case [20]. The curvature terms should
be understood as quantum expectation values, since the energy-momentum tensor is also
interpreted in this way [16, 20]. In the following and until the end of the subsection, we
discuss the derivation of these equations in detail.

We start by specifying the appropriate equilibrium state of geometry. Even in the semi-
classical setting, it turns out to be a maximally symmetric spacetime with Gﬁ/{,s 5= A
rather than flat spacetime [16, 20]. The curvature scale A is approximately constant inside
the GLCD, but in general depends on both its origin P and size parameter [ [16]. Based

on the semiclassical case [20], we expect that A consists of three separate contributions
A= X0+ Ane + Ag, (3.5)

where \g = —R/4 is the semiclassical value of A when only conformal fields are considered,
Ane contains terms coming from the presence of non-conformal fields' and Mg arises due to
quantum corrections and is proportional to l%.

Consider a GLCD constructed in a maximally symmetric spacetime (MSS). A variation
of the quantum fields from their vacuum state induces a variation of the metric and,
consequently, of entanglement entropy. The modified entanglement entropy Se 4 associated
with the GLCD horizon equals

2
Seq = 1A+ kpCln i) +0 (k‘i’jp> : (3.6)

where C is a dimensionless constant. To be as general as possible, we assume an undeter-
mined proportionality constant 7 in the leading term instead of fixing it to the Bekenstein
value kp/4l%. The variation of the metric changes the GLCD horizon area and entangle-
ment entropy S, associated with it. One has to consider a variation of the metric that
leaves fixed the volume of Xy [16, 18]. Otherwise, Einstein equations cannot be recovered
in the limit C — 0. The fixed volume variation of area obeys

Ay = =151 (Goo (P) + A (P) oo (P) + O (7). (3.7

!Semiclassically, it holds A,. = (87rG/c4) (6(T)/4 - 6X) [20].



The corresponding change of Se 4 equals

MSS
656,(1 = S&q - Se,q

= nSA + kpC

B
Anrss 2

Ay C( oA )2+O((6A)3). (3.9)

Anrss

Next, we turn our attention to the variation of entropy of the quantum fields from
vacuum. A small variation from the vacuum state leads to a change of the matter entan-
glement entropy, §.5,,, in the spatial geodesic ball ¥y. The vacuum state of the field can be
expressed in terms of a thermal density matrix at the Unruh temperature, from which one
obtains the entropy variation. In the semiclassical set-up (without any quantum gravity
corrections), 9.5y, is given by (for a detailed derivation see [48])

onkp 4nlt
05m = he 15

(6(Tbo) +0X), (3.9)

where X indicates the variation of a spacetime scalar that in general depends on [ and is
present only when non-conformal fields are considered [48]. This equation holds only for
fields with a fixed UV point.

Since 4.5, directly depends on the Unruh temperature, its possible modifications due
to quantum gravity effects need to be considered. Recently, quantum gravity corrections to
the Unruh temperature formula were suggested in the context of GUP [49, 50], following
earlier proposal of such corrections to Hawking temperature [5]. While several slightly
different formulas appear in the literature, all include a leading order correction term
proportional to T2 oc a?, with T being the standard Unruh temperature. Thus, all of them
can be written in the following form

Taup =

h(l (1 + wljz(]?) l4 CL5
‘o ( b ) , (3.10)

2rkpc 8

where 1) is a real number that can be expected to be of the order of unity [49, 50]. The
existence of any such corrections to the Unruh (or even Hawking) temperature remains
uncertain and, to our best knowledge, the modified temperature was not reproduced by
any rigorous method. However, given the rather general grounds on which GUP is expected
to hold [2], corrections of this form are worth considering. At the very least, we should
prove that our construction does not break down if they appear. Therefore, we work with
the modified temperature in the following. By setting v = 0, we recover the standard
Unruh temperature, which is thus considered as a special case. In fact, we demonstrate
that gravitational dynamics are independent of the exact form of the Unruh temperature
(assuming it is polynomial in acceleration a). As both Hawking and Unruh effects are purely
kinematic phenomena unrelated to gravitational equations of motion [51], this is expected.

To consider the standard Unruh effect, one needs to assume that the ground state of
quantum fields is locally approximated by Minkowski vacuum. This amounts to invoking
Einstein equivalence principle [13]: “Fundamental non-gravitational test physics is not
affected, locally and at any point of spacetime, by the presence of a gravitational field [53].”

,10,



However, when quantum gravity effects become relevant, the status of EEP is unclear. For
example, possible violations of weak equivalence principle (WEP, a necessary condition for
EEP) due to GUP phenomenology were investigated by numerous works [54-57] with very
different conclusions. However, by considering a modified Unruh temperature, we account
for changes in the local quantum field theory induced by a possible EEP violation. This
allows us to consider the (modified) Unruh temperature regardless of the validity of EEP.
We will return to the question of equivalence principles in subsection 4.1.
The variation of S, then satisfies

2rkpcdm
h 15

8Sm = =

— 1 (6(Tho) + 6X) — 4pl*C

=1 (6(To) +6X) + 0 ("), @11

where C' is an arbitrary normalisation of the conformal Killing vector. When the standard
Unruh temperature is considered, C' does not affect the matter entanglement entropy and
it is possible to fix it to any value (usually, C' = 1/2[ is chosen, corresponding to the unit
surface gravity [16, 48]). However, for 1) # 0, the modified temperature explicitly depends
on C'. As we cannot motivate choosing any value of C', we keep it as an arbitrary constant.

Upon computing both variations, we invoke the MVEH, which demands that the total
entropy variation vanishes to the first order, i.e. 0S¢ 4 + 05, =0,

kgC
1207

kgC

(SOO ( ) — Ane — )‘q)Z Ar l2 (

2rkpc

=1 (Soo (P) = Ane — Ag) — S0 (P) = Ane — Ag) (3.12)

(1 - 4wl§l202> (0(Too) +0X) +O(1) =

This equation holds for any [ much smaller than all the relevant length scales of the quantum
field theory, the excitation length and the local curvature length (i.e., inverse of the square
root of the Riemann’s tensor largest eigenvalue), but still much larger than Planck length.
In the range allowed by these constraints, [ can be arbitrary. Thus, the MVEH condition
depends continuously on [, and it can be differentiated with respect to it, yielding

d kBC kBC
P) — _ I
3 N (Ane + Ag) + 60 (S00 (P) = Ane — Ag) (Ane + Ag) Arl2

ok
(S00 (P) — Ane — Ag) + —oB€

(1 — 4¢l§jz202> (6(Too) +0X)+0O () | =0, (3.13)

as metric, curvature and energy-momentum tensors are evaluated in P and their values
cannot depend on [. To satisfy this condition, it must hold

ksC ksC
47

N (Ane + Ag) + “or (S00 (P) = Ane — Ag) (Ane + Ag) — o) (Soo (P) (3.14)

2rkpe

e =) + 2

(1 — 41/;?;’5202) (6(Too) +6X)+ 0 (1) = -0 (P).

Here @ is a scalar independent of [.
To be consistent with semiclassical results [20, 48], we need to recover Einstein equa-
tions in the limit of C — 0. Clearly, this requirement fixes n = kp/4l%. In order to regard
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7 as a universal constant, one needs to consider that G has a constant value throughout
the spacetime. This can be done by invoking the strong equivalence principle [13, 20]: “All
test fundamental physics (including gravitational physics) is not affected, locally, by the
presence of a gravitational field” [53]. However, given the above discussed problems with
equivalence principles when quantum gravity effects are considered, we limit ourselves to
demand that G is a universal constant, instead of assuming SEP. We will further address
this issue in section 4.
Since the time indices are, in fact, contractions with timelike vector n*, we have

Cl? 8nG
Sy (P)n#n” + ﬁsaﬁ (P)n“n”S,, (P)n'n’ —& (P) = — 1 0(Tu (P)) (P)nn”. (3.15)

This equation holds for any unit timelike vector n* defined in P and there is no preferred
time direction in this construction. As the dependence on n* is continuous, we can differ-
entiate it with respect to it. This yields a system of conditions (for simplicity of notation,
we do not write the dependences on P in the following)

o =0, (3.16)
Gn"@n)‘an/; On?oneP ,
- L) )
3
amgjtaw =24 glp SkaSunyn”, (3.18)
&fjg)w =25, + 12C PS(HAS it — 28:—4G5<TW), (3.19)
0e _ =2S,,n" —|—4Cl S(,{AGW)n n*n” —28 G5<Tuy>n”. (3.20)

ont
The first condition guarantees that the second one is already completely independent of n*.
It can be solved either by (Ci%,/307) S(\Suyn*n”h", or (Cl%,/307m) S(xS,untn’nn?,
with A" = ¢"* + nn? being a three metric on hypersurface orthogonal to n*. No other
solution that can be constructed from the matter and metric variables having correct di-
mensions (note that the only constant with the dimension of length is Ip; and any O (l3 )
terms are already neglected). Choosing (Cl%,/307) SASuntn’n #n? we would just re-
produce Einstein equations. However, we have seen that our procedure clearly yields a
non-trivial correction term. Furthermore, at least in the terms proportional to I4, only
tensors projected onto n# in all indices influence the change of the diamond’s area and,
thus, its entropy? Therefore, any projections to the hypersurface orthogonal to n* will not
contribute to our entropy balance equation. Previous arguments allow us to set

Clpy
307

b = S,WSA,,n“n”h”A + (3)<I>,\Wn>‘n“n” + (2)<I>Wn“n” + (1)<I>un“ + (O)CD, (3.21)

where (3)<I>,\W, (2)<I>W, (1)<I>“ and D@ are tensors independent of n*. However, no ten-
sors of the form (3)<I>>\W, (1)<I>u can be constructed just from the metric, the curvature

2This was confirmed even for the O (16) terms in the vacuum case by the analysis of the higher-order
corrections to the area of a GLCD [44]. The result in 4 dimensions is proportional to t,@,\wn“nAn“n”, where
Larpw = meﬁf +6%Crapus *C)\o‘uﬁ, with Cyaps being the Weyl tensor and * denoting the Hodge dual.
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tensors and the energy-momentum tensor. Condition (3.19) in principle allows terms in
)%, proportional to I5RR,,, IR Ry, (I5G?/c®) 6(T,M)0(Th), (15G?/c®) §(T)6(T ),
(3G /c*) R6(Ty), (15G?/c®) 6(T,*) Ry, (13G/c*) 6(T') Ry, and various terms involving the
Weyl tensor. However, any such terms would appear in our entropy balance equation, pro-
jected on n# in both indices (in other words, they contain no projections to the hypersurface
orthogonal to n#, that can be missed by our procedure). The previous arguments reduce the
unknown terms in the equilibrium condition to a single undetermined scalar function (V)@

Cl? 8rG y
(s;w (P) = 2528 (P) S, (P) = = Tow (P)) nin” =09 (P), (3.22)

which holds for any unit timelike vector n* defined in point P. Following an argument
similar to the one the authors explained in detail in [20], we can dispense with contractions
with n# and the dependence on P (invoking EEP), and obtain a system of equations valid
throughout spacetime

&G

Cl%l A 0
S — ?)O—WSH,\S v CT‘S<TW> = -{ )‘I’guw (3.23)

Lastly, we determine (V@ by taking a trace of the equations. Then, we obtain traceless

equations of gravitational dynamics?

Cl,
1207

o1 e 1
(Reak™ = 17 g = 22 (5000 - 33(T)g ).

Before further discussing implications of modified equations for gravitational dynamics, we

C12
Sy — WI;ZSMSAV +

will present an alternative derivation from the Clausius entropy flux based on the semi-
classical derivation previously developed by the authors [20].

3.3 Derivation from the Clausius entropy flux

The second method of derivation of effective equations of motion we consider, uses equilib-
rium condition on the flux of energy-momentum across the null boundary of a GLCD. It
can be stated as AS, ;, +ASc = 0, where S, 4 is the same as in previous subsection and S¢
denotes the flux of Clausius entropy. For a GLCD, AS¢ turns out to be proportional to
the traceless part of energy-momentum tensor [15, 20]. After some calculations, modifying
the definition of Clausius entropy to account for a possible modified Unruh temperature in
addition to considerations in previous derivation, the equilibrium condition then leads to
modified gravitational equations of motion

Cl% Cl3,

SMV - 75;1)\5)\” + ﬁ

18

1 8w 1
(RHARK)\ - 4RZ> G =~ 2~ (wa - 4T9uu> , (3.25)

3Let us note that, while the procedure used to obtain the equations of motion from equilibrium condition
does lead to some ambiguities in the correction terms, they all disappear for R =T = 0, i.e., for situations
in which matter sources are only conformal fields and the cosmological constant is zero (or small enough
not to affect the correction terms). Then, one unambiguously finds

Clpy Clpy
30 120

871G

ct

Ry — RaR, + RoR™ g = —6(Tyw). (3.24)
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that are nearly identical to the ones obtained from the MVEH, except for a different

proportionality constant in front of the correction terms (—C /187 instead of —C/307). We

now again provide a detailed discussion of this derivation for the rest of the subsection.
A general prescription for the observer-dependent Clausius entropy of a bifurcate null

surface states [15]

2 A . -
S (\) = S (B) + 2rkpe / / AT iR A2 AdN + O (3) (3.26)
h Jo Jso

where ) is the affine parameter along the geodesic generators of the null surface (in general,
it can be different for each generator), k% are null vectors tangent to the surface for A > 0
and X\ < 0, respectively, d2A denotes the area element of the null surface’s spatial cross-
section S (A), and S (B) is an undetermined Clausius entropy associated with the spatial
bifurcation 2-surface B corresponding to A = 0.

To obtain quantum modified gravitational dynamics from the Clausius entropy flux,
we must first show that some prescription for Clausius entropy exist even when the Unruh
temperature is modified in the way discussed in the previous subsection. The standard
semiclassical construction of Clausius entropy [15] no longer works. In the following, we
modify it to make it still applicable. While we concentrate on the specific case of GLCD’s,
a generalisation to an arbitrary bifurcate null surface can be done along the same lines as
in the semiclassical case.

Consider a class of timelike observers travelling inside GLCD with constant accelera-
tion a. Coordinates on their worldlines read

xH(1,0,¢) = <C2 sinh (g) - c:cosh (CCL;-),H, ¢> +0 (12) , (3.27)

a

where 7 is the proper time they measure, 0, ¢ are the usual angular coordinates and O (12)
corrections come from the higher-order terms in the RNC expansion of the metric (we use
that, inside GLCD, 7 <[ in writing the error terms). Such observers have the following
velocity and acceleration

Vh=c <cosh (‘g) _ sinh <g>,0,0> +0(), (3.28)

a* =a (sinh <Cg> — cosh (‘Z;) 0, 0) +O(1). (3.29)
The normal of the timelike hyperbolic sheet ¥ these observers sweep out is given by

NH = (— sinh (Cg),cosh (g),o,o) +0(l). (3.30)

Using the above defined vectors, heat (matter-energy) crossing a segment of ¥ can be
written in terms of the energy-momentum tensor [15]

1
6Q = _E/ T, VFNYd33. (3.31)
%
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Since the (modified) Unruh temperature is measured by uniformly accelerating observers,
we can define entropy of the energy crossing it by the equilibrium Clausius relation, dS¢ =
0Q/Taup-

Originally, entropy is computed in the limit of @ — oo [15]. Then, ¥ approaches the
bifurcate null surface. However, when one considers the modified Unruh temperature, the
term proportional to a? becomes dominant as a approaches infinity. To prevent this, we
allow a to become very large but still smaller than 1/4/¢). Then, 3 approaches the causal
horizon close enough to ignore the difference between them, but the correction term in the
modified Unruh temperature remains sub-leading.

The time derivative of heat crossing ¥ in the limit of large a equals

5Q (t) : !
= /S (t){Ttt + T,y — 2sign(t)Ty yatd> A + O (14) +0 (a> ; (3.32)

where S (t) is a spatial cross-section of ¥ with a constant value of the time coordinate, t,
and d2A (t) = (I — t)* d?Q + O (I*) is the area element on S (£). This can be written as an
integral of T),, kL kY, where ki are null vectors corresponding to the positive and negative
values of ¢, respectively. They satisfy

ki = (1, = sign(tym’) + 0 (1), (3.33)
with m! = (sin 6 cos ¢, sin #sin ¢, cos #) being the radial unit 3-vector. Finally, using the

Clausius relation yields the time derivative of Clausius entropy

dSc(t)  2rkpe hoy 2 4 1302 (1)
o) - 2 t/s(t)TW(x(t,Q,qS))kikid A+0 (1) o (v +0(=). (339

A

This equation (after integration in time) agrees with the semiclassical result [15, 20] up to
acceleration-dependent correction terms. However, for ¥ # 0, sending the acceleration to
infinity would make the sub-leading correction term O (wl%(ﬂ / c4) dominant (and eventually
infinite), breaking the correspondence of both results. For ¢) = 0, no such problem arises,
and both results are identical.

While we kept the acceleration, a, finite, simply for mathematical convenience, there
exist a proposal that quantum gravity in fact limits the maximal attainable accelera-
tion [58]. It can be shown that this proposal leads to corrections to Unruh temperature
consistent with our modified formula if we set ¢y = 2 [50]. Then, our upper limit on the
acceleration, a < 1/ = %/ V2lp, agrees with the proposed maximal acceleration up to
a factor 1/v/2. In this way, our construction can be made consistent with the maximal
acceleration theory.

Integration of the time derivative of S¢ from bifurcation surface B, at t = 0, to
diamond’s future apex Ay, at t = [/c, yields the total flux of Clausius entropy across
the GLCD horizon during its lifetime. To explicitly evaluate the integral, we expand the
energy-momentum tensor around the origin of coordinates, T),, (z (t,0, ¢)) = Ty, (P)+0 (1)
and use [ m!d*Q =0, ['m'm/d*Q = 476" /3 [44]. The details of calculations were already
discussed by the authors in [20]. Final expression for the entropy flux results

8m2kplt 13%a?

T (TOO (P) + iT (P)) +0(P)+0 (1/) i ) +0 <a12) - (3.35)

ASC’lausius =
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The next step in deriving gravitational dynamics is to demand thermodynamic equilib-
rium, i.e., compensation of the decrease of Clausius entropy by an increase of entanglement
entropy Se 4 associated with the GLCD horizon. By doing so, we implicitly assume that
Clausius entropy is, at least in the leading order in [, equivalent to the matter entangle-
ment entropy, The validity of this assumption and details of the comparison were carefully
analysed in [20]. Considering the most general formula for entanglement entropy with a
logarithmic correction, its change between times ¢ = 0 and ¢ = [/c equals

4 4 4 l2 _ 47rnl4G P
ASeq = —4mnl® + Lgl Goo (P) — kpCln ( il 0 wP)) o (7). (3.36)
0

Clearly, one obtains non-zero AS,, even in the cases in which S¢ identically equals zero
(more starkly, AS, , = —4mnl? —kgCIn (47nl%/ Ap) in flat spacetime). Therefore, as argued
in detail in [20], deriving the gravitational equations of motion requires a subtraction of
the “equilibrium state contribution” corresponding to MSS from S, 4, before comparing it
with S¢ (see also [17], where a similar requirement emerges in the context of null cone
thermodynamics). The difference yields

0A C 0A
e

2
ASey~ ASequss = 10A+hpC ) L0 (6A°), (33

MSS Anss
where
47rnlt
0A = g (Goo (P) + A (P) goo (P))
4t
Awss = 4rl” + =M (P) goo (P)

and A is again approximately constant inside the GLCD but in general dependent on P
and [. Just like in the previous derivation, we can divide A into separate contributions

A=+ A (3.38)

where \g = R/4 is the semiclassical value and A, contains the quantum corrections pro-
portional to l%. In contrast to the MVEH approach, we have no contribution due to
non-conformal fields, A,.. This is because the Clausius entropy flux depends only on the
traceless part of energy-momentum tensor and, therefore, is identical for both conformal
and non-conformal fields [20].

In total, the following thermodynamic equilibrium condition holds

AS. — AScpmss + ASe = 0. (3.39)
That results in
k'BC k‘BC
1(S00 (P) = X) + 22 (500 (P) = 2q)? + 1255 (So0 (P) = Ay)
27k 1 1%a? 1
- 2k (TOO (P)+ 4T(P)> +OM)+0 (W;’ff) +0 (aQ) 0. (3.40)
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For the same reasons as in the previous subsection, all the remaining [-dependent terms
must cancel out together. Furthermore, as long as acceleration a remains very large but
smaller than 1/4/7), it can be set to an arbitrary value and the dependence on a is contin-
uous. Therefore, we can differentiate with respect to it and, by the same reasoning as with
[, the resulting equation cannot depend on a either. In total, we require

kpC k
— 1Ay = 20 (S0 (P) = Ag) Ag = 2T (P)
Ck I3a? 1
+ B (S0 (P) = A) + O (1) +0 (w;j) +0 (a2> —o(P),  (341)

where @ is a scalar function independent of [, a and 1 (as all the ¥-dependent terms also
depend on a).

From here on, the derivation is identical to the one developed in subsection 3.2, without
any caveats, so, for simplicity, we skip here the intermediate steps. Let us remind that,
as in previous derivation, we fix n = kp/ 4l%D to recover Einstein equations in the limit of
C — 0, use independence of the final equations on n#, invoke EEP to make our result valid
throughout the spacetime and determine the remaining unknown scalar ()@ from the trace
of equations of motion. In the end, we get the following modified gravitational dynamics

Cl% N S _ 8n@ 1
SNV - 1875#)\5' v + 7277_‘_ <RHAR - ZR > g;u/ — CT (Tulj - 4Tg;/,l/> . (342)

3.4 Comparison of the derivations

Let us now compare the equations found by both derivations we performed. The form of the
final equations of motion is the same, although they involve quantum expectation values in
the MVEH approach and classical quantities in the Clausius entropy flux one. The second
difference is the numerical factor in front of the Z%ZSMS’\V term, which equals —C /307 and
—C/18m, respectively. This difference appears because in MVEH approach we performed
the variation at fixed volume, while in Clausius flux one we instead considered the entropy
changes due to energy-momentum flux across the GLCD’s horizon. Since first derivation
presented uses a fully quantum definition of entropy while, in second one, we worked
with the semiclassical Clausius entropy; a difference in corrections to equations of motion
stemming from quantum gravity effects is perhaps to be expected. The difference could
be related to the need to hold fixed a quantity known as generalised volume, rather than
the usual volume, when dealing with MVEH derivation of equations of motion for modified
theories of gravity [18]. Alternatively, it might imply that the semiclassical equivalence
between Clausius and matter entanglement entropy [20] does not extend to situations
where quantum gravitational effects become relevant (although, given the similarity of
the equations, both entropies would still have to be closely related). In any case, both
derivations yield traceless equations of motion that include a correction term proportional
t0 I3y (S0, = ReaR™ gy /4 + R, /16).

Given the close similarity of both results, we can introduce a general form of the
modified equations of motion
DI3,

S,y — DI$S,0S%, + I

1 8rG 1
(RMRM _ 4R2> G =~ (Tw - 4Tglw> , (3.43)
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where D = C/307 for the equations obtained from MVEH and D = C/187 for the ones
derived by the Clausius entropy approach. This difference of factor 5/3 is insignificant as
the coefficient C in the modified entropy formula is anyway currently unknown. There-
fore, in the following, we work with this general form for the quantum phenomenological
gravitational equations of motions. Let us now analyse its features in detail.

4 Interpretation of the modified dynamics

We introduce this section by noting some general properties of the modified dynamics we
derived. Due to being traceless, modified equations of motion do not imply local energy-
momentum conservation. Therefore, it needs to be added as an additional assumption.
Then, the local conservation condition, T),”,, = 0, implies
i 2 (e i3
1B = DI (™S)n) |+ 75

This condition has relevant implications for the nature of the modified dynamics. Firstly,

. 1 2rG
(R /\Rm\;u - 4RR§N> = *7Tw~ (4.1)

it cannot be generally solved for 7. This prevents us from recasting equations of motion in
the Einstein-like form that would directly include T},",, = 0. Secondly, as for all thermo-
dynamically derived gravitational equations of motion, the cosmological constant A would
appear as an arbitrary integration constant in the solution of the conservation condition
(we will demonstrate this for the case of a cosmological model in subsection 4.2). Due to
these features, our result seems to be a direct generalisation of classical UG, rather than
GR. It can be seen that it is not even possible to rewrite the modified equation as a direct
generalisation of Finstein equations. Note that the form of quantum corrections is fully
determined by the logarithmic term in horizon entanglement entropy. Since many different
methods of calculating entropy predict the emergence of such a term due to quantum grav-
ity effects, our conclusions are rather robust. Furthermore, both derivations we presented
are completely insensitive to the controversial issue of corrections to Hawking and Unruh
temperature. Since both effects are completely kinematic and independent of gravitational
dynamics [51], the fact that their modifications do not enter the modified equations serves
as a consistency check for our derivation.

Both the value and sign of coefficient C in the modified entropy formula differ in various
sources (see subsection 2 and references listed there). However, in comparison with the
squared Planck length l% ~ 2.6 x 1079 m?2, any possible value can be considered to be of
the order of unity. Thus, the corrections we find become relevant only when the curvature
length scale becomes close to the Planck scale, although it still has to be significantly larger
than [p to view spacetime as a Lorentzian manifold.

We expect that any terms that contain higher than fourth derivatives of the metric or
are more than quadratic in curvature tensors will be suppressed by higher powers of [p. This
seems to be the case both on dimensional grounds and from the way they appear in the RNC
metric expansion. However, the higher derivative terms known from quadratic gravity can
be expected to appear at the same order as the corrections we introduce. They are implicitly
present on the right hand side of our equations in the expectation value of the energy-
momentum tensor [52]. In principle, one might find the higher derivative contributions to
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the left hand side by a careful analysis of higher order corrections to the area variation.
However, these corrections are ambiguous, as they depend on shape deformations of the
horizon [44]. Without a physically motivated solution of these ambiguities, it is not possible
to obtain any insight into how the higher order corrections influence gravitational dynamics.
The higher derivative terms that might arise from these corrections are anyway contained
with undetermined constants in the energy-momentum tensor expectation value, so their
omission does not change the resulting dynamics in any significant way.

Nonetheless, there are good reasons to treat the modifications we propose apart from
those of quadratic gravity. Our equations of motion are qualitatively different from those
of any local, diffeomorphism invariant theory of gravity. It is most obvious from the,
generally unsolvable, condition for local energy-momentum conservation. The difference
can be probably traced to the non-locality of logarithmic term in entropy (see [40], it is also
apparent from non-existence of a local expression for entropy density). We intend to explore
the related issues in a future work. Furthermore, there are physically reasonable situations
in which effects of our theory can be studied apart from those of quadratic gravity. Consider
any spacetime with vanishing Weyl tensor and scalar curvature, for example a radiation
dominated homogeneous isotropic universe with vanishing cosmological constant. Then
quadratic gravity predicts the dynamics known from GR. However, our equations retain
correction terms quadratic in the Ricci tensor and, therefore, imply modifications to GR
dynamics (similar to the model we discuss in subsection 4.2).

4.1 Diffeomorphism invariance and the equivalence principle

We now turn our attention to the status of three of the cornerstones of GR, full diffeo-
morphism invariance, local Lorentz invariance and strong equivalence principle, in our
approach.

The equations of motion involve only quantities that transform as tensor fields with
respect to any diffeomorphism coordinate transformation. Thus, at first glance, one could
conclude that the quantum phenomenological gravitational dynamics we introduced retain
the full diffeomorphism invariance of GR. However, as we discussed, our result appears to
be a generalisation of classical UG rather GR. Actions of UG break the full diffeomorphism
invariance by introducing a fiducial volume element or a non-dynamical flat metric [59].
Furthermore, semiclassical thermodynamics of spacetime actually seems to point to a vari-
ant of UG known as Weyl transverse gravity [20], that is explicitly invariant under Weyl
transformations (for details of the theory see, e.g. [60-62]). Weyl invariant theories of
gravity often involve higher derivatives of the metric, but Weyl transverse gravity is clas-
sically equivalent to GR, replacing the full diffeomorphism invariance. Since the modified
equations also include only second derivatives of the metric, it seems likely that breaking
diffeomorphism invariance will prove necessary to state the corresponding action. Never-
theless, a proposal for a fully diffeomorphism invariant version of Weyl transverse gravity
does exist [63, 64]. It modifies the Henneaux-Teitelboim action for UG [65], that retains
diffeomorphism invariance by introducing an auxiliary vector density as a new dynamical
variable. In conclusion, it can be expected that the modified dynamics do not posses full
diffeomorphism invariance, since even their classical limit is only invariant with respect to
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transverse diffeomorphisms and Weyl transformations (unless dynamical degrees of freedom
besides the metric are introduced). Nevertheless, the issue cannot be completely resolved
without providing a variational formulation of the modified dynamics.

In this paragraph we discuss some technical concerns regarding the validity of EEP
and WEP, and their relation with local Lorentz invariance. The validity of EEP can be
restated as local Lorentz invariance of the theory together with weak equivalence principle
(WEP), that states: “Test particles with negligible self-gravity behave, in a gravitational
field, independently of their properties.” [53] (see the discussion in [53] for details and pos-
sible caveats). UG does not break local Lorentz invariance (Lorentz transformations do not
affect determinant of the metric), so the apparently unimodular form of our equations leads
to no issues. Let us check the validity of WEP in the modified dynamics, i.e., whether test
particles with negligible self-gravity move along geodesics. Since the singular character of
point-like particles is problematic in gravitational physics, we will model the test particle
as uncharged dust with energy-momentum tensor 7}, = pu,u,, where u* is the dust veloc-
ity. It is easy to check that the local energy-momentum conservation condition, 7,,",, = 0,
implies geodesic motion of the dust [66]. Thus, the divergence-free energy-momentum ten-
sor implies WEP. In GR, WEP is directly built into the theory, as 7", = 0 are four of
the ten independent gravitational equations of motion. In most formulations of UG, the
divergence-free energy-momentum tensor must be added as an independent assumption
already on the classical level. However, the fully diffeomorphism versions imply it directly.
Since the question of full diffeomorphism invariance remains unresolved, we are currently
unable to provide a final answer regarding the validity of WEP. On the other hand, as-
suming that the energy-momentum tensor is divergence-free, as is usually done in UG
(although there are exceptions [67]), implies the validity of WEP. In our case, it amounts
to satisfying the previously stated condition on the trace of energy-momentum tensor. How
(and whether) this condition holds in practice probably can be addressed only by studying
particular solutions of equations of motion. Once it is satisfied, the modified gravitational
equations imply WEP. If EEP violations were to occur even with WEP satisfied, it would
have to be due to the presence of local Lorentz invariance breaking quantum fields (see,
e.g. [68]), a possibility independent of the modified gravitational dynamics we introduced.
Therefore, we conclude that, our equations together with the local conservation condi-
tion imply the weak equivalence principle. Unless the matter content breaks the Lorentz
symmetry even in flat spacetime, the Einstein equivalence principle is then implied as well.

Checking the validity of SEP is a more demanding task. One might try to use the
Newtonian limit of modified dynamics. Take a static solution for dust that satisfies the
usual Newtonian conditions of weak field and low velocities; we get a modified equation for
the gravitational potential ®*

A® = 47Gp <1 - 47er> , (4.2)
PP

where p denotes the matter density and pp = ¢®/G2h is the Planck density. This limit could

4This form of the Newtonian limit is obtained perturbatively, using a procedure we explain in the
following subsection.
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be understood as implying an effective gravitational constant, Geg = G (1 — 87 Dp/pp),
dependent on matter content. Then, SEP would be broken, as Geg is not a universal
constant. However, the correction term becomes relevant only for very high densities
(pp ~ 5.2 x 10% kg x m~3), where the Newtonian approximation completely breaks down.
Whenever applicable, the Newtonian limit is equivalent to that of GR. Thus, the Newtonian
limit implies no measurable corrections for low energies and velocities, just as expected from
quantum gravity corrections that should be relevant only for very high energy densities.

Since the Newtonian limit of modified dynamics is equivalent to that of GR, no viola-
tions of SEP appear at low energies. On the other hand, SEP is expected to hold even well
beyond the applicability of the Newtonian limit. To confirm or deny its validity in general
would require a more involved analysis. A possible method to do so was proposed [69] (the
test requires an additional assumption that SEP is equivalent to the combination of local
Lorentz invariance and gravitational weak equivalence principle).

4.2 Application to a simple cosmological model

To illustrate consequences of the obtained quantum phenomenological gravitational dynam-
ics, we briefly analyse a simple cosmological model. Consider a homogeneous, isotropic,
spatially flat universe described by the following metric

ds? = —c2dt? +a (1) (dr? + 12d0?) (4.3)

where a (t) is the scale factor. For simplicity, we choose a universe filled with dust (7),, =

pégég). Due to existing symmetries, modified equations of motion yield only one non-trivial

condition on the metric, a modified Raychaudhuri equation that can be written as
12, H?

H-D 2 = —4nGp, (4.4)

where H = a/a is the Hubble parameter and the dot denotes the coordinate time derivative.
Since the modified equations of motion were obtained from expansion of Bekenstein entropy
around its semiclassical value, S = kp.A/ 4@3, in powers of l%, we can likewise consider that
the modified Hubble parameter can be obtained as expansion around the classical one, Hy

H = Hy +1pH,+ 0 (1}). (4.5)
Given that Hy satisfies the standard Raychaudhuri equation, we find

H = —47Gp (1 - 47TDP) . (4.6)
PP
Assuming local energy-momentum conservation implies p = po/a®, with pg being an arbi-
trary constant with the dimensions of energy density. Substituting for p in the previous
equation leads to a second order differential equation for a
a a®

PO Po
—— —=—4nG— (1 —-47D . 4.7
a a? " a3( " ppa3> (4.7)
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If we multiply this equation by 2a/a and integrate it in time, we obtain a modified Fried-
mann equation

a\? 8nGpy 2w Dpg ~
-] = 1-— A 4.
(&) -5 (=) +4 (9
or, in terms of H and p,
2D ~
g2 = 8mGr (1 ~ p) +A (4.9)
3 pP

The arbitrary integration constant A corresponds to the cosmological term (]X = Ac?/3).
This again points to the unimodular nature of the modified dynamics.

Here we encountered no issues with demanding local energy-momentum conservation.
However, this is only due to high symmetry of the cosmological model we considered.
Indeed, if we take covariant divergence of our equations, the Bianchi identities allow us
to rewrite its curvature part in terms of Weyl tensor (plus an extra term we can easily
deal with). Since Weyl tensor vanishes in FLRW spacetimes, the local energy-momentum
conservation condition is easily satisfied. In general, local energy-momentum conservation
may be violated. In other words, if one formulates initial value problem for our equations
and specifies divergence-free energy-momentum tensor on the initial Cauchy hypersurface,
the time evolution will generically lead to a violation of this condition. This behaviour is
connected with the presence of a term proportional to R/U\Ru)\ (whose divergence can be

rewritten in terms of Weyl tensor and a term proportional to (RR“/\))\ via the Bianchi

identities). The presence of this term might be connected with the non-locality of logarith-
mic corrections to entropy [40]. While it remains an open issue at this stage, one possible
way to make time evolution generally consistent with local energy-momentum conservation
might be along the lines discussed in [70], although perhaps there are other possibilities.

From mathematical point of view, there also exists another solution of the modified
Raychaudhuri equation that cannot be found perturbatively. We show in the next that it
is not physically relevant. To understand its features, we study the case p = 0 for which
the equation can be solved analytically

2 172
PHT . (4.10)

H—-D =
C2

Setting H = 0 clearly solves the equation. This is also the solution one finds by using the
perturbative method described above. It corresponds to maximally symmetric spacetimes
(de Sitter, anti-de Sitter and Minkowski) and introduces no modifications to the classical
geometry. However, there also exist a second solution, H = ¢? / Dl%, that cannot be found
perturbatively. In this case, the scale factor a equals

2
a = aexp <2lc)l2 t2+Ht> , (4.11)
P

where @ is a dimensionless constant and H a constant with dimensions s~'. While this
solves the modified Raychaudhuri equation, it clearly diverges in the classical limit [p — 0
(or, equivalently, D — 0). Since the modified Raychaudhuri equation certainly reduces to
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the classical one in the same limit, this solution is inconsistent with the nature of correc-
tions we introduced. Therefore, we conclude that, for the case of homogeneous, isotropic
universes, perturbatively obtained solutions are the only physically relevant ones (presence
of non-zero energy density does not change the basic situation). The same conclusion likely
holds even for completely general spacetimes. However, since one then deals with a system
of non-linear differential equations, its justification would likely be much more subtle.

Also note that, for the perturbative form of the modified Raychaudhuri equation,
Picard-Lindel6f theorem for ordinary differential equations ensures existence of a unique
solution of the initial value problem (for any p independent of @). In contrast, we have
seen that there exist two different solutions of the modified Raychaudhuri equation before
the perturbative rewrite (although the additional solution is not physically viable). We
presume that this insight applies to the general form of the modified equations as well. If the
correction terms are perturbatively rewritten as functions of the energy-momentum tensor,
the equations will become linear in second derivatives of the metric (assuming minimal
coupling and putting aside curvature dependence of its quantum expectation value, which
should lead only to O(I%) error). Then, Leray theorem should be sufficient to guarantee
uniqueness of the solution of initial value problem.

We proceed by comparing our results with two other approaches to quantum modified
cosmology. As expected, for D > 0, our result strongly resembles equations found in the
effective description of loop quantum cosmology (LQC) [71]

2= Y, (1 _f ) , (4.12)
3 Psup
and
H = —47G (p +p) (1—2p” > (4.13)
sup

Comparison with our equations implies pg,p, = pp/2nD. Effective dynamics of LQC re-
places the Big Bang singularity by a non-singular quantum bounce. Therefore, assuming
D > 0, that is logarithmic corrections to the GLCD entanglement entropy are positive,
our modified equations of motion already change the classical gravitational dynamics suffi-
ciently to avoid the cosmological singularity. Up to this point, it seems that the appearance
of corrections with D < 0 would not only keep the singularity but strenghten it. This issue
should be addressed in detail in a future work.

Modifications to Friedmann-Lemaitre-Robertson-Walker (FLRW) universes induced by
a modified entropy were already studied [6]. In that case, a thermodynamic derivation of
modified Friedmann equations was carried out, taking into account GUP-induced correc-
tions to Bekenstein entropy of the global apparent horizon of a FLRW spacetime. For the
case of a spatially flat, dust-filled universe, the following modified Raychaudhuri equation
was found
2H*H

8c2

H-p = —4nGp, (4.14)
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where f3 is a dimensionless GUP parameter (both § > 0 and 8 < 0 cases were considered).
In the light of the fact that our modified Friedmann equation is perturbatively equivalent to
2 27

H + % = —47Gp, (4.15)

we can see that, upon setting D = —(3/12, both approaches yield the same result. Since,

in contrast to our local construction, a thermodynamic derivation based on global features

specific to FLRW spacetimes was considered [6], the equivalence of resulting dynamics is

non-trivial and even somewhat surprising. Perhaps this equivalence is specific for the highly

symmetric FLRW geometry, but it might also point to some deeper connection between
both approaches.

To conclude this subsection, let us remark that the presence of a quantum bounce can

be explained in terms of entropic force acting on the apparent horizon. The entropic force
is defined as [72]

F,=TS,. (4.16)

The radius of the apparent horizon obeys r4 = ¢/H. Therefore, the corresponding Kodama-
Hayward temperature [73] and the modified entanglement entropy, respectively, equal

h|H)| H
T = 1 41
27TkB ( + 2H2) ’ ( 7)
Sog = B | i (- TC (4.18)
<1 2 H? P\ AzH? ) '

The only non-trivial component of entropic force is Fy, for which it holds
: he (( H 2 . H

Expressing H? and H from the modified Friedmann and Raychaudhuri equations yields

4w Dp 47 Dp
. 3h0(1_ pp>(1+ pP) 1 2, P
FO = sign (H) W 1 27Dp 1 27Dp + 67T Cp7p s (420)
P op PP

that, for an expanding universe and D > 0 is negative for p > pp/4mD = pgyp/2 and,
likewise, positive for the same densities in a contracting universe. Hence, in the very early
phase of expansion, entropic force acting on the apparent horizon is repulsive. Understand-
ing entropic force in relation with the gravitational interaction, its repulsiveness explains
why a regular bounce occurs instead of the Big Bang singularity.

One can read the modified Raychaudhuri equation as a standard one with an effective
pressure term —4mwDc?p?/pp. Then, this term violates the null and dominant energy
condition precisely in the regime in which the entropic force is repulsive (for an expanding
universe). However, the weak energy condition, p > 0, still holds.
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5 Discussion

In this paper, we propose novel and general quantum phenomenological gravitational dy-
namics. The only assumption made about the effects of quantum gravity is the presence of
a logarithmic correction term in the entanglement entropy associated with spherical local
causal horizons. Given the number of conceptually different methods of calculating entropy
that predict the presence of a logarithmic term (at the very least in the case of black hole
entropy), our conclusions are quite robust and relevant to many approaches to quantum
gravity, e.g. LQG, string theory, path integral quantum gravity, AdS/CFT correspondence
and GUP phenomenology.

Specifically, we provided two independent derivations of quantum phenomenological
equations of motion for gravitational dynamics from thermodynamics of geodesic local
causal diamonds. The result represents a direct generalisation of the classical equations of
motion of unimodular gravity. This is consistent with a previous work of the authors [20],
that argued for unimodular character of classical gravitational dynamics derived from ther-
modynamics. Here, we found that quantum corrections lead to a generalisation of unimod-
ular equations of motion that cannot be restated as generalised Finstein equations. Then,
equivalence of UG and GR holds on the level of classical dynamics, is broken as pre-
dicted. Therefore, we clearly showed that, due to quantum gravity entering into the game,
thermodynamics of spacetime imply unimodular gravitational dynamics distinct from any
generalisation of GR.

Several attempts to exploit logarithmic corrections to entropy in order to obtain some
insight into quantum modifications of the gravitational dynamics were made in recent years.
They were based on the entropic force model of gravity [72] applied either to a global static
background [74-76] or to FLRW spacetimes [6, 77]. However, the similarities between these
works and our derivation are only superficial. The most fundamental difference lies in the
fact that we use a local construction applicable in any general spacetime. Furthermore, in
contrast with the previous attempts, we provide general gravitational equations of motion
which do not include any undetermined functions.

The approach to phenomenological quantum gravity introduced in the present paper
still requires further development. In the future research, we plan to provide a detailed
analysis of constraints on parameter D, and, especially, find an action which implies the
modified equations of motion we obtained. Finding the action should settle the crucial
questions of diffeomorphism invariance and local energy-momentum conservation. Fur-
thermore, it would be interesting to check whether exponentially growing modes appear
in linearised perturbations of the equations, indicating instability. We expect that the
solutions will be stable as long as the perturbative approach to dynamics outlined in sub-
section 4.2 is justified. However, an explicit calculation might lead to some unexpected
findings. In addition, we are already exploring modifications of explicit solutions known
from general relativity. This might provide some insight into the effects of quantum gravity
corrections on gravitational systems.

Let us remark that our results also strengthen the semiclassical equivalence between
Clausius and entanglement entropies [20]. While the exact equivalence possibly breaks on

— 25 —



the quantum level, both entropies remain strongly related. Their precise relation should
be analysed carefully in a future work.

In summary, we have presented foundations for a new phenomenological perspective
on the low energy quantum gravitational dynamics. Whether and how will this perspective
affect our understanding of quantum gravity remains to be seen.
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