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Extreme mass ratio inspirals on the equatorial plane in the adiabatic order
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We compute gravitational waves from inspiraling stellar-mass compact objects on the equatorial
plane of a massive spinning black hole (BH). Our inspiral orbits are computed by taking into account
the adiabatic change of orbital parameters due to gravitational radiation in the lowest order in mass
ratio. We employ an interpolation method to compute the adiabatic change at arbitrary points
inside the region of orbital parameter space computed in advance. Using the obtained inspiral
orbits and associated gravitational waves, we compute power spectra of gravitational waves and
the signal-to-noise ratio (SNR) for several values of the BH spin, the masses of the binary, and
the initial orbital eccentricity during a hypothetical three-year Laser Interferometer Space Antenna
observation before final plunge. We find that (i) the SNR increases as the BH spin and the mass
of the compact object increase for the BH mass M & 106M⊙, (ii) the SNR has a maximum for
M ≈ 106M⊙, and (iii) the SNR increases as the initial eccentricity increases for M = 106M⊙.
We also show that incorporating the contribution from the higher multipole modes of gravitational
waves is crucial for enhancing the detection rate.

I. INTRODUCTION

The inspirals of stellar-mass compact objects of mass
µ ∼ 1− 100M⊙ into supermassive black holes (SMBHs)
of mass M ∼ 105 − 107M⊙ are among the key sources
for the future space-based gravitational-wave detector
Laser Interferometer Space Antenna (LISA) [1] (see, e.g.,
Refs. [2, 3] for other future space-based detectors in the
LISA band). Such extreme-mass-ratio inspirals (EM-
RIs) are expected to have typically ∼ 105 orbital cy-
cles (∼ 106 rad in gravitational-wave phase) during a few
years of observation by LISA. The observation of gravita-
tional waves from EMRIs will provide an opportunity of
precision probes of general relativity and information in
the vicinity of SMBHs (see, e.g., Refs. [4, 5]). However,
for these research purposes, one has to prepare accurate
models of gravitational waveforms suitable for the data
analysis of gravitational waves from EMRIs.
Since the mass ratio η ≡ µ/M is . 10−3, EMRIs can

be modeled by using black hole (BH) perturbation the-
ory (see, e.g., Refs. [6, 7]). In the limit of the test mass,
η → 0, the compact object follows timelike geodesic or-
bits in background Kerr spacetime. At higher order in
the mass ratio, however, the orbit deviates slightly from
geodesic orbits due to the interaction with its own grav-
itational field, gravitational self-force (GSF) (see, e.g.,
Refs. [8–12] and references therein). Using the two-time-
scale expansion method in Ref. [13], the orbital phase can
be expanded with respect to η as

Φ =
1

η
(Φ(0) + ηΦ(1) +O(η2)), (1)

where Φ(0) and Φ(1) are quantities of order unity, and
resonances [14] of O(η1/2) are neglected. Φ(0)/η denotes
the orbital phase determined by the time-averaged dis-
sipative part of the first-order GSF, that corresponds to

the adiabatic change of the constants of motion of the
geodesics. Φ(1) denotes the remaining parts of the self-
force. Φ(0) must be computed much more precisely than
any others because Φ(0)/η is the dominant part of the
orbital phase.

In order to determine Φ(0), one has to compute or-
bital inspirals by incorporating the adiabatic change of
the constants of motion, dIi/dt, due to the gravitational-
wave emission, where Ii denotes three constants of mo-
tion (see Sec. II for details). Many numerical results
of dIi/dt have been derived for spherical orbits [15–17],
eccentric-equatorial orbits [18–20], and eccentric-inclined
orbits [21–23]. The orbital phase Φ(0)/η is also computed
for spherical orbits in Ref. [17], but the accuracy in Φ(0)/η
is worse than 1 rad, which is the minimum accuracy re-
quired for the gravitational-wave modeling suitable for
the data analysis of EMRIs.

In this paper, we derive adiabatic orbital inspirals on
the equatorial plane of the Kerr BH focusing on the time-
averaged dissipative part of the first-order GSF (i.e., the
lowest-order part in η). We compute the adiabatic evolu-
tion of the inspiral orbits using the osculating geodesics
method [24, 25], in which a sequence of geodesic orbits is
assumed to be tangent to the true inspiral orbit at each
moment (see Refs. [26, 27] for inspiral orbits including the
conservative part of the first-order GSF in Schwarzschild
spacetime). Our adiabatic inspiral orbits are computed
by taking into account the adiabatic change of the con-
stants of motion due to the emission of gravitational
waves at each geodesic orbit.

The issue in this line of the study is that numerical
computation for the adiabatic change of Ii for each of ∼
105 inspiral orbits is extremely costly, even if we restrict
our attention to equatorial inspirals. Thus, we employ
the following alternative strategy. First, we compute the
adiabatic change of Ii for a number of data points in
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the semilatus rectum, p, and the orbital eccentricity, e.
Then, we use an interpolation method to obtain dIi/dt
at arbitrary points in the phase space of (p, e), for which
dIi/dt are computed in advance. Using this strategy, we
obtain inspiral orbits and associated gravitational waves
with an inexpensive computational cost.

This paper is organized as follows. In Sec. II, we re-
view formulations necessary to compute the geodesic mo-
tion in Kerr spacetime and the adiabatic change of the
constants of motion due to the emission of gravitational
waves. In Sec. III, we first summarize our approach to
obtain the adiabatic inspiral orbits using the osculat-
ing geodesic method with interpolated fluxes. Then, we
describe the accuracy for the adiabatic change of con-
stants of motion numerically derived. The issues to im-
prove the accuracy are also discussed. Several represen-
tative inspiral orbits and associated gravitational waves
are presented in Sec. IV, paying particular attention to
gravitational-wave spectra. We show the dependence of
the gravitational-wave spectra on the mass and spin of
SMBHs and orbital eccentricity of compact objects. We
summarize this paper in Sec. V. Throughout this paper
we use the geometrical units with c = G = 1 where c
and G are the speed of light and gravitational constant,
respectively.

II. FORMULATION

The purpose of this paper is to explore inspiral orbits
of a stellar-mass compact object of mass µ around a Kerr
BH of mass M ≫ µ. Specifically, we derive gravitational
waves emitted by the orbiting object using the BH per-
turbation theory and consider the adiabatic evolution of
the orbit due to the gravitational-wave emission. We use
the methods presented in Refs. [23, 28, 29], based on the
formalism developed in Refs. [7, 30–32], to numerically
compute gravitational-wave fluxes by a stellar-mass ob-
ject with bound orbits around a Kerr BH of spin a for
large sets of orbital parameters. Then, one can obtain
inspiral orbits by incorporating the adiabatic change of
orbital parameters due to the gravitational-wave emis-
sion. In this paper, we focus only on the inspirals on the
equatorial plane of the BH as a first step.

A. Bound geodesics

First, we summarize the method to determine the
generic geodesic orbit in Kerr spacetime. Using Boyer-
Lindquist coordinates for the Kerr solution, (t, r, θ, φ),
and Mino time [33] λ =

∫

dτ/(r2+a2 cos2 θ), the geodesic
equations are written as

(

dr

dλ

)2

= R(r), (2)

(

d cos θ

dλ

)2

= Θ(cos θ), (3)

dφ

dλ
= Φr(r) + Φθ(θ), (4)

dt

dλ
= Tr(r) + Tθ(θ), (5)

where

R(r) = [P (r)]
2 −∆[r2 + (Lz − aE)2 + C], (6)

P (r) = (r2 + a2)E − aLz , (7)

Θ(cos θ) = C − (C + a2(1− E2) + L2
z) cos

2 θ

+ a2(1 − E2) cos4 θ, (8)

Φr(r) =
a

∆
P (r), (9)

Φθ(θ) =
Lz

1− cos2 θ
− aE , (10)

Tr(r) =
r2 + a2

∆
P (r), (11)

Tθ(θ) = −a2E(1 − cos2 θ) + aLz, (12)

and ∆ = r2 − 2Mr + a2. E , Lz , and C are constants
that denote the specific energy, the z component of the
specific angular momentum, and the Carter constant of a
stellar-mass compact object, respectively. The geodesic
orbits in Kerr spacetime can be characterized by these
three constants of motion (E ,Lz , C). In the following, we
often refer to these three constants in a vector form as
Ii.
One can also use another set of three parameters, the

semilatus rectum p, the orbital eccentricity e, and the
inclination angle θinc, to characterize the geodesics for
bound orbits. These parameters are related to turning
points of the radial motion, rmax and rmin, and the polar
motion, θmin, via

p =
2rmaxrmin

rmax + rmin
, e =

rmax − rmin

rmax + rmin
, (13)

and θinc = π/2− (sgnLz)θmin. Note that rmin is written
as p/(1 + e) and the minimum value of rmin is written
as 2M − a + 2M1/2

√
M − a, which is realized for the

marginally bound orbit [34]. (E ,Lz , C) are written as
functions of (p, e, θinc) using the method in Ref. [35]. In
the following, we refer to (p, e, θinc) as J

i.
Using J i, the radial and polar motions can be

parametrized by

r(λ) =
p

1 + e cos[χ(λ) − χ0]
,

cos θ(λ) = cos θinc cos[ψ(λ) − ψ0], (14)
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where χ(λ) and ψ(λ) are monotonic parameters that run
from 0 to 2π over one radial and polar cycle, respectively.
χ0 and ψ0 take the values of χ and ψ at r = rmin and θ =
θmin, respectively. In the osculating geodesic method, the
inspiral orbit under the GSF is described by the evolution
of p, e, θinc, χ0, and ψ0. The principal orbital elements p,
e, and θinc evolve due to the dissipative part of the GSF,
while the positional orbital elements χ0 and ψ0 evolve
due to the conservative part of the GSF.
Since the equations of radial and polar motion are de-

coupled in Eqs. (2) and (3), for the bound orbits, r(λ)
and θ(λ) become periodic functions that are independent
of each other. The fundamental periods for the radial and
polar motion, Λr and Λθ, are calculated by

Λr = 2

∫ rmax

rmin

dr
√

R(r)
, Λθ = 4

∫ cos θmin

0

d cos θ
√

Θ(cos θ)
,

(15)

and thus, the angular frequencies of the radial and polar
motion become

Υr =
2π

Λr
, Υθ =

2π

Λθ
. (16)

Υr and Υθ can be expressed in complete elliptic integrals
of the first kind; see, e.g., Refs. [23, 36].
We define the angle variables as wr = Υrλ and wθ =

Υθλ. Then, any functions that depend only on r or θ
become periodic with respect to wr or wθ, respectively,
with the period of 2π.
To solve Eqs. (4) and (5), we expand their right-hand

sides into Fourier series as [37]

dt

dλ
=

∑

k,n

Tk,ne
−ikΥrλe−inΥθλ, (17)

dφ

dλ
=

∑

k,n

Φk,ne
−ikΥrλe−inΥθλ, (18)

where

Tk,n =

∫ 2π

0

dwr

2π

∫ 2π

0

dwθ

2π
(Tr(r) + Tθ(θ))e

ikwreinwθ ,

(19)

Φk,n =

∫ 2π

0

dwr

2π

∫ 2π

0

dwθ

2π
(Φr(r) + Φθ(θ))e

ikwreinwθ .

(20)

Since Tk,n = 0 and Φk,n = 0 for k 6= 0 and n 6= 0, we
have

dt

dλ
= Γ +

∑

k 6=0

Tk,0e
−ikwr +

∑

n6=0

T0,ne
−inwθ , (21)

dφ

dλ
= Υφ +

∑

k 6=0

Φk,0e
−ikwr +

∑

n6=0

Φ0,ne
−inwθ , (22)

where

Γ ≡ T00 = Υt(r) +Υt(θ) ,

Υφ ≡ Φ00 = Υφ(r) +Υφ(θ) ,

Υt(r) =
1

2π

∫ 2π

0

dwrTr, Υt(θ) =
1

2π

∫ 2π

0

dwθTθ,

Υφ(r) =
1

2π

∫ 2π

0

dwrΦr, Υφ(θ) =
1

2π

∫ 2π

0

dwθΦθ.(23)

Then, we obtain the functions t(λ) and φ(λ) by integrat-
ing Eqs. (21) and (22) in the following forms:

t(λ) = Γλ+
∑

k 6=0

iTk,0
kΥr

e−ikwr +
∑

n6=0

iT0,n
nΥθ

e−inwθ , (24)

φ(λ) = Υφλ+
∑

k 6=0

iΦk,0

kΥr
e−ikwr +

∑

n6=0

iΦ0,n

nΥθ
e−inwθ .

(25)

Here, the two variables, Γ and Υφ, denote the average
rates of change of t and φ as functions of λ, respectively.

B. Secular evolution of orbital parameters

In the Teukolsky formalism [38], the gravitational per-
turbation on Kerr spacetime is described in terms of the
Newman-Penrose variables, Ψ0 and Ψ4, which satisfy a
master equation. The Weyl scalar Ψ4 is related to grav-
itational waves at infinity as

Ψ4 →
1

2
(ḧ+ − i ḧ×). (26)

The master equation for Ψ4 can be separated into radial
and angular parts if we expand Ψ4 in harmonic modes as

ρ−4Ψ4 =
∑

ℓm

∫ ∞

−∞

dωe−iωt+imϕ
−2S

aω
ℓm(θ)Rℓmω(r),

(27)

where ρ = (r − ia cos θ)−1, and −2S
aω
ℓm(θ) is the spin-

weighted spheroidal harmonics with spin s = −2. The
radial function Rℓmω(r) satisfies the so-called Teukolsky
equation,

∆2 d

dr

(

1

∆

dRℓmω

dr

)

− V (r)Rℓmω = Tℓmω, (28)

where the potential term V (r) is

V (r) = −K
2 + 4i(r −M)K

∆
+ 8iωr + λℓmω, (29)

with K = (r2 + a2)ω − ma and λℓmω the eigenvalue of

−2S
aω
ℓm(θ).

The asymptotic behavior of the solution at the horizon
and infinity is written, respectively, as

Rℓmω(r → r+) ≡ ZH
ℓmω∆

2e−iPr∗ , (30)
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and

Rℓmω(r → ∞) ≡ Z∞
ℓmωr

3eiωr∗ , (31)

where r+ =M +
√
M2 − a2, P = ω−ma/2Mr+, and r

∗

is the tortoise coordinate.
For the bound orbits of a stellar-mass object, the am-

plitude of the partial wave Z
∞/H
ℓmω , defined in Eqs. (30)

and (31), can be expanded as

Z∞,H
ℓmω ≡

∑

kn

Z̃∞,H
ℓmknδ(ω − ωmkn) , (32)

where

ωmkn ≡ (mΥφ + kΥθ + nΥr)/Γ . (33)

Using these functions, gravitational waves at infinity
are expressed as

h+ − ih× = −2

r

∑

ℓmkn

Z̃∞
ℓmkn

ω2
mkn

−2S
aωmkn

ℓm (θ)√
2π

eiωmkn(r
∗−t)+imφ.

(34)

In addition, the adiabatic change for (E ,Lz , C) due to the
emission of gravitational waves are expressed as [33, 39,
40]

〈

dE
dt

〉

= −µ2
∑

ℓmkn

1

4πω2
mkn

(

∣

∣

∣
Z̃∞
ℓmkn

∣

∣

∣

2

+ αℓmkn

∣

∣

∣
Z̃H
ℓmkn

∣

∣

∣

2
)

,

(35)
〈

dLz

dt

〉

= −µ2
∑

ℓmkn

m

4πω3
mkn

(

∣

∣

∣
Z̃∞
ℓmkn

∣

∣

∣

2

+ αℓmkn

∣

∣

∣
Z̃H
ℓmkn

∣

∣

∣

2
)

,

(36)
〈

dC
dt

〉

=

〈

dQ
dt

〉

− 2(aE − Lz)

(

a

〈

dE
dt

〉

−
〈

dLz

dt

〉)

,

(37)
〈

dQ
dt

〉

= 2Υt(r)

〈

dE
dt

〉

− 2Υφ(r)

〈

dLz

dt

〉

+ µ3
∑

ℓmkn

nΥr

2πω3
mkn

(

∣

∣

∣
Z̃∞
ℓmkn

∣

∣

∣

2

+ αℓmkn

∣

∣

∣
Z̃H
ℓmkn

∣

∣

∣

2
)

,

(38)

where

αℓmkn =
256(2Mr+)

5P (P 2 + 4ǫ2)(P 2 + 16ǫ2)ω3
mkn

CTS
ℓmkn

,

(39)

ǫ =
√
M2 − a2/4Mr+, and CTS

ℓmkn is the Teukolsky-
Starobinsky constant [41] (see Ref. [42] for the scalar
case). Here 〈· · · 〉 denotes the time average. We note

that Z̃∞
ℓmkn and Z̃H

ℓmkn in Eqs. (35)–(38) denote fluxes at
infinity and the horizon, respectively.

Once we obtain the adiabatic change of Ii, we can
derive the adiabatic change of J i using

〈

dJ i

dt

〉

=
(

G−1
)i

j

〈

dIj

dt

〉

, (40)

where Gi
j = ∂Ii/∂Jj. In this paper, we consider the case

of C = 0, and thus, dC/dt = 0 (dθinc/dt = 0).

III. OUR METHOD TO OBTAIN INSPIRAL

ORBITS

The purpose of this paper is to derive adiabatic inspiral
orbits and associated gravitational waves. We ignore the
change in the mass and spin of the BH due to the absorp-
tion of gravitational waves because they are small effects.
In order to obtain the adiabatic inspiral orbits, we con-
struct a sequence of the osculating orbits [24, 25], which
are assumed to be tangent to the true inspiral orbit at
each instance. We ignore the evolution of the positional
orbital elements, which is one of the higher-order effects
in the mass ratio (see Refs. [24, 25] for a method to in-
clude the evolution of the positional orbital elements).
We incorporate the adiabatic change of the constants of
motion due to the emission of gravitational waves for
each geodesic orbit. Then, the error in our inspiral orbit
from the true inspiral orbit is of O(η), which is caused by
higher-order effects ignored in this paper. The evolution
of (p, e) is calculated by determining (〈dp/dt〉, 〈de/dt〉)
from Eq. (40) for fixed values of M and q(= a/M): di-
mensionless spin parameter. In the following we refer to
q simply as the BH spin.

A. Procedure for determining inspiral orbits

For the numerical evolution of p, i.e., p(t), using inter-
polated gravitational-wave fluxes, we take a Euler step
as p(t+∆t) = p(t) + 〈dp/dt〉∆t, where ∆t is a time step
and 〈dp/dt〉 is computed from Eq. (40). In this paper, we
choose ∆t = p/〈dp/dt〉ǫt, where ǫt ≈ 10−4. In order to
estimate the relative error of p(t), we compare p(t) by set-
ting ǫt = 10−4 with a reference solution for p(t) obtained
by setting ǫt = 10−6. We find that the relative error in
p(t) by setting ǫt = 10−4 is about O(ǫt), i.e., 10

−4. In
Sec. IV, we find that the power spectra and the signal-
to-noise ratio (SNR) for typical EMRIs span about a few
orders of magnitude. The error of 10−4 in the inspiral
orbits is acceptable for computing power spectra of grav-
itational waves and the SNR within the error of 10−3,
although the error size in the adiabatic change needs to
be better than 10−6 to suppress the error in the total
orbital phase less than 1 rad (see discussion below). We
note that the above procedure can be straightforwardly
extended to the higher-order BH perturbation theory in
η.
It is feasible to numerically calculate the adiabatic

change of the constants of motion only for a restricted
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FIG. 1. Top panels show the evolution of the semilatus rectum p as a function of time for the last 3-year inspirals before plunge
with q = 0.5, M = 105M⊙ (left), 106M⊙ (middle), and 107M⊙ (right), and the initial orbital eccentricity e0 = 0.5. Bottom
panels show p as a function of orbital cycles for the last 3-year inspirals before plunge with the same parameters (q, e0, µ,M)
as in the top panels.

number of parameter sets of (p, e) in reasonable com-
putational time. Thus, we first compute them for the
restricted data points and use an interpolation method
to obtain (〈dp/dt〉, 〈de/dt〉) at arbitrary points inside the
region of the defined parameter space of (p, e). Then, we
obtain an inspiral orbit using the interpolated values of
(〈dp/dt〉, 〈de/dt〉). We employ a fifth-order Lagrange in-
terpolation [43], both in p and e, for this. We note that
the similar method is employed, e.g., in Ref. [27] for the
local fitting of gravitational self-force in Schwarzschild
spacetime.

In this paper, we compute (〈dp/dt〉, 〈de/dt〉) for ≈
18000 data points in the (p, e) space for each value of
q. The number of the sampling points for p is 256 for the
range of pISO ≤ p ≤ 30M with a log-even spaced grid.
Here, pISO denotes p at the innermost stable orbit for
each value of q. For e, the sampling point is chosen to
be e = 0.005, 0.01, and 0.0125 ≤ e ≤ 0.925 with the grid
spacing ∆e = 0.0125 (the total number is 76). The to-
tal computational cost for determining the gravitational-
wave fluxes with these sampling points and |q| = 0, 0.1,
0.3, 0.5, 0.7, and 0.9 is about 20 d using ∼ 400 processors
with ∼ 2.6 GHz clock speed.

Figure 1 illustrates the results for inspiral orbits deter-
mined by the above procedure for q = 0.5 and e0 = 0.5
with M = (105, 106, 107M⊙) and µ = (1.4, 10, 30M⊙).
Here, e0 denotes the initial orbital eccentricity. We plot
the evolution of p and the number of orbital cycles Nφ for
the last 3 years before plunge of a stellar-mass compact
object into SMBHs. This figure shows that the lifetime of
the EMRIs becomes 3 years for the cases that p/M ≈ 5–

20, depending on the masses of the SMBH and compact
star. It also shows that the typical total cycles of the
orbit is Nφ ∼ 105 (i.e., the typical total phase of grav-
itational waves is ∼ 106 rad) for the last 3-year inspiral
orbits before plunge. Thus, if we require that the error in
a gravitational-wave phase model is smaller than 1 rad,
the error of the gravitational-wave fluxes has to be within
10−6.

B. Accuracy of gravitational-wave fluxes

The adiabatic change of the orbital parameters is com-

puted from gravitational-wave fluxes, i.e., Z̃
∞/H
ℓmn , where

we omit the k-mode because we focus on the equato-

rial orbits. For the computation of Z̃
∞/H
ℓmn , one needs

to integrate −2S
aω
ℓm(θ) and Rℓmω(r) with the source term

Tℓmω along a geodesic orbit. We use the numerical meth-
ods developed in Refs. [28, 29] to compute −2S

aω
ℓm(θ) and

Rℓmω(r). One can compute them with the machine preci-
sion in most cases. However, in some cases, the accuracy
of Rℓmω(r) is limited by that of the so-called renormal-
ized angular momentum ν introduced in Refs. [30–32]:
it is infeasible to accurately determine ν for large values
of Mω, typically Mω > 3 for (ℓ,m) = (2, 2) in double
precision calculation [28, 29] (see, however, Refs. [44–47]
which use Mathematica codes to determine ν in high pre-
cision, ∼ 100 decimal places). Since the high-frequency
modes play an important role, it becomes challenging
to accurately compute gravitational-wave fluxes for com-
pact orbits (with small values of rmin), in particular for
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the high BH spin of q & 0.9.
We use the trapezium rule, which has an excellent con-

vergence property to integrate periodic functions, to de-

rive Z̃
∞/H
ℓmn [23, 47]. We choose the maximum number of

the grid points in the trapezium rule as 214 + 1 to save
computational time. In Ref. [23], with this number of the
grid points, it is found that one can compute dIi/dt with
the accuracy of 10−10 for q = 0, p = 10M , and e = 0.9.
However, the numerical accuracy is not as good as this
level for a high value of q & 0.9 as we find in the present

work. To summarize, the numerical accuracy in Z̃
∞/H
ℓmn

is currently limited by that of ν and the number of the
grid points used in the trapezium rule for a high value of
q & 0.9. Improving the accuracy for this special case is
the issue left for the future work.
The numerical accuracy in the gravitational-wave

fluxes is also limited by truncating the mode summa-
tion in Eqs. (35) and (36). In the present work, the
mode summation in the fluxes, Eqs. (35) and (36), is
performed until the error becomes smaller than 10−6 at
least for p ≥ 6M and e ≤ 0.8. We choose this error
size because the total cycle of gravitational waves during
a few years LISA observation is of the order of 105 as
already illustrated in Fig. 1.
The mode summation in Eqs. (35) and (36) is ex-

pressed as

F =

∞
∑

ℓ=2

Fℓ, (41)

Fℓ =

ℓ
∑

m=−ℓ

Fℓm, (42)

Fℓm = 2

∞
∑

n=ni

Fℓmn, (43)

where ni is the minimum integer which satisfies mΥφ +
niΥr > 0, and

F =

〈

dE
dt

〉

or

〈

dLz

dt

〉

. (44)

In Eq. (43), we used the relation of Fℓmn = Fℓ−m−n to
take into account the modes of Mω < 0.
We truncate the ℓ-summation in Eq. (41) by choosing

a maximum value of ℓ as ℓmax. Then, F is written as

F =

ℓmax
∑

ℓ=2

Fℓ + δFℓmax , (45)

where δFℓmax is the error due to restricting the ℓ-
summation up to ℓ = ℓmax. The reason that we set
the maximum value of ℓ is that for very high values of
ℓ & ℓmax, the value of ν cannot be numerically calculated
accurately. As mentioned above, this problem could be
fixed if we can improve the precision for the numerical
calculation of ν.
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l
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FIG. 2. Gravitational-wave energy flux (Fℓ) as a function of
ℓ for q = 0.5, e = 0.5, and p = 5.0M , 6.0M , 10.0M , and
20.0M .

Figure 2 shows the energy flux of gravitational waves,
Fℓ, as a function of ℓ for q = 0.5 and e = 0.5. Fℓ decreases
approximately exponentially with the increase of ℓ, but
the decrease rate becomes less steep for smaller values
of p. If we assume the exponential decrease of Fℓ in ℓ,
the error size by the truncation of the higher-ℓ modes,
δFℓmax , can be estimated as

δFℓmax = F
∞
∑

ℓ=ℓmax+1

e−αℓ = F
e−αℓmax

eα − 1
, (46)

where α is a positive constant.
In this paper the maximum value of ℓ is set to be

ℓmax = 25. This implies that δFℓmax/F is less than 10−6

for α & 0.6. Figure 3 shows α as a function of rmin for
q = −0.5 (left), 0 (middle), and 0.5 (right) with several
values of e. We find that the value of α is larger than 0.6
for any stable orbits with q . 0.5 for which the minimum
value of the orbital radius, rmin, is larger than ∼ 3M .
Hence, we conclude that the error due to restricting the
ℓ-summation up to ℓmax = 25 in the energy dissipation
rate for q . 0.5 is less than 10−6. However, ℓmax = 25
is not large enough to achieve the required error size for
orbits close to the separatrix with q & 0.6.
The summation over the n-modes in Eq. (43) is ap-

proximated as

Fℓm = 2

nf
∑

n=ni

Fℓmn, (47)

where nf is determined by Fℓmnf
< 10−6F . We note that

the values of n for the dominant modes of Fℓmn shifts
to larger values of n for larger values of ℓ and e (see
Refs. [21, 23]), and Fℓmn decreases exponentially with
the increase of n after the dominant mode of Fℓmn is
reached [21, 23]. In this paper, the maximum value of
nf is set to be 1000. This choice is large enough for the
orbits with e . 0.8.
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FIG. 3. α as a function of rmin for q = −0.5 (left), 0 (middle), and 0.5 (right).

Figure 4 shows the energy spectrum during the 3-year
inspiral before plunge for q = 0.5 and e0 = 0.6 with
M = 106M⊙ and µ = 10M⊙. The values of (p, e) take
(10.1M, 0.60) at the beginning, (8.9M, 0.50) at 1.5 years,
and (4.6M, 0.24) at the plunge, respectively. We note
that the number of the n-modes necessary for the re-
quired accuracy for fixed values of (ℓ,m) decreases as
approaching the separatrix because of the circularization
of the orbital eccentricity (see, e.g., Figs. 6 and 7). By
contrast, the number of the ℓ-modes necessary for the re-
quired accuracy increases with the orbital evolution, be-
cause the value of rmin decreases and relativistic effects
are enhanced with the orbital evolution. To achieve the
relative error in the energy dissipation rate within 10−6,
the maximum values of (ℓ, n) become (18, 109), (19, 76),
and (24, 42) at the beginning, 1.5 years, and the plunge,
respectively.

10-16
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10-6

10-4 10-3 10-2 10-1

q=0.5, e0=0.6, µ/M=10/106
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FIG. 4. The energy spectrum during the 3-year inspiral
before plunge for q = 0.5 and e0 = 0.6 with M = 106M⊙

and µ = 10M⊙. The values of (p, e) take (10.1M, 0.60) at
t = 0 year, (8.9M, 0.50) at t = 1.5 years, and (4.6M, 0.24) at
t = 3 years, respectively.

To confirm the validity of the interpolation, the rel-
ative error in the interpolated energy flux is estimated
by comparison with numerical data independent of those
used for the interpolation, and the results are shown in

Fig. 5. This shows that the error is smaller than 10−6 for
rmin = p/(1 + e) & 3M . Thus, the required accuracy is
always achieved for q ≤ 0.5. As already mentioned, the
accuracy is also limited by the accuracy of ν, the number
of the grid points used in the trapezium rule, and the
truncation with respect to the ℓ-summation. By these
limitations, the accuracy with the error less than 10−6

is not achieved for the compact orbits of rmin . 3M .
Figure 5 shows the similar feature for the magnitude of
the error associated with the interpolation. This suggests
that the accuracy would be limited by that for the indi-
vidual data set, not by the interpolation. To conclude,
currently, for the case that the value of rmin is smaller
than 3M (i.e., for q & 0.6), the accuracy of 10−6 is not
achieved due to the error of the individual data set.
Here, we should note the following point: the lifetime

of the binaries with an orbit near the separatrix to plunge
is so short that the total cycle of the orbits is at most 104

(see Fig. 1). This indicates that for such compact orbits,
the accuracy of . 10−5 would be acceptable. Thus in
this paper, we believe that the accuracy of our numerical
results for the inspiral orbits is acceptable for q ≤ 0.7.
However, for q ≥ 0.9, we should keep in mind that the
accuracy is not sufficient. Improving the accuracy for the
case of q close to unity is the issue to be solved in the
future work.

IV. RESULTS

In this section, we present inspiral orbits and corre-
sponding gravitational-wave spectra for the typical EM-
RIs as sources of LISA using the procedure described
in Sec. III. We also calculate the SNR of gravitational
waves for such EMRIs using the LISA’s designed sensi-
tivity curve.

A. Inspiral orbits

Figures 6 and 7 illustrate the inspiral orbits showing
the orbital eccentricity e as a function of the semilatus
rectum p for several values of (q, p0, e0). Here, p0 and e0
are the initial semilatus rectum and the initial orbital ec-
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 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2  3  4  5  6  7  8

q=0.50, p0=7.0M

e

p/M

e0=0.8
e0=0.6
e0=0.4
e0=0.2

Separatrix

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2  4  6  8  10  12

q=0.50, p0=11.4M

e

p/M

e0=0.8
e0=0.6
e0=0.4
e0=0.2

Separatrix

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5  10  15  20  25  30

q=0.50, p0=29.0M

e

p/M

e0=0.8
e0=0.6
e0=0.4
e0=0.2

Separatrix

FIG. 7. The same as Fig. 6, but for inspiral orbits from p0 = 7.0M (left), 11.4M (middle), and 29.0M (right) to the separatrix
for q = 0.5 with e0 = 0.8, 0.6, 0.4, and 0.2. The dashed curves denote the separatrix of stable orbits for q = 0.5.



9

centricity, respectively. In Fig. 6, the inspirals start from
p0 = 11.4M to the separatrix with e0 = 0.2 (left), 0.5
(middle), and 0.8 (right) for q = 0 to 0.9. We note that
in our assumption imposed in this paper, the curves e(p)
do not depend on M and µ [48]. It takes ∼ 100M2/µ
for q = −0.5, ∼ 190M2/µ for q = 0, and ∼ 300M2/µ for
q = 0.5 from p0 = 11.4M to the plunge with e0 = 0.2
(cf. also Fig. 17). Here, ∼ 300M2/µ is ∼ 5 years for
M = 106M⊙ and µ = 10M⊙. We note that the inspiral
time becomes longer for the larger BH spin with fixed
values of p0 and e0 because p at the separatrix becomes
smaller. The inspiral time also becomes longer for the
larger values of e0 with a fixed value of p0, because the
adiabatic change of p (i.e., 〈dp/dt〉) becomes smaller for
larger values of e with a fixed value of p [48]. Figure 6
shows that the circularization of the orbital eccentricity
occurs for the most stages of the inspiral, but the eccen-
tricity slightly increases near the separatrix as already
found in Refs. [19, 20, 23, 26, 27].
Figure 7 compares the inspiral orbits with p0 = 7.0M

(left), 11.4M (middle), and 29.0M (right), fixing q = 0.5,
but varying e0 from 0.8 to 0.2. This also shows that
the orbits always circularize in the early inspiral, but
the eccentricity increases as approaching the separatrix.
For the larger value of p0, the plunge occurs for a small
value of p, which is approximately equal to the radius of
the innermost stable circular orbit. Thus, for the case
that p0/M is fairly large ∼ 30, the circularization occurs
significantly even for e0 = 0.8 and results in the nearly
circular orbits just before the plunge. For relatively small
SMBH mass, e.g., M ∼ 105M⊙, the inspiral proceeds
from p0 ≈ 30M to the plunge in a few years for µ ∼
10M⊙. For such a case, the final orbit is likely to be
nearly circular even if e0 is initially high as e0 = 0.8.
By contrast, for a higher value of M , the inspiral time
of stellar-mass object is a few years even if p0 is smaller
than 10M . For the small value of p0, the eccentricity does
not change significantly until the plunge orbit is reached.
Thus such a plunge orbit could have a large eccentricity
if e0 at p < 10M is so. We note that the two-body
relaxation in star clusters of the galactic centers could
produce highly eccentric EMRIs with p ≤ 10M in the
LISA band that do not plunge immediately because the
value of p at the separatrix becomes smaller than that
of a Schwarzschild BH if one takes into account the BH
spin [49].

B. Gravitational-wave spectra and SNR

Following Ref. [50], the squared SNR averaged over all
source directions is defined by

SNR2 = 4

∫ ∞

0

d(log f)

[

heff(f)

hn(f)

]2

, (48)

where hn(f) is the noise amplitude and heff(f) is the
power spectrum defined below. The noise amplitude is

defined by hn(f) =
√

fSn(f) [51], where Sn(f) is the one-
sided noise power spectral density. In this paper, Sn(f)
is taken to be the analytic form of the LISA’s designed
sky-averaged sensitivity presented in Ref. [4].
The power spectrum is defined by the summation of

the power spectrum for ℓ, hℓeff, as

heff(f) =
∑

ℓ

hℓeff(f), (49)

where

hℓeff(f) =
∑

mn

hℓmn
eff (f), (50)

and hℓmn
eff (f) is estimated by [50]

hℓmn
eff (fℓmn) =

1

πD

√

2Ėℓmn

ḟℓmn

. (51)

Here, the dot denotes the time derivative, D is the dis-
tance to the source, Ėℓmn is the energy flux to infinity
due to the emission of gravitational waves at frequency
fℓmn, which is defined as

fℓmn =
mΥφ + nΥr

2πΓ
≡ mfφ + nfr, (52)

where Eq. (33) is used. fφ and fr are the frequencies
of the azimuthal and radial motion, respectively. In our
inspiral orbits, fφ and fr can be computed at each time

step by using p(t) and e(t). We then compute ḟℓmn from
∆fℓmn/∆t, where ∆t is the time step for evolving the
orbital motion and ∆fℓmn = fℓmn(t+∆t)− fℓmn(t) (see
Sec. III A for our choice of the time step). We use ≈
100 frequency bins to smooth the modal power spectrum
hℓmn
eff (f). We compute hℓmn

eff (f) for the modes of ℓ = 2–4,
−ℓ ≤ m ≤ l, and n0 ≤ n ≤ n0 + 45 where n0 = −m.
We choose this value of n0 in order to compute the SNR
with the relative error of . 10%. We check the error by
varying n0 from 10 to 60. For e0 = 0.4 and ℓ = 2, n0 =
10 is sufficient to compute the SNR with such accuracy.
However, we need a larger value of n0 for higher values
of e0 and ℓ [21, 23]. For e0 = 0.8 and ℓ = 2 (ℓ = 4), we
need n0 = 30 (n0 = 45) to compute the SNR with the
error of . 10%. The power spectrum heff(f) is computed
by summing all the modes of hℓmn

eff (f) at each frequency
bin.
In Fig. 8, we compare the power spectrum for ℓ = 2

derived from our numerical results with those obtained
by kludge models [52–55] as a consistency check. The
power spectra for the kludge models are obtained in the
following manner. First, we compute the time domain
gravitational waveforms using the EMRI Kludge Suite
in the Black Hole Perturbation Toolkit [56]. The public
code enables us to compute the inspiral orbits, the time
domain waveforms, and the SNR for given parameters
such as (q, p0, e0, µ,M,D, T,∆t), where T is the duration
of the waveform and ∆t is a time step. The waveforms
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FIG. 8. Power spectra with ℓ = 2 for numerical kludge
(NK) [52, 53], augmented analytic kludge (AAK) [54], and
Teukolsky (this work) models for a 10M⊙ compact object in-
spiraling around a 106M⊙ SMBH of spin q = 0.5 atD = 1Gpc
during the last 3-year inspiral before plunge. We consider the
inspiral with p0 = 10.3M and e0 = 0.2. The amplitudes in
the Teukolsky model for ℓ = 3 and 4 modes are also shown.
The curve hn(f) shows the LISA’s designed sky-averaged sen-
sitivity [4].

are given by LISA response functions hI and hII , which
are transformed from the waveform polarizations h+ and
h× as

hI =

√
3

2
(F+

I h+ + F×
I h×),

hII =

√
3

2
(F+

IIh+ + F×
IIh×), (53)

where FI and FII are the antenna pattern functions [57].
We choose ∆t = 63 s to compute the inspiral orbits and
the time domain waveforms, which are constructed from
√

h2I + h2II . We then perform Fourier transformation for
the time domain waveforms of the kludge models into
the frequency domain, and smooth heff(f) by using 100
frequency bins.
The power spectra are computed for a 10M⊙ com-

pact object inspiraling around a 106M⊙ SMBH of spin
q = 0.5 at D = 1Gpc during the last 3-year inspiral
before plunge. For this setting, the inspiral starts from
p0 = 10.3M with e0 = 0.2. We compute the power spec-
tra heff(f) for the numerical kludge (NK) model [52, 53]
and the augmented analytic kludge (AAK) model [54].
Here, in the NK, the orbital motion is determined by
solving the geodesic equation with the gravitational ra-
diation reaction based on post-Newtonian (PN) formu-
las [58], which are fitted to the BH perturbation theory.
In the AAK, the orbital motion is determined by solving
the geodesic equation with the gravitational radiation re-
action based on PN formulas in the BH perturbation the-
ory [59]. Gravitational waveforms are determined from
the resulting orbits using the quadrupole formula [60]

both in the NK and AAK models.

Figure 8 shows that the power spectrum for the ℓ = 2
mode derived in our calculation is closer to the one by
the NK model than that by the AAK model. This is con-
sistent because the NK model should be more accurate
than the AAK model. In Fig. 8, the LISA’s designed
sky-averaged sensitivity written in an analytic form [4] is
also shown. It is found that for EMRIs with µ = 10M⊙

together with an SMBH of M = 106M⊙ and of q = 0.5
at D = 1Gpc, the SNR is of the order of 10 (more details
on the SNR will be presented below).

The power spectra for ℓ = 3 and 4 modes derived in
our calculation are also shown in Fig. 8. This illustrates
that the modes with ℓ = 3 and 4 have the amplitude
approximately by 40% and 20% as large as that for the
ℓ = 2 mode, respectively (see also Fig. 13 for the SNR
associated with the ℓ = 3 and ℓ = 4 modes). This is
reasonable because the orbit which we consider here is
very general relativistic, and hence, the orbital velocity
can be ≈ 50% of the speed of light, resulting in the en-
hancement of the higher multipole modes. We note that
the amplitudes for the ℓ ≥ 5 modes are less than 10% of
that for the ℓ = 2 mode. We ignore the amplitudes for
the ℓ ≥ 5 modes because they are smaller than hn(f) for
e0 / 0.8.

To explore the dependence of the spectrum feature on
the initial orbital eccentricity and the BH spin, we gen-
erate Figs. 9 and 10. These figures show the spectra of
gravitational waves emitted by a 10M⊙ compact object
inspiraling around a 106M⊙ SMBH at D = 1Gpc for the
last 3-year inspiral before plunge for a variety of q and
e0. In Fig. 9, the BH spin is fixed to be q = 0.5, while e0
is varied from 0.2 to 0.8. The values of p0 take 10.33M ,
10.28M , 10.11M , and 9.58M for e0 = 0.2, 0.4, 0.6, and
0.8, respectively. As the initial eccentricity increases,
the maximum frequency of gravitational waves becomes
higher, because with the large eccentricity, the minimum
value of rmin is smaller resulting in the excitation of the
higher frequency modes (see Fig. 7 and Ref. [55]): e.g.,
for ℓ = m = 2, the n = 0 mode is dominant for e0 . 0.1,
while the n = 0 and 1 modes are equally dominant for
e0 ≈ 0.3 and the n = 2 and 3 modes become dominant
for e0 ≈ 0.7.

We find that the maximum value of heff(f) increases as
the value of e0 increases (see also Fig. 13 for the SNR as a
function of e0). The reason for this is that rmin decreases
with the increase of e0, resulting possibly in the enhance-
ment of the gravitational-wave amplitude. Moreover, we
need to sum over larger number of n-modes as the value
of e0 increases, and hence, the maximum value of heff(f)
at a peak frequency increases. Indeed, the power spec-
trum becomes broader in frequency as the value of e0
increases.

In Fig. 10, the initial orbital eccentricity is fixed to be
e0 = 0.4, while the BH spin is varied from q = 0 to 0.9.
The values of p0 take 11.38M , 11.15M , 10.71M , 10.28M ,
9.83M , and 9.41M for q = 0, 0.1, 0.3, 0.5, 0.7, and
0.9, respectively. The frequency of gravitational waves
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FIG. 9. Power spectra for ℓ = 2, 3, and 4 induced by a 10M⊙ compact object inspiraling around a 106M⊙ SMBH of spin q = 0.5
at D = 1Gpc for the last 3-year inspiral before plunge. The initial orbital eccentricity is chosen to be e0 = 0.2 (top left), 0.4
(top right), 0.6 (bottom left), and 0.8 (bottom right). The values of p0 take 10.33M , 10.28M , 10.11M , and 9.58M for e0 = 0.2,
0.4, 0.6, and 0.8, respectively. Complicated structures in the amplitude can be understood by noting contributions from higher
radial modes (n-modes) to gravitational waves (see, e.g., Ref. [55]). The curve hn(f) shows LISA’s designed sky-averaged
sensitivity [4].

at plunge becomes higher as the BH spin increases be-
cause the minimum value of rmin becomes smaller (see
Fig. 6). We also note that the maximum value of the
power spectrum becomes larger for the larger BH spin
(see Fig. 13 for the SNR as a function of q). The reason
for this is that for the larger BH spin, the more compact
orbits with smaller values of rmin is allowed, and for such
orbits, gravitational waves of the high amplitude can be
emitted due to the more relativistic motion.

Figure 11 shows the power spectra for a compact ob-
ject of mass µ = (1.4, 10, 30)M⊙ inspiraling around a
SMBH of mass 106M⊙ at D = 1Gpc during the last 3-
year inspiral with e0 = 0.6. The BH spin is varied from
q = −0.7 to 0.7. For q = 0.7 (−0.7), the values of p0 take
6.3M (10.8M), 9.6M (12.9M), and 12.5M (15.2M) for
µ = 1.4M⊙, 10M⊙, and 30M⊙, respectively. Both the
frequency of gravitational waves and the power spectra
become higher as the BH spin increases. The power spec-
tra increase as µ increases, and the maximum amplitudes

are approximately proportional to
√
µ.

In Fig. 12, the spectra are shown for a 10M⊙

compact object inspiraling around an SMBH of mass
(105, 106, 107)M⊙ at D = 1Gpc during the last 3-year
inspiral with e0 = 0.6. The BH spin is again varied from
q = −0.7 to 0.7. For q = 0.7 (−0.7), the values of p0
are 16.8M (18.9M), 9.6M (12.9M), and 6.0M (10.6M)
for M = 105M⊙, 10

6M⊙, and 107M⊙, respectively. The
maximum amplitude of the spectra increases as the BH
mass increases because p0/M becomes smaller and thus
the inspiral orbits are in more highly general relativistic
regions for a longer duration (see Fig. 1). The frequency
of gravitational waves at plunge becomes higher as the
BH mass decreases and the BH spin increases. As a re-
sult, gravitational waves from a compact object around
a 107M⊙ SMBH with q < 0 are not well in the LISA
sensitivity band. In addition, only gravitational waves in
an early part of the inspiral of a compact object into
a 105M⊙ SMBH is above the LISA sensitivity curve.



12

10-22

10-21

10-20

10-19

10-18

10-4 10-3 10-2 10-1

q=0.00, e0=0.4, µ/M=10/106
hl ef

f (
f)

f (Hz)

Sum
l=2
l=3
l=4

hn(f)

10-22

10-21

10-20

10-19

10-18

10-4 10-3 10-2 10-1

q=0.10, e0=0.4, µ/M=10/106

hl ef
f (

f)

f (Hz)

Sum
l=2
l=3
l=4

hn(f)

10-22

10-21

10-20

10-19

10-18

10-4 10-3 10-2 10-1

q=0.30, e0=0.4, µ/M=10/106

hl ef
f (

f)

f (Hz)

Sum
l=2
l=3
l=4

hn(f)

10-22

10-21

10-20

10-19

10-18

10-4 10-3 10-2 10-1

q=0.50, e0=0.4, µ/M=10/106

hl ef
f (

f)

f (Hz)

Sum
l=2
l=3
l=4

hn(f)

10-22

10-21

10-20

10-19

10-18

10-4 10-3 10-2 10-1

q=0.70, e0=0.4, µ/M=10/106

hl ef
f (

f)

f (Hz)

Sum
l=2
l=3
l=4

hn(f)

10-22

10-21

10-20

10-19

10-18

10-4 10-3 10-2 10-1

q=0.90, e0=0.4, µ/M=10/106

hl ef
f (

f)

f (Hz)

Sum
l=2
l=3
l=4

hn(f)

FIG. 10. The same as Fig. 9, but for e0 = 0.4, and q = 0 (top left), 0.1 (top middle), 0.3 (top right), 0.5 (bottom left), 0.7
(bottom middle), and 0.9 (bottom right). The values of p0 take 11.38M , 11.15M , 10.71M , 10.28M , 9.83M , and 9.41M for
q = 0, 0.1, 0.3, 0.5, 0.7, and 0.9, respectively.
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FIG. 11. Power spectrum summed over the ℓ = 2–4 modes for a compact object of mass µ = (1.4, 10, 30)M⊙ inspiraling
around an SMBH of M = 106M⊙ with q = −0.7 (left), 0 (middle), and 0.7 (right) at D = 1Gpc during the last 3-year inspiral
with e0 = 0.6.

However, for larger values of e0, the low-frequency tail
of gravitational waves (due to the contribution of low-n
modes) is above the LISA sensitivity curve and gravita-
tional waves will be detectable by LISA irrespective of q
for M ≈ 105M⊙ (see also Fig. 16).

In the left panel of Fig. 13 we show the SNR of gravi-
tational waves with respect to the LISA sensitivity curve
for ℓ = 2–4 modes for a 10M⊙ compact object inspiral-
ing around a 106M⊙ SMBH at D = 1Gpc during the
last 3-year inspiral before plunge. The SNR is plotted as
a function of e0 for q = 0.5. It is found that the SNR
increases as e0 increases because larger number of the
n-modes could contribute to the SNR. The SNR for the
ℓ = 2 mode with e0 = 0.8 is ≈ 80, which is about 4
times larger than that with e0 = 0.1, ≈ 20. Thus, for
M = 106M⊙, highly eccentric EMRIs could dominate
the detection by LISA. The right panel of Fig. 13 shows

the SNR as a function of q with e0 = 0.4. As the BH spin
increases, the SNR is significantly increased because the
value of rmin near the separatrix decreases and general
relativistic effects are enhanced. For example, the SNR
for the ℓ = 2 mode with q = −0.9 is ≈ 12 which is about
24% of the one with q = 0.9, ≈ 50. This indicates that
rapidly spinning SMBHs could be more subject to the
detection by LISA. However, this is the special feature
for M & 106M⊙ (see also Fig. 16).

We also note that the SNR for the ℓ = 3 and 4 modes
is about 40% and 20% of that for the ℓ = 2 mode, re-
spectively. Thus, the detection rate with a template that
includes up to the ℓ = 3 and 4 modes of gravitational
waves becomes 1.43 ≈ 2.7 and 1.63 ≈ 4.1 times larger
than that using only the ℓ = 2 mode, respectively. Ob-
viously, it is crucially important to take into account the
high-multipole modes in the waveform modeling.
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FIG. 12. The same as Fig. 11, but for µ = 10M⊙ and M = (105, 106, 107)M⊙.
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FIG. 13. Left: SNR associated with different ℓ-modes from ℓ = 2 to 4 as functions of e0 for a 10M⊙ compact object inspiraling
around a 106M⊙ SMBH of spin q = 0.5 at D = 1Gpc for the last 3-year inspiral before plunge. Right: SNR as functions of q
for M = 106M⊙, µ = 10M⊙, and e0 = 0.4.

Figures 14–16 show the SNR of gravitational waves
including the ℓ = 2–4 modes with respect to the LISA
designed sensitivity curve for a compact object of mass
µ into an SMBH of mass M at D = 1Gpc during the
last 3-year inspiral before plunge. In Fig. 14, the SNR is
shown as a function of M for µ = (1.4, 10, 30)M⊙ with
e0 = 0.4, and q = −0.5 (left), 0 (middle), and 0.5 (right).
It is found that the SNR is largest for M ∼ 106M⊙ ir-
respective of q and µ, reflecting the sensitivity curve of
LISA.
Figure 15 shows the SNR as a function of e0 for M =

106M⊙ with q = −0.5 (left), 0 (middle), and 0.5 (right).
As illustrated in Fig. 13, the SNR is a monotonically
increasing function of e0, that increases by a factor of
several for the change from e0 = 0.1 to 0.8 with M =
106M⊙. This indicates that highly eccentric EMRIs for
this SMBH mass would increase the detection rate in the
LISA observation by a factor of several.
Figure 16 shows the SNR as a function of q for e0 = 0.4

with M = 105M⊙ (left), 106M⊙ (middle), and 107M⊙

(right). The SNR increases as the BH spin increases for
M & 106M⊙ (see Fig. 13), but the SNR for M = 105M⊙

depends weakly on q because the late part of the inspirals
can be below the LISA frequency band for larger values

of q (see Fig. 12). As the right panel of Fig. 16 illustrates,
the detection rate of the EMRIs from an SMBH of M ∼
107M⊙ depends strongly on the BH spin: for this SMBH
mass, a higher spin BH will be much more frequently
detected.

C. Limitation of post-Newtonian formulas

Before closing Sec. IV, we show the poor accuracy of
inspiral orbits determined in the PN approximation by
comparing with our numerical results. We use a newly
developed PN formula of dIi/dt that takes into account
the PN correction up to 5PN order and the tenth order
in eccentricity. This new formula is the extension of the
4PN formula derived in Ref. [59].
In Fig. 17, we assess the accuracy of the 2PN, 3PN,

4PN, and 5PN formulas using inspiral orbits for q =
−0.5, 0, and 0.5 with p0 = 11.4M and e0 = 0.2. Disagree-
ment between the PN and numerical results is obviously
non-negligible. Moreover, the convergence of the PN ex-
pansion is quite slow, although with the increase of the
PN order the results gradually approach the numerical
results. For the numerical inspirals, it takes ∼ 100M2/µ
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and µ = (30, 10, 1.4)M⊙ for the last 3-year inspiral before plunge.

for q = −0.5, ∼ 190M2/µ for q = 0, and ∼ 300M2/µ
for q = 0.5 until the plunge. On the other hand, for
the 5PN inspirals, it takes ∼ 140M2/µ for q = −0.5,
∼ 210M2/µ for q = 0, and ∼ 310M2/µ for q = 0.5 until
the plunge. The error in the orbital eccentricity at the
plunge between the numerical and 5PN results is about
30%. Thus, the 5PN formulas are not at all accurate
enough for gravitational-wave data analysis.
It is interesting to note that the PN formulas work

relatively well for q = 0.5 accidentally. In addition, the
4PN results often become worse models than the 3PN
results. These facts illustrate that the PN expansion has
not only a poor-convergence property but also an irreg-
ular convergence property [61, 62].
We also note that the convergence of the eccentricity

expansion in the PN formulas becomes slower if the ec-
centricity becomes higher [59]. For q = 0.9 and p = 6M ,
the relative error of the 5PN formula in dE/dt deter-
mined by the comparison with our numerical results be-
comes 10−3 for e = 0.1, 10−2 for e = 0.7, and 10−1 for
e = 0.9, although the error is about an order of magni-
tude smaller than that of the 4PN and the tenth order
in the eccentricity. Thus, the accuracy of inspirals with
higher eccentricity becomes worse than that with lower
eccentricity.
In Fig. 18, we show the difference in orbital cycles us-

ing the PN and numerical results. This clearly illustrates
the poor-convergence property and limitation in the PN
formulas because the difference in the orbital cycles from

the numerical results is of the order of 103 even for the
5PN formula, in spite of the fact that the required accu-
racy is within 0.1 orbital cycles. These results agree with
those in Refs. [63, 64], which study quasicircular inspi-
rals. To conclude, the 5PN formulas, which are currently
the best analytic ones, cannot be used in the original
forms for the data analysis of gravitational waves.
To derive an accurate analytic or semianalytic formula,

the PN formula combined with other methods such as
resummation methods and numerical fitting methods of
higher PN order coefficients are inevitable [65–75]. How-
ever, a significant improvement is required. In addition,
new ideas would be necessary for eccentric orbits because
we need to perform a resummation or fitting with respect
not only to the PN expansion parameter (e.g., (M/p)1/2)
but also to the eccentricity, e. In particular, no idea for
an efficient resummation with respect to the eccentricity
has been proposed. We encourage the readers to perform
a careful analysis of our numerical data for developing a
novel scheme of a resummation/numerical fitting. Our
numerical data and 5PN formulas are published in a web
site [76].

V. SUMMARY

We computed gravitational waves from a stellar-mass
compact object inspiraling around an SMBH. The inspi-
ral orbits were determined by taking into account the
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adiabatic change of the constants of motion, dIi/dt, due
to the emission of gravitational waves. In our procedure,
we first obtained dIi/dt for ≈ 2× 104 data points in the
parameter space of (p, e) for each value of q. Then, accu-
rate interpolation was used to derive gravitational-wave
fluxes at arbitrary points within the region of the param-
eter space computed in advance. The relative error in the

interpolated values of dIi/dt is typically . 10−6, which is
smaller than the inverse of the gravitational-wave phase
for EMRIs during the last 3-year observation in LISA,
for most of the parameter space except for rmin . 3M
(see Sec. III).

In Sec. IV, we derived the inspiral orbits and associated
gravitational waves. We then computed the spectrum of



16

10-1

100

101

102

103

104

105

 0  0.5  1  1.5  2  2.5  3

q=-0.50, e0=0.2, µ/M=10/106
∆N

φ 
in

 P
N

t (year)

2PN-O(e10)
3PN-O(e10)
4PN-O(e10)
5PN-O(e10)

10-1

100

101

102

103

104

105

 0  0.5  1  1.5  2  2.5  3

q=0.00, e0=0.2, µ/M=10/106

∆N
φ 

in
 P

N

t (year)

2PN-O(e10)
3PN-O(e10)
4PN-O(e10)
5PN-O(e10)

10-1

100

101

102

103

104

105

 0  0.5  1  1.5  2  2.5  3

q=0.50, e0=0.2, µ/M=10/106

∆N
φ 

in
 P

N

t (year)

2PN-O(e10)
3PN-O(e10)
4PN-O(e10)
5PN-O(e10)

10-1

100

101

102

103

104

105

 0  0.5  1  1.5  2  2.5  3

q=-0.50, e0=0.5, µ/M=10/106

∆N
φ 

in
 P

N

t (year)

2PN-O(e10)
3PN-O(e10)
4PN-O(e10)
5PN-O(e10)

10-1

100

101

102

103

104

105

 0  0.5  1  1.5  2  2.5  3

q=0.00, e0=0.5, µ/M=10/106

∆N
φ 

in
 P

N

t (year)

2PN-O(e10)
3PN-O(e10)
4PN-O(e10)
5PN-O(e10)

10-1

100

101

102

103

104

105

 0  0.5  1  1.5  2  2.5  3

q=0.50, e0=0.5, µ/M=10/106

∆N
φ 

in
 P

N

t (year)

2PN-O(e10)
3PN-O(e10)
4PN-O(e10)
5PN-O(e10)

10-1

100

101

102

103

104

105

 0  0.5  1  1.5  2  2.5  3

q=-0.50, e0=0.8, µ/M=10/106

∆N
φ 

in
 P

N

t (year)

2PN-O(e10)
3PN-O(e10)
4PN-O(e10)
5PN-O(e10)

10-1

100

101

102

103

104

105

 0  0.5  1  1.5  2  2.5  3

q=0.00, e0=0.8, µ/M=10/106

∆N
φ 

in
 P

N

t (year)

2PN-O(e10)
3PN-O(e10)
4PN-O(e10)
5PN-O(e10)

10-1

100

101

102

103

104

105

 0  0.5  1  1.5  2  2.5  3

q=0.50, e0=0.8, µ/M=10/106

∆N
φ 

in
 P

N
t (year)

2PN-O(e10)
3PN-O(e10)
4PN-O(e10)
5PN-O(e10)

FIG. 18. Difference in orbital cycle for the last 3-year inspirals computed using numerical and PN fluxes for q = −0.5 (left), 0
(middle), and 0.5 (right) with e0 = 0.2 (top), 0.5 (middle), and 0.8 (bottom), and (M,µ) = (106, 10)M⊙.

gravitational waves and the SNR for several values of
mass of a binary, the BH spin, and the initial orbital
eccentricity during the 3-year LISA observation before
final plunge. We found that the SNR increases by a factor
of several as the BH spin and the mass of the compact
object increase for M & 106M⊙. The SNR as a function
of the BH mass has a maximum around M = 106M⊙ for
fixed values of q and e0. The SNR as a function of q is
weakly dependent on M around M = 105M⊙ because
only an early part of the inspirals can be observed in
the LISA frequency band for the larger BH spin. The
SNR as a function of the initial orbital eccentricity for
M = 106M⊙ is a monotonically increasing function, that
increases by a factor of several for the change from e0 =
0.1 to 0.8. We also found that the SNR for the ℓ = 3 (ℓ =
4) modes is about 40% (20%) of that for the ℓ = 2 mode.
This shows that taking account of the higher multipole
modes of gravitational waves is important for increasing
the detection rate in the LISA observation by a factor of
3–4.

In Sec. IVC, the limitation of the PN formulas is shown
by comparing the orbital cycles between the numerical

and PN inspirals. The difference in the orbital cycles
becomes larger than 103 even for the 5PN formula, which
is much larger than the required accuracy in the LISA
data analysis, . 1 rad in phase. This illustrates that
we need much higher-order PN formulas or to develop a
special prescription such as resummation to improve the
accuracy in the PN formula.

In our present numerical computation, the numerical
accuracy of the gravitational fluxes for compact orbits
with rmin . 3M is not high enough. Such compact or-
bits are possible for a high value of q & 0.6. As we
showed in Sec. IVB, the SNR is higher for higher spin
SMBHs with mass M ≈ 106–107M⊙, and hence, the de-
tectability of EMRIs for the relatively high-mass SMBHs
will be higher for the higher spin SMBH. This indicates
that it is important to develop accurate gravitational-
wave models for the high values of q. As we discussed
in Sec. III, the accuracy could be straightforwardly im-
proved if we could perform the computation with higher
numerical precision. A question is how high numerical
precision is required for each value of q. This is one of
our next issues to be clarified.
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In general, orbital inspirals of a compact object into
an SMBH are not only eccentric but also inclined from
the equatorial plane of the SMBH. Thus, it is necessary
to extend our approach to eccentric and inclined inspi-
rals. The semilatus rectum at separatrix becomes larger
for larger orbital inclination angle with fixed orbital ec-
centricity and BH spin. This implies that orbital inclina-
tion effectively reduces the effects of the BH spin and the
frequency of gravitational waves at separatrix. We ex-
pect the power spectra of gravitational waves and SNR
for eccentric and inclined inspirals in LISA observation
would be smaller than those for equatorial inspirals stud-
ied in this paper. To check this quantitatively, we need
to compute gravitational waves for a large set of param-
eter space in the BH spin, the semilatus rectum, the ec-
centricity, and the inclination angle from the equatorial
plane of the BH. It would take about a year to derive
gravitational waves for ∼ 106 points in (q, p, e, θinc) with
q . 0.9 and e . 0.9 using a ∼ 10 Tflops machine if it

takes 10 times longer to compute gravitational waves for
a nonequatorial orbit than the one for an equatorial or-
bit (see Sec. III). However, it is not clear how many data
points are necessary to accurately derive inspiral orbits
for the generic case by interpolation methods. We are
currently working on this issue, and the results will be
published in future.
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