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PREFACE

The present work is part of an ongoing research project on the regulation of

organic matter decomposition in the Arctic ocean. In this project special

attention is paid to anaerobic mineralization processes such as sulfate reduction.

The work was conducted at the Max Planck Institute for Marine Microbiology

in Bremen, financed by the Max Planck Society, Munich and is presented as a

Ph. D. thesis at the University of Bremen.

The background of the presented study were findings of high sulfate

reduction rates in polar sediments and the lack of cultivated sulfate reducers that

are able to grow at sub-zero temperatures. The main aim was to isolate and

investigate sulfate reducers that are adapted to permanently cold habitats. The

isolates obtained were characterized physiologically and phylogenetically to

establish whether they are closely related to or completely different from known

sulfate reducers. Finally, the adaptation of the new isolates to permanently low

temperatures was studied in different pure culture experiments.

The research project on low-temperature adapted sulfate reducers at the Max

Planck Institute, Bremen was initiated by Prof. Dr. Bo Barker J\1Srgensen, the

supervisor of the presented work, and I want to thank him first of all for his

interest and many inspiring discussions. He is co-author on all manuscripts

since he attended the studies with helpful advice and contributed to the work

with valuable ideas. Prof. Dr. Friedrich Widdel is acknowledged for many

helpful discussions and Prof. Dr. Horst Schulz for his work as a referee of this

thesis. Prof. Dr. Donald E. Canfield is thanked for the organization of the

Svalbard cruise In fall 1995 during which all samples for the following

investigations were taken. I am grateful to Dr. Kerstin Sahm who did the

phylogenetic studies on the new isolates, for an inspiring collaboration, for her

help during the characterization of the various isolated cultures, and for
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supporting words at times when not everything went as it should. Dr. Jens

Harder is thanked for his introduction to anaerobic cultivation techniques and

his help during the plannings of the Svalbard cruise 1995. I am indebted to

Bettina Strotmann for a nice time in our shared office. Dr. Timothy Ferdelman

and Dr. Carsten Schubert are thanked for many inspiring discussions and their

open ear and patience to all questions about english orthography and grammar.

I am also indebted to Jakob Zopfi for his help during the preparation of the

manuscripts, for many inspiring discussions and for his support at difficult

times of the work. I want to thank Dr. Volker Briichert and Dr. Carol Amosti

who critically read different versions of the manuscripts and their help in

improving the English. Dr. Jens Sagemann is thanked for constructing the

temperature gradient block and for many interesting discussions. Swantje

Fleischer and Kisten Neumann are thanked for their excellent help with the

cultivation of the new isolates and chemical analysis, and Volker Meyer,

Gerhardt Kothe, Georg Herz and Olaf Eckhoff for constructing the equipment

necessary for this work.

My parents are thanked for their support during the whole time of my work

and finally Kornelia Dausch for her endless patience.
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General introduction

1. GENERAL INTRODUCTION

Sulfur is an essential element of all living matter and its biogeochemical cycle is

closely coupled to that of carbon. Approximately 4 % of the Earth's sulfur is

present in the hydrosphere, mainly in the form of dissolved sulfate in seawater,

whereas about 96% is present as solid sulfur in the pedosphere, a large fraction

as sulfide minerals such as pyrite (Holser et ai., 1988). Weathering of sulfide

minerals in the presence of oxygen is accompanied by oxidation and

concomitant production of sulfuric acid. Oxidation can both occur as a purely

chemical process but most often it is mediated by sulfide-oxidizing

microorganisms such as ThiobaciLlus strains that are adapted to low pH values in

their environment (Nordstrom and Stoutham, 1997). Sulfate ions, produced

from sulfide oxidation or from weathering of sulfate-containing rocks such as

gypsum leach through groundwater and are carried by rivers into the ocean,

sustaining the sulfate pool in seawater.

Most marine organisms use sulfate as a sulfur source. They reduce it

intracellularly to sulfide and incorporate it into their biomass, i.e. into amino

acids and enzymes (assimilatory sulfate reduction). However, most sulfate in the

oceans is reduced to sulfide by dissimilatory sulfate-reducing bacteria that live

in anoxic environments and use sulfate as the terminal electron acceptor to

oxidize organic matter (Goldhaber and Kaplan, 1974). Since the present ocean

has only few anoxic basins such as the Black Sea or the Cariaco trench, most of

the dissimilatory sulfate reduction takes place in anoxic sediment layers. The

produced sulfide either becomes oxidized at the interface between reduced

sediment layers and the oxidized sediment surface (J~rgensen, 1987), or it

precipitates and is buried, mostly as pyrite (J~rgensen et ai., 1990).
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General introduction

1.1 Microbial mineralization of organic matter in marine sediments

Most of the organic carbon mineralized in marine sediments is derived from the

primary production in the photic zone (Jjijrgensen, 1983). Organic particles in

the water column are degraded as they sink to the sea floor. Consequently the

percentage of primary production that is deposited on the sediment surface is a

function of ocean depth (Suess, 1980). In shallow shelf areas (0-200 m water

depth) 10-50% of the primary production reaches the sediment surface and

fuels the high rates of benthic respiration, whereas in pelagic oceans organic

matter is predominantly degraded in the water column and respiration rates in

deep sea sediments are extremely low (Jjijrgensen, 1983; Canfield, 1991).

During the microbial oxidation of organic matter electrons are transferred from

reduced carbon compounds via electron transport chains to oxidized electron

acceptors. The most important electron acceptor in the open ocean is oxygen,

which is reduced by aerobic organisms to H20. However, in shelf sediments

oxygen is available only in the uppermost few millimeter, depending on the

respiration rates of aerobic organisms and the supply of oxygen by diffusion

and advection (e.g. Revsbech et al., 1980). Below the oxygen respiration zone

subsequently nitrate, manganese(lV), and iron(III) are reduced, followed by

sulfate reduction and finally methanogenesis (Jjijrgensen, 1983; Lovley, 1991).

Although this sequence of preferentially used electron acceptors is generally

Table I : Standard free energy changes for oxidation pathways of organic matter in marine
sediments. Data from Berner (1980) and Canfield (1993). Electron acceptors are given in bold.

reaction 6Go(kJ mor l
) of CH,O

CHp + O2 ~ CO, + H,O -475
5CH,O + 4NO; ~ 2N, + 4HCO)" + CO, + 3H,o -448
CH,O + 3CO, + Hp + 2Mn02 ~ 2Mn'· + 4HCO)" -349
CHp + 7CO, + 4Fe(OH), ~ 4Fe'· + 8HCO; + 3H,O -I 14
2CH,o + SO.'" ~ H,S + 2HCO)" -77
2CH,O + H,O ~ 2CO, + 4H, and
4H, + CO2 ~ CH. + 4H,O

2



General introduction

found in marine sediments, there is not a strict vertical separation between the

zones of different respiration processes (Canfield, 1993). The most common

explanation for this redox zonation has been the energy yield of the different

reactions (Table 1) whereby the terminal processes proceed from the highest to

the lowest energy yield (Berner, 1981). However, since nitrate, Fe(III) and

Mn(IV) concentrations are low in comparison to sulfate concentrations

(28 mM), dissimilatory sulfate reduction is generally the most important

anaerobic mineralization process in marine sediments.

In coastal sediments sulfate reduction contributes up to 50% to the total benthic

mineralization (Aller and Yingst, 1980; J~rgensen, 1982; Nedwell et at., 1993),

but in areas with very high primary productivity and high burial rates of

organic matter, sulfate reducers can be responsible for nearly all mineralization

of sedimentary carbon (Thamdrup and Canfield, 1996).

1.2 Substrates of sulfate-reducing bacteria

Organic matter degradation in the absence of oxygen requires several types of

bacteria that act together and form an "anaerobic food web" (Blackburn, 1987).

The end product of one group of organisms serves as the carbon source for

another group until most organic matter is mineralized to CO2, By extracellular

enzymatic hydrolysis fermenting bacteria degrade organic polymers such as

proteins, nucleic acids and polysaccharides and release low molecular carbon

compounds to the environment. For example chitin, which has been estimated

to be the second most abundant polysaccharide on earth after cellulose (Tracey,

1957), is degraded by marine chitin fermenters to CO2, NH/, acetate, formate,

ethanol and hydrogen (Pel and Gottschal, 1986). These and other fermentation

end products are subsequently the substrates of sulfate-reducing bacteria.

From the first isolation of a sulfate-reducing bacterium (Beijerinck, 1895) and

until the late seventies of this century, sulfate reducers were known only to

oxidize simple carbon compounds such as lactate, malate, pyruvate or alcohols
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General introduction

incompletely to acetate. These types of organisms were classified into two

different genera, Desulfovibrio sp. (Postgate and Campbell, 1966) and

Desulfotomaculum sp. (Campbell and Postgate, 1965). Many attempts to isolate

sulfate reducers that oxidize acetate completely to CO2 failed, and the possibility

of complete carbon oxidation was questioned (Postgate, 1959) until the late

1970's when Widdel and Pfennig (1977) isolated a spore-forming sulfate

reducer from hog farm waste that could grow on acetate as the sole carbon and

energy source. Later, a marine sulfate reducer that grew exclusively on acetate

(Widdel and Pfennig, 1981) was isolated as well and given the name

Desulfobacter postgatei.

The true nutritional diversity of sulfate reducers gradually became clear as more

and more pure cultures were described that could oxidize a wide variety of

carbon compounds such as fatty acids (chain length C,-C'R [Widdel, 1980)),

amino acids (Starns et at., 1985), aromatic compounds (Widdel, 1980; Imhoff­

Stuckle and Pfennig, 1983; Schnell et at., 1989), and aliphatic hydrocarbons

(Aeckersberg et at., 1991). From the current perspective, sulfate-reducing

bacteria are one of the most versatile groups of anaerobic bacteria, both with

respect to their carbon sources and their electron acceptors.

However, despite this wide potential substrate spectrum, field studies indicate

that fatty acids are the most important fermentation end products in marine

sediments with acetate being quantitatively the most significant (Balba and

Nedwell, 1982; Mountfort and Asher, 1981; Sansone and Martens, 1982;

Christensen, 1984; Parkes etat., 1989; SlIlrensen etat., 1981; Skyring, 1988).

Other low molecular carbon compounds such as propionate and butyrate

(Christensen, 1984; SlIlrensen et at., 1981), lactate, amino acids (Parkes et al.,

1989), as well as hydrogen (SlIlrensen et at., 1981) were also shown to be

important electron donors during sulfate reduction under natural conditions.
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General introduction

1.3 Temperature adaptation of sulfate-reducing bacteria

Temperature is one of the most important environmental parameters for

microorganisms because it has an impact on all reactions in living cells. The

temperature adaptation of microorganisms can first of all be described by their

temperature range of growth. Different organisms are assigned to certain

groups according to their cardinal temperatures (Morita, 1975; van de

Vossenberg et aI., 1998; BIOch1 et aI., 1995), i.e. the lowest temperature where

growth occurs (Tmin' or minimum temperature), the temperature where growth is

fastest (Tnp" or optimum temperature) and the highest temperature were growth

occurs (Tmax> or maximum temperature). The following definitions of the

different groups will be used throughout this study:

obligate psychrophiles

moderate psychrophi1es

mesophiles

thermoph i1es

hyperthermophiles

Tmin< O°C, TOPI< 15°C, Tma, < 20°C

T min ~ 5°C, Topt > 15°C, Tma, > 20°C

Tnp, 25-40°C, Tma, 40-45°C

Top I 55-70°C, Tma, approx. 75°C

Topt 80-1 10°C

It should be noted, that even though these definitions refer to growth rates, they

are also often used to characterize metabolical activity (e.g., oxygen respiration

[Thamdrup and Fleischer, 1998], sulfate reduction [Sagemann et aI., 1998], or

polysaccharide hydrolysis [Arnosti et at., 1998]). However, metabolical activity

and growth rate do not necessarily have the same temperature optimum (e.g.

Christian and Wiebe, 1974; Isaksen and J0rgensen, 1996).

The temperatures encountered by sulfate reducers in marine sediments range

from below O°C in polar oceans to 2 lOO°C in the geothermally heated sea

floor. In sediments at the hydrothermal vent system of the Guaymas basin

temperature optima of sulfate reduction were measured at approximately 40, 80,

and 103-106°C (J0rgensen et at., 1992). Archaeogtobus profundus, a sulfate
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reducer isolated near black smokers of the Guaymas basin, has a temperature

optimum of 80°C but does not grow above 90°C (Burggraf et al., 1990). The

highest growth temperature of any known sulfate reducer was found at 95°C for

the sulfate-reducing archaebacterium Archaeoglobus fulgidus isolated from

shallow-water hydrothermal vents (Stetter, 1988). Results from measurements of

sulfate reduction rates and pure culture studies indicate that hyperthermophilic

sulfate reducers such as Archaeoglobus spp. have temperature optima that are

close to their environmental temperatures. However, such high temperatures are

rare in marine sediments and these environments can be regarded as extreme.

Shallow sediments of temperate regions are subject to seasonal temperature

variations and sulfate reduction occurs between approximately 0 and 30°C (e.g.

Jl2lrgensen, 1977; Nedwell and Abram, 1978; Abdollahi and Nedwell, 1979;

Westrich and Berner, 1988; Jl2lrgensen, 1996; Arnosti et al., 1998). Most marine

sulfate reducers known so far were isolated from such environments. However,

more than 90% of marine sediments have an annual mean temperature colder

than 4°C and only 2 % are warmer than 15°C (Levitus and Boyer, 1994).

Consequently, most benthic bacteria must live and grow at low temperatures of

< 4°C which must therefore be considered normal rather than extreme.

The temperature range encountered in most marine sediments is in sharp

contrast to the temperature range at which sulfate reducers so far isolated are

able to grow. With the exception of the thermophilic and hyperthermophilic

sulfate reducers (Widdel and Hansen, 1992) and two other strains (see below),

all known sulfate reducers are mesophiles, and cannot grow below

approximately 15°C (Widdel and Bak, 1992). Since the known sulfate reducers

do not grow at temperatures characteristic for most marine sediments, they also

cannot be dominant among the active sulfate-reducing communities of these

environments. Even though the importance of sulfate reduction for carbon

mineralization has been demonstrated in numerous studies, and even though

sulfate reducers have now been isolated that oxidize almost all electron donors
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shown to be used for sulfate reduction in nature, most of the organisms active at

normal marine in situ conditions are still unknown. Only two sulfate reducers,

Desulfobacter hydrogenophilus (Widdel, 1987) and "Desulforhopalus

vacuo latus" (Isaksen and Teske, 1996) grow between 0 and 20 0 e and hence

might be active at temperatures common in marine sediments.

The temperature response of sulfate reduction was studied m temperate

(Abdollahi and Nedwell, 1979; Isaksen and J0rgensen, 1996; Arnosti et ai.,

1998) as well as in permanently cold marine sediments (Nedwell, 1989;

Sagemann et al., 1998; Isaksen and J0rgensen, 1996). All studies reported

highest sulfate reduction rates above the in situ temperature, but there seems to

be a trend of decreasing optimum temperatures with decreasing environmental

temperature. Highest sulfate reduction rates were found at 34°e in a tidal flat

with seasonal temperatures of 0-30 oe (Arnosti et ai., 1998) whereas in

permanently cold Antarctic sediments (in situ temperatures -1.8-1.0°C) the

optimum of sulfate reduction was between 18 and 21 °e (Nedwell, 1989; Isaksen

and J0rgensen, 1996). Furthermore, sulfate reduction rates at low temperatures

(a-soC) in comparison to those at optimum temperatures were always relatively

higher in polar than in temperate sediments (Arnosti et ai., 1998; Isaksen and

J0rgensen, 1996). This indicates that temperate sediments are inhabited by

predominantly mesophilic organisms with low respiration rates at low

temperatures, whereas polar sediments harbor a community that is adapted to

the low environmental temperatures by relatively high metabolical rates in the

cold. The latter conclusion is in accordance with the observation of similar

sulfate reduction rates in polar and temperate environments (J0rgensen et ai.,

1990; Nedwell et ai., 1993; Thamdrup et ai., 1994; Sagemann et ai., 1998)

which further indicates the presence of sulfate reducers specially adapted to

permanently low temperatures. Different authors concluded that carbon

mineralization and sulfate reduction in polar oceans are more likely limited by

7
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the availability of organic matter than inhibited by low temperatures (Thingstad

and Martinhussen, 1991; Amosti eta!., 1998; Nedwell eta!., 1993).

However, nearly all studies on the temperature adaptation of sulfate reduction

are based on measurements of metabolical rates rather than bacterial growth,

since growth of sulfate-reducing bacteria is difficult to measure In

environmental samples (Gilmour et a!., 1990; Winding, 1992). A considerable

difference between the optimum temperatures of respiration and growth was

found for both aerobic and anaerobic bacteria (e.g. Christian and Wiebe, 1974;

Isaksen and JlZIrgensen, 1996) suggesting that measurements of metabolical rates

cannot be used to describe the growth potential of low-temperature adapted

bacteria.

Pure culture studies of the temperature adaptation of sulfate reducers are scarce.

Isaksen and JlZIrgensen (1996) investigated a mesophilic (Top,=33 DC) and a

moderately psychrophilic (Topt= 18 DC) sulfate-reducing bacterium that were

both isolated from a temperate estuary with seasonal in situ temperatures of 0­

20 De. Even though the mesophile respired between 0 and 40 DC, growth was

restricted to 8-37 DC. The moderate psychrophile had also a wider temperature

range for respiration (-3-3rC) than for growth (0-23 DC). Furthermore, the

temperature optimum of sulfate reduction of the psychrophile (28 DC) was 10DC

above the optimum growth temperature (18 DC), whereas by the mesophi Ie both

cardinal temperatures were almost the same (35 and 33 DC, respectively). Apart

from the different optimum growth temperatures of both strains a more

remarkable difference was the temperature response of growth yield, which is

the amount of carbon substrate oxidized per amount of cell-biomass produced.

In the mesophile growth yield was highest close to Topt and decreased below that

temperature to very low values close to Tmin' In contrast, the moderate

psychrophile showed a constant growth yield between 0 and 10DC, and a

decrease above that temperature. These results indicate that the mesophile would

need more carbon substrate to maintain a given population size when

8
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temperature decreases, whereas the psychrophile would need the lowest amount

between 0 and woe, i.e. at low temperatures. A similar temperature response to

that of the mesophilic strain of Isaksen and J0rgensen (1996) was also found in

mesophilic sulfate-reducing bacteria isolated from a freshwater sediment (Sass

et aI., 1998). Their strains grew at temperatures of 4-35°e with a Topt at 28°e,

but growth yields were lowest at the lowest temperature, 4 0c. These few results

indicate that growth yield responds differently in mesophiles and psychrophiles:

it stays constant in psychrophiles but decreases in mesophiles when temperature

decreases.

The preceding discussion indicates that, when sulfate reduction rates in polar

sediments can be comparable to those of temperate sediments (Nedwell et al.,

1993; Sagemann et aI., 1998) it must require a community of sulfate reducers

that is adapted to low temperatures. Hence, polar habitats should serve as

convenient sources for the enrichment and isolation of low-temperature adapted

organisms. The first sulfate reducer from a permanently cold environment was

isolated by Barghoorn and Nichols (1961) from sulfidic sediments of

Antarctica. Unfortunately, the growth range of this new strain was not

determined and it is not available in culture collections. Another sulfate reducer,

Desulfotomaculum antarcticum (Iizuka et al., 1969), was also isolated from an

Antarctic sediment but this strain could not grow below 10 0 e which indicates

that it might have been present in the sediment in the form of inactive spores

and not as an active organism. Also Vainshtein et al. (1995) concluded, that the

Desulfotomaculum orientis strain, which they isolated from permafrost (in situ

temperature <-5 Oe), was not actually active but survived in the 20-30 thousand

year old deposits in the form of inactive spores. Sulfate-reducing bacteria

growing at temperatures below 0 °e, which are characteristic for polar

environments, were not isolated at the onset of the presented thesis work and

hence could not be studied.

9
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1.3 Aim of the present study

Our understanding of carbon mineralization processes in anaerobic sediments IS

to a large extent based on studies with pure cultures of relevant organisms. To

better understand the regulation of sulfate reduction in cold sediments, also

pure cultures active at in situ conditions are needed. Hence, a primary aim of

the present study was to isolate the most abundant low-temperature adapted

sulfate reducers from permanently cold sediments. Secondly the abundance of

the isolated strains in the investigated sediments should be quantified. To relate

results from pure culture experiments to processes in the natural environment it

is important to know to what extent the investigated strains represent the natural

community.

Since it was unclear, whether the sulfate reducers active at low temperatures are

closely related to known mesophilic organisms or comprise completely new

groups, a detailed characterization of the physiology and phylogeny of the

obtained isolates was necessary. The most abundant representatives of the

sulfate-reducing community in the sediments were thus chosen for further pure

culture experiments. These studies should show how and to what extent

psychrophilic sulfate-reducing bacteria are adapted to their permanently cold

environment.

1.4 Sampling sites

To study the adaptation of sulfate reducers to low temperatures we collected

samples from two permanently cold sediments along the coast of Spitsbergen,

Svalbard, Arctic ocean (approx. nON, 15°E) during a cruise with the RV "Jan

Mayen". One sampling site at the west coast of Spitsbergen (Hornsund) had a

bottom water temperature of 2.6°e at the time of sampling (September),

whereas the temperature of the other site, Storfjord, was -I.re which is near the

freezing point of seawater. Both sites were situated on the continental shelf at

water depths of 155 m and 175 m respectively.

10
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1.5 Overview of the publications

Sulfate reducers, that are able to grow at the low temperatures of polar oceans

were isolated in the first study. Reports of similar sulfate reduction rates in polar

and temperate sediments raised questions concerning the community size of

sulfate reducers in both habitats. Similar respiration rates can be explained

either by, A) more organisms in polar environments that respire with lower rates

than in temperate environments, or B) similar community sizes in both habitats

but with relatively higher respiration rates of the polar population in spite of the

low temperature. To test both possibilities we counted sulfate reducers in

sediments of Svalbard with the cultivation dependent most probable number

method (MPN). The most abundant cultivable sulfate reducers were isolated at

temperatures of 0, 4 and I O°C, cell specific respiration rates were measured at

the in situ temperature of the sampling sites, and compared to those of

mesophiles measured at 4-13 dc. The results are presented in the following

manuscript:

(1) Christian Knoblauch, Bo Barker lYlrgensen and lens Harder: Community

size and metabolic rates of psychrophilic sulfate-reducing bacteria in

Arctic marine sediments

The second author, Bo Barker ll/lrgensen, initiated the work with psychrophilic

sulfate reducers; he contributed to this study with frequent discussions about the

methodology and the interpretation of data. He also measured the sulfate

reduction rates in sediment cores. lens Harder introduced me to anaerobic

cultivation techniques. He also participated in the planning of the enrichment

and isolation of psychrophilic sulfate reducers.

The manuscript is in press in "Applied and Environmental Microbiology"

11
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In the second study, the sulfate-reducing community In the studied sediments

was characterized by the cultivation-independent methods of quantitative slot­

blot hybridization and denaturing gradient gel electrophoresis (DGGE). In

contrast to the MPN-method used in the first study, these methods should give a

more realistic picture of the distribution of known sulfate reducers. The results

of this study are presented in the manuscript:

(2) Kerstin Sahm, Christian Knoblauch and Rudolf I. Amman:

Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing

isolates in marine Arctic sediments

Most of the work in this study was done by Kerstin Sahm. I isolated and

cultivated the investigated pure cultures, and did also all studies on the

physiology of the presented strains. Rudolf I. Amman contributed with valuable

discussions about the interpretation of the results.

The manuscript is in press in "Applied and Environmental Microbiology"

While the first two studies focused on the community of sulfate reducers in the

investigated Arctic sediments, the third study describes the physiology and

phylogeny of five new psychrophilic sulfate-reducing bacteria in detail. The

results of this study are presented in the manuscript:

(3) Christian Knoblauch, Kerstin Sahm and Bo Barker J!lSrgensen: Psychrophilic

sulfate-reducing bacteria isolated from permanently cold Arctic marine

sediments: description of Desulfofrigus oceanense gen. nov., sp. nov.,

Desulfofrigus fragile sp. nov., Desulfofaba geUda gen. nov., sp. nov.,

Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp.

nov.

12
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A substantial contribution to this study was made by Kerstin Sahm who

performed all phylogenetic studies. Bo Barker J~rgensen participated in the

study with frequent discussions during the isolation of the new strains and

supplied many helpful ideas.

The manuscript is in press III the "International Journal of Systematic

Bacteriology"

The fourth manuscript deals with the temperature adaptation of the five strains

described in the third manuscript. These investigations were the first studies of

psychrophilic sulfate-reducing bacteria from polar environments and suggest

that the psychrophilic isolates have a competitive advantage at low temperature,

a feature that distinguishes them from mesophiles. The results of this study are

presented in the manuscript:

(4) Christian Knoblauch and Bo Barker J~rgensen: Effect of temperature on

sulfate reduction, growth rate, and growth yield in five psychrophilic sulfate­

reducing bacteria from Arctic sediments

The second author, Bo Barker J~rgensen initiated this study. He contributed

many helpful ideas and provided help with the interpretation of data.

The manuscript is in press in "Environmental Microbiology".
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2.1.

Community size and metabolic rates of psychrophilic

sulfate-reducing bacteria in Arctic marine sediments

CHRISTIAN KNOBLAUCH, Bo BARKER J0RGENSEN, AND JENS HARDER

Max Planck Institute for Marine Microbiology,

Celsiusstr. I,

D-28359 Bremen,

Germany

Numbers of sulfate reducers were determined in two Arctic sediments with in situ
temperatures of 2.6 and -1.7 0c. Most probable number counts at 10 °C were higher than at
20°C, indicating the predominance of a psychrophilic community. Mean specific sulfate
reduction rates of 19 isolated psychrophiles were compared to corresponding rates of 9
marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological
adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have
considerably higher specific metabolic rates than their mesophilic counterparts at similarly
low temperatures.
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Dissimilatory sulfate reduction is the most important bacterial process in

anoxic marine sediments, accounting for up to half of the total organic carbon

remineralization (JS'Srgensen, 1982; Canfield et ai., 1993; Nedwell et ai., 1993).

Since more than 90 % of the global sea floor is cold « 4 °C [Levitus and Boyer,

1994]), sulfate reducers must be able to metabolize and grow at low ambient

temperatures. Sulfate reduction rates (SRR) in polar sediments may be similar to

those of temperate environments (Nedwell et al., 1993; JS'Srgensen et ai., 1990;

Thamdrup et ai., 1994; Sagemann et al., 1998), but sulfate reducers active in

polar sediments had not been isolated and studied.

Similar sulfate reduction rates in cold and in temperate sediments could

be explained either by A) more sulfate reducers in cold environments to

compensate for lower per-cell sulfate reduction rates (i.e. cell-specific SRR) at

low temperatures, or B) comparable community sizes in both environments but

higher specific respiration rates of psychrophiles relative to mesophiles at low

temperatures. In the present study, both possibilities were investigated by

quantifying sulfate reducers in two polar sediments as well as by comparing

specific SRR of new psychrophilic isolates to those of known mesophilic sulfate

reducing bacteria (SRB). Because the phylogeny and physiology of sulfate

reducers living in polar sediments were previously unknown, we used the most

probable number (MPN) method to count and subsequently isolate the most

abundant cultivable sulfate reducers for further pure culture studies.

Two permanently cold sediments at the coast of Svalbard, Hornsund

(76°58.2N, 15°34.5E, in situ temperature 2.6°C) and Storfjord (77°33.0 N,

I 9 °05.0 E, in situ temperature - 1.7 °C) were sampled on a cruise III

September/October 1995. For further information about sampling sites, see

Kostka et ai. (1999). Sediment was collected with a multicorer, and one

individual core was subsampled for enumeration of sulfate reducers by triplicate

MPN series (American Public Health Association, 1969), sulfate reduction rate

measurements with the whole core method (JS'Srgensen, 1978), and nucleic acid
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analysis (Sahm et al., 1999a; referred to as core A). The subcores were sliced on

the ship and samples from five sediment layers between the surface and 30 cm

depth (Fig. 1) were transferred to liquid medium (Knoblauch et al., 1999b)

containing either lactate (20 mM) or acetate (15 mM). Additionally, single

dilution series with propionate (20 mM), or propanol (20 mM) were inoculated.

The cultures were incubated at 4,10 and 20 0 e in our laboratory and growth of

SRB was measured via sulfide production during the following 30 months.

At both sampling sites, maximum MPN counts of SRB occurred in the top

6 cm of the sediment. In particular in Storfjord, the highest sulfate reduction

rates occurred deeper than the maximum cell counts (Fig. 1). Below that depth,

cell numbers decreased sharply. Maximum cell numbers were generally detected

on lactate as substrate in MPN series incubated at looe (Fig. I b+d). Higher cell

numbers at 10 than at 20 0 e indicate that the majority of cultivable sulfate

reducers in the sediment are unable to grow at 20 oe, thus providing the first

microbiological evidence for a predominantly psychrophilic SRB community in

a marine sediment. Maximum cell numbers on acetate were 10-100 fold lower

than on lactate and were always highest at 20°e. These results are probably due

to extremely slow growth of acetate oxidizers at 4 and lOoe, and not to a

mesophilic acetate oxidizing SRB community. This conclusion is supported by

the fact that the first positive enrichments of Storfjord, incubated at 4 and looe

on acetate, were detected after more than six months and that counts increased

slowly during the following two years.

In contrast to this microbiological evidence for a community with a

psychrophilic growth potential (Topt below 20 oq, Sagemann et al. (1998)

measured highest SRR in Hornsund and Storfjord sediments at 27°e. These

process rate measurements seem to contradict our results from MPN counts.

However, Isaksen and J~rgensen (1996) demonstrated that a moderately
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Fig. I. Depth profile of sulfate reduction rates in Hornsund (a) and Storfjord (c) at in situ
temperatures and MPN counts of sulfate reducers in Hornsund (b), and Storfjord (d) sediment. MPN
series were incubated at different temperatures and with either lactate <tZZI 20 DC, ~ 10 DC,
E;;S] 4 DC) or acetate (0 20 DC, ~ 10 DC, IBIID 4 DC). Horizontal bars represent 95 %
confidence intervals, vertical bars the sediment depth used for MPN enrichments.

psychrophilic SRB had an optimum temperature for sulfate reduction (28°C)

I aoe higher than for growth (18 0c). This result indicates that maximum sulfate

reduction rates at 27°C in the Svalbard sediments might still be assigned to a

psychrophilic community,
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MPN counts yielded no evidence for a higher community size of

cultivable sulfate reducers in Arctic sediments relative to temperate sediments

since maxi~um cell counts of e.g. 4.3.105 cells cm-~ in Hornsund (Fig. Ib) are

in the range of those reported previously for temperate marine sediments

(2.105-2.106 cells cm-~ [.Jj.ljrgensen and Bak, 1991; Lillebrek, 1995; Teske et at.,

1996]). Furthermore, parallel slot-blot hybridizations indicate that SRB

numbers in Hornsund and Storfjord are comparable to those in temperate

sediments (Sahm et aI., 1999a; Sahm et aI., 1999b). If the community size and

the sulfate reduction rates in Arctic and temperate habitats are similar, then

sulfate reduction rates per cell must be comparable too, irrespective of the

temperature difference.

To test this possibility, pure cultures of Arctic SRB were isolated from the

highest dilution steps of the MPN enrichments by the modified deep agar

dilution technique (Isaksen and Teske, 1996). At 20 oe, only three pure cultures

could be isolated because most enrichments did not continue to grow after a

transfer to fresh medium. None of these isolates is able to grow at the in situ

temperature of the sampling sites, providing further evidence that the

community active in the sediments is psychrophilic. At 4 and 10oe, thirty

different strains were isolated from the MPN-enrichments. Based on a

preliminary physiological and phylogenetic characterization, 19 psychrophilic

strains were selected for further studies. All strains, except LSv22, had a TOPI

below 20 0 e and only three isolates grow at 26°e (Tablet). More relevant,

however, is that they are the first isolates that grow at a typical temperature for

polar sediments, the freezing point of seawater, -1.8°e (Table 1). Doubling

times at -1.8 °e were 4-6 days in case of lactate-grown strains LSv54, LSv514

and LSv21, but more than five weeks in case of acetate- and propionate-grown

strains ASv26 and PSv29 (Knoblauch and Jj.ljrgensen, 1999).

To compare SRR of psychrophiles and mesophiles at the temperatures of

their respective habitats, the specific SRR of psychrophilic SRB were measured
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at the in situ temperature of the Arctic sediments (2.6 and -1.7°C) and rates of 9

mesophiles were measured at 4, 8 and 13 °C, a temperature range normally

encountered in temperate sediments. All cultures were grown to the exponential

growth phase and rates were measured with the radiotracer method as described

elsewhere (Knoblauch and J~rgensen, 1999). Specific SRR of psychrophiles at

2.6 and -1.7°C varied between I and 42 fmol celr l d· 1 (Table I). All mesophiles

Table 1. Growth characteristics and specific sulfate reduction rates of psychrophilic SRB
measured at the in situ temperature of their habitat.

Substrates" incubation Specific SRR (±SD, growth at (0C)

temperature n=3)
(0C) (fmol celr' day·l) -1.8 4 IS 20 26

Hornsund strains
LSv20 lactate 2.6 14.0 ± 0.6 + + + +
LSv21 lactate 2.6 2.7 ± 0.7 + + + +
LSv22 lactate 2.6 13.0 ± 2.0 + + + + +
LSv23 lactate 2.6 2.3 ± 0.6 + + + +
LSv24 lactate 2.6 11.0 ± 0.8 + + + +
LSv25 lactate 2.6 2.8 ± 1.1 + + + +
LSv26 lactate 2.6 6.9 ± 0.5 + + + + +
LSv27 lactate 2.6 2.6 ± 0.3 + + hn.d.

LSv28 lactate 2.6 2.6 ± 0.2 + + +
PISv28 propanol 2.6 2.5 ±1.4 + + +
PSv29 propionate 2.6 41.9 ± 23.4 + +
ASv25 acetate 2.6 25.3 ± 0.3 + + + +
ASv26 acetate 2.6 3.8 ± 1.0 + +
ASv28 acetate 2.6 11.3 ± 0.9 + + + + +

Hornsund mean: 10.2

Storfjord strains

LSv514 lactate -1.7 3.6 ± 0.4 + + + +
LSv52 lactate -1.7 7.6 ± 3.7 + + + +
LSv53 lactate -1.7 0.9 ± 0.4 + + + +
LSv54 lactate -1.7 1.9 ± 0.2 + + +
LSv55 lactate -1.7 6.2 ± 0.8 + + +

Storfjord mean: 4.0

" carbon substrates used for isolation and for measurements of specific sulfate reduction rates
hn.d. = not determined
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Table 2. Specific sulfate reduction rates of mesophilic sulfate reducing bacteria at different
temperatures

specific sulfate reduction rate (± SO, n=3r

strain OSMZ' Substrate" (fmol cell" day")
number 4"C 8 °C 13°C

Desulfobacter postgatei 2043 acetate II ± 1.6 19 ± 1.4 38 ±5.9

Desulfobacter hydrogenophilus 3380 hydrogen 8.0 ±0.3 7.8 ± 2.8 20 ±3.3

Desulfobulbus sp. 3prl 0 2058 propionate 4.2 ±O.I 6.2 ± 0.36 12 ±0.6

Desulfovibrio salexigens 2636 lactate 0.7 ±0.06 1.4 ± 0.07 3.9±0.4

Desulfovibrio vulgaris 1744 lactate 0.4 ±0.05 0.8 ± 0.06 2.1±0.!

Desulfobacterium autotrophicum 3382 lactate 1.6 ±0.07 2.9 ± 0.2 4.4±0.4

Desulfofustis glycolicus 9705 glycolate 0.3 ±0.01 0.5 ± 0.06 1.1 ±O. I

Desulfococcus niacini 2650 nicotinate 1.2 ±0.05 2.0 ± 0.24 4.0±0.7

Desulfosarcina variabilis 2060 benzoate 0.7 ±0.4 9.0 ± 2.3 20 ±0.6

mean values 3. I 5.6 I I. 7
"All strains were obtained from the Deutsche Sammlung fur Mikroorganismen und Zellkulturen (DSMZ),
Braunschweig, Germany
bCarbon substrates used for isolation and for measurements of specific sulfate reduction rates
'measurements of specific SRR were made in 15 ml Hungate tubes, except for Desulfobacter hydrogenol'hilus,
that was incubated in flat 50 ml culture flasks to enhance hydrogen diffusion into the aqueous phase

reduced sulfate at 4°C, although only Desulfobacter hydrogenophilus was able

to grow at that temperature. Specific SRR of all mesophiles, except

Desulfobacter hydrogenophilus (Table 2), increased exponentially with

increasing temperatures, but were still comparable to those found in the

psychrophiles at 6-lO oC lower temperatures. Since it is difficult to directly

compare rates of mesophiles and psychrophiles at low temperatures because

their growth temperature range do not overlap, we fitted mean rates of

mesophiles by the Arrhenius equation: Rate = A·exp(-E..[RTt), where A = a

constant, Eo = apparent activation energy, R = gas constant and T = absolute

temperature in K. The fit was extrapolated to <O°C, and compared to rates of

psychrophiles (Fig. 2). Calculated rates for mesophiles at 2.6 and - 1.7°C were
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Fig. 2. Mean values of specific sulfate reduction rates of 10 mesophilic sulfate reducers (closed
circles) determined at 4, 8 and 13 °e, 14 psychrophiles from Hornsund sediments (open square),
and 5 psychrophi les from Storfjord sediments (open triangle). Dashed line represents the
Arrhenius fit of specific sulfate reduction rates for mesophiles. Bars represent standard deviation
of the mean of all strains.

3-4 fold lower than the measured rates for psychrophiles at the same

temperatures (Fig. 2). The comparison of biomass specific SRR yielded similar

differences (data not shown). These differences indicate that psychrophilic SRB

are adapted to low temperatures not only because their minimum growth

temperatures are at or below in situ temperatures, but also because their

metabolic rates are comparable to those of mesophiles at 6-1 aoc higher

temperatures. Many studies have demonstrated that organisms active at low

temperature differ physiologically from their counterparts 10 warmer

environments (Russel and Hamamoto, 1998, and references therein). Cellular

membranes of psychrophiles tend to contain more unsaturated fatty acids (Chan
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et at., 1971; Bhakoo and Herbert, 1979) and short chain fatty acids (Bhakoo and

Herbert, 1979) than membranes of mesophiles. Changes in the membrane

composition might lead to a more efficient solute uptake at low temperatures

(Russell, 1990). Furthermore, psychrophiles synthesize enzymes with high

catalytic activity at low temperatures (Feller et at., 1994b) and produce more

enzymes when the temperature decreases (Feller et at., 1994a). Different

enzymes or enzyme levels could be one explanation for comparable sulfate

reduction rates of psychrophiles and mesophiles at different temperatures.

The calculated activation energy (Ea) of mesophilic SRB was 90.6 kllmol, which

is within the range of 23-132 kJ/mol determined previously for sulfate ieduction

in temperate sediments (Aller and Yingst, 1980; Crill and Martens, 1987;

Westrich and Berner, 1988) and close to the values of 74 and 85 kJ/mol

calculated from specific SRR between 0 and 30°C of a Desulfovibrio

desulfuricans strain (Kaplan and Rittenberg, 1964). Thus, we suppose that the

specific SRR measured in pure cultures are representative for mesophilic sulfate

reducers of temperate sediments. However, it cannot be ruled out that measured

rates of mesophiles were biased by the inability of most strains to grow at the low

experimental temperatures. This problem could not be avoided in our use of

culture collection strains because mesophilic marine sulfate reducers that are

able to grow down to O°C are almost unknown.
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2.2.

Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing

isolates in marine Arctic sediments

KERSTIN SAHM, CHRISTIAN KNOBLAUCH, AND RUDOLF!. AMANN

Max Planck Institute for Marine Microbiology

Celsiusstr. 1

D-28359 Bremen

Germany

Thirteen psychrophilic sulfate-reducing isolates from two permanently cold fjords of the
Arctic island Spitsbergen (Hornsund and Storfjord), were phylogenetically analyzed. They all
belong to the 8 subclass of Proteobacteria and are widely distributed within this group,
indicating that psychrophily is a polyphyletic property. A new 16S rRNA-directed
oligonucleotide probe was designed against the largest coherent cluster of these isolates. The
new probe, as well as a set of available probes, were applied in rRNA slot-blot
hybridization to investigate the composition of the sulfate-reducing bacterial community in
the sediments. rRNA related to the new cluster of incomplete oxidizing, psychrophilic
isolates made up 1.4 and 20.9 % of eubacterial rRNA at Storfjord and 0.6 - 3.5 % of
eubacterial rRNA at Hornsund. This group was the second most abundant group of sulfate
reducers at these sites. DGGE/hybridization analysis showed bands identical to our isolates.
The data indicate that the psychrophilic isolates are quantitatively important in Svalbard
sediments.
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INTRODUCTION

Low environmental temperatures characterize the habitat of many prokaryotes

living in marine sediments since 90% of the sea floor has a temperature of less

than 4 DC (Levitus and Boyer, 1994). While prokaryotic activity is commonly

found to be lower during cold seasons in temperate environments (for review

see Rivkin et at., 1996), the current data suggests that in permanently cold

habitats bacterial activity is comparable to temperate environments at the

respective ambient temperature (Arnosti et al., 1998; Rivkin et al., 1996; Glud

et at., 1998; Sagemann et at., 1998). Arnosti et al. (1998) determined the

temperature dependence of microbial degradation of organic matter and

showed that carbon turnover in the cold Arctic is not intrinsically slower than in

temperate environments. Also Sagemann et al. (1998) and Glud et al. (1998)

found rates of sulfate reduction and benthic carbon mineralization in Arctic

sediments to be comparable to those of temperate or even tropical sediments.

Optimal temperatures for polysaccharide hydrolysis, oxygen consumption

(Arnosti et al., 1998), and sulfate reduction (Sagemann et al., 1998) in

permanently cold sediments were significantly higher than the ambient

temperature; however, the relative activity at low in situ temperature as

compared to optimum activity was generally higher than in samples from

temperate habitats. These observations indicate that the bacterial community in

these Arctic sediments is adapted to cold temperature. However, little is known

about the diversity and composition of prokaryotic communities in cold marine

sediments; and only few cold-adapted psychrophilic isolates from these

environments have been studied so far (for review see Russel and Hamamoto,

1998). In addition, few cultivation-independent studies have been conducted in

these habitats (Sahm and Berninger, 1998).

The aim of our project, conducted in the context of the above-mentioned

studies, was to characterize the sulfate-reducing bacterial community of
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permanently cold habitats and to quantify the abundance of psychrophilic

sulfate reducers. We chose two sites, off the coast of Spitsbergen (Hornsund and

Storfjord), which are never exposed to temperatures higher than 3°C. We

concentrated on sulfate-reducing prokaryotes because sulfate reduction is a

major process of carbon mineralization in marine sediments (J¢rgensen, 1982).

A set of probes is available for the main phylogenetic groups of Gram-negative

mesophilic sulfate reducers (Devereux et at., 1992), and the different

phylogenetic groups can be defined by distinct physiological features (Widdel

and Bak, 1992; Widdel and Hansen, 1992). In a related study MPN-counts and

isolation of psychrophilic sulfate reducers were carried out to enumerate and

identify the sulfate-reducing bacteria (SRB) (Knoblauch et at., 1999a). A new

oligonucleotide probe was designed to target the largest cluster of these isolates.

This newly-developed probe was applied along with an established set of probes,

to quantify sulfate reducer rRNA in the sediment. The presence of the isolates

was further evaluated by DGGE-analysis. The results of this study will be

discussed in relation to data from a l6S rDNA clone library presented in an

accompanying paper (Ravenschlag et aI., 1999).

MATERIALS AND METHODS

Study site and sampling procedure. Our study was conducted as part of a

research cruise in the Arctic Sea from Troms¢ (Northern Norway) to

Spitsbergen (Arctic Ocean) in September/October 1995. Sediments from 2

different stations (Hornsund [76°58.2N,15°34.5E] and Storfjord [77°33.0N,

19°05.5E]) were investigated. In situ temperatures and depths were 2.6°C and

155 m for Hornsund and -1.7°C and 175 m for Storfjord. Sediment samples

were collected with a multicorer. Samples for MPN-dilutions (Knoblauch et at.,

1999a) and molecular analysis were taken from the same core. The individual

subcores (our replicates A and B) derived from two different multicorer cores.
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The sediments were anoxic below a depth of approx. 8 mm (Glud et aI., 1998).

Five distinct vertical horizons of 2-3 cm thickness were sectioned from the

upper 30 cm of each core. The sediment of each section was carefully

homogenized, and subsamples of I or 2 cm' were immediately frozen in liquid

N2 •

DNA extraction and amplification of 168 rDNA. After three cycles of freezing

and thawing, DNA was extracted directly using the method of Zhou et al.

(1996), which is based on lysis with a high salt extraction buffer and extended

heating In the presence of sodium dodecyl sulfate (SDS) and

hexadecyltrimethylammoniumbromide. Lysis efficiency was checked by DAPI

staining. In general, at least 90 to 96% of the cells were lysed. The DNA could

be used for PCR without further purification. Primers GM5c1amp (Escherichia

coli position 341-357) and 907R (Muyzer et aI., 1995) were used to amplify

the variable regions V3-V5 of the 16S rDNA in a touchdown PCR, as described

by Buchholz-Cleven et al. (1997). To amplify the nearly complete 16S rDNA,

primers 8F/1492R (Buchholz-Cleven et aI., 1997) were used in a 35 cycle PCR

with an annealing temperature of 40°C. Bovine serum albumin (final

concentration 3 mg mr l
) was added routinely to the PCR reactions to prevent

interference by humic acids (Romanowski et aI., 1993).

168 rDNA sequencing. PCR products were purified with the QIAquick PCR

Purification Kit (Qiagen, Hilden, Germany). The Taq DyeDeoxy Terminator

Cycle Sequencing Kit (Applied Biosystems, Foster City, USA) was used to

directly sequence the purified PCR products. Sequencing reactions were

analyzed on the Applied Biosystems 373S DNA sequencer. Both strands of the

amplification products were sequenced using primers 8F, 787F, 787R, 1175R,

1099 F, 1492R (Buchholz-Cleven et al., 1997). Primer nomenclature refers to

5'-ends of the respective target sites on the 16S rDNA according to the E. coli

numbering of 16S rRNA nucleotides (Brosius et aI., 1981).
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Phylogenetic analysis. The ARB program package and the ARB database

(Strunk et al., 1999) were used for phylogenetic analysis. Sequences were

aligned to the 16S rRNA primary structures present in the ARB database by

using the automatic aligner tool, and the results were corrected manually where

necessary. Pairwise distance matrix analysis was performed with the 16S rRNA

sequences taking only those positions into account that were present in both

sequences. Phylogenetic trees were reconstructed for all available sequences

from the 8 subclass of Proteobacteria, and a selection of representatives for

major groups outside this subclass was used as an outgroup. Only sequences

with at least 1350 nucleotides were used. Tree topology was evaluated by using

neighbor joining, maximum parsimony, and maximum likelihood algorithms

on the full set of data or on a subset. Furthermore, filters were applied that

excluded positions with less than 50% conservation within the 8 subclass.

Branching orders that were not supported by all methods are shown as

multifurcation (Fig. 1).

Accession numbers. The 16S rDNA sequences have been deposited in the

GenBank database. Accession numbers are AF099054-AF099065, AF136008.

Oligonucleotide probes. Oligonucleotides were purchased from Biometra,

(Gottingen, Germany). The probe-target sequence of Sval428 IS: 5'

GTAAAATCCTGTCAGATGG 3' (E. coli numbering 428-446). Probes used

and their specificity are shown in Fig. 1.

RNA extraction and slot-blot hybridization. Nucleic acids were isolated

directly by bead-beating, phenol extraction and isopropanol precipitation as

described by Sahm and Berninger (1998). Between 10 and 100 ng of RNA was

blotted on nylon membranes (Magna Charge, Micron Separations,

Westborough, USA) in triplicate and probed with radioactively-labeled

oligonucleotides as described previously (Stahl et at., 1988). Membranes were

prehybridized at 40°C and washed at different temperatures depending on the

dissociation temperature (Td) of the probes: 54°C (EUB338 [Amann et at.,
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1990]), 45°e (687 [Devereux et ai., 1992]), 59°e (660 [Devereux et ai.,

1992]), 46°e (804 [Devereux et ai., 1992]), or 52°e (SvaI428). The Td for

probe Sval428 was determined according to Raskin et ai. (1994) with rRNA

from strain LSv20 used as one mismatch control. Intensity of hybridization

signal was measured with a Phosphor Imager (Molecular Dynamics, Sunnyvale,

USA) and quantified as described by Sahm et ai. (1999b) using the program

ImageQuant (Molecular Dynamics). rRNA isolated from Desulfovibrio

saiexigens (DSM 2638), Desulfobuibus eiongatus (DSM 2908), Desulfococcus

muitivorans (DSM 2059), and strain LSv23 served as standard for hybridization

with the sulfate reducer specific probes.

DGGE and Southern hybridization analysis. DGGE was performed on a D­

Gene system (Bio Rad, Munchen, Germany) as described previously (Muyzer et

ai., 1996; Muyzer et ai., 1998). peR products were analyzed directly on a 1­

mm-thick 6 % polyacrylamide gel containing a denaturing gradient from 20­

80%. Electrophoresis using IxTAE buffer (40 mM Tris-acetate,lmM EDTA;

pH 8) was performed at 100 V for 20 h. After electrophoresis, the gels were

stained in ethidium bromide and photographed on an UV transilluminator.

DGGE gels were blotted onto nylon membranes via electroblotting as described

by Muyzer et ai. (1996). Hybridization analysis was performed with probe

Sval428 using the protocol described by Santegoeds et aL. (1998). The probe

was end labeled with [y_32p]ATP, and the membrane was hybridized at 40 0e

over night. Stringent washes were performed in 2xSSe, 0.1 % SDS (w/v) at the

previously determined dissociation temperature of 56°C. Dissociation

temperature of the probe was determined with the method described by Raskin

et ai. (1994) for DNA and RNA as targets. The hybridized membranes were

sealed in plastic bags and exposed for 1-7 days on an X-ray film or a Phosphor

Imager screen.
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RESULTS AND DISCUSSION

Phylogenetic affiliation of isolates. Psychrophilic sulfate reducers isolated from

MPN-enrichments (Knoblauch et aI., 1999a) were phylogenetically analyzed by

16S rDNA sequencing. All isolates belong to the 8 subclass of the

Proteobacteria, as it is the case for the majority of mesophilic sulfate reducers

(Stackebrandt et aI., 1995). Adaptation to cold temperatures as represented by

our sulfate-reducing isolates was widely spread within this phylogenetic group

(Fig. 1). On the basis of their phylogenetic distance, strains ASv25, BSv41, and

LSv20 belong to the existing genera Desulfobacter sp., Desulfobacterium sp.,

and Desulforhopalus sp. (3.6, 1.9, and 0.7 % phylogenetic distance respectively)

(Fig. 1). The remaining ten strains were only distantly related (6.4-11.6%

phylogenetic distance) to known sulfate reducers. Five of these have recently

been described as members of three new genera (Knoblauch et al., 1999b). The

results suggest that psychrophily is a polyphyletic property within the Gram­

negative sulfate reducers. Furthermore, the wide distribution of our isolates

within the 8 Proteobacteria indicates that the diversity among psychrophilic SRB

might be as high as among mesophiles.

Probe design. Since cultivation is inherently selective and often leads to the

isolation of quantitatively less important microbial groups, we estimated

abundance of these isolates with a cultivation independent method, i.e., rRNA

slot-blot hybridization. Besides LSv55, all strains that were related to the

Desulfobacteriaceae were targeted by an already existing probe (804) designed

by Devereux et al. (1992). Of the remaining strains, six incomplete oxidizers

formed a cluster related to Desulfocapsa sp., Desulfofustis glycolicus, and the

only other known moderately psychrophilic sulfate reducer "Desulforhopalus

vacuolatus" ItklO (Isaksen and Teske, 1996) (Fig. 1). Two strains of this

cluster have recently been described as species of the new genus, Desulfotalea
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sp. (Knoblauch et ai., 1999b). The cluster will in the following be referred to as

Desulfotalea-cluster. This cluster was chosen to design a new oligonucleotide

probe (SvaI428). In addition to the two Desulfotalea strains and strains LSv23,

LSv24, and LSv53, the probe targets one of the mesophilic sulfate reducers

Sval430

10%

Outgroup

LSv24
LSv53

LSv23

LSv20
"De.mlfnrhopalus \I(lCUOlallls"

My.\"(JcoCt'I/S

De.fllljm.:apsa

De,mlfof/lsris J.:/ycoIiCII.f

Desalfotatea psychrophiia LSv54
Desllifoiaiea arctica LSv514

660

~LSV55
Desilifohulhu.r

oX7

Desalfofaba gelida PSv29

....,~eobucteraceae

ASv25

LSv25

De.wl/nman;le (iet/jei

BSv41

Dt',,.,,ljosarc;na

De.mlfo,fpira jnerxenseni;

"Desllifohac//ia roluo/ica"

Deslllfofrigusfragile LSv21

"De.mlfobac1erium niacin;"

687

Fig. I. Phylogenetic affiliation of psychrophilic sulfate-reducing isolates and specificity of

probes used in this study. The tree shows the 8 subclass of Proteobacteria and was constructed

using Neighbour Joining and a 50 % conservation filter. The arcs comprise the respective probe
target groups. Sva1428: described in this study. Other probes described by Devereux et al. (J 992).
Strains isolated from Svalbard sediments are shown in bold face. Strain names indicate the carbon
source on which they were isolated. A: acetate, L: lactate, P: propionate, B: betaine, and the
sampling site (Sv2: Hornsund, Sv5: Storfjord).
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Desulfofustis glycolicus (Friedrich et at., 1996) (Fig. 1). It has one mismatch to

LSv20 and "Desulforhopalus vacuolatus" ItklO (Isaksen and Teske, 1996).

LSv55 and LSv20 are the only strains isolated from Spitsbergen sediments not

targeted by the set of probes used.

rRNA quantification of sulfate reducers and estimation of community size.

rRNA slot-blot hybridization revealed that concentration of SRB-rRNA for all

target-groups generally decreased with depth (Table 1), following the trend of

total prokaryotic rRNA (Sahm and Berninger, 1998) and MPN-counts

(Knoblauch et al., 1999a). The relative contribution of SRB rRNA to total

eubacterial rRNA (pooled signals from all probes), however, increased from

3.8/4.0% (coreA/B) in the surface to 10.5/17% at a depth of 15-18 cm in

Hornsund and from 10.5/7% to 58.6/36.4% at a depth of 27-30 cm in Storfjord

(Table 2).

The high concentration of detectable SRB rRNA in the first 2-3 cm of the

sediment is in striking contrast to the very low sulfate-reduction rates measured

Table I. Recovered SRB rRNA

Depth interval
(cm)

Hornsund
0-2
3-6
8-11
15-18
25-28

Storfjord
0-3
3-6
7-10
17-20
27-30

Total SRB rRNA
(ng cm-3 sediment)

core A core B

113 134
71 81
26 55
8 43
4 8

87 36
82 25
21 17
15 13
10 12
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within this layer in parallel cores (Sagemann et ai., 1998; Knoblauch et aI.,

I 999a). High abundance of SRB in the zone where little sulfate reduction rates

are measured can also be seen in MPN-counts (Knoblauch et aI., 1999a) and

was also observed in a coastal sediment of the Baltic Sea by RNA slot-blot

hybridization (Sahm et aI., 1999b). These findings suggest that SRB might use

electron acceptors other than sulfate in the oxidized zone of the sediment. In

this respect it is interesting to note that four of the five isolated strains tested for

iron reduction were able to grow on Fe(III) (Knoblauch et aI., 1999a). In

addition Kostka et al. (1999) could show that in Storfjord sediments Fe(III)

reduction accounted for almost 10% of total carbon oxidation, while it was

insignificant at Hornsund. Other potential electron acceptors like NO~' or

Mn(IV) were of minor importance in the investigated sediments.

Table 2. Relative contribution of different probe target groups to the total eubacterial rRNA

Sval428

Depth
interval

(cm)

% of bacterial rRNA (core A / core B)

DesulfotaLea DesuLfovibrio- DesuLfobuLbus sum of
naceae sp. detected

687 660 SRB

% Sval430
ofSRB
(mean)

Hornsund
0-2 0.6 / I. I 2.5 / 2.3 0.7 / 0.6 3.8 / 4.0 22
3-6 0.7 / 2.5 4.6 / 3.6 1.2 / 1.5 6.5 / 7.6 22

8- I I 0.6 / 3.5 6.4 / 10.1 1.6 / 1.4 8.6/ 15.0 15
15-18 0.3 / 2.6 8.6/12.9 1.6 / 1.5 10.5 / 17.0 9
25-28 0.0 / 1.9 6.0/11.1 1.2 / 0.5 7.2/ 13.5 13

Storfjord
0-3 1.6 / 1.4 8.1 / 5.0 0.8/ 0.6 10.5/7 18
3-6 2.6 / 3.5 14.9/6.5 2.7 / 0.8 20.2 / 10.8 23

7-10 3.9 /4.4 10.4 / 6.7 1.4 / 0.7 15.7/11.8 3 I
17-20 11.5 / 9.2 20.7 / 14.1 1.5 / 0.9 33.7 / 24.2 36
27-30 20.9 / 15.0 36.0 / 20.4 1.7 / 1.0 58.6 / 36.4 38
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Relative abundance of SRB and physiological considerations. SRB can, in

general, be divided in two major groups: those that oxidize the carbon source

completely to CO2 and those that oxidize the carbon source incompletely to

acetate. rRNA hybridization revealed a predominance of incomplete-oxidizing

SRB in these sediments. We detected incomplete oxidizing groups targeted by

probes 687 (Desulfovibrionaceae but also some Geobacteraceae [Lonergan et

ai., 1996]), 660 (Desulfobulbus sp.), and Sval428 (Desulfotalea-cluster), while

the complete oxidizing genera Desulfococcus sp., Desulfosarcina sp.,

Desulfobacterium sp., Desulfobacter sp. targeted by 804 were below the

detection limit (Table 2). This result is in agreement with cultivation-dependent

data since cell numbers of complete oxidizers on acetate were 10- to 100-fo Id

lower than lactate oxidizers (Knoblauch et al., 1999a). If this finding reflects

the actual relation between complete and incomplete oxidizers, the RNA

concentration for acetate oxidizers would be at or below the detection limit of

slot-blot hybridization. Another possible explanation for not detecting RNA of

complete oxidizers could be that these organisms were not targeted by the

probe used; all complete oxidizing strains isolated in this study, however, had

the target sequence for probe 804.

The low abundance of complete oxidizers contrasts with results from estuarine,

coastal, and vegetated salt marsh sediments (Devereux et ai., 1996; Sahm et ai.,

1999b; Rooney-Varga et ai., 1997) where the 804 target group was reported to

be one of the major groups of SRB. Dominant sulfate reducers in these studies

were the nutritionally versatile genera Desulfobacterium sp., Desulfococcus sp.,

and Desulfosarcina sp. The occurrence of these groups may possibly reflect an

input of a wide variety of carbon sources in coastal zone habitats close to the

mainland. Our study, in contrast, was conducted in a remote, sparsely populated

region. Data on the amount and type of biologically-available carbon sources

would be necessary to determine the relationship between substrates and

occurrence of specific groups of SRB.
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A second group of complete oxidizers is of special interest in sediments:

namely, those that grow readily on acetate. These bacteria belong to the genus

Desulfobacter sp., like strain ASv25, or to the Gram-positive Desulfotomaculum

sp. Although acetate is hypothesized to be one of the major carbon sources for

SRB in marine sediments (S~rensen et ai., 1981; Parkes et al., 1989), we could

not detect Desulfobacter sp.-rRNA in our samples. Boschker et at. (1998)

showed recently that addition of IJC-acetate to an intertidal sediment led to an

incorporation of label In polar lipid-derived fatty acids typical of

Desulfotomaculum acetoxidans. A rRNA-probe for Desulfotomaculum sp. is not

yet available. Neither cultivation (Knoblauch et ai., 1999a) nor clone library

data (Ravenschlag et ai., 1999) indicate the presence of Desulfotomaculum sp.,

but the use of a specific probe is needed to further investigate their role in

acetate oxidation in marine sediments.

The major group of SRB was the DesulfovibrionaceaelGeobacteraceae cluster

(probe 687) which, in the deeper zones, accounted for up to 8.6/12.9 % of the

RNA at Hornsund (15-18 cm) and for 36.0120.4% at Storfjord (27-30 cm)

(Table2); however, no Desulfovibrionaceae were isolated from MPN-cultures

(Knoblauch et al., 1999a). We took this as an indication that the detected RNA

might be coming from organtsms of the Geobacteraceae-group. A clone

library established for Hornsund sediment samples (see accompanying

publication [Ravenschlag et ai., 1999]) further supported this theory. Of all

clones screened, 46 (13 %) gave a positive signal with probe 687. Diversity

within this group was very low, with one phylotype being represented by 39

clones and six additional phylotypes only represented by one or two clones

(Ravenschlag et ai., 1999). All belonged to the family Geobacteraceae and

were most closely related to Desulfuromonas palmitatis. Species of the genus

Desulfuromonas belong to the ~ subclass of Proteobacteria and are able to

completely oxidize acetate via reduction of sulfur (Widdel and Pfennig, 1992).

Since complete-oxidizing genera of sulfate reducers (804 target group) were
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below the detection limit, the high abundance of Desulfuromonas sp. related

sequences in. the clone library might indicate that acetate is mineralized by

sulfur reducers in these sediments; however, the phylogenetic distance between

the clones and Desulfuromonas palmitatis is so large (6.3%) that we can only

speculate on the possible physiological properties of this group until pure

cultures have been isolated. Sequence information derived from the clone

library will enable us now to design a specific probe for this 687-positive clone

group and investigate its actual abundance. Furthermore the phylogenetic

affiliation might help to choose selective culture conditions.

RNA related to the genus Desulfobulbus sp. (probe 660) was present In low

amounts in both stations with a relative contribution varying between 0.5-2.7%.

Clone library data suggest at least one additional group of SRB not targeted by

our probes. This group is related to Desulfobulbus sp. and to isolate LSv55 and

represents 6.5 % of the clone library (Ravenschlag et aI., 1999). A new specific

probe is currently being developed to investigate their abundance in the

sediment.

Occurrence of the new psychrophilic isolates. The Desulfotalea cluster (probe

428), containing many psychrophilic isolates, was the second largest group

among the detected sulfate reducers. In Storfjord, up to 15.0120.9% (27-30 cm)

of the eubacterial RNA was related to our isolates (Table 2). To estimate

whether potentially dominant strains of the target group had been isolated,

DGGE was performed on community DNA and analyzed by Southern

hybridization with probe Sva1428. Position of the hybridization signals within

the community pattern was compared to the position of amplified 16S rDNA

from isolates belonging to this group (Fig. 2). In both stations, we could detect

several positive bands. One of them had the same position as isolates LSv23,

LSv24, and LSv53 (Fig. 2). These isolates are closely related, showing 3 to 4
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I 25-28115-181 8-111 3-6
. .

Fig. 2. DGGE-hybridization analysis of community J 6S rONA pallerns with probe Sval428 for
Hornsund sediments. (A) DGGE gel (B) corresponding hybridization results. Numbers give the
depth range from which target DNA was extracted. For eaeh depth two cores have been
investigated. LSv***: DGGE-fragment of the psychrophilie sulfate-reducing isolates targeted by
probe Sva1428. Arrow indicates corresponding bands between community profile and isolates.
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bases difference within the amplified DNA-fragment, and cannot be

distinguished by DGGE. The presence of additional positive bands showed that

there are at least three additional RNA-species of this group present in

Hornsund (Fig. 2) and one in Storfjord sediments (data not shown). High

abundance of DesuLfotalea-related rRNA and the identification of bands

corresponding to isolates in the community-DNA profile demonstrate that a

quantitatively important group of sulfate reducers was isolated from Svalbard

sediment. In addition, this group was the second most abundant of the detected

SRB (Table 2). Since it is doubtful that the most abundant SRB-group, target

group 687, is really a group of sulfate reducers, the DesuLfotalea-cluster,

containing mainly psychrophilic strains, may even be the most abundant of

SRB. This observation relates to the question whether the bacterial community

in Arctic sediments consists of cold adapted prokaryotes. Our results show that a

major group of SRB in this habitat is psychrophilic.

In the present study, we showed that psychrophilic SRB are related to

mesophilic strains and probably as phylogenetically diverse as the mesophiles.

A new group of psychrophilic sulfate-reducing isolates is abundant in the

sediments from which they were isolated. Their abundance suggests that they

may play a previously-unrecognized role in the sulfur cycle of marine

sediments.
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2.3.

Psychrophilic sulfate-reducing bacteria isolated from permanently cold

Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp.

nov., Desulfofrigus fragile sp. nov., Desulfofaba geUda gen. nov., sp. nov.,

Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp.

nov.

CHRISTIAN KNOBLAUCH, KERSTIN SAHM AND Bo BARKER J0RGENSEN

Max Planck Institute for Marine Microbiology

Celsiusstr. I

28359 Bremen,

Germany

Five psychrophilic Gram-negative sulfate-reducing bacteria were isolated from marine
sediments off the coast of Svalbard. All isolates grew at the in situ temperature of -1.7 °c.
In batch cultures, strain PSv29T had highest growth rate at rc, strains ASv26T and
LSv54T at IDoC and strains LSv2l T and LSv514T at 18°C. The new isolates used the most
common fermentation products in marine sediments, such as acetate, propionate, butyrate,
lactate and hydrogen, but only strain ASv26T was able to oxidize fatty acids completely to
CO2, The new strains had growth optima at neutral pH and marine salt concentration, except
for LSv54T which grew fastest with I % NaCI. Sulfite and thiosulfate were used as electron
acceptors by strains ASv26T

, PSv29T and LSv54T and all strains except PSv29T grew with
FeJ

+ (ferric citrate) as electron acceptor. Chemotaxonomy based on cellular fatty acid pattern
and menaquinones showed good agreement with the phylogeny based on 16S rRNA
sequences. All strains belonged to the 8 subclass of Proteobacteria but had at least 9 %
evolutionary distance to known sulfate reducers. Due to the phylogenetic and phenotypic
differences between the new isolates and their closest relatives we propose the establishment
of the new genera Desuifotalea gen. nov., Desuifofaba gen. nov., and Desuifofrigus gen.
nov., with strain ASv26T as type strain of the type species Desuifofrigus oceanense sp.
nov., LSv21 T as type strain of Desuifofrigusfragile sp. nov., PSv29T as type strain of the
type species Desuifofaba geUda sp. nov., LSv54T as type strain of the type species
Desulfotalea psychrophila, sp. nov., and LSv514T as type strain of Desuifotalea arctica sp.
nov.
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INTRODUCTION

Sulfate reducers are responsible for up to 50% of the organic carbon

remineralization in marine sediments (J(Ilrgensen, 1982; Canfield et aI., 1993;

Nedwell et al., 1993). Acetate, propionate, lactate, butyrate and hydrogen, which

are the major end products of fermentation, constitute their most important

carbon and energy substrates (S(Ilrensen et aI., 1981; Christensen, 1984; Parkes

et aI., 1989). According to their nutrition, sulfate-reducing bacteria can be

separated into two distinct groups. Lactate, hydrogen and propionate are the

typical substrates for incompletely oxidizing sulfate-reducing bacteria which are

mainly represented by Desulfovibrio and Desulfobulbus species. The main end

product of their catabolism is acetate which they do not oxidize further. The

major substrates of completely oxidizing sulfate-reducing bacteria like

Desulfobacter, Desulfobacterium, Desulfococcus, and Desulfosarcina strains, are

fatty acids which are oxidized to CO2 (Holt et aI., 1994). Phylogenetically, most

sulfate reducers belong to the 8 subclass of Proteobacteria.

The natural environment of most sulfate reducers is cold, since 90% of the sea

floor has temperatures below 4 DC (Levitus and Boyer, 1994). Like other benthic

bacteria, sulfate reducers must therefore be able to grow at low temperatures,

however nearly all the known isolates are mesophiles with a temperature

optimum at or above 30 DC and unable to grow below 4 DC (Widdel and Bak,

1992). It was unclear, whether those sulfate reducers active at low in situ

temperatures are closely related to the known mesophiles or whether they

represent members of new genera and species. Pure cultures were needed to

understand their metabolism and temperature adaptation as well as their

phylogeny. The first moderately psychrophilic sulfate-reducing species,

"Desulforhopalus vacuolatus" was isolated by Isaksen and Teske (1996) from

a temperate estuary. In polar environments with permanent temperatures around

oDC, low-temperature adapted bacteria should be the dominant organisms. The

aim of the present study was to isolate and describe the most abundant
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low-temperature adapted sulfate reducers from polar sediments. Special

attention was paid to organisms oxidizing acetate, propionate, lactate and

butyrate.

METHODS

Sources of organisms. Arctic marine sediments at Svalbard were sampled in

1995 on a cruise with the RV "Jan Mayen". Strains LSv21 T
, ASv26T and PSv29T

originated from Hornsund sediment (76°58.2 N, 15 °34.5 E) with a bottom

water temperature of 2.6°C. Strains LSv54T and LSv514T were isolated from

Storfjord sediment (77°33.0 N, 19°05.0 E) with a bottom water temperature of

-1.7°C. Further information about sampling sites are given in Glud et al.

(1998). "Desulforhopalus vacuo latus" strain Itkl0T (DSM 9700) was kindly

provided by Kai Finster, Arhus, Denmark; Desulfovibrio giganteus (DSM 4123)

was obtained from the Deutsche Sammlung von Mikroorganismen und

Zellkulturen (DSMZ), Braunschweig.

Enrichment, isolation and cultivation. Sediment samples were collected with a

multicorer and subsampled directly on deck of the ship at an ambient

temperature of 2- 7°C. Subcores were sliced in an anaerobic glove bag and

samples from five sediment depths between the surface and 30 cm were

transferred to 90 ml sterile artificial seawater medium. These samples were

suspended for two minutes with a vortex mixer and further diluted in 15 ml

Hungate tubes containing 10 ml medium (Widdel and Bak, 1992). The medium

contained (in g r l
): NaCI, 26.4; MgS04·7H20, 6.8; MgCI2·6H20, 5.7; CaCI2·2H20,

1.5; KBr, 0.09; KCI, 0.7. After autoc!aving, the medium was cooled under a gas

mixture of CO/N2 (10/90, v/v) and the following components were added: 50 ml

of a NH4Cl (5 g rl
) and KH2P04 (4 g rl

) solution, I ml nonchelated trace

element solution, I ml selenite-tungstate solution, I ml vitamin solution

(modified solution 6, with an additional 4 mg folic acid and 1.5 mg lipoic acid
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per 100 ml), 1 ml thiamin solution, I ml vitamin B I2 solution, I ml riboflavin

solution (25 mg rl in 25 mM phosphate buffer, pH 3.2), 30 ml bicarbonate

solution (I M), I ml resazurine solution (I g r') and I ml sodium sulfide

solution (I M). If necessary, the pH was adjusted with HCI or NaOH to 7.1-7.3.

The medium was dispensed under an atmosphere of COiN2 (10/90, v/v) into

sterile serum bottles that were closed with black butyl rubber stoppers or into

sterile IS ml Hungate tubes. Before inoculating the medium, dithionite (final

concentration ISO JlM) and the desired carbon source were added from sterile

stock solutions. The dilution series were inoculated on board the ship and

transported back at 4°e. In our laboratory they were incubated at five different

temperatures between 0 and 20°e. For the isolation of pure cultures the

modified deep agar dilution technique (Isaksen and Teske, 1996) was applied,

which protects temperature sensitive organisms from overheating. Agar (Agar

Noble, DIFCO, Detroit, USA) was washed five times with distilled water (Widdel

and Bak, 1992) before use. After three to four subsequent agar dilution series,

30 different pure cultures were isolated from the 0, 4, and 10°C enrichments.

Stock cultures were kept at the temperature used for isolation and transferred

every three to four weeks to fresh medium. For the characterization of pure

cultures, the saltwater medium (Widdel and Bak, 1992) with a lower

concentration of major salts was used. This medium contained (in g rJ
): NaCI,

20; Na2S04, 4; MgCl 2·6H20, 3; CaCI2·2H20, 0.15; KBr, 0.09; KCI, 0.5. After

autoclaving, the medium was prepared as described above. To prevent a damage

of temperature sensitive cells, great care was taken to protect enrichments and

pure cultures from temperatures above those used for isolation.

Physiology and metabolism. The salt requirement for growth was monitored In

media with 15 different NaCI concentrations between 0.2 and 5.8 % (w/v) or 16

different MgCI2·6H20 concentrations between 0.0 and 7.0% (w/v). The

concentration of all other salts, except the one tested, were kept constant. The

vitamin demand of the different strains was tested for at least ten subsequent
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transfers on medium without vitamins. The pH optimum was tested using media

adjusted to 12 different pH values between 4.9 and 9.1. The pH was adjusted in

triplicate tubes with HCI or NaOH and the tubes were inoculated. The initial pH

was measured in one tube and the remaining tubes were incubated. Sulfide was

measured periodically during the following six months. Growth with different

electron donors was tested with sulfate as electron acceptor. Tubes without

electron donor were inoculated and served as negative controls. Sulfide was

measured periodically during the following year. Growth tests on different

electron acceptors were made in sulfate-free medium which was supplied with

the carbon source used for isolation of the tested strain and either thiosulfate

(10 mM), elemental sulfur, nitrate (5 mM), nitrite (2 mM), Fe(III)­

oxohydroxide, or Fe(III)-citrate (30 mM). Amorphous Fe(lII)-oxyhydroxide

was prepared by titration of an acidic FeCI, solution (0.5 M) with NaOH (2 M)

to pH 7.0. Elemental sulfur was added with a spatula from a sterilized

suspenSIon, all other electron acceptors were added from sterilized stock

solutions. Tubes without electron donor served as negative controls.

Disproportionation of thiosulfate and elemental sulfur was tested in sulfate free

medium. Either 20 mM thiosulfate or elemental sulfur plus

Fe(III)-oxyhydroxide were added to the tubes. Additionally 2 mM acetate was

added as a carbon source. All test tubes were inoculated with a sulfate-free

preculture. The same precultures were used as inoculum for fermentation tests.

Test tubes contained no electron acceptor but either lactate, pyruvate, fumarate,

malate, or propionate at a final concentration of 10 mM. Growth was measured

by direct counts under the light microscope. All tests were incubated at least in

duplicates at the temperature used for isolation of the different strains, 4 or

10°e.

Fatty acids, Iipoquinones and polar lipids. Cellular fatty acids were determined

at the DSMZ, Braunschweig, Germany by R. M. Kroppenstedt. Fatty acid

methyl esters were obtained by saponification and separated using a gas
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chromatograph as described by Vainshtein et ai. (1992). Respiratory

Iipoquinones and polar lipids were extracted from freeze-dried cell material and

analyzed by thin layer chromatography (Tindall, 1990). The analyses were

carried out by B. J. Tindall at the DSMZ.

Pigments and Gram-staining. The desulfoviridin test was carried out as

described by Postgate (1984). Desulfovibrio giganteus (DSM 4123) served as

positive control. To determine the Gram-reaction of the strains, heat fixed cells

were stained with crystal-violet as described in Murray et al. (1994).

G + C content of genomic DNA. The G + C content of the genomic DNA was

determined by HPLC (Mesbah et ai., 1989) at the DSMZ.

Chemical analysis. Sulfide was measured with the quick method described by

Cord-Ruwisch (1985). If a higher precision was needed, the methylene blue

method of Cline (1969) was applied. Volatile fatty acids and lactate were

determined by ion exclusion chromatography with a HPLC system (Sykam,

Gilching, Germany) and a refractometer (ERC-7515, ERC. INC. Alteglofsheim,

Germany) as detector. The components were separated on a Sarasep WAI

column (300 x 7.8 mm) at 60°C with H2S04 (15 mM) as eluent. The flow was

adjusted to 0.6 ml min· l
• 50 IJ.I of a 0.45 IJ.m filtered sample (Acrodisc 4,

Gelman Sciences, Michigan, USA) were injected on the column. Dissolved Fe2
+

was determined according to Stookey (1970) with a Ferrozine solution (I g 1'1

in 50 mM HEPES buffer, pH 7.0). A 100 IJ.I sample was diluted in 5 ml HCI

(0.5 M) and after IS minutes 50 IJ.I were removed and added to 2.5 ml of

Ferrozine solution and measured in a spectrophotometer (UV-1202, Shimadzu,

Duisburg, Germany) at a wavelength of 562 nm. Organic carbon was

determined in a CHNS analyzer (Cutter and Radford-Knoery, 1991). A known

culture volume was filtered on two GF/F-filters (1.28 cm, Frisenette, Ebeltoft,

Denmark) placed in two filter holders on top of each other. The lower filter was

used as a blank. The filters were flushed with a marine salt solution and then

dried in a stream of sterile-filtered air. The filters were placed in tin capsules
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and 50 III distilled water and 50 III HCI (50 mM) were added to dissolve the

bicarbonate. After two hours the filters were dried over-night at 105 DC and

analyzed on a CHNS analyzer (NA 1500N, Fisons, Rodano, Italy)

Growth determination and growth rates. Since most of the isolates tended to

grow in aggregates the determination of growth via an increase of the optical

density (00) was difficult. Growth was therefore measured routinely by the

increase of sulfide in the cultures. Sulfide concentrations correlated

significantly with bacterial cell numbers in the cultures (P < 0.005). If direct cell

counts or 00 were needed, cultures were carefully homogenized with an

ultrasonic probe (HD200, Bandelin, Berlin, Germany) applying the lowest

intensity. Microscopic controls revealed that cells were not damaged by this

treatment. Direct cell counts were made under the microscope in an improved

Neubauer chamber. The 00 was measured in a spectrophotometer (UV-1202,

Shimadzu, Duisburg, Germany) at 580 nm. Growth rates were calculated in

exponentially growing cultures by a linear regression of In 00580 as a function

of time.

DNA isolation and DNA-DNA hybridization. DNA of strains LSv514T
,

LSv54T
, and "Desuljorhopalus vacuo latus" Itk IOT was isolated according to

Marmur (1961). DNA-DNA hybridization was performed using the

hydroxylapatite method as described by Ziemke et al. (1998) with the

exception that DNA was labeled with 32p-dCTP by nick translation as described

by Rossello-Mora et al. (1994). After denaturation, DNA-DNA mixtures were

incubated at 30 DC below the melting temperature of homologous DNA, which

in our case was 62 DC for all hybridization pairs. The degree of reassociation

(binding ratio) was calculated by dividing the counts for double stranded DNA

by the total counts for double and single stranded DNA. The relative binding

ratio for the heterologous pairs is expressed as the percentage of homologous

binding (Lind and Ursing, 1986).
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168 rDNA amplification. Cells were harvested from 2 ml culture samples by

centrifugation and resuspended in 100 III of I x PBS. A subsample of 1 III was

used directly as template for the amplification of 16S rONA. PCR reactions

were performed as described by Buchholz-Cleven et at. (1997). To amplify the

nearly complete 16S rONA, primers 8F11492R (Buchholz-Cleven et at., 1997)

were used in a 35 cycle PCR with an annealing temperature of 40°C.

168 rDNA sequencing. PCR products were purified with the QIAquick PCR

Purification Kit (Quiagen, Hilden, Germany). The Taq DyeDeoxy Terminator

Cycle Sequencing Kit (Applied Biosystems, Foster City, USA) was used to

directly sequence the purified PCR products. Sequencing reactions were

analyzed on the Applied Biosystems 373S DNA sequencer. Both strands of the

amplification products were sequenced using primers 8F, 787F, 787R, 1175R,

1099F, 1492R (Buchholz-Cleven et at., 1997). Primer nomenclature refers to

5'-ends of the respective target sites on the 16S rONA according to the E. coli

numbering of 16S rRNA nucleotides (Brosius et al., 1981).

Phylogenetic analysis. The ARB program package and the ARB database

(Strunk et af., 1999) were used for phylogenetic analysis. Sequences were

aligned to the 16S rRNA primary structures present in the ARB database by

using the automatic aligner tool and the results were corrected manually where

necessary. Pairwise distance matrix analysis was performed with the 16S rRNA

sequences taking only those positions into account that were present in both

sequences. Evolutionary distances were calculated using the Jukes-Cantor

correction. Phylogenetic trees were reconstructed with representatives of most

genera from the 0 subclass of Proteobacteria. A selection of representatives for

major groups outside this subclass was used as an outgroup. Only sequences

with at least 1400 nucleotides were used. Tree topology was evaluated by using

neighbour joining, maximum parsimony, and maximum likelihood algorithms

on either the full set of data or on a selected subset. Furthermore, filters were

applied that excluded positions with less than 50% conservation within the 0
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subclass. Branching orders that were not supported by all methods are shown as

multifurcations.

Naming of strains. The isolated strains were named with a code indicating the

carbon source used for isolation (L = lactate, A = acetate, P = propionate), the

sampling site (Sv2 =Hornsund, Sv5 =Storfjord) and a number.

RESULTS

Enrichment and isolation. Enrichment cultures at 4 and looe started to

produce sulfide after 4 weeks if lactate was used as carbon source, and after 8 to

10 weeks if acetate or propionate was used. Sulfide producing enrichments were

transferred to fresh medium until stable enrichments were obtained and

subsequently agar dilution series were inoculated. After six to eight weeks all

dilution series were dominated by brownish to blackish disk-shaped, smooth

colonies. If lactate was used as carbon source, also white, fluffy colonies were

present in the lower dilutions. Single colonies were picked and directly

transferred to new dilution series until pure cultures were obtained. Only the

brownish colonies contained sulfate reducers. Thirty pure cultures were isolated

from different sediment samples and dilution steps. Based on a preliminary

physiological and phylogenetic characterization, the five psychrophilic strains

presented here were selected for further description. Strains LSv21 T, LSv54T and

LSv514T were isolated on lactate, whereas acetate was used for the isolation of

ASv26T
, and propionate for the isolation of PSv29T

• The temperature during

isolation was 4°e for ASv26T
, LSv21 T

, PSv29T and LSv514T and I ooe for strain

LSv54T
•

Purity controls. All strains were transferred on media containing yeast extract

(0.1 % w/v) and either formate (20 mM), pyruvate (10 mM), glucose (5 mM),

fructose (5 mM), or the carbon source used for isolation of the respective strain.
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Microscopic examinations revealed that no morphologies different from the

tested strains could be detected in any culture. Growth on yeast extract, glucose

or fructose was never observed. Additionally the different strains were

transferred to agar dilution series. Only the strain typical colony morphologies

developed in all dilution steps.

Morphology. Cells of the acetate oxidizing strain ASv26T (Fig. Ia) were thick

rods with rounded ends. Growth in loose clumps was often observed. Cells of

strain LSv21 T (Fig. Ib) were slightly curved rods with rounded ends. PSv29T

(Fig. Ie) was a large, slightly curved, peanut shaped rod. The cells grew

exclusively in dense aggregates and single cells could hardly be observed at any

growth stage. Cells of strain LSv54T (Fig. Id) often appeared in pairs. In

exponentially growing cultures frequently one or two shorter cells between two

long cells could be observed. Cells of LSv514T (Fig. Ie) were short rods often

growing in clumps containing up to several hundred cells. In old cultures of

strains ASv26T
, LSv21 T, PSv29T and LSv54T some cells were motile. All isolated

strains stained Gram-negative.

Growth conditions. All strains had pH optima in the neutral range (Table I).

Marine sodium concentrations supported optimum growth of ASv26T
, LSv2I T

,

PSv29T
, and LSv514T but the lower range of optimal sodium concentrations

differed slightly (Table I). Although strain LSv54T was enriched and isolated

on medium with a marine salt concentration of 2.5 % NaCI and 1.1 %

MgCI2·6H20 it had a remarkably lower salt optimum of 1% NaCI and 0.034 to

0.7% MgCI2·6H20. Marine magnesium concentrations supported optimum

growth of strains ASv26T
, LSv2I T

, PSv29T and LSv514T
• All strains grew well at

a temperature of -1.8°C but optimum growth temperatures were up to 20°C

higher (Table 1). LSv21 T and LSv514T had highest growth rates at about 18°C
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Fig. I. Phase contrast
photomicrograph of (a) Desulfofrigus
oceanense, strain ASv26T

, (b)
Desulfofrigus fragile, strain LSv21 T,

(c) Desulfofaba gelida, strain PSv29"'",
(d) Desulfotalea psychrophila, strain
LSv54T

, and (e) Desulfotalea arctica,
strain LSv514T

. Bar equals I0 ~m for
all prints.
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with growth rates, Il =0.036 h-I and Il =0.021 h- I (td = J9 hand 33 h),

respectively, when grown on lactate. A lower optimum temperature of JO°C was

characteristic for strains ASv26T (Il = 0.0041 h- I
, td = 169 h on acetate) and

LSv54T (Il =0.026 h- I
, td =27 h on lactate). PSv29T grew fastest at 7°C with

Il =0.0048 h- I (td = 144 h on propionate). At the next higher temperature tested

(10°C) this isolate could only reduce sulfate but not grow. A detailed

description of the temperature response of the strains will be presented

elsewhere (Knoblauch et aI., 1999a). Added vitamins were not required by any

of the strains. Cultures were transferred usually with 10% inoculum since some

of the strains exhibited a very long and unpredictable lag phase if smaller

inocula were used. Strain LSv21 T lysed rapidly in the stationary phase and was

therefore transferred every second week.

Substrate spectra. Strain ASv26T grew on a wide variety of carbon sources

(Table 1) and oxidized fatty acids such as formate, acetate, butyrate, and

valerate completely to CO2, Although LSv21 T was isolated on lactate, it grew

also on longer-chain saturated fatty acids (C6, C 10, C 16) which were on Iy

incompletely oxidized to acetate. Fast growth was also found with different

alcohols. PSv29T was the only strain, that could grow on propionate which was

incompletely oxidized to acetate. Growth was also possible on alcohols and

dicarboxyJic acids. The substrate spectrum of strains LSv5 J4T and LSv54T was

similar but distinct from the other strains LSv21 T, ASv26T and PSv29T (Table I).

With the exception of formate, no straight chain fatty acids were oxidized but

both strains grew fast on hydrogen when acetate was added as carbon source.

Lactate was incompletely oxidized to acetate. In comparison to LSv514T
, strain

LSv54T had a wider substrate spectrum, growing also on various alcohols and

amino acids. The electron acceptors used by the different strains are listed in

Table J. Besides sulfate, strains ASv26T
, PSv29T

, and LSv54T used also

52



Characterization of psychrophilic sulfate-reducing bacteria

Table 1. Some characteristics of new psychrophilic sulfate-reducing bacteria

Characteri stic ASv26T LSv21 T PSv29T LSv54T LSv514T

cell size (~m)

width 2. I 0.8 3. I 0.6 0.7
length 4.2-6.1 3.2-4.2 5.4 -6.2 4.5-7.4 1.6-2.7

pH optimum 7.0-7.5 7.0-7.4 7.1-7.6 7.3-7.6 7.2-7.9
salt requirement (%)

NaCI optimum 1.5-2.5 1.0-2.5 1.4· 2.5 1.0 1.9-2.5
MgCI2·6Hp 0.003-2.0 0.3-2.0 0.015-2.5 0.03-0.7 0.3-1.4
optimum

temperature optimum 10 1 -1.8-16 18/-1.8-27 7/-1.8-10 101-1.8-19 18/-1.8-26
(Top,)/range ( 0c)
growth rate (h")/doubling 0.0041/169 0.036/19 0.0048/144 0.026/27 0.021/33
time (h) at Top,
electron donors 'j

formate (20) ++ + + ++ ++
acetate (10) ++
propionate ++
butyrate (5) ++ + +
valerate (5) +
caproate (3) ++
caprate (2) ++
palmitate (2) +-
lactate (10) ++ ++ ++ ++ ++
pyru vate (10) + ++ + ++1 ++
malate (10) ++ ++ + +-
succinate (10) +
fumarate (10) + + ++
ethanol (10) ++ ++ ++ ++ ++
propanol (10) ++ ++ ++ ++
butanol (10) ++ ++ ++ ++
glycerol (10) +- ++ +- +
glyci ne (10) +- +- +
alanine (10) + + +
serine (10) +- + + +-
H/C02 + acetate (2) +- ++ ++

'Numbers in parenthesis represent the concentrations of components in mM
'sulfate (28 mM) was used as electron acceptor, ++ = substrate oxidized after 6 weeks, + = substrate oxidized after 4 months,
+- = substrate oxidized after 8 months or more, - = substrate not oxidized; substrates tested but not oxidized:
formate (autotrophic), isovalerate (5), methanol (10), glutarate (10), betaine (10), cholin chloride (10), L-proline (10),
D-sorbitol (5), D-mannitol (5), benzoate (I), nicotinate (I) H, (autotrophic), glucose (5), fructose (5).
'no sulfide produced, only fermentative growth -
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Table I. Some characteristics of new psychrophilic sulfate-reducing bacteria (continued)

Characteristic ASv26T LSv21 T PSv29T LSv54T LSv514T

+

+

+

+

+

+
+
+

PE, PG, DPG PE, PG, DPG
MK-6H 2 MK-6

46.8 41.8

+

+

+

+
+

PE, PG
MK-8
52.5

+

+

+

+

+

+

+
+

+

+

+

electron acceptors"
sulfate (28)
thiosulfate (10)
sulfite (2)
sulfur
Fe(III)-citrate (30)
Fe(III)-ox yhydrox ide

fermentable compounds'
pyruvate (10)
malate (10)
lactate (20)
fumarate () 0)

polar lipids" and PE, PG PE, PG
major menaquinones MK-9 MK-9
G+C molar content (0/0) 52.8 52.1

'Numbers in parenthesis represent the concentrations of components in mM
'reduction of elemental sulfur up to a concentration of 3 mM but no growth
'4 mM Fe(lll) reduced after I year
'nitrate and nitrite were not reduced by any of the strains
flpE = phosphatidyl ethanolamine, PG = phosphatidyl glycerol. DPG = diphosphatidyl glycerol

thiosulfate and sulfite as electron acceptor. ASv26T
, LSv21 T, LSv54T

, and

LSv514T grew with Fe(III), added as ferric-citrate, as an electron acceptor.

LSv514T also reduced Fe(III)-oxyhydroxide and sulfur very slowly but could

not grow on these electron acceptors. All isolated strains fermented pyruvate but

none disproportionated thiosulfate or elemental sulfur.

Pigments, polar lipids, and respiratory quinones. Desulfoviridin was not

detected in any of the strains. The major polar lipids of all strains were

phosphatidylethanolamine and phosphatidylglycerol (Table I), In strains

LSv54T and LSv514T additionally diphosphatidylglycerol was present in lower

amounts. As indicated in Table 1 all strains contained menaquinones (MK). In

strains ASv26T and LSv21 T only MK-9 was present, which is uncommon for

sulfate-reducing bacteria and has only been found in Desulfonema magnum
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(Collins and Widdel, 1986). PSv29T contained MK-8 as the sole menaquinone,

which is also rare in sulfate-reducing bacteria but is characteristic for sulfur­

reducing Desulfuromonas strains (Collins and Widdel, 1986). In LSv54T
, the

major menaquinone was MK-6H2 but also traces (",I %) of MK-5H2 were

present. LSv514T only contained MK-6.

Cellular fatty acids. The cellular fatty acids of the different strains are

presented in Table 2. The new isolates contained none of the fatty acids that are

characteristic for known sulfate-reducing bacteria, namely the branched fatty

acids for Desulfovibrio species (Vainshtein et al., 1992), the lOme 16:0 for

Desulfobacter species (Dowling et aI., 1986), or the 17: I c9 for Desulfobulbus

species (Taylor and Parkes, 1983). The two strains ASv26T and LSv21 T had a

similar fatty acid pattern dominated by 16:1c9, 18:1c11 and 16:0. Only even

numbered fatty acids were present, an indication for the use of acetyl-CoA as

precursor for chain elongation during the synthesis of fatty acids (Taylor and

Parkes, 1983). Both strains contained a fatty acid (4.0 and 5.6% respectively)

with an equivalent chain length of 15.49 that could not be identified. A

completely different pattern was found in strain PSv29T which was dominated

by the 15:0 fatty acids. This acid was also found with 23% in Desulfobulbus

species grown on propionate (Taylor and Parkes, 1983), which was also the

carbon source of PSv29T
. The second most abundant fatty acid, 15: 1c9, is

uncommon in sulfate-reducing bacteria and was until now found only in low

amounts in a Desulfobacter spp. grown on a mixture of fatty acids (Dowling et

aI., 1986). In strain PSv29T
, 80% of the identified fatty acids were odd

numbered, an indication for propionyl-CoA as precursor for chain elongation.

The same result was also found in different Desulfobulbus species (Taylor and

Parkes, 1983). Two fatty acids with an equivalent chain length of 14.80 (5.5%)

and 19.47 (7.4%) could not be identified. Strains LSv54T and LSv514T
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Table 2. Fatty acid composition of psychrophilic sulfate-reducing bacteria

fatty acid ASv26' LSv21' PSv29' LSv54' LSv514' "D'rlzopalus
vacllolatus"

Ilk I0'

1.6

2.9
6.3

60.4
0.3

7.7
2.7

11.7
2.3
1.7
0.6

\.5

\.5
1.0

8.3

3.6
53.9
29.4

1.7

1.4
1.1
0.4

6.5

2.4

1.5
0.7

1.5
55.0
25.5

5.4

0.5
6.5
1.5
1.7
4.4
0.3
0.3

2.0
4.9
0.5

38.1
0.3

24.7

2.5
0.6

5.0

0.7

21.7

3.0
30.6
05

8.6
18.5

6.7
0.9

9.3

06

0.7
43.7
2.2

10:0
12:0
13:0
* 14:0
*14: Ic9
15:0
*15:030H
15: I c9
*16:0 aide
16:0
16:030H
16: Ic7
16: Ic9
16: I cl I
17:0
17: Icl I
18:0
18:030H
18:0 aide
18:lc9 2.8
18:lcll 23.0
18:lc13 0.4
20: Icl3 0.3
*abbreviations exemplified by: 14:0. tetradecanoic; 14: 1e9. 9-tetradecenoic. double bond
15:0 30H. 3-hydroxy-hepladecanoic; 16:0 aide, hexadecanal; major fatty acids are printed in bold

cis-standing:

exhibited a very similar fatty acid pattern which was clearly different from the

other new strains. The dominant fatty acids were the monounsaturated 16: 1,9

and 16: 1c I I comprising more than 80 % of the total identified fatty acids. Like

in ASv26T and LSv21 T, the strains have preferentially even chain fatty acids.

"DesuLjorhopalus vacuolatus" strain Itk IOT was included in our study since it

was so far the only known moderately psychrophilic sulfate-reducing

bacterium. It is most closely related to strains LSv54T and LSv514T
• The fatty

acid pattern of "Desuljorhopalus vacuolatus" was clearly dominated by the
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17: I c II fatty acid. Although "Desuljorhopalus vacuolatus" was grown on

lactate, propionyl-CoA was used as precursor for chain elongation, since odd

numbered fatty acids dominated with 87 % of the identified acids.

G+C content of genomic DNA. The molar G+C content of strains ASv26T
,

LSv21 T and PSv29T were very similar, 52-53 % (Table I). A lower content was

found in LSv54T (47%) and LSv5l4T (42%).

Phylogenetic affiliation. The 16S rONA sequences showed that all isolates

belonged to the 8 subclass of Proteobacteria. Although they share a common

characteristic in being psychrophilic, they do not form a cluster within the 8

subclass but are distributed between groups of mesophilic sulfate-reducing

bacteria (Fig. 2). All isolates had at least 9 % evolutionary distance from

16S rONA sequences of known mesophilic sulfate-reducing bacteria. Based on

their 16S rONA sequence, strains ASv26T and LSv21 T are closely related to each

other with an evolutionary distance of 3.2 %. We regard them as different

species since they showed distinct physiological differences with different

substrate spectra and with ASv26T being a complete oxidizer and LSv21 T being

an incomplete oxidizer. The closest relative to both strains was PSv29T with an

evolutionary distance of lOA and 10.5%, respectively, followed by

Desuljosarcina variabilis with a distance of 11.6% to ASv26T and 12.2% to

LSv21 T. PSv29T was not closely related to any known strain but shares the

highest 16S rDNA similarity with Desuljosarcina variablis (9.5 % evolutionary

distance). Strains LSv54T and LSv514T were closely related having 3.3%

evolutionary distance. Since their physiological and chemotaxonomic
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Fig, 2. Distance tree based on 16S rRNA sequences, The tree shows the 8 subclass of

Proteobacteria and was constructed by Neighbour-joining using a 50 % conservation filter. It
depicts the phylogenetic distances using Jukes-Cantor correction with the scalebar representing
10% estimated sequence divergence, Areas of interest where the branching order changed when
different treeing methods were applied are shown as multifurcation. The arrow indicates the
position of the outgroup (a selection of bacterial l6S rONA sequences from a wide range of
phyla). In addition to the Svalbard-isolates. which are shown here in bold. 37 known species

from the 8 subclass of Proteobacteria were selected to reconstruct the tree. These reference species

are shown here as groups for a better overview.

properties were quite similar (Table I) we performed DNA-DNA hybridization

to establish whether they belonged to the same species. The relative binding

ratio for DNA-DNA hybridization of these two isolates was below 20%,

therefore well below the threshold value of 70% accepted for the distinction of
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different species (Wayne et aI., 1987). Based on these results, strains LSv54T and

LSv514T can be regarded as two different species. The closest relatives of both

strains were Desulfofustis glycolicus and "Desulforhopalus vacuolatus" with an

evolutionary distance of 9.0-9.3 %.

DISCUSSION

Ecology. The psychrophilic isolates from permanently cold Arctic sediments

are the first known sulfate reducers that are able to grow below O°e. The

existence of low-temperature adapted sulfate reducers was evident, since

previous studies demonstrated that rates of sulfate reduction in polar sediments

were comparable to those from temperate environments (Sagemann et at., 1998;

Nedwell et aI., 1993). The new strains LSv54T and LSv514T grew fastest on

lactate, pyruvate, alcohols and hydrogen, which are the characteristic carbon and

energy substrates of Desulfovibrio species. In the present study, no organisms

morphologically resembling Desulfovibrio strains were detected In any

enrichment incubated between a and 1aoe and no Desulfovibrio strain was

isolated at low temperatures. These results are unusual, since Desulfovibrio

strains are generally dominant in lactate containing enrichment cultures

(Postgate, 1984). The major difference between previous enrichments and ours

was the temperature used for incubation, 28-36°e versus a-lOoe, indicating that

growth temperature might affect the outcome of competition between different

groups of sulfate reducers. This was also supported by the results of Isaksen and

Teske (1996) who enriched sulfate reducers with lactate from a temperate

estuary at 1O°e. They isolated the moderate psychrophilic strain Itk lOT, which

they described as the type strain of a new genus "Desulforhopalus

vacuo latus". However, it might also be that Desulfovibrio species are not

abundant in the investigated habitat, and that their ecological niche is taken by

species related to LSv54T and LSv514T. Strains LSv21 T and PSv29T oxidize
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vanous fatty acids such as propionate, butyrate, caproate, caprate and even

palmitate incompletely to acetate which can be further oxidized by strain

ASv26T to CO2• Besides lactate and hydrogen, volatile fatty acids are the most

important end products of fermentation and are the major organic substrates for

sulfate reducers in temperate environments (S0rensen et ai., 1981; Christensen,

1984; Parkes et ai., 1989). The fact that all these compounds were also oxidized

at sub-zero temperatures by the new psychrophilic isolates is a further

indication that these bacteria occupy the same ecological niche in cold

sediments as the mesophiles in temperate sediments.

Chemotaxonomy. According to their cellular fatty acid pattern the new strains

can be assigned to three distinct groups. The major fatty acids of both ASv26T

and LSv21 T were the 16:lc9, 18:lcll and the 16:0 acid (Table 2). This

combination is unique among the known sulfate reducers and supports the

assignment of these two isolates to a new genus. PSv29T, the closest relative to

ASv26T and LSv21 T, had a completely different pattern with the 15:0 and the

15: Ic9 fatty acids dominating. Both fatty acids were absent in Desulfosarcina

variabilis (Kohring et ai., 1994), which is phylogenetically closest related to

PSv29T. The third group comprised strain LSv54T and LSv514T. Both have a

very similar fatty acid pattern dominated by 16: I c9 and 16: I c 11, a combination

which to our knowledge has not been found in any other sulfate reducer.

"Desulforhopalus vacuolatus" strain Itk I OT was included in our study since it

is moderately psychrophilic and most closely related to strains LSv54T and

LSv514T. Its fatty acid pattern was dominated by the 17:lcll acid (Table 2) but

it contained also 12% of the 15: 1c9 acid. Therefore, in the euclidian distance

tree (data not shown) Itk 1OT was closer related to PSv29T than to LSv54T and

LSv514T. These results cannot be due to differences in the growth conditions,

because Itk lOT, LSv54T and LSv514Twere all cultivated with lactate on the same

medium at 4°C. The percentage of unsaturated fatty acids in strains LSv54T and
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LSv514T of 89 and 91 % (Table 2) is remarkably high. Among the mesophilic

sulfate-reducing bacteria the highest content of unsaturated fatty acids was 62%

in Desulfovibrio africanus (Vainshtein et aI., 1992). The high degree of

unsaturated fatty acids in the new strains can be an adaptation to low

temperature. Unsaturated fatty acids lower the gel-liquid-crystalline phase

transition temperature of membranes (Russell, 1990), thereby maintaining the

necessary fluidity at low growth temperatures. High concentrations of

unsaturated fatty acids were found also in ASv26T and LSv21 T (Table 2) but not

in PSv29T
. Another way to increase membrane fluidity is to decrease the fatty

acyl chain length (Bhakoo and Herbert, 1979). This is the case in PSv29T which

contains more than 70% fatty acids with a chain length of 15 carbon atoms or

less. It is not known if sulfate-reducing bacteria alter their membrane

composition when grown at different temperatures.

The menaquinone analyses showed similar relationships between the new

isolates as do the fatty acid profiles. ASv26T and LSv21 T contained only MK-9,

which was not fond in any of the other new isolates and out of 45 sulfate­

reducing bacteria strains investigated by Collins and Widdel (1986) it only

occurred in Desulfonema magnum. The sole menaquinone in PSv29T was

MK-8, which is absent in its closest relative, Desulfosarcina variabilis (Collins

and Widdel, 1986). Menaquinones with six isoprenoid subunits were dominant

in strains LSv54T and LSv514T (Table I). These menaquinones are

characteristic for most Desulfovibrio strains (Collins and Widdel, 1986).

Unfortunately, menaquinone data are not available for their closest relatives,

Desulfofustis glycolicus and "Desulforhopalus vacuo latus". The

chemotaxonomic data were in good agreement with the 16S rRNA sequence

data, which showed the same affiliation between the different isolates (Fig. 2).

More conflicting results arose from the substrate spectra of strains ASv26T and

LSv21 T. Although most closely related to ASv26T (evolutionary distance 3.2 %)

strain LSv21 T oxidized fatty acids only incompletely to acetate. Complete or
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incomplete substrate oxidation was traditionally used as a criterion to

distinguish genera of sulfate-reducing bacteria (Devereux et al., 1989; Holt et

aI., 1994). These distinctions have been supported by phylogenetic data. The

lowest evolutionary distance between a completely oxidizing species

(Desulfococcus multivorans) and an incompletely oxidizing sulfate-reducing

bacteria (Desulfovibrio sapovorans) was II %. Our results demonstrate that

complete substrate oxidation to CO2 is not always a phylogenetically deep

branching property. Chemotaxonomic parameters such as fatty acid pattern and

menaquinone content of the different isolates were in closer agreement with the

phylogenetic data than the substrate spectra.

Strains LSv54T and LSv514T were phylogenetically closest related to

Desulfofustis glycolicus and "Desulforhopalus vacuo latus". The new strains

shared only few general characteristics with the genus Desulfofustis, e.g. the

absence of desulfoviridin and the incomplete oxidation of lactate. The most

conspicuous feature, which the new strains shared with "Desulforhopalus

vacuolatus", is psychrophily. On the other hand, the new strains could be easily

differentiated from "Desulforhopalus vacuolatus" by the absence of gas

vacuoles, by their inability to grow on propionate, and by their completely

different cellular fatty acid pattern.

Taxonomic affiliation. The phylogenetically closest relative to ASv26T and

LSv21 Twas PSv29T with evolutionary distances of 10.4 and 10.5 %, respectively.

Due to this phylogenetic distance, as well as dissimilarities in physiology, the

fatty acid pattern, and menaquinone content we propose for ASv26T and

LSv21 T the establishment of a new genus, Desulfofrigus. On the basis of an

evolutionary distance of 3.2 %, distinct morphologies, temperature responses of

growth, and substrate spectra we classify ASv26T and LSv21 T as two species of

the genus Desulfofrigus. ASv26T is the type strain of the type species

Desulfofrigus oceanense and LSv21 T is the type strain of Desulfofrigus fragile.
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Due to the evolutionary distance of 9.5% between PSv29T and Desulfosarcina

variabilis and the differences in their physiology and chemotaxonomic

properties, we propose the establishment of the new genus Desulfofaba with

PSv29T as type strain of the type species Desulfofaba gelida.

Considering the phylogenetic distance between strains LSv54T
, LSv514T and

"Desulforhopalus vacuo latus" as well as their physiological, morpho logical

and chemotaxonomic differences, we place strain LSv54T and LSv514T in a new

genus Desulfotalea. Since both strains have distinct physiological properties and

a DNA-DNA similarity of less than 70% we define two new species of the genus

Desulfotalea, with LSv54T as type strain of the type species Desulfotalea

psychrophila and with LSv514T as type strain of Desulfotalea arctica.

Description of Desulfofrigus gen. nov.

De.sul.fo.fri'gus. L. prefix de, off; L. n. sulfur, sulfur; L. neut. n. frigus, cold;

M. L. neut. n. Desulfofrigus, sulfate reducer living in the cold. Members are

Gram-negative obligately anaerobic bacteria and belong to the 8 subdivision of

Proteobacteria. Sulfate is used as terminal electron acceptor and reduced to

sulfide. Fe(III) can also be used as electron acceptor. Fermentative growth on

pyruvate or other carbon substrates. Chemoorganotrophic growth on fatty acids

and alcohols that are either completely oxidized to CO2 or incompletely to

acetate. No chemoautotrophic growth. Major cellular fatty acids are even,

mono-unsaturated and unbranched. MK-9 is the dominant menaquinone. The

type species of this genus is Desulfofrigus oceanense strain ASv26T
• A second

member of this genus is Desulfofrigus fragile.
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Description of Desulfofrigus oceanense gen. nov., sp. nov.

o.ce.a.nen'se. L. adj. oceanensis, belonging to the ocean. Cells are 2.1 11m wide

and 4.2 to 6.1 11m long. The pH optimum is between 7.0 and 7.5. They require

sodium chloride and optimum growth occurs at marine salt concentrations. The

temperature optimum for growth is at lOoC and they grow also at -1.8°C. They

contain the polar lipids phosphatidylethanolamine and phosphatidylglycerol,

and MK-9 is the sole menaquinone. Major cellular fatty acids are 16: Ic9 and

18:lcl1. The molar G+C content is 52.8%. As electron acceptors they use

sulfate, thiosulfate, and sulfite which are reduced to sulfide. Fe(II1) serves as an

electron acceptor when added as Fe(II1)-citrate. Elemental sulfur, Fe(III)­

oxyhydroxide, nitrate and nitrite are not reduced. Formate, acetate, butyrate,

valerate, lactate, pyruvate, malate, ethanol, propanol, butanol, glycerol, glycine,

and serine serve as carbon substrates. Fatty acids are oxidized completely to

CO2, Growth on H2 plus acetate (2 mM) is slow. Fermentative growth on

pyruvate, malate, and lactate. Vitamins are not required for growth.

Desulfoviridin IS absent. Elemental sulfur and thiosulfate are not

disproportionated. Their habitat is permanently cold marine sediments. Strain

ASv26T is the type strain of the species and is deposited at the DSMZ under

number 12341 T. The 16S rDNA sequence was deposited at GenBank under

accession number AF099064.

Description of Desulfofrigus fragile sp. nov.

fra'gi.le. L. adj. jragilis, referring to the rapid lysis of the type strain 10 the

stationary phase. Cells are 0.8 11m wide and 3.2 to 4.2 11m long. The pH

optimum is between 7.0 and 7.4. They require sodium chloride, and optimum

growth occurs on marine salt concentrations. The temperature optimum for

growth is 18°C and they grow also at -1.8°C. They contain the polar lipids

phosphatidylethanolamine and phosphatidylglycerol, and MK-9 is the sole

menaquinone. Major cellular fatty acids are 16: I c9, 16:0 and 18: 1c 11. The
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molar G+C content is 52.1 %. As electron acceptor they use sulfate which is

reduced to sulfide. Elemental sulfur, sulfite, thiosulfate, nitrate, nitrite and

Fe(III)-oxyhydroxide are not reduced. Fe(III) serves as electron acceptor when

added as Fe(III)-citrate. Formate, butyrate, caproate, caprate, palmitate, lactate,

pyruvate, malate, fumarate, ethanol, propanol, butanol, glycerol, alanine, and

serine serve as carbon sources and electron donors. Fatty acids are oxidized

incompletely to acetate. Fermentative growth on pyruvate and malate. Vitamins

are not required for growth. Desulfoviridin is absent. Cells lyse rapidly in the

stationary growth phase. Elemental sulfur and thiosulfate are not

disproportionated. Their habitat is permanently cold marine sediments. Type

strain LSv21 T is deposited at the DSMZ under number 12345 T
. The 16S rDNA

sequence was deposited at GenBank under accession number AF099065.

Description of Desulfofaba gen. nov.

De.sul.fo.fa'ba. L. prefix de, off, L. n. sulfur, sulfur; L. fem. n. faba, a bean; M.

L. fem. n. Desulfofaba, a sulfate-reducing bean. Members are Gram-negative,

obligately anaerobic bacteria belonging to the 8 subdivision of Proteobacteria.

Sulfate is used as electron acceptor and reduced to sulfide. Fermentative growth

on pyruvate or other carbon substrates is possible. Major carbon sources and

electron donors are fatty acids and alcohols that are oxidized incompletely to

acetate. Major cellular fatty acids are odd numbered and unbranched. MK-8 is

the dominant menaquinone. The only species, Desulfofaba geUda, strain PSv29T

is the type species of the genus.

Description of Desulfofaba geUda gen. nov., sp. nov.

ge'li.da, L. adj. geUdus, ice-cold; referring to the low temperature optimum.

Cells are 3.1 /lm wide and 5.4 to 6.2 /lm long. The pH optimum is between 7.1

and 7.6. They require sodium chloride and magnesium chloride, and optimum

growth occurs at marine salt concentrations. The temperature optimum for
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growth is at 7°C and they grow also at -1.8 dc. They contain the polar lipids

phosphatidylethanolamine and phosphatidylglycerol, and MK-8 is the sole

menaquinone. Major cellular fatty acids are 15:0 and 15: 1c9. The molar G+C

content is 52.5 %: As electron acceptor they use sulfate, thiosulfate and sulfite

which are reduced to su Ifide. Elemental sulfur, nitrate, nitrite, Fe(III)­

oxyhydroxide, and Fe(III)-citrate are not reduced. Sulfur and thiosulfate are

not disproportionated. Formate, propionate, butyrate, lactate, pyruvate, malate,

succinate, fumarate, ethanol, propanol, butanol, glycerol, glycine, and alanine

serve as carbon sources. Fatty acids are oxidized incompletely to acetate.

Fermentative growth on pyruvate and fumarate. Vitamins are not required for

growth. Desulfoviridin is absent. Their habitat is permanently cold marine

sediments. Type strain PSv29T is deposited at the DSMZ under number 12344T
•

The l6S rDNA sequence was deposited at GenBank under accession number

AF099063.

Description of genus Desulfotalea gen. nov.

De.sul.fo.ta'le.a. L. prefix de, off, L. n. sulfur, sulfur; L. fern. n. talea, a rod; M.

L. fern. n. Desulfotalea, a sulfate-reducing rod. Members are Gram-negative

obligately anaerobic bacteria belonging to the 8 subdivision of Proteobacteria.

Sulfate is used as electron acceptor and reduced to sulfide. Fermentative growth

on pyruvate. Fe(III) can be used as electron acceptor. Major carbon or energy

sources are lactate, alcohols and hydrogen. Cellular fatty acids comprise even

numbered, mono-unsaturated acids. The dominant menaquinones have six

isoprenoid units. Desulfotalea psychrophila strain LSv54T is the type species of

the genus. A second member of this genus is Desulfotalea arctica.

Description of Desulfotalea psychrophila gen. nov., sp. nov.

psy.chro'phi.la, Gr. adj. psychros, cold; philos, loving; ML adj. psychrophilus,

cold loving. Cells are 0.6 11m wide and 4.5 to 7.4 11m long. The pH optimum is
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between 7.3 and 7.6. They require sodium chloride and magnesium chloride

for growth. The optimum sodium chloride concentration is 1 %. The

temperature optimum for growth is at lOoC and they grow also at -1.8°C. Cells

contain the polar lipids phosphatidylethanolamine, phosphatidylglycerol and

diphosphatidyl glycerol. MK-6H2 is the major menaquinone but traces of

MK-5H2 are also present. Major cellular fatty acids are 16: Ic9 and 16: I c II.

The molar G+C content is 46.8%. Sulfate, thiosulfate and sulfite are used as

electron acceptors which are reduced to sulfide. Elemental sulfur, nitrate, nitrite,

and Fe(III)-oxyhydroxide are not reduced. Growth by reduction of Fe(III), if

added as Fe(III)-citrate, is possible. Elemental sulfur or thiosulfate are not

disproportionated. Formate, lactate, pyruvate, malate, fumarate, ethanol,

propanol, butanol, glycine, alanine, and serine serve as carbon sources. They

grow on hydrogen plus acetate (2 mM). Organic substrates are oxidized

incompletely to acetate. Fermentative growth on pyruvate and fumarate.

Vitamins are not required. Desulfoviridin is absent. Their habitat is permanently

cold marine sediments. Type strain is LSv54T which is deposited at the DSMZ

under number 12343T
• The 16S rDNA sequence was deposited at GenBank

under accession number AF099062.

Description of Desulfotalea arctica sp. nov.

arc'ti.ca, L. adj. arcticus, from the Arctic, referring to the site were the type

strain was isolated. Cells are 0.7 ~m wide and 1.6 to 2.7 ~m long. The pH

optimum is between 7.2 and 7.9. Sodium chloride and magnesium chloride are

required for growth. Optimum growth occurs at marine salt concentrations. The

temperature optimum for growth is at l8°C and they grow also at -1.8°C. Cells

contain the polar lipids phosphatidylethanolamine, phosphatidylglycerol and

diphosphatidylglycerol. MK-6 is the sole menaquinone. Major cellular fatty

acids are 16: 1c9 and 16: I ell. The molar G+C content is 41.8 %. Sulfate serves

as electron acceptor and is reduced to sulfide. Thiosulfate, sulfite, nitrate, and
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nitrite are not reduced. Growth by reduction of Fe(III), if added as Fe(III)­

citrate. Elemental sulfur and Fe(III)-oxyhydroxide are slowly reduced without

growth. Elemental sulfur and thiosulfate are not disproportionated. Formate,

lactate, pyruvate, ethanol, glycerol, and serine serve as carbon sources and

electron donors. Hydrogen plus acetate (2 mM) allows rapid growth. Organic

substrates are oxidized incompletely to acetate. Fermentative growth on

pyruvate. Vitamins are not required for growth. Desulfoviridin is absent. Their

habitat is permanently cold marine sediments. Type strain is LSv514T which is

deposited at the DSMZ under number 12342T
. The 16S rONA sequence was

deposited at GenBank under accession number AF099061 .
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2.4.

Effect of temperature on sulfate reduction, growth rate, and growth yield in

five psychrophilic sulfate-reducing bacteria from Arctic sediments

CHRISTIAN KNOBLAUCH AND Bo BARKER J0RGENSEN

Max Planck Institute for Marine Microbiology

Celsiusstr. I

0-28359 Bremen

Germany

Five psychrophilic sulfate-reducing bacteria (strains ASv26, LSv21, PSv29, LSv54 and
LSv514) isolated from Arctic sediments were examined for their adaptation to permanently
low temperatures. All strains grew at -1.8°C, the freezing point of seawater, but their

optimum temperature for growth (Top,), were 7°C (PSv29), 10°C (ASv26, LSv54) and

18°C (LSv21, LSv514). Although Topt was considerably above the in situ temperatures of

their habitats (-I.7 and 2.6°C), relative growth rates were still high at O°C, accounting for

25-41 % of those at Topt ' Short-term incubations of exponentially growing cultures showed
that the highest sulfate reduction rates occurred 2-9°C above Top,. In contrast to growth and
sulfate reduction rates, growth yields of strains ASv26, LSv54 and PSv29 were almost
constant between -1.8 DC and Top,. For strains LSv21 and LSv514, however, growth yields
were highest at the lowest temperatures, around O°C. The results indicate that psychrophilic

sulfate-reducing bacteria are specially adapted to permanently low temperatures by high
relative growth rates and high growth yields at in situ conditions.
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INTRODUCTION

More than 90% of the world ocean floor has temperatures below 4°C

(Levitus and Boyer, 1994), hence benthic organisms must be active and grow in

the cold. Temperature adaptation of microorganisms is commonly described by

their optimum temperature (Top.), which is the temperature at which they grow

fastest. However, often their metabolical activity rather than their growth is

measured. Communities in cold sediments may appear poorly adapted to their

environmental temperature since their highest rate of growth or metabolism is

found far above the in situ temperature (e.g. Nedwell, 1989; Kirchman et aI.,

1993; Arnosti et al., 1998; Sagemann et aI., 1998). However, the successful

adaptation of bacteria to low temperatures appears from their competitiveness

under in situ conditions rather than from the temperature at which potential

growth rates are highest. Furthermore, in addition to growth rates, physiological

characters such as substrate affinity (Westermann et aI., 1989) or growth yield

(Herbert and Bell, 1977) are also temperature dependent and affect the outcome

of competition among different organisms (Gottschal, 1986; and references

therein).

Up to 50% of the organic carbon in marine sediments is mineralized to

CO2 by sulfate-reducing bacteria (SRB) (Jf/lrgensen, 1982) which are active over

a wide range of temperatures from below 0 to above 100°C (Jf/lrgensen et al.,

1992; Nedwell et aI., 1993; Sagemann et aI., 1998). Comparable sulfate

reduction rates have been found in temperate and polar sediments (Jf/lrgensen et

aI., 1990; Nedwell etal., 1993; Thamdrup etal., 1994; Sagemann et aI., 1998).

Despite the importance of cold sediments, studies of the temperature adaptation

of sulfate reduction in these habitats are scarce and the few studies conducted to

date suggest the predominance of a mesophilic population with a temperature

optimum between 20 and 30°C (Nedwell, 1989; Isaksen and Jf/lrgensen, 1996;

Sagemann et aI., 1998). All of these sediment studies are based on sulfate

70



Temperature adaptation of psychrophilic sulfate-reducing bacteria

reduction measurements, since growth of SRB could not be measured in the

environmental samples (Gilmour et at., 1990; Winding, 1992). Isaksen and

J0rgensen (1996) showed that a moderate psychrophilic SRB had highest

sulfate reduction rates at 28°C although the Top, was ten degrees lower, at 18°C.

This suggests that a mesophilic response of sulfate reduction in sediments might

still be assigned to a community with a psychrophilic growth potential.

In the present study we determined temperature curves of growth, sulfate

reduction, and growth yield in pure cultures of five different psychrophilic SRB

that were isolated from two permanently cold (-1.7 and 2.6°e, respectively)

marine sediments. We distinguish two groups of low-temperature adapted SRB

according to their optimum temperature of growth. Moderate psychrophiles

(psychrotrophs according to Morita, 1975) have a Topt above 15°C but still grow

at or below 5°C, and obligate psychrophiles (psychrophiles according to Morita,

1975) with a Top, below 15°C and growth at or below O°C. The terms T mio and

T max are used to indicate the lowest and highest temperature at which the

organisms were able to grow. The aim of the present study was to further

elucidate how and to what extent psychrophilic sulfate-reducing bacteria are

adapted to their permanently cold environment. The presented data indicate that

low-temperature adapted SRB from Arctic sediments have a physiological

competitive advantage under in situ conditions.

RESULTS

All strains grew at the freezing point of seawater, - I .8 °e, but temperature

optima were much above the in situ temperature of Arctic sediments and varied

between 7 and 18°C (Table I). On the basis of ToPI ' strains ASv26, PSv29 and

LSv54 were classified as obligate psychrophiles, strains LSv21 and LSv514 as

moderate psychrophiles. However, growth rates at environmental temperatures
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Table I. Temperature characteristics of psychrophilic isolates; tentative names (Knoblauch et
ai., 1999b) are given in parenthesis.

T,,,,, Relative growth T-range used
strain ( 0c) rate at 0 °C vs. 'En (±SD) for calculation

Topt (%) of 'En ( 0c)

ASv26 (Desuljofrigus oceanense) 10 24 59.0 ± 3.3 -2 - 17

LSv21 (Desulfofrigus fragile) 18 31 58.2± 3.4 -2 - 22

PSv29 (Desulfofaba gelida) 7 41 •:J.d.
LSv54 (Desuljotalea psychropila) 10 33 54.3 ± 1.8 -4 - 12

LSv514 (Desuljotalea arctica) 18 29 54.0± 1.5 -2 - 23

'En =apparent activation energy
'n.d. =not determined

are more relevant than Top, for the adaptation of psychrophilic bacteria to

permanently low temperatures. Consequently, we compared growth rates at aoc,
which is close to the in situ temperatures of Arctic sediments, to those at T oP' of

the isolates and found remarkably high relative rates of 24 to 41 % (Table I).

Sulfate reduction rates of all strains increased exponentially between T min

and T
oP'

and the Arrhenius equation provided a good fit of data in the respective

temperature ranges. Whereas optimum temperatures differed substantially,

apparent activation energies (EJ varied only slightly (Table I).

Temperature response of growth, sulfate reduction and growth yield. Strain

ASv26 grew fastest at I aoc and not above 15°C (Fig. Ia). Doubling times on

acetate as carbon and energy source were 7 days at ToP' but five weeks at the

freezing point of sea water, -1.8 0c. Highest sulfate reduction rates were found at

17°C (Fig. Ib), which is considerably above Top, and even above the temperature

range, in which strain ASv26 is able to grow. Growth yield of ASv26 was
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Fig. I. Temperature response of
growth (a), sulfate reduction rates (b),
and growth yield (c) of the
psychrophilic SRB strain ASv26,
grown on acetate. Highest specific
growth rates were found at 10°C,
maximum respiration rates at 17°C
and highest growth yield at 7 0c.

highest at rc (4.9 g dry weight mor l acetate) and decreased only slightly with

decreasing temperatures to 3.5 g dry weight mol" acetate at the lowest

temperature tested, -1.8 D C (Fig. Ic).

Strain LSv21, phylogenetically most closely related to ASv26 (3.2 %

evolutionary distance, [Knoblauch et ai., 1999bD, was isolated on lactate. Its

optimum temperature was about 18 DC with a maximum specific growth rate of

0.036 h'l or a doubling time of 19 hours (Fig. 2a). At -1.8 DC doubling times
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increased to 5.6 days. Maximum sulfate reduction rates were measured at 27°e

(Fig.2b) which is outside its temperature range for growth. In contrast to

growth and sulfate reduction, growth yield increased with decreasing

temperatures and was highest (7.2 g dry weight mor' lactate) at 4°e (Fig. 2c).

Between 4 and ooe growth yield was 1.5 to 1.7 fold higher than at ToPI '

Strain PSv29 was the only strain which was able to oxidize propionate. It grew

fastest at 7°e (Fig. 3a) thereby having the lowest temperature optimum of all
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Fig. 3. Temperature response of growth (a), and growth yield (b) of the psychrophilic SRB strain
PSv29, grown on propionate. Highest specific growth rates were measured at 7°C, but growth
yield was almost constant between -1.8 and 7 dc.

isolates. At looe it showed no substantial growth although it still produced

sulfide (data not shown). Growth on propionate was slow and doubling times at

TorI were 6 days but increased to more than 5 weeks at -1.8°e. Growth yield was

highest below Tort with a maximum of 3.8 g dry weight mol propionate-I at 5°e

(Fig. 3b). Between -1.8 and 5°e growth yield was nearly constant with a mean

value of 3.2 g dry weight mol-I propionate.

Strain LSv54 and LSv514 were both isolated on lactate as carbon and energy

source. They are phylogenetically closely related with an evolutionary distance

of 3.3 % (Knoblauch et at., 1999b). The temperature optimum of LSv54 was at

I ooe with a specific growth rate of 0.026 h- ' and a doubling time of one day

(Fig. 4a). At -1.8 °e, LSv54 showed highest growth rates of all isolates with

doubling times of four days. Sulfate reduction was highest at l2 0 e (Fig. 4b) but

specific sulfate reduction rates were about 10 fold lower than in strain LSv514

(Fig. 5b). These differences are most likely due to the growth
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phases of the cultures used for measurements. Sulfate reduction rates of strain

LSvS4 were measured in a culture grown to the late exponential growth phase

whereas the LSvS14 culture was in the early exponential phase. Measurements

of specific sulfate reduction rates in a LSvS4 culture revealed that cell-specific

sulfate reduction rates are highest in the early exponential growth phase and

decrease rapidly as the culture approaches the stationary growth phase (V.

Briichert, personal communication). Additional measurements with cultures of

LSvS4 and LSvS 14 in the same growth phase showed that both strains do have

comparable specific activities at the in situ temperature of the sediment
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Fig. 5. Temperature response of
growth (a), sulfate reduction rates (b),
and growth yield (c) of the
psychrophilic SRB strain LSv514,
grown on lactate. Highest specific
growth rates were found at 18°C,
highest sulfate reduction rates at
23 °C but highest growth yield
between aand 4 0c.

(Knoblauch et at., I999a). The growth yield of LSv54 between Tmin and Topt was

nearly constant with a mean value of 4.2 g dry weight mor l lactate (Fig. 4c).

Strain LSv514 grew fastest at 18°C with a doubling time of 33 hours (Fig. 5a).

Although Topt of LSv514 was 9°C higher than of LSv54, maximum growth rates

of the two strains were comparable. At -1.8°C doubling time was 8 days. Sulfate

reduction rates were highest at 23°C (Fig. 5b) and growth yield increased, as in

LSv21, with decreasing temperatures (Fig 5c). Maximum values of 5.6-6.0 g

dry weight mor l lactate were found between 4 and O°c. Hence at temperatures
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close to the in situ temperature of their natural environment growth yield was

2.] times higher than at Topl '

DISCUSSION

Temperature response of growth. All strains were able to grow at -I .8 °e,
the freezing point of seawater. Strains LSv54, PSv29, and ASv26 were obligate

psychrophiles with a TOPI of 7 to I aoe (Table I). These are the lowest optimal

growth temperatures reported for anaerobic prokaryotes (Dyrset et ai., 1984;

Franzmann and Rohde, 1991; Mountfort et ai., 1997; Franzmann et ai., 1997).

A TOPI approximately ten degrees higher was found for the moderately

psychrophilic strains, LSv514 and LSv21. It is a common observation that the

temperature optimum of psychrophilic bacteria is well above the in situ

temperature of their natural habitat (Delille and Perret, 1989; McMeekin and

Franzmann, 1988; Franzmann et ai., 1997; Bowman et ai., 1997b). However,

more critical for their adaptation to cold environments than T OPI is their

competitiveness at low in situ temperatures. The comparison of growth rates at

aoe to those at T OPI yielded for all strains high relative rates of 24 to 41 %

(Table 1). For comparison, the only other two sulfate reducers known to grow at

aoe, Desulfobacter hydrogenophilus (Widdel, 1987) and "Desuijorhopaius

vacuoiatus" (Isaksen and Jjijrgensen, ] 996), had relative growth rates at a°e of

only 2 and 8% of those at Top" respectively. Furthermore, growth rates of strains

LSv514 and LSv21 at aoe were 3-5 fold higher than those of "Desuijorhopaius

vacuoiatus" (Isaksen and Jjijrgensen, 1996), although Top, of these strains were

the same.

The significance of TOPI for the competitiveness of bacteria at low

environmental temperatures is a topic of dispute. Harder and Veldkamp (1971)

showed In chemostat experiments with an obligately psychrophilic
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Pseudomonas sp. and a facultatively (moderately) psychrophilic Spirillum sp.

that the obligate psychrophile outgrew the facultative psychrophile at -2°C and

that the opposite was true at 16°C. The authors concluded that obligate

psychrophiles have higher growth rates at low temperatures than facultatively

(moderately) psychrophiles and are hence superior in cold environments.

However, a correlation between Topt and competitiveness at low temperatures

could not be found in chemostat experiments with two facultatively

psychrophilic bacteria having different temperature optima (20 and 24°C

respectively [Nedwell and Rutter, 1994]), since the "less psychrophilic" strain

(i.e. the one with the higher Top,) would overgrow the "more psychrophilic"

strain at temperatures below 12°C. Obligately psychrophilic bacteria appear to

be dominant in certain sea ice microbial communities (Deli lie, 1992; Helmke

and Weyland, 1995; Bowman et ai., 1997a), but the reason for this dominance

remained unclear because growth rates of obligate psychrophiles at very low

temperatures (-5 to 3°C) were not different from those of facultative

psychrophiles (Helmke and Weyland, 1995). Similar results were found in our

experiments: growth rates of strains LSv21 and LSv54 below 10°C were

comparable, whereas Topt was about 8°C different (Fig. 2 and 4), thus suggesting

that there is no clear correlation between Topt and growth rates at low

temperatures.

Strains LSv21, LSv54 and LSv514 were all grown on lactate as carbon

and energy source and had doubling times (t<J) at Topt between 19 and 33 h.

Growth was, therefore, only slightly slower than in mesophilic marine sulfate

reducers (t<J= 11-25 h) or in several Desulfovibrio species (t<J= 19-22 h) grown at

28°C (Brysch et ai., 1987; Lien et ai., 1998; Sass et ai., 1998). In contrast,

strains ASv26, grown on acetate, and PSv29, grown on propionate, had much

lower growth rates than isolates on lactate. At 10°C the doubling time of ASv26

was about 170 h or one week. However, among mesophilic SRB, only

Desulfobacter spp. grow rapidly on acetate with doubling times of about 20 h
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(Widdel and Pfennig, 1981). Phylogenetically, ASv26 is only distantly related to

Desulfobacter spp. and its closest mesophilic relative, Desulfosarcina variabilis

(Knoblauch et aI., 1999b) also grows slowly on acetate (Widdel, 1980). PSv29

grew with a doubling time of 140 h at 7°C, which is much slower than the

mesophilic propionate oxidizing Desulfobulbus strains (10-12 h at 30-35°C,

[Widdel and Pfennig, 1982; Samain et al., 19R4; Lien et aI., 1998]).

Furthermore, growth on carbon sources other than propionate was not faster

(data not shown), indicating that high doubling times were not due to unsuitable

carbon sources. Widdel et al. (1983) observed doubling times of 100 h at

28-30°C in Desulfonema strains when they were grown with acetate on the same

medium we used, but growth rates could be raised more than 3 fold by the

addition of anaerobic fermented yeast extract and manure. Hence, one reason

for slow growth of ASv26 and PSv29 could be the lack of complex growth

stimulating substances possibly present in the sediment but not in our defined

medium.

Temperature response of sulfate reduction rates. Sulfate reduction rates

of all psychrophilic isolates increased exponentially from below Tonill (-1.8 0c) to

above the optimum temperature for growth. The data were fitted using the

Arrhenius equation and the apparent activation energies (EJ were calculated for

each strain. Ea values are a measure of the rate increase of a given process (e.g.

sulfate reduction) as a function of temperature. The higher the Ea values are, the

steeper is the increase of process rates. Ea values of the different strains were

nearly the same (54-59 kllmol) even though the temperature range used for the

calculations differed considerably (Table 1). Sagemann et al. (1998) measured

the temperature response of the sulfate-reducing community in the same

sediments from which the studied strains were isolated. They determined E a

values between 46 and 74 kllmol (mean 57 kllmol) in a temperature range of -2

to 25°C. These values are similar to those found for our pure cultures.
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Coincident apparent activation energies mean that sulfate reduction responds

similarly to increasing temperatures in the sediment and the pure cultures and

hence supports the interpretation that the studied isolates are members of the

SRB community active at in situ conditions.

Literature data on Ea of SRB in pure cultures are scarce. From specific

sulfate reduction rates between a and 3aoc of a Desulfovibrio desulfuricans

strain (Kaplan and Rittenberg, 1964), we calculated Ea values of 74 and

85 kllmol; a similar value of 86 kllmol was reported by Isaksen and l0rgensen

(1996) for "Desulforhopalus vacuolatus", a moderately psychrophilic SRB

isolated from a temperate estuary (Isaksen and Teske, 1996). Ea values of the

psychrophiles from polar sediments are lower, indicating that their energy

metabolism is less affected by decreasing temperatures than that of their

counterparts from temperate environments.

Highest sulfate reduction rates (SRR) occurred In all strains at

temperatures above Topl (Fig. 1-3 and 4), but whereas LSv54 and LSv514 were

still able to grow at these temperature (2-5°C above ToPI)' LSv21 and ASv26

were not (7-9°C above Top,). A difference between the temperature of highest

metabolic rate and highest growth rate was reported previously for aerobic

psychrophilic bacteria (Christian and Wiebe, 1974; Harder and Veldkamp,

1968) as well as for "Desulforhopalus vacuolatus" (Isaksen and l0rgensen,

1996). The significance of this difference in bacteria living at permanently low

temperatures is not clear, but in contrast to growth, the temperature response of

respiration depends on a more restricted part of the enzymatic machinery in the

cell. Pure enzymes from psychrophilic bacteria were shown to have highest

catalytic rates at 15-25°C above Topt of the whole organism (Hamamoto et aI.,

1994; Feller et aI., 1995). Such high temperature optima of enzymes in

psychrophilic bacteria might explain the discrepancy between TOPI for growth

and respiration.
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Temperature response of growth yield. Although strains ASv26 and

PSv29 grew very slowly on the substrates on which they were isolated (acetate

and propionate, respectively), growth yields of ASv26 (3.5-4.9 g per mol

acetate) were similar to those reported for the much faster growing, acetate­

oxidizing, mesophilic Desulfobacter strains (4.5-4.8 g per mol acetate [Widdel

and Pfennig, 198 I; Isaksen and J~rgensen 1996; Lien and Beeder, 1997]). The

same was the case for growth yields of PSv29 (3.2 g per mol propionate)

relative to those of mesophilic propionate oxidizing Desulfobuibus strains (4.3

to 5.5 g per mol propionat [Widdel and Pfennig, 1982; Lien et ai., 1998]).

LSv54 had an almost constant growth yield between Tmin and Tort (mean of 4.2 g

per mol lactate) but in LSv514 and LSv21 yield increased with decreasing

temperatures and was highest (5.6 or 6.5 g per mol lactate, respectively) at the

lowest growth temperatures (Fig. 2c and 5c). Literature data on growth yields of

mesophilic SRB with lactate as carbon source differ strongly. Lowest values of

about 2 g per mol have been reported for Desulfovibrio africanus (Traore et ai.,

1982) and Desulfovibrio gigas (Magee et ai., 1978). Most literature data are in

the range of 4-8 g per mol (Magee et ai., 1978; Traore et ai., 1981; Traore et

ai., 1982; Pankhania et ai., 1986; Kremer et ai., 1988; Sass et ai., 1998), and

highest yields of 109 per mol were reported for Desuifovibrio desuifuricans

strain Canet 41 (Senez, 1962). The growth yields of all investigated

psychrophilic SRB measured at Tmin are hence in the middle range of previously

reported values for mesophilic SRB at Tort.

Growth yield of a culture might be affected by the growth rate,

particularly when it is very low (Gottschal, 1986). Since in batch incubations

growth rates cannot be kept constant at different temperatures, this additional

variable must be considered. However, decreasing growth rates tend to cause

lower growth yields, because the relative energy requirements for maintenance

increase when growth rates slow down (Stouthamer and Bettenhaussen, 1973).

82



Temperature adaptation of ps)'chrophilic sulfate-reducing bacteria

Consequently, lower growth rates in batch incubations at lower temperatures can

hardly be responsible for the observed increase in growth yield.

The few earlier studies on temperature response of growth yields in

mesophilic SRB indicate that these are highest close to TOPI and decrease

strongly at Tmin (Isaksen and J~rgensen, 1996; Sass et ai., 1998). In contrast, the

growth yield in psychrophilic SRB tends to increase when temperature decreases

(LSv5 14, LSv21) or at least to stay nearly constant between Top, and T min

(Isaksen and J~rgensen, 1996; this study). Similar results were also reported for

other psychrophilic bacteria. Herbert and Bell (1977) found increasing growth

yields with decreasing temperatures in a psychrophilic Vibrio sp., whereas the

yield of a psychrophilic Pseudomonas sp. stayed almost constant between TnPI

and Tmin (Harder and Veldkamp, 1967). Two moderately psychrophilic aerobes

responded differently to decreasing temperatures (Nedwell and Rutter, 1994).

One strain showed a constant growth yield between TOPI and Tmin' whereas in the

other strain growth yield was more strongly affected by the initial substrate

concentration in the medium than by temperature. A possible explanation for

decreasing growth yield with increasing temperature is a less efficient coupling

of respiration and energy production in cells of strains LSv21 and LSv514

growing at higher temperatures. The same explanation was given previously to

explain low growth yields in mesophiles (Senez, 1962; Ng, 1969) as well as in

thermophiles (Coultate and Sundaram, 1975). Furthermore, a temperature

dependence of maintenance energy was demonstrated by Herbert and Bell

(1977) who showed that the maximum growth yield of a Vibrio sp. at the lowest

incubation temperature was due to minimum maintenance energy requirements

at that temperature. A similar temperature effect on maintenance energy, and

hence, on growth yield was also reported for a mesophilic Aerobacter strain

(Topiwala and Sinclair, 1971).

The competitiveness of Arctic psychrophiles in their natural environment

must depend on a combined adaptation to permanently low temperature and to
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the low nutrient concentrations of marine sediments. In addition to growth rates

and substrate affinity, growth yield also affects the outcome of competition

when substrates are limiting (Gottschal, 1986). Our results indicate that growth

yield is an important but often overlooked factor in temperature adaptation of

bacteria. High growth yields at low ambient temperature may be a characteristic

of cold-adapted bacteria and may provide the psychrophiles with a competitive

advantage at low temperature.

EXPERIMENTAL PROCEDURES

Origin of organisms. All strains were isolated from Arctic marine

sediments at Svalbard. Strains LSv21, ASv26, and PSv29 originated from

Hornsund sediment (76°58.2' N, 15°34.5' E) with a bottom water temperature

of 2.6°e. Strains LSv54 and LSv514 were isolated from Storfjord sediment

(77°33.0' N, 19°05.0' E) with a bottom water temperature of -I. re. Further

information about sampling sites are given in Glud el al. (1998). Strains LSv21,

LSv54 and LSv514 were isolated on lactate (20 mM), strain ASv26 on acetate

(15 mM), and strain PSv29 on propionate (20 mM). The incubation

temperature during isolation of all strains was 4°C, except for strain LSv54,

which was isolated at I O°e. Strains LSv21 and ASv26 will be described as two

species of the new genus Desulfofrigus, strain PSv29 as the only member of the

new genus Desulfofaba, and strains LSv54 and LSv514 as different species of

the new genus Desulfotalea (Table I). The complete physiological

characterization and the taxonomic affiliation of all strains will be presented

elsewhere (Knoblauch el aI., 1999b).

Cultivation of bacteria. For cultivation of psychrophilic SRB the sulfide

reduced artificial seawater medium described by Widdel and Bak (1992) was

modified as described in Knoblauch el al. (1999b). Marine salt concentrations

allowed optimum growth of all investigated strains except LSv54 which has a
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salt optimum of I %. That strain was consequently grown on 10 g NaCI per liter

medium. Stock cultures and precultures for temperature experiments were

incubated at the temperature used for isolation of the respective strains, 4 or

10°C. All strains were grown on the carbon substrate used for isolation.

Growth determination and direct cell counts. Since all isolates, except

LSv54, grew in aggregates, cultures had to be homogenized prior to optical

density (OD) measurements for growth determinations or direct cell counts.

Homogenization was performed by an ultrasonic probe (HD200, Bandelin,

Berlin, Germany) at the lowest intensity. Microscopic controls revealed that cells

were not damaged by this treatment. Cells were counted under the light

microscope in a Neubauer chamber (chamber depth 20 11m). OD was measured

in a spectrophotometer (UV-1202, Shimadzu, Duisburg, Germany) at 580 nm.

Specific growth rates were calculated in exponentially growing cultures by a

linear regression of In ODs811 as a function of time.

Growth yield determination. Growth yield is expressed as the cellular

biomass produced per amount of carbon substrate dissimilated. For growth

yield determination all cultures were sampled at the beginning of the

experiments and in the late exponential growth phase. Biomass produced was

calculated from the difference of carbon content in the cultures at the

beginning and at the end of experiments. Carbon was converted to dry weight

by multiplication with a factor of 2.1, assuming that the overall composition of

cellular biomass is C4H70, (Widdel and Pfennig, 1981). The amount of substrate

assimilated into biomass was calculated from the amount of biomass produced

(as C4H 70,) and subtracted from the total amount of carbon substrate utilized to

yield the amount of carbon substrate dissimilated.

Sulfate reduction rate measurements. Sulfate reduction rates of bacterial

pure cultures were measured with the radiotracer method (Sorokin, 1962;

J0rgensen, 1978). Pure cultures were grown in I liter of medium to the

exponential growth phase. At the beginning of most experiments, cultures had

85



Temperature adaptation of psychrophilic sulfate-reducing bacteria

produced 2-3 mM sulfide. A known culture volume of approx. 10 ml was

transferred aseptically to sterile 15 ml Hungate tubes, the gas phase was flushed

with CO/N2 (10/90, v/v) to remove oxygen, and the tubes were sealed with butyl

rubber stoppers. Cultures were preincubated for I h in a temperature gradient

block to establish a constant temperature. Afterwards 200 kBq ~5S0/-tracer

(Amersham, Braunschweig, Germany) was injected through the rubber stopper

and mixed into each culture. After 4 to 6 hours of incubation, sulfate reduction

was stopped by injection of I ml zinc-acetate (20 %) through the stopper and

tubes were vigorously shaken to trap all sulfide present in the headspace. The

15S-labelled sulfide formed was distilled with 6 M HCI in a single-step distillation

(Fossing and J¢rgensen, 1989). A 5 ml sample from the distillation was mixed

with 10 ml scintillation liquid (Ultima Gold XR, Canberra Packard, Dreieich,

Germany) and counting of ~5S0/ and Zn '5S was performed by a liquid

scintillation counter (Canberra-Packard 2400TR). Sulfate reduction rate blanks

were made by stopping the biological activity in a culture with I ml Zinc-acetate

prior to addition of the ~5S042--tracer. Blanks were then treated as described

above and the radioactivity of blanks was subtracted from the radioactivity of

the samples. Sulfate reduction rates were calculated according to J¢rgensen

(1978).

Temperature incubations. Temperature response of growth and growth

yield was determined for strains ASv26, LSv2l, PSv29 and LSv514 in 250 ml

cultures incubated in duplicates at 10 different temperatures. Since latter

cultures tend to grow in clumps, cultures were placed on a stirrer in temperature

controlled incubators and stirred with a magnetic bar, thereby keeping the

cultures as homogeneous as possible. At defined time intervals samples for OD

and sulfide measurements were withdrawn, and temperature was measured in a

bottle of water, placed on the stirrers adjacent to the culture vessels. Since strain

LSv54 did not build clumps, it was grown in 15 ml tubes and the OD of cultures

was measured directly in a spectrophotometer (UV-1202, Shimadzu). Triplicate
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cultures were incubated In an insulated temperature gradient block (Sagemann

et aI., 1998) between -1.8 and 20°C. At the beginning and end of the

experiments additional samples for volatile fatty acid analysis and cellular

carbon determinations were taken. The temperature response of sulfate

reduction in strains ASv26, LSv54, and LSv514 was determined by incubating

triplicate cultures in a temperature gradient block at 30 different temperatures

between -3 and 40°C. Experiments with LSv21 were not run in triplicate as

described above, because the cells of LSv21 slowly started to lyse during the

transfer of the I I culture to the individual Hungate tubes (see above). Thus

only up to 30 Hungate tubes could be prepared at a time that would produce

sulfate reduction rates unaffected by cell lysis (data not shown). A repeat run of

this experiment gave the same results.. In Fig. 2b the results of one

representative experiment are presented.

Chemical determinations. Culture samples for sulfate determination were

filtered through a 0.45 11m filter (Acrodisc 4, Gelman sciences, Michigan, USA)

and measured by unsuppressed anion chromatography (Waters HPLC system,

Waters Association, Milford, USA, consisting of a 510 HPLC pump, a

WISP 712 autosampler, an IC-Pak anion exchange column (50 x 4.6 mm), and

a 430 conductivity detector). The eluent was a I mM isophthalate buffer in

10% (v/v) methanol/water (pH 4.5). Cell carbon was determined with a CHNS

analyzer (Cutter and Radford-Knoery, 1991). A defined culture volume

(5-20 ml) was filtered on two GFIF-filters (1.28 cm, Frisenette, Ebeltoft,

Denmark) placed in two filter holders mounted in series. The second filter was

used as a blank. The filters were washed once with a salt solution (20 g NaCI,

3 g MgCl2·6H20 per liter water) and then dried in a stream of sterile-filtered air.

The filters were placed in tin capsules and 50 III distilled water and 50 III HCI

(50 mM) were added to dissolve the bicarbonate. After two hours the filters

were dried over night at 105°C and analyzed with a CHNS analyzer (NA I SOON,

Fisons, Rodano, Italy). Volatile fatty acids and lactate were determined by ion
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exclusion chromatography with a HPLC system (Sykam, Gilching, Germany)

and a refractometer (ERC-7515, ERC. INC., Alteglofsheim, Germany) as

detector. The components were separated on a Sarasep WA1 column (300 x

7.8 mm) at 60°C with H2S04 (15 mM) as eluent. The flow was adjusted to

0.6 ml min· l
. 50 III of a 0.45 j..lm filtered sample (Acrodisc 4, Gelman Sciences,

Michigan, USA) was injected on the column. Sulfide was measured by the

methylene blue method (Cline, 1969).

Calculations and determination of Top,. Temperature characteristics of

psychrophilic SRB were described by the Arrhenius function, Rate =
A·exp(-E;[R·Tr'), where A = a constant, Eo = apparent activation energy or

temperature characteristic of the reaction, R = gas constant and T = absolute

temperature in K. The function was fitted to sulfate reduction rates measured at

different temperatures by non-linear regression using KaleidaGraph 3.0.4

(Abelbeck Software). The Arrhenius function was used, because it provided a

good fit of the data and has proven useful to describe temperature response of

sulfate reduction (Abdollahi and Nedwell, 1979; Westrich and Berner, 1988;

Sagemann et at., 1998; Crill and Martens, 1987; Isaksen and J0rgensen, 1996).

To calculate Tmin , Top, and T mox values a nonlinear model described by

Ratkowsky et al. (1983) was applied to the data. However, since the function did

not fit satisfactorily to the measured growth rates, TOPI values were estimated

from the temperatures at which highest growth rates were determined.
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3. SUMMARY

Manuscript (l)

The background of the study presented in the first manuscript, Community size

and metabolic rates of psychrophilic sulfate reducing bacteria in Arctic marine

sediments were findings of similar sulfate reduction rates in permanently cold,

polar sediments as well as in temperate environments and the absence of any

cultivated sulfate-reducing organism that is able to grow in polar sediments.

Sulfate reduction rates in two permanently cold shelf sediments at Svalbard,

Arctic Ocean, were determined and sulfate-reducing bacteria were counted by

the cultivation-dependent most probable number (MPN) method. Besides the

estimation of the community size of a certain group of bacteria this method

allows a subsequent isolation of the most abundant cultivable organisms.

Furthermore, sulfate reduction rates per cell (i.e. specific sulfate reduction rates)

of 19 different psychrophilic isolates were measured at the in situ temperature

of the respective sampling sites. The specific sulfate reduction rates of 9

different mesophi lic marine sulfate-reducing bacteria were measured at 4-13 DC,

which are temperatures normally encountered in temperate sediments, and

compared to those of psychrophiles.

MPN-counts indicated that the investigated sediments are dominated by sulfate

reducers that are not able to grow at 20°C, i.e. by psychrophiles. Furthermore,

all isolated strains except of one, grew fastest at temperatures below 20°C.

However, more relevant for the adaptation to cold environments is the lowest

temperature at which growth occurred which was in all investigated strains the

freezing point of sea water, -1.8°C. Specific sulfate reduction rates of

psychrophiles at -1.7 and 2.6°C (in situ temperatures of the sampling sites) were

similar to those of mesophiles at 6-10°C higher temperatures.

The results of this study showed for the first time, that psychrophilic sulfate­

reducing bacteria are present in polar sediments and that they are adapted to
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permanently low temperatures by considerably higher specific sulfate reduction

rates than their mesophilic relatives at similar low temperatures. Comparable

sulfate reduction rates at both permanently cold and moderate sediments might

be explained by a similar community size and similar specific sulfate reduction

rates of psychrophiles at cold and mesophiles at moderate temperatures.

The second manuscripts is closely related to the first, since both describe studies

on the sulfate reducing community in the same sediments. In the first study

quantification of sulfate reducers was achieved by cultivation-dependent MPN

enrichments. Cultivation-dependent methods are still the only methods that

allow the isolation of the most abundant cultivable organisms. However, these

methods are known to be inherently selective and underestimate the active

population of microorganisms up to several orders of magnitude.

Manuscript (2)

In the second manuscript Phylogenetic affiliation and quantification of

psychrophilic sulfate-reducing isolates in marine Arctic sediments I 3

psychrophilic sulfate-reducing bacteria were phylogenetically classified. The

abundance of different groups of sulfate-reducing bacteria was determined by

cultivation independent 16S rRNA slot-blot hybridizations and a group of

psychrophilic sulfate-reducing isolates was quantified with a new 16S rRNA

01 igonucleotide probe.

The results showed that the new phylogenetic group of psychrophilic isolates

made up 23-30% of the total detected sulfate reducer community in the most

active sediment layers. Furthermore, high numbers of sulfate-reducing bacteria

identical to three of the isolated psychrophiles (strains LSv24, LSv23 and

LSv53) were found by denaturing gradient gel electrophoresis (DGGE) in both

sampling sites.

90



Summary

The results of this study confirm that the isolated psychrophilic sulfate-reducing

bacteria are quantitatively important representatives of the sulfate reducing

community.

Manuscript (3)

The third manuscript, Psychrophilic sulfate-reducing bacteria isolated from

permanently cold Arctic marine sediments: description of Desulfofrigus

oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba geUda

gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and

Desulfotalea arctica sp. nov., reports the detailed description of five new

psychrophilic sulfate-reducing bacteria. The described strains were isolated on

the most common fermentation products (acetate, propionate, lactate) which are

incompletely oxidized to acetate by Desulfofaba geUda, strain PSv29,

Desulfofrigus fragile, strain LSv21, Desulfotalea psychrophila, strain LSv54, and

Desulfotalea arctica, strain LSv5l4 and completely to CO2 by Desulfofrigus

oceanense, strain ASv26. Hence the most important substrates of sulfate

reduction in temperate sediments are also oxidized by the psychrophilic

isolates. All strains except LSv54, have a marine salt optimum and strains

ASv26, LSv21, LSv54 and LSv5l4 can grow by iron(III) reduction. The

temperature optima for growth of the different strains is between 7 and 18°C.

Chemotaxonomic variables, such as cellular fatty acid pattern, menaqumone

content and utilized carbon substrates, and phy logeny based on the 16S rRNA

sequence showed good agreement and the new isolates were assigned to three

new genera of the 8 Proteobacteria. The results of this study demonstrate, that

the psychrophilic sulfate-reducing bacteria in permanently cold sediments

differ phylogenetically from their counterparts in moderate environments but

suggest that they occupy the same ecological niche as mesophiles in moderate

environments.
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Manuscript (4)

The fourth manuscript, Effect of temperature on sulfate reduction, growth rate,

and growth yield in five psychrophilic sulfate-reducing bacteria from Arctic

sediments, is a detailed description of the temperature adaptation of the five

isolates described in the third manuscript. All investigated strains have

temperature optima below 20°C and Desulfofaba gelida, strain PSv29 has the

lowest growth optimum, 7°C, reported for any anaerobic prokaryote. Highest

metabolical activity were found in all strains at temperatures above the optimum

temperature of growth and Desulfofrigus oceanense, strain ASv26, and

Desulfofrigus fragile, strain LSv21, cannot grow at the temperatures where

sulfate reduction rates are highest. Growth rates at O°C, which is close to the in

situ temperature of their natural environment (-1.7 and 2.6°C respectively) were

still 25-4% of those measured at the optimum temperature for growth. Whereas

growth and respiration rates decreased with decreasing temperatures growth

yield increased in Desulfofrigus fragile, strain LSv2l, and Desulfotalea arctica,

strain LSv5l4, and was highest at the lowest temperature. Growth yield of

Desulfofrigus oceanense, strain ASv26, Desulfofaba geUda, strain PSv29, and

Desulfotalea psychrophila, strain LSv54, was almost constant between the

optimum temperature of growth (7 - 18°C) and the minimum growth

temperature (-1.8 0c). This temperature response of growth yield is different

from that in mesophilic sulfate-reducing bacteria where growth yield was found

to be lowest at the minimum temperature of growth. The results of this study

demonstrate that the isolated psychrophilic sulfate-reducing bacteria are

adapted to permanently cold environments by relatively high potential growth

rates at the low in situ temperatures. Highest growth yields at the lowest

temperatures appear to be a further adaptation to cold environments. Besides

growth rates and substrate affinity, growth yield affects the outcome of

competition among different microorganisms when carbon substrates are

limiting, which is the case in most marine sediments. Highest growth yield at low
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In situ temperatures IS hence a competItIve advantage for low temperature

adapted sulfate reducers living in cold sediments.

OUTLOOK

In the present study it was shown that the sulfate-reducing community in polar

sediments comprises organisms that are different from those isolated from

temperate sediments. Psychrophilic sulfate reducers living at permanently low

temperatures are adapted to their cold environment by having relatively high

metabolic activities, growth rates, and growth yields at temperatures below O°c.

However, the results presented here can only be seen as a first step and further

studies on environmentally important sulfate reducers are highly needed. As

pointed out previously, pure cultures of sulfate reducers that are active at

common environmental temperatures «15°C) have long been lacking and,

consequently, pure culture experiments were almost exclusively made at

temperatures irrelevant for most marine sediments. It remains unclear, to what

extent investigations with previously available laboratory strains can be related

to the natural environment. Future attempts to isolate sulfate-reducing bacteria

should be made at or close to the in situ temperature of the sampling sites to

obtain organisms that can be active at in situ conditions.

Laboratory culture experiments will always be artificial and can never reflect the

conditions encountered by microorganisms in their environment. However, if

we want to understand what adaptation of microorganisms to an environmental

parameter such as temperature means, we must try to resembled nature as close

as possible. Temperature is one important variable that affects competition

between microorganisms. Another variable is the substrate concentration.

Whereas temperature can be controlled easily in laboratory batch experiments,

substrate concentration cannot. The laboratory experiments reported in the

present study were made in batch cultures that contain about IOOO-fold higher
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substrate concentration than found in the environment. Growth rates measured

in these experiments are therefore only potential rates and much higher than

those under natural conditions. On the other hand, the actual growth rate of a

microorganism at a certain substrate concentration is one of the critical

parameters for the outcome of competition among organisms. The only way to

grow organisms continuously at low substrate concentrations is by the use of

chemostat cultures. Such chemostat experiments make it possible to study one

bacterial strain or the competition among different strains at conditions close to

those found in the environment. Even though these experiments are costly and

time consuming, especially when made with slow-growing organisms at low

temperatures, the results will give valuable insights into the ecological

physiology and, thus, the role of the studied organisms in the natural

community_

The combination of cultivation dependent and molecular methods was shown to

be a successful approach for investigations of new organisms in natural

communities. Therefore, studies on microbial ecology should combine the

advantages of both methods rather than rely only on one of both.
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