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Abstract
Mesoscopic models are constructed to accurately describe large-scale

features of polymeric systems. Yet many properties, what we call multi-
scale properties, of polymeric systems are affected by features on both large
and small scales. In this thesis, we address selected questions demonstrating
what mesoscopic models can do to understand the multiscale properties of
polymeric systems.

We employ a model which is typical for mesoscopic simulations and in-
vestigate two representative multiscale properties of polymeric systems. The
employed mesoscopic model defines polymer architectures with a worm-like
chain model. A quadratic functional of local density fields is used to define
the non-bonded interactions. The functional-based non-bonded interactions
are incorporated into particle-based simulations by using a particle-to-mesh
scheme. The model is used as a framework for off-lattice Monte-Carlo simu-
lations.

The first representative multiscale property studied in this thesis is
charge transport within emissive active layers of polymeric light-emitting
diodes. We compare charge transport in two types of multi-component active
layers, which are called blend-based or BCP-based active layers. These two
types of active layers contain blends or block copolymers (BCPs) formed by
semiconducting and insulating homopolymers or blocks. We use the meso-
scopic model to simulate morphologies of active layers under conditions
mimicking processing at different temperatures or compositions. Because
active layers in PLEDs are usually disordered layers, we identify the dis-
ordered morphologies by analyzing structure factors and hysteresis loops.
The disordered morphologies of blend-based and BCP-based active layers
are characterized and compared through local composition analysis. The
properties related to charge transport within two types of active layers are
compared through a simple percolation analysis of the morphologies. The
influence of mesoscopic description in our model on the properties related
to charge transport is discussed. The most important result is that the mor-
phologies near the order-disorder transition in BCP-based layers tend to have
stronger local segregation than the equivalent blend-based layers. By linking
morphologies with macroscopic electric conductance, we can qualitatively
predict through the mesoscopic model that the processing temperature has
stronger impact on electric conductance in BCP-based than blend-based lay-
ers. The above differences between the two types of layers increase as the
relative concentration of insulating polymers (blocks) increases.



vi

Subsequently, we focus on another multiscale property, the behavior
of knots in homopolymer melts. We clarify to what extent the mesoscopic
model describes the knotting properties. This is investigated by comparing
the results obtained from the mesoscopic model with that of a reference bead-
spring model. The bead-spring model takes into account the excluded vol-
ume around beads and describes the generic structural and conformational
features of polymer melts at all length scales. Therefore, one can obtain re-
liable reference data on knots from the bead-spring model. We consider dif-
ferent reference melts obtained from the bead-spring model, which contain
chains with different stiffness and lengths. The mesoscopic model is param-
eterized to accurately reproduce the mesoscopic features of these reference
melts. Then structure and conformational properties of melts generated by
our mesoscopic model are discussed on both small and large scales. After
that, we compare the knotting properties obtained from two models. Based
on the comparison, we further discuss the ability of mesoscopic model to de-
scribe the knotting properties of polymer melts. The main conclusion in this
study is that mesoscopic models can accurately reproduce the knotting prop-
erties of homopolymer melts when the characteristic length scale describing
chain stiffness is substantially larger than the size of excluded volume along
the backbone of polymer chains.
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Chapter 1

Introduction

Nowadays, polymeric systems are attracting significant attention of re-
searchers and are central of a wide range of applications1–4. Therefore, there
is an increasing demand on optimizing and developing novel polymeric sys-
tems to achieve better performance5. The optimization and development
rely on a precise understanding of relationships between material struc-
ture, processing conditions, and properties of interest. Simulation methods
have been proven to be efficient tools for predicting the structure-process-
properties relations6, and have been used to provide insights from molecular
level for understanding material properties, and guiding the design of novel
materials5,7,8.

In this thesis, we focus on particle-based simulation methods. They can be
classified into atomistic and coarse-grained (CG) simulation methods. The
key difference between these two groups of methods is the resolution with
which the studied system is represented. Atomistic simulations explicitly
consider all the atoms, and each atom is treated as an interacting site. In CG
simulations, several atoms or even molecules are represented by a CG bead,
which is the interacting site in CG systems. Accordingly, atomistic simula-
tions are necessary when one wants to investigate properties related to atom-
istic details. For example, atomistic simulations are useful for understanding
detailed interactions, e.g., hydrogen bonding and polymer-solvent interac-
tions9. Apart from that, atomistic simulations also can be used to generate
input information for the parameterization of CG models.

However, the ability of atomistic models to deal with polymeric systems is
restricted by their accessible length and time scales10–16, which are on the or-
der of 10−10 − 10−7 m and 10−9 − 10−6 s17, respectively. Polymeric systems
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frequently involve length and time scales larger than the scales that are ac-
cessible by atomistic models. For instance, when phase behavior of polymer
blends is studied, the domain size can be on the order of millimeters, and the
formation of such large domains may take several minutes or even hours18.
To study polymeric systems involving large spatial scales or slow processes,
one can use drastically CG mesoscopic models. In this case, large amounts
of atoms are lumped into CG beads, and these models are designed to re-
produce mesoscopic features or properties of studied systems. The validity
of drastic coarse-graining relies on the fact that many properties on large
scales reflect the synergy of a large amount of molecules. Therefore one can
intuitively expect that microscopic details of molecular architectures and in-
teractions become less important for these properties. Actually, it is already
theoretically proven that some properties are controlled by universal laws,
which do not depend on microscopic details19.

Because of the significantly reduced amount of degrees of freedom, the po-
tentials of mesoscopic models are soft20–22. Both the reduced degrees of free-
dom and soft potentials facilitate the sampling during simulations. There-
fore, mesoscopic models can be used to study various problems in polymeric
systems23. One important application of mesoscopic models is studying the
universal equilibrium behavior of polymeric systems24–27, especially of sys-
tems containing molecules with complex architectures28,29. Besides, bene-
fiting from the efficiency of mesoscopic models, one can simulate systems
on experimental scales or under various experiment-relevant conditions30,31.
Then we can gain important insights for interpreting experiments, based on a
molecular-level description provided by mesoscopic simulations24. One can
also use these models to investigate the dynamical questions related to the
phase formation or non-equilibrium phenomena in polymeric systems32–34.

As researchers apply mesoscopic models to study a broader range of poly-
meric systems, new challenges arise. One important challenge is that, the
ability of mesoscopic models to describe multiscale properties in polymeric
systems is unclear. The so-called multiscale properties do not simply reflect
a synergy of a large amount of molecules, but are determined by phenomena
on multiple scales. Namely, the effect of microscopic features can propa-
gate to the behavior of these properties on mesoscopic and even macroscopic
scales. However, mesoscopic models always provide simplified description
on small scales. For instance, the local liquid structure in mesoscopic models
is very crude. Motivated by this challenge, we study in this thesis two topics
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that involve multiscale properties. By employing a model which is typical
for mesoscopic simulations, we want to provide some useful insights for un-
derstanding the ability of mesoscopic models to describe these properties.
The first topic deals with an important technological application. The other
topic focuses more on the mesoscopic modeling itself and is of significant
fundamental and methodological interest.

In the first topic, we consider a typical organic electronic device, the poly-
meric light-emitting diode (PLED). A PLED35 is formed by several func-
tional layers sandwiched between two electrodes. The main layer is the
emissive active layer containing semiconducting polymers, within which the
light is generated through a radiative recombination of electrons and holes36.
The prerequisites for this recombination37 are the injection and transport of
charge carriers (electrons and holes). Frequently, it is the transport of charge
carriers within active layers which significantly influences the performance
of PLEDs38,39.

The charge transport within active layers is affected by features on multiple
scales. The materials forming active layers of PLEDs are normally in amor-
phous phase. The charge transport then operates via the move of charge
carriers along the chains and the transfer of charge carriers between adjacent
chains40. The charge transport along or between chains is highly influenced
by the fine microscopic features within active layers, e.g., chemical details,
local molecular packing41. Besides, to obtain conductive active layers, there
should be a mesoscopic, or even macroscopic network of pathways that al-
lows the charge carriers to travel from one side of active layers to the other.
The structure of this network of pathways highly depends on the mesoscopic
or macroscopic distribution of semiconducting molecules, or equivalently
morphology, within the active layer.

Having understood that charge transport within active layers is a multiscale
property, we design a study of multi-component active layers, which contain
amorphous mixtures of semiconducting and insulating polymers. Based on
a mesoscopic model, we first simulate the morphologies within active lay-
ers on experimental scales. Then the charge transport within active layers
is studied based on these morphologies. However, the local liquid struc-
ture within these morphologies is simplified. Therefore, we cannot extract
from the morphologies the necessary information41, e.g., reorganization en-
ergy, electronic coupling elements, site energies, etc., for considering the local
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move and transfer of charge carriers through rigorous kinetic Monte-Carlo
simulations42. Instead, we describe the move and transfer of charge car-
riers on local scales through a simple phenomenological transport model.
Based on the simulated morphologies and the simplified description of local
charge transport, we are able to study the network of pathways within active
layers. The active layers with different dilutions and annealing temperatures
are considered, mimicking layers processed under different conditions in real
experiments. The influence of the coarse representation of polymer chains on
the results is discussed.

In the second topic, we focus on knotting properties of polymer melts. In
our daily life, we routinely encounter knots in ropes and cables. Within
the microscopic scales, macromolecules also frequently form knots and these
knotted molecules have attracted increasing interest from scientists in dif-
ferent fields43. For example, it is of interest for polymer physicists to un-
derstand the effect of knots on conformational and dynamical properties of
polymers44,45.

Since the first simulation of knots formed in closed polymer chains con-
ducted by Vologodskii and coworkers in 197446, most of simulations of knots
formed in polymers are restricted to single chain systems. Simulation of
knotting behavior in many-chain polymeric systems are sparse. There is only
one recent study47 which investigates the knotting behavior in homopolymer
melts. One of the reasons hindering the investigation of knotting proper-
ties in many-chain polymeric systems is the limited computational efficiency
of available models. Knot formation in polymeric systems is a rare phe-
nomenon and occurs more frequently in longer chains47. Therefore, to study
knotting properties in many-chain systems, one needs to simulate large sys-
tems containing long chains, and consequently computational efficient mod-
els are necessary, e.g., mesoscopic models. However, the ability of meso-
scopic models to describe knotting properties in these systems is unclear.
This is because the knotting behavior in many-chain polymeric systems is in-
fluenced by factors on both local and mesoscopic scales47,48. For the moment,
one has to employ models reproducing key features on both local and meso-
scopic scales, e.g., hard-core bead-spring model, to study knotting behavior
in many-chain polymeric systems. The low computational efficiency of these
models imposes restrictions on the systems that one can simulate.
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To understand how well the mesoscopic models describe the knotting prop-
erties in many-chain systems, we focus on homopolymer melts. Benefit-
ing from earlier simulations where the knotting properties of polymer melts
have already been analyzed by using a hard-core bead-spring model47, we
generate mesoscopically equivalent melts with a typical mesoscopic model.
The knotting properties obtained from the mesoscopic model are compared
with reference data. Several reference melts containing chains with different
lengths and stiffness are considered.

Studying knotting properties of polymer melts with a model that is typical
for mesoscopic simulations is interesting from a fundamental point of view.
After we understand whether, or under which conditions mesoscopic models
reproduce the knotting behavior of polymer melts, we can use mesoscopic
models to address various open questions related to behavior of knots in
different multi-chain systems.

The content of this thesis is organized as follows. In Chapter 2, we first in-
troduce general concepts, definitions, and technical details of our modeling
and simulations. The studies of the first and second topic are presented in
Chapter 3 and 4, respectively. In both chapters, after providing a detailed
introduction to the topic, the parameterization of our mesoscopic model is
discussed. Before the discussions of multiscale properties, other properties
or observables which are necessary for the interpretation of results are ana-
lyzed. Chapter 5 provides a short summary.
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Chapter 2

Mesoscopic modeling of polymers
with soft potentials

2.1 Philosophies of coarse-graining

The essential concept of coarse-graining is to focus on only a small number
of relevant molecular features and ignore unnecessary atomistic details49,50.
Therefore, coarse-grained (CG) models replace one or more atoms51–54 with
an effective large particle. The process of replacing groups of atoms into large
particles, also called CG sites, is named "mapping-procedure"55–57. Given an
atomistic configuration, a mapping scheme M = (M1, ..., MNCG) defines co-
ordinates of NCG sites from coordinates of the grouped atoms. MI scheme
defines coordinate of the I-th CG site RI, I ∈ [1, NCG]. If I-th CG site rep-
resents mI atoms with coordinates rIi, i ∈ [1, mI], then RI = MI(rI1, ..., rImI).
MI(rI1, ..., rImI) is typically a linear combination of rIi, i.e. MI(rI1, ..., rImI) =

∑mI
i=1 cIirIi. Here the value of coefficients cIi are constant and positive. Gen-

erally, coefficients cIi are defined in a way that the position of I-th CG site is
the center of mass or geometry of the grouped mI atoms56. NCG mapped CG
sites specify a CG configuration. Notice that several atomistic configurations
may be mapped onto one single CG configuration.

The strategy for choosing a mapping scheme, such as how many atoms
should be combined into one CG site and how many types of CG sites are
needed, depends on studied systems and properties. Nonetheless, the map-
ping strategy is, to some extent, flexible. For example, one CG site in a CG
representation of a polymeric system can represent one carbon atom with its



8 Chapter 2. Mesoscopic modeling of polymers with soft potentials

bonded hydrogen atoms58, one repeat unit (several carbon atoms along back-
bone)59, or even an entire molecule60. The flexibility of mapping strategy
provides more possibilities for describing complex systems and processes on
large length or time scales61.

Having defined the CG representation of a target atomistic system, the po-
tential between CG sites can be formally defined from the framework of sta-
tistical mechanics using the concept of the potential of mean-force (PMF)62,63.
Considering that one mapped CG configuration corresponds to several con-
figurations in the atomistic model, the probability of observing a CG con-
figuration is equal to the sum of probabilities of observing corresponding
atomistic configurations. Accordingly, we can write,

PCG({RI}) =
∫

PAT({ri})δ(M({ri})− {RI})d{ri} (2.1)

with {RI} = {R1, ..., RNCG} denotes a CG configuration and is described
through the collection of all the coordinates of CG sites RI in the CG con-
figuration. Similarly, {ri} denotes an atomistic configuration described by
all the coordinates of atoms ri in the atomistic configuration. PCG({RI}) and
PAT({ri}) is the probability of observing the configuration {RI} or {ri} in
the CG or atomistic system, respectively. The definitions of configurational
probabilities PCG({RI}) and PAT({ri}) in the canonical ensemble are,

PCG({RI}) =
e−βUCG({RI})

ZCG
, PAT({ri}) =

e−βUAT({ri})

ZAT
(2.2)

where β = 1/kBT. UAT({ri}) is the potential used in the atomistic model
and UCG({RI}) is the PMF for CG configuration {RI}. ZAT and ZCG stands
for the partition function defining total number of states for an atomistic and
CG system, respectively. From eqs. 2.1 and 2.2, we can find the potential of
mean force UCG({RI}) as below:

UCG({RI}) = −kBT ln
∫

e−βU({ri})δ(M({ri})− {RI})d{ri}+ C (2.3)

where C = ln (ZCG/ZAT) and C is a constant number. For the reason that
partition functions ZCG and ZAT are fixed values at a given thermodynamic
state, as defined by the parameters of canonical ensemble.

The CG model based on PMF can exactly reproduce all structural properties
of the mapped atomistic model that can be observed within the accessible
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length-scales of the CG model. However, eq. 2.3 is a configuration-dependent
function. For most systems, it is impossible to evaluate the integral and cal-
culate UCG({RI}). In practice, we can only employ certain approximations
to PMF55,64–68. Up to now, a variety of strategies defining functions approx-
imating PMF in CG models are developed for different systems and ques-
tions. Due to the diversity of these strategies, it is not easy to classify them
into different categories. One conventional classification of these model-
ing strategies includes two types, ”bottom-up” and ”top-down”22,56,69. One
considers CG models as ”bottom-up” models when they are parameterized
through microscopic information obtained from systems with finer resolu-
tions65,67,70–72, e.g., classic atomistic models. In contrast, ”top-down” models
are tailored to reproduce certain macroscopic information73–77, such as struc-
tural, dynamic, or thermodynamic properties. Though it should be noted
that the boundary between ”bottom-up” and ”top-down” models is becom-
ing increasingly blurred because the number of CG models combining both
approaches is increasing. The models used in this thesis are constructed with
a ”top-down” approach. To motivate this choice, we summarize these two
approaches, ”bottom-up” and ”top-down”, in the next paragraphs.

The simplest and most straightforward method for constructing ”bottom-
up” models is direct Boltzmann inversion (DBI)55,78. It can be used to derive
both bonded and non-bonded potentials in CG models.

DBI defines bonded potentials in CG models such that the conformational
statistics of molecules is the same as reference atomistic models. The con-
formation of molecules is frequently characterized by their internal degrees
of freedom, including bond length r, bending angle θ, and torsion angle φ.
Assuming that different degrees of freedom are uncorrelated, one can define
independent probability distributions PCG(r, T), PCG(θ, T), PCG(φ, T). Here
T is temperature, through which we emphasize that the distributions are
temperature-dependent. These distributions can be obtained by sampling
reference atomistic configurations according to the given mapping scheme.
Then one obtains a bonded potential for individual degree of freedom by
inverting Boltzmann distribution functions,

UCG(r, T) = −kBT ln
PCG(r, T)

r2 + Cr

UCG(θ, T) = −kBT ln
PCG(θ, T)

sin(θ)
+ Cθ

UCG(φ, T) = −kBT ln PCG(φ, T) + Cφ

(2.4)
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where Cr, Cθ, and Cφ are constant numbers shifting minimum of potentials
to zero. Importantly, for CG models containing separated bonded and non-
bonded potentials, the above distributions should be sampled from single
atomistic molecules without non-bonded interactions to avoid double count-
ing of long range intra-chain interactions79–82.

Similarly, nonbonded potentials UCG,nb(r) are obtained from Boltzmann in-
verse of given radial distributions g(r) sampled from atomistic models,

UCG,nb(r) = −kBT ln g(r) (2.5)

However, the above potential can only reproduce precisely g(r) for highly
diluted systems83. Otherwise, the radial distribution in CG models based
on UCG,nb(r) deviates from target g(r) due to strong correlations between
different types of interactions. In this case, the iterative Boltzmann inversion
method55 is needed, which optimizes UCG,nb(r) through an iteration scheme,

Ui+1
CG,nb(r) = Ui

CG,nb(r) + kBT ln
gi(r)
g(r)

(2.6)

where i indicates iterative step and gi(r) is the radial distribution in CG mod-
els based on potential Ui

CG,nb(r) at step i.

It should be noted that g(r) also depends on the thermodynamic state, e.g.,
temperature, pressure, composition, etc. At a given state the pair potential,
which exactly reproduces the target radial distribution, is unique84. Though
there might be other pairwise potentials resulting in similar radial distribu-
tions with hardly noticeable errors. Hence it is useful to consider additional
constraints to UCG,nb(r). For example, one can refine UCG,nb(r) in a way that
it also reproduces other thermodynamic properties55,65,85, such as pressure,
compressibility, etc.

It can be seen that ”bottom-up” models are always state-dependent86. This
means that a ”bottom-up” model may not be applicable to a state point dif-
ferent than the state chosen for the construction. As a result, it is a chal-
lenging task for "bottom-up" models to describe phenomena involving varia-
tion of composition, density, or temperature69,87. Besides, the construction of
"bottom-up" models can be restricted by difficulties in developing atomistic
models for complex systems, where the necessary microscopic information
for model construction is unknown. Moreover, the inaccuracy of "bottom-up"
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potentials increases as the CG model becomes cruder. Therefore, ”bottom-
up” approaches are not suitable for the studies involved in this thesis, where
we want to simulate large systems or phase behavior of complex systems.

As an alternative, one can manually insert desired macroscopic properties
into CG models through ”top-down” approaches31,88,89. These approaches
are valid due to the universality in long-wavelength behavior of polymeric
systems, which means that some properties are described on large scales by
universal laws, and the microscopic details are encapsulated into numerical
prefactors of these generic expressions. Consequently, CG models can qual-
itatively reproduce these properties if their potentials describe the relevant
features entering the universal laws74.

Accordingly, "top-down" models frequently employ drastically coarse-
grained representations. Their potentials contain only minimal interactions
describing relevant features of desired macroscopic properties. The forms
of these interactions are typically constructed simply according to physical
principles or intuitions. Therefore, the resulting "top-down" models are usu-
ally generic and can represent a class of materials. These models are very
useful for understanding general physical concepts of polymeric systems.
For example, pioneering studies of polymer dynamics with a generic bead-
spring model51 have validated the Rouse and tube model. A single ”top-
down” model can be used to address a broad range of questions. Matsen and
Schick90 predicted the universal phase diagram of flexible di-block copoly-
mers by using a Edwards-type potential91, which takes into account only the
limited compressibility and immiscibility between distinct species. It should
be noted that, in order to quantitatively reproduce desired macroscopic prop-
erties, one needs to properly parameterize the potentials of ”top-down” mod-
els.

Compared with ”bottom-up” models, "top-down" models have several ad-
vantages. First of all, "top-down" models are beneficial for investigating
complex systems since such models simplify the description of complex sys-
tems by only focusing on aspects relevant to problems of interest. Further-
more, due to relatively simpler CG representation and potentials, one can
perform simulations with "top-down" models on experimental length- and
time-scales. For example, a recent study33 employed a ”top-down” model
for di-block copolymers and simulated phases in battery electrolytes with
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system size on the order of micrometers. Importantly, it is possible to incor-
porate more chemical specificities into ”top-down” models by using sophisti-
cated molecular architectures or interactions92. Full atomistic details in ”top-
down” models also can be restored through hierarchical back-mapping93–95,
which offers an opportunity for considering samples with atomistic details
on experimental length- or time- scales.

2.2 Top-down models based on density functional

theory

One of the key questions related to the construction of "top-down" mod-
els is how to define the interactions so that they reproduce desired macro-
scopic properties. A convenient way is to define them through functionals
of collective variables. This ideal is referred to as a functional-based ap-
proach. In functional-based models describing polymeric systems, one sep-
arates bonded and non-bonded interactions. The functional-based approach
is used to define the non-boned interactions Hnb. The bonded interactions
Hb describing the chain connectivity and architectures are defined explic-
itly based on coordinates of CG sites. In order to illustrate main features of
functional-based ”top-down” models, it is convenient to consider the con-
figurational part of the partition functions of CG systems in the canonical
ensemble,

Z(NCG, V, T) ∝

∫
dR1...dRNCG exp

− fb(R1, ..., RNCG)︸ ︷︷ ︸
βHb

−
∫

dr fnb[ξ̂(r; R1, ..., RNCG)]︸ ︷︷ ︸
βHnb

 (2.7)

where
∫

dR1...dRNCG indicates integration over all possible realizations of co-
ordinates RI in the CG system. Bonded interaction Hb is a function defined
explicitly through coordinates of CG sites RI. Non-bonded interaction Hnb is
a functional of collective variable ξ̂(r; R1, ..., RNCG). The value of ξ̂ at position
r is obtained based on coordinates of CG sites RI in CG systems. Therefore
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Hnb is still a particle-based interaction and the fundamental degrees of free-
dom in the functional-based models are particle coordinates, not collective
variables.

The functional-based approach simplifies the definition of "top-down" mod-
els. It is because the interactions derived from functional-based approach al-
low us to perform mean-field estimations for the thermodynamic properties
of CG models96,97. The estimated thermodynamic properties are expressed
through functions depending on the parameters and forms of functional-
based interactions. By comparing with known thermodynamic properties
of target systems, one can determine appropriate parameters reproducing
desired thermodynamic properties. In some cases, one may find that the
defined functional-based interactions are too simple, and the known macro-
scopic properties cannot be reproduced by simply tuning parameters. Then
the definition of interactions needs to be further improved. A conceptual il-
lustration of the procedure defining a functional-based "top-down" model is
shown in Fig. 2.1.

FIGURE 2.1: Procedures for parameterizing and refining a
functional-based "top-down" model.

In principle, the determination of functional-based interactions follows the
general logic of defining "top-down" models. The interactions are formed
by functional-based terms describing necessary features reproducing desired
macroscopic properties. There are different functional-based terms that can
describe mutual repulsion between CG sites, incompatibility between dis-
tinct components or local packing effect, etc. Different questions can be in-
vestigated by using different combinations of functional-based terms. There-
fore functional-based interactions can be defined in a modular way. The
modularity of functional-based interactions provides an opportunity for the
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systematic development of these models. Up to now, functional-based mod-
els have been developed for a broad range of systems, including homopoly-
mers98, polymer blends99,100, block-copolymers101, liquid-vapor systems102,
liquid crystals103,104, lipid bilayers105–107.

The forms of functional-based terms are usually empirically defined. One
convenient way of defining these terms is to employ similar forms that are
used in theoretical field-based models for polymeric systems7,91,96. Among
the existing theoretical field-based models, the excess free energy func-
tional of local densities FDFT,ex[ρ̄(r)] in classical density functional the-
ory (DFT)108,109 is frequently used as the template for defining the basic
functional-based term describing mutual repulsion between particles, result-
ing DFT-based models. These models can benefit from vast knowledge accu-
mulated by studies of polymers based on classical DFT107,110,111. However,
there are several points about DFT-based models that need further clarifica-
tion.

Firstly, the functional-based terms should not include components associated
with translational and conformational entropy. The reason is that Hb in DFT-
based models explicitly defines the molecular architectures. To avoid double
counting, one must exclude components associated with translational and
conformational entropy in the non-bonded functional-based interactions.
This is the reason why the excess free energy functional FDFT,ex[ρ̄(r)], which
ignores the contribution of ideal gas in the total intrinsic Helmholtz free
energy functional, is chosen as the template. Besides, the functional-based
terms and the templating functionals are conceptually different. Because the
functional-based terms depend on configuration-dependent instantaneous
density fields ρ̂(r; R1, ..., RNCG), whereas the templating functionals depend
on equilibrium average density field ρ̄(r). For example, even though Hnb of
a CG system includes a term having same form as FDFT,ex[ρ̄(r)], the excess
free energy of the CG system can differ from the value given by FDFT,ex[ρ̄(r)].
For this reason, the functional-based interactions can only approximately re-
produce the desired macroscopic properties.

In the following, we will introduce typical interactions Hb and Hnb used in
DFT-based models. The simplest case, binary homopolymer blend, is taken
as an example to illustrate the forms of these interactions. Extending the ex-
ample of homopolymer blends to other multi-component systems is straight-
forward. In this thesis, we also study di-block copolymer (di-BCP) systems
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with same forms of interactions that are used to describe blend systems.

Generic chain models, such as Gaussian chain model, wormlike chain model,
are frequently used to define bonded interactions Hb in drastically CG mod-
els. By tuning parameters of these generic bonded interactions, one can re-
tain certain chemical specificity, e.g., end-to-end distance, persistence length,
bond length, etc. Developing Hb from known atomistic chain models is nec-
essary when more chemical details are needed and follows the standard pro-
cedure in the "bottom-up" approaches. An example, the DBI method, has
been discussed in the section 2.1. Below we only discuss two frequently used
generic chain models.

The choice of generic chain models is closely related to the chain structure
one wants to describe. To describe a fully flexible chain formed by uncor-
related CG segments, we can use the Gaussian chain model. This model
assumes that the bond length bα follows Gaussian distribution,

P(bα) =

(
3

2πa2
α

)3/2

exp
(
−3b2

α

2a2
α

)
(2.8)

resulting in an average bond length 〈bα〉 = aα. For chains of springs, the
bonded interaction Hb is defined as,

βHb,α =
3

2a2
α

nα

∑
i=1

Nα−1

∑
s=1

[rα,i(s + 1)− rα,i(s)]
2 (2.9)

where α = A, B denotes the type of species in the binary blend. nα is number
of chains of type α. Nα is number of beads per chain for chains of type α.
rα,i(s) is the coordinate of s-th CG bead in i-th chain with type α. With Gaus-
sian chain model, the local features of polymer chains cannot be correctly
described, but one can reproduce properties of chains on large scales, such
as mean-squared end-to-end distance

〈
R2

e,α
〉
= (Nα − 1)a2

α
112.

For chains with intrinsic rigidity, we can employ the wormlike chain (WLC)
model. WLCs are formed by CG segments with fixed lengths. The bonded
interaction Hb is defined as,

βHb,α = −εα

nα

∑
i=1

Nα−2

∑
s=1

uα,i(s + 1) · uα,i(s) (2.10)
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here εα is a dimensionless parameter and defines stiffness of α-type chains.
uα,i(s) is the unit bond vector along s-th bond of i-th chain with type α.

WLC model can quantitatively reproduce more characteristic length scales of
polymer chains than the Gaussian chain model. Many characteristic length
scales of polymers are defined in terms of the angular correlation of the bend-
ing angle along the polymer backbone, i.e., 〈cos θα〉113. For WLCs, the angu-
lar correlation 〈cos θα〉 can be predicted based on the bonded parameter εα

114,
i.e.,

〈cos θα〉 = G(εα) ≡
1− ε−1

α + e−2εα
(
1 + ε−1

α

)
1− e−2εα

(2.11)

where θα is the angle between the neighboring bond vectors of chains with
type α.

Then one can calculate the persistence length lp,α of WLCs according to its
definition,

lp,α = g(bα, εα) ≡ bα/| ln G(εα)| (2.12)

The above definition of persistence length is valid for WLCs formed by seg-
ments with the same length bα. For WLCs containing segments with different
lengths, e.g., copolymer chains, one can divide WLCs into parts with same
segmental length, and then apply the above equation separately for each
part. For the parts with the same bα,eq. 2.12 provides a one-to-one relation-
ship between lp,α and εα. The desired persistence length can be reproduced
by using the bonded parameter εα predicted by the eq. 2.12.

Another important characteristic length scale of polymer chains is the mean-
squared end-to-end distance

〈
R2

e,α
〉
. For WLCs formed by segments with the

same length bα,
〈

R2
e,α
〉

is defined as,

〈
R2

e,α

〉
= b2

α

Nα−1

∑
i=1

Nα−1

∑
j=1
〈cos θα〉|i−j| (2.13)

According to eq. 2.11 and the sum of geometric series,
〈

R2
e,α
〉

can be rewritten
as, 〈

R2
e,α

〉
= h(Nα, bα, εα) ≡

≡ (Nα − 1)b2
α

[
1 + G(εα)

1− G(εα)
− 2G(εα)

Nα − 1
1− G(εα)Nα−1

(1− G(εα))2

] (2.14)

Then one can reproduce the desired
〈

R2
e,α
〉

by using the εα predicted by the
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above equation. Same as the persistence length, one can also predict the
bonded parameter εα for WLCs formed by segments with different lengths
by dividing WLCs into several parts.

In addition, because WLCs are formed by segments with fixed lengths, WLC
model can conserve the desired bond lengths and contour length Lα. The
contour length Lα of WLCs with same bond length bα is defined as,

Lα = f (Nα, bα) ≡ (Nα − 1)bα (2.15)

It is straightforward to extend the eq. 2.15 to WLCs with different bond
lengths.

The ability of reproducing multiple characteristic length scales of polymer
chains makes it convenient for WLC model to reproduce the key features of
molecular architectures in a flexible way. For example, the same molecular
features can be reproduced by conserving either Lα and lp,α, or Lα and

〈
R2

e,α
〉

of the mapped chains. Though it should be noted that the formulas for lp,α

and
〈

R2
e,α
〉
, i.e., eqs. 2.12 and 2.14, are only valid for ideal chains. The sim-

ulated lp,α or
〈

R2
e,α
〉

of interacting WLCs can deviate from the values given
by the above equations. Therefore, in order to quantitatively reproduce the
desired lp,α or

〈
R2

e,α
〉

in multi-chain systems, further refinement of εα is nec-
essary.

For non-bonded interactions Hnb, the minimal interactions describing poly-
mer blends include a mutual repulsive interaction between all CG sites and
an interaction describing incompatibility between distinct components. A
DFT-based interaction is widely used for describing mutual repulsion be-
tween CG sites. It takes the form,

βFrep[ρ̂A(r), ρ̂B(r)] =
κ

2ρ0

∫
dr [ρ̂A(r) + ρ̂B(r)]

2 (2.16)

where ρ̂α(r) denotes instantaneous local density field of species α at posi-
tion r. For simplicity, here we adopt a shorter notation for instantaneous
density field than ρ̂(r; R1, ..., RNCG) and omit the arguments {RI}. The de-
pendence of instantaneous local density field on CG configurations {RI} is
implicitly included in the hat symbol. ρ0 is reference density and is usually
set to be the average particle density in systems. κ is a finite non-negative
coefficient, which controls the strength of compressibility. Lower κ result in
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more compressible systems. The form of this interaction is motivated by the
second-order expansion of the excess free energy functional in DFT.

The interaction defined in eq. 2.16 is sufficient for a generic description of
liquids with limited compressibility. The isothermal compressibility κT of a
binary homopolymer blend without incompatibility between distinct com-
ponents can be predicted through a simple mean-field estimation,

1
kBTκT

=
nA + nB

V
+

κ

ρ0
ρ̄2

0 (2.17)

where ρ̄0 = ∑α nαNα/V is the average particle density, with V denoting the
volume of CG system. The detailed discussion on derivation of eq. 2.17 can
be found in the section 2.5. Based on eq. 2.17, one can find appropriate value
of κ according to desired isothermal compressibility, or evaluate isothermal
compressibility of a CG system based on an empirical value of κ. In general,
large κ is required in order to achieve realistic isothermal compressibility of
polymer liquids111, typically found in the range 10−9 to 10−10 Pa−1 115. How-
ever, larger κ result in less compressible systems, and consequently the relax-
ation time of these systems is longer. Moreover, high κ may lead to additional
artifacts. For example, in the simulations based on particle-to-mesh schemes,
a high κ enhances the registration of particles at the interfaces of lattice116

(see section 2.3). Therefore one needs to balance between these aspects when
choosing the value of κ.

DFT-based interaction also can capture asymmetries in bead volume. For
example, Steinmueller et. al.117 introduce a prefactor γ to consider differ-
ent volume of A and B species in polymer blends, and the corresponding
Frep[φ̂A(r), φ̂B(r)] takes the form,

βFrep[φ̂A(r), φ̂B(r)] =
κρ0

2

∫
dr
[
(1− γ)φ̂A(r) + (1 + γ)φ̂B(r)− 1

]2 (2.18)

where instantaneous local volume fraction is defined as φ̂α(r) = ρ̂α(r)/ρ̄0.
The prefactors 1 ± γ are the normalized average volume of A or B beads.
Particularly, 1− γ = VA,0/V0 and 1 + γ = VB,0/V0. Here Vα,0 = 1/ρα is the
average volume of a bead of type α with average density ρα. V0 = 1/ρ̄0 is
the average bead volume in the blend system with average density ρ̄0. When
γ = 0, the interaction defined in eq. 2.18 is equivalent to the form defined
in eq. 2.16, where the average volume for the two components is same, i.e.,
VA,0 = VB,0 = V0. If γ > 0, the average volume of A segments, (1− γ)V0, is
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smaller than that of B segments, (1 + γ)V0.

The interaction describing incompatibility Fmix[ρ̂A(r), ρ̂B(r)] can be defined
based on Flory-Huggins (FH) theory97,118,119. The repulsion between distinct
species is considered as a energy penalty of contacts between unlike CG sites,

βFmix[ρ̂A(r), ρ̂B(r)] =
χ

ρ0

∫
drρ̂A(r)ρ̂B(r) (2.19)

The parameter χ controls the degree of incompatibility between distinct com-
ponents, hence it is correlated with thermodynamic conditions, e.g. temper-
ature. In order to model specific thermodynamic conditions, one needs to
quantify the state-dependence of χ parameter, e.g. χ(T). In the simplest
case, the variation of χ only reflects enthalpic effects, and a simple ∼ 1/T
scaling is expected. However, in drastically coarse-grained systems, a single
coarse-grained configuration is underpinned by a large number of averaged-
out microstates. In this case, χ is only a "bare" parameter of the pairwise
interaction120, and an nontrivial state-dependence is expected121–123.

There also exists other forms of interactions describing the incompatibility.
One example of these interactions is given below124,

βFmix[ρ̂A(r), ρ̂B(r)] =
χ

ρ0

∫
dr[ρ̂A(r)− ρ̂B(r)]2 (2.20)

The two forms of Fmix[ρ̂A(r), ρ̂B(r)] in eqs. 2.19 and 2.20 both allow us to sim-
ulate phase behavior in multi-component systems and provide qualitatively
same results. In this thesis, we use the Fmix[ρ̂A(r), ρ̂B(r)] defined in eq. 2.19,
which is the typical form used in field-based models, and can be directly
linked with FH description.

2.3 Realization in particle-based simulations

In order to perform particle-based simulations with interactions discussed in
the previous section, one must define an operator projecting coordinates in a
CG configuration onto values of the instantaneous density fields at position r,
i.e., define ρ̂α(r). There are two types of schemes for defining ρ̂α(r) in particle-
based systems, particle-to-mesh (PM) schemes and schemes based on density
distribution functions. In the following, these two types of schemes will be
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discussed based on the non-bonded interaction used in this thesis,

βHnb =
κ

2ρ0

∫
dr [ρ̂A(r) + ρ̂B(r)]

2 +
χ

ρ0

∫
drρ̂A(r)ρ̂B(r) (2.21)

The first term corresponds to an isotropic repulsion defined in eq. 2.16, and
the second term takes the form of interaction describing incompatibility in
eq. 2.19.

FIGURE 2.2: Illustration of the particle-to-mesh scheme for a 2D
system.

PM schemes125,126 discretize continuum space by a lattice and approximate
the instantaneous local density fields with densities at lattice nodes. A
schematic drawing for a 2D system is shown in Figure 2.2. The system is
discretized into a lattice with spacing ∆L. Then we can immediately know
the number of nodes Nnode and the position of each node cm, m ∈ [1, Nnode].
Given a CG configuration, the instantaneous local density at node cm is de-
fined as,

ρ̂α(cm) =
1
C

nα

∑
i=1

Nα

∑
s=1

Π[rα,i(s), cm] (2.22)

where C is a constant number which depends on lattice structure. For three-
dimensional (3D) cubic lattice, C = ∆L3. Π[rα,i(s), cm] is an assignment func-
tion and determines the density contribution from a particle located at rα,i(s)
to a certain node cm. It is set to be Π[rα,i(s), cm] ∈ (0, 1] when there is a den-
sity contribution from the particle to the node, and is zero otherwise. The
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definition of the assignment function must fulfill the normalization condi-
tion, i.e. ∑Nnode

m=1 Π[rα,i(s), cm] = 1.

In PM schemes, the underlying nodes are only used to calculate instanta-
neous local densities ρ̂α(cm) based on a given assignment function, while
particles still diffuse in the continuum space. The Hnb is calculated by sub-
stituting ρ̂α(cm) for ρ̂α(r) in eq. 2.21 and replacing integration

∫
dr with a

summation over all nodes ∑Nnode
m=1 ∆L3. Then Hnb takes the following form:

βHnb =

κ

2ρ0∆L3

[
nA

∑
i=1

NA

∑
s=1

nA

∑
j=1

NA

∑
t=1

U(rA,i(s), rA,j(t)) + 2
nA

∑
i=1

NA

∑
s=1

nB

∑
j=1

NB

∑
t=1

U(rA,i(s), rB,j(t))

+
nB

∑
i=1

NB

∑
s=1

nB

∑
j=1

NB

∑
t=1

U(rB,i(s), rB,j(t))

]
+

χ

ρ0∆L3

nA

∑
i=1

NA

∑
s=1

nB

∑
j=1

NB

∑
t=1

U(rA,i(s), rB,j(t))

with

U(rα,i(s), rα′,j(t)) =
Ncell

∑
m=1

Π[rα,i(s), cm]Π[rα′,j(t), cm]

(2.23)

Eq. 2.23 demonstrates that Hnb based on PM schemes is expressed through
a pairwise non-bonded potential U(rα,i(s), rα′,j(t)). There is an energy con-
tribution to Hnb only when two particles, rα,i(s) and rα′,j(t), are assigned to
the same node, in which case Π[rα,i(s), cm]Π[rα′,j(t), cm] 6= 0. The magni-
tude of the contribution, i.e., strength of repulsion, is controlled by the ratio
κ/ρ0∆L3, or χ/ρ0∆L3. The lattice space ∆L, which defines distances between
nodes, can be understood as the range of interactions for particles. There
is no strict rules for choosing the value of ∆L. Considering that ∆L is the
smallest physical length-scale in models based on PM schemes, ∆L is chosen
in an empirical way such that it is not significantly larger than the length-
scales that characterize the physical phenomena related to the studied prob-
lems. The characteristic length-scales for different studied problems can be
the width of the interface in multi-component systems, the length of Kuhn
segments describing chain stiffness, Edwards correlation length, etc. On the
other hand, ∆L determines the average number of interacting particles η for
a given system with average density ρ̄0, i.e.,

η = ρ̄0∆L3 (2.24)
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In order to benefit from the close connection between Hnb and field-based
functionals and to parameterize Hnb based on mean-field estimations, rel-
atively large η, equivalently large ∆L, are preferred. However, for specific
purposes, it is also possible to employ a small η 30. In this thesis, both small
and large η will be considered, see chapters 3 and 4.

The assignment function is another important element in PM schemes and
enters eq. 2.23 explicitly. There are different ways to define the assignment
function Π[rα,i(s), cm], and the definition of Π[rα,i(s), cm] has a direct impact
on the behavior of the system. The simplest and also the most popular as-
signment function is zeroth-order Π0[rα,i(s), cm]. It assigns each particle to
only one node, which is the nearest to the particle. The definition is as fol-
low,

Π0[rα,i(s), cm] =

1 for − ∆L/2 ≤ dν < ∆L/2

0 otherwise
(2.25)

where dν = |rα,i,ν(s) − cm,ν|, (ν = x, y, z) are the distances between a par-
ticle located at rα,i(s) and a node at cm along x, y, z directions. Obviously,
Π0[rα,i(s), cm] may assign many particles to a single node. As shown in
fig. 2.2, every particle within the cell marked red will be fully assigned to
the node cm. These particles in the same cell are regarded as overlapping
particles, because they can move freely and overlap with each other in that
cell without changing the Hnb. The overlaps lead to unrealistic liquid struc-
ture on length-scales smaller than ∆L, which has no physical significance. It
is for this reason that ∆L is the smallest physical length-scale in CG models
based on PM schemes.

It should be emphasized that the overlaps between CG site, i.e., softness of
potentials, also exist in mesoscopic models with traditional pairwise poten-
tials. In fact, softness is a natural outcome of projecting multiple microstates
into a drastically coarse-grained configuration127. This is because the atom-
istic structures underlying CG sites can interdigitate with each other without
violating the hard excluded volume of atoms. Softness in mesoscopic models
can substantially reduce the relaxation time of polymers and further expand
the length- and time-scales that one can explore. Yet softness indeed results
in unrealistic liquid structure on length-scales smaller than the range of soft
potentials, e.g., ∆L in models based on PM schemes. Realistic liquid structure
on the scale of CG units can be reproduced when soft models are developed
in a systematic and complex way, e.g., blob-based models128,129.
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Besides, CG models based on PM schemes are translationally non-invariant.
Namely, Hnb is non-invariant after the whole system makes a translational
movement with respect to the fixed lattice. The translationally non-invariant
nature of PM schemes induces registration problems at lattice cells and con-
sequently anisotropicity. This can be seen from non-uniform distribution of
particles within the cells. It has been suggested that the registration with
lattice can be reduced by using higher-order assignment functions130. How-
ever, the implementation of higher-order assignment functions is more com-
putationally demanding, because higher-order assignment functions asso-
ciate each particle with multiple nodes. Additionally, higher-order assign-
ment functions lead to the problem of self-interactions. By definition, self-
interactions are included in Hnb defined in eq. 2.23. For the zeroth-order as-
signment function, the contribution of self-interactions is a constant energy
off-set, which does not change the behavior of systems. However, the self-
interactions in Hnb based on higher-order assignment functions are complex
functions depending on particle coordinates131, which must be subtracted.
Otherwise, the registration problem will be enhanced131 compared to mod-
els based on Π0[rα,i(s), cm].

In this thesis, it is sufficient for us to use the simple zeroth-order assign-
ment function. We implement the PM scheme based on the zeroth-order
assignment function into a standard Monte-Carlo algorithm132. Depending
on the studied problems, we can employ both local and non-local moves,
such as flip133,134, reptation135,136 (details see section 2.4). With the help of
PM schemes, it is convenient to calculate energy change after each move
in Monte-Carlo simulations, because one only needs to consider the energy
change at a few affected nodes. For example, the number of affected nodes
after a flip move is either zero or two. In contrast, in models with classic pair-
wise potentials, one needs to a construct neighbor list containing positions of
interacting particles for every particle. During simulations, the neighbor lists
need to be updated after every single step, and then one calculates energy
change by considering all the particles in the affected lists. This is the most
expensive part in simulations based on classic pairwise potentials. The ad-
vantage of PM schemes becomes more pronounced when one needs to sim-
ulate systems containing a large number of particles. Therefore PM schemes
are important tools for simulating large or dense systems.

Instead of approximating instantaneous local density ρ̂α(r) with densities
at discretized nodes, we can also define ρ̂α(r) in continuum space to retain
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the translational invariance and isotropicity. This approach92,103 assigns a
density distribution function W(rα,i(s)− r) to each particle with coordinate
rα,i(s). The instantaneous local density at position r is the total contribution
of all the particles in the system,

ρ̂α(r) =
nα

∑
i=1

Nα

∑
j=1

W(rα,i(s)− r)γα,i(s) (2.26)

Similar to the assignment function in PM schemes, the density distribution
function W(rα,i(s)− r) should be normalized so that the contribution of each
particle to the whole space is unity,∫

drW(rα,i(s)− r) = 1 (2.27)

The non-bonded interaction Hnb in eq. 2.21 can be accordingly rewritten as,

βHnb =

κ

2ρ0

[
nA

∑
i=1

NA

∑
s=1

nA

∑
j=1

NA

∑
t=1

u(|rA,i(s)− rA,j(t)|) + 2
nA

∑
i=1

NA

∑
s=1

nB

∑
j=1

NB

∑
t=1

u(|rA,i(s)− rB,j(t)|)

+
nB

∑
i=1

NB

∑
s=1

nB

∑
j=1

NB

∑
t=1

u(|rB,i(s)− rB,j(t)|)
]
+

χ

ρ0

nA

∑
i=1

NA

∑
s=1

nB

∑
j=1

NB

∑
t=1

u(|rA,i(s)− rB,j(t)|)

with

u(|rα,i(s)− rα′,j(t)|) =
∫

drW(rα,i(s)− r)W(rα′,j(t)− r)

(2.28)
Here u(|rα,i(s)− rα′,j(t)|) is a pairwise potential and physically corresponds
to the overlapping volume between a pair of density distributions. The form
of u(|rα,i(s)− rα′,j(t)|) can be found analytically for certain density distribu-
tion functions W(rα,i(s)− r). In top-down models, W(rα,i(s)− r) are usually
defined through simple generic forms, assuming spherical uniform or Gaus-
sian distributions. More advanced distributions are necessary for studying
asymmetric particles e.g., ellipsoidal particles.

For most systems, a uniform distribution function is sufficient to describe
pairwise interactions and is also computationally convenient92,131. The cor-
responding pairwise potential takes the form131,
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u(r) =

 3
8πσ3

(
2 + r

2σ

) (
1− r

2σ

)2 for r ≤ 2σ

0 otherwise
(2.29)

where r = |rα,i(s)− rα′,j(t)|. σ is the radius of spherical density distribution
and the range of interactions is 2σ. The manginitude of σ can be chosen to
provide reasonable number of interacting particles, or to reproduce the size
of underlying grouped atoms.

Although the schemes based on density distribution functions retain the
translational invariance and isotropicity, the computational cost is much
higher than that of PM schemes. Normally a cell list83 is required to acceler-
ate simulations using schemes based on density distribution functions.

2.4 Simulation method

All mesoscopic systems in this thesis are simulated by using off-lattice
Monte-Carlo (MC) simulation method137. MC simulations sample the space
of microstates based on the use of random numbers. By averaging over
the sampled microstates one can estimate the ensemble averages. A fre-
quently used method to sample microstates is Metropolis method138. It tries
to change the microstate by randomly moving one or a few beads, and then
decides whether to accept or reject the new microstate according to certain
acceptance criterion.

The changes in the microstate are attempted by MC ”moves”. The moves
should be employed in such a way that the detailed balance and ergodicity
are satisfied. Detailed balance83 means in equilibrium the average proba-
bility of moving from microstate i to microstate j, P(i → j), is equal to the
probability of the reverse move P(j → i). The probability P(i → j) is the
product of the equilibrium probability of microstate i Peq(i) and the transi-
tion probability from i to j, W(i → j). P(j → i) is defined in the same way,
i.e., P(j → i) = Peq(j)W(j → i). Hence the detailed balance implies the
following equation,

Peq(i)W(i→ j) = Peq(j)W(j→ i) (2.30)
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”Ergodicity”83 means every microstate of the system can be generated by one
or more moves.

In the following chapters, we employ two classic moves for polymeric sys-
tems, i.e., crankshaft139,140 and reptation141 moves. As shown in Fig. 2.3a,
crankshaft move, which is also known as flip move, rotates a single bead
around the axis defined by the two neighboring beads. The rotation angle is
randomly chosen from the interval [0, 2π]. For chain ends, the rotation axis
of a flip move is defined by the next nearest bond (see Fig. 2.3b). The rep-
tation move is illustrated in Fig. 2.3c. It removes one bead from one chain
end and adds one bead to the other end. The reptation can be employed in a
biased way, meaning the new bead is not randomly added to the chain end,
but is added by taking into account certain distributions, e.g., distributions
determined by bonded potential.

FIGURE 2.3: Illustration of Monte-Carlo moves: a) crankshaft
move, b) crankshaft move at the chain end, c) reptation move.

After each move, one accepts or rejects the new microstate according to the
acceptance criterion. The acceptance criterion is,

Pacc = min(1, exp(−β∆E)) (2.31)

where ∆E is the energy change caused by the proposed move. This accep-
tance criterion achieves a Boltzmann distribution of microstates. Then the
procedures for implementing MC method based on the chosen moves and
acceptance criterion are,

a) randomly create an initial microstate,

b) calculate the total energy of the initial microstate,
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c) propose a move based on a random number generator,

d) calculate the energy change ∆E,

e) if ∆E < 0, then accept the new microstate. Otherwise, compare
exp(−β∆E) with a random number a ∈ [0, 1]. Accept the new microstate
when exp(−β∆E) > a, and retain the previous microstate otherwise.

The procedures from c) to e), so called one ”MC step”, are repeated to obtain
enough number of microstates for the calculation of desired quantities. Be-
cause each step only moves one or a few beads, the successive microstates are
highly correlated. In practice, it is more common to use ”MC cycle” as a mea-
sure of the number of steps. Each MC cycle comprises a number of MC steps
that equals the number of beads in the system. Namely, in average every
bead is given the opportunity to move once within one MC cycle. The num-
ber of MC cycles needed for obtaining uncorrelated microstates is the ”decor-
relation time” τrel

142. In this study, τrel is the number of MC cycles needed
for the autocorrelation function of end-to-end vectors of polymer chains to
decay to 0.01. τrel is an important quantity for MC simulations, because the
desired quantities should be calculated based on the microstates extending
over several decorrelation times. Importantly, the initial microstate is fre-
quently artificial and far from equilibrium. Hence the microstates within
the first decorrelation time should not be used for the calculation of desired
quantities.

2.5 Insights from self-consistent field theory and

random phase approximation

The functional-based definition of non-bonded interactions in DFT-based
models provides the opportunity to parameterize or improve these models
before performing simulations. This can be done by using the mean-field
(MF) theory, which is also known as self-consistent field theory96,143,144: one
extracts thermodynamic properties of DFT-based models within MF theory,
and parameterizes or improves CG models by comparing the MF estimates
with known thermodynamic properties of target systems. Of course, MF the-
ory fully neglects the effects of fluctuations. To take into account the effect
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of small fluctuations, one can use an extension of MF theory, the so called
random phase approximation (RPA)19,145–148.

In this section, we will first introduce how to derive thermodynamic prop-
erties of binary blends and di-BCPs within MF theory. Then we discuss the
phase stability of these multi-component systems based on RPA. The main
part of this discussion has been published and can be found in the Supple-
mentary Information of ref. [149]. However, the discussion in this section
is more detailed and we explain some steps that are omitted in our original
publication.

Thermodynamic properties can be determined based on the Helmholtz free
energy of systems. In MF theory, one introduces auxiliary fields145,150–152 to
simplify the derivation of Helmholtz free energy and thermodynamic prop-
erties. For each particle, its interaction with neighboring particles is replaced
by an interaction with average fields, capturing the average behavior of
neighboring particles. In this way, all the non-bonded particles are effectively
non-interacting, decoupled particles. A system containing many chains is de-
coupled into single chains in ”mean-field”, which to a great extent simplifies
the description of polymeric systems.

The formal way of deriving the Helmholtz free energy within MF approx-
imation is to express the partition function of a particle-based CG system
in a field-theoretical form by invoking Hubbard-Stratonovich transforma-
tion153–156 or other particle-to-field transfromations7,157,158. Then the parti-
tion function is approximately rewritten using the saddle-point approxima-
tion.19,90,96,150,159. The Helmholtz free energy is expressed in terms of the
approximated partition function.

For systems described by DFT-based interactions in eq. 2.21, we derive the
field-based Helmholtz free energy in an intuitive way, which clearly shows
the underlying assumptions and physical meaning of the theoretical field-
based expressions. We first identify the auxiliary fields simply by rewriting
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the non-bonded interaction,

βHnb =
κ

2ρ0

∫
dr [ρ̂A(r) + ρ̂B(r)]

2 +
χ

ρ0

∫
drρ̂A(r)ρ̂B(r)

=
1
2

{∫ [
κ

ρ0
ρ̂A(r) +

κ

ρ0
ρ̂B(r) +

χ

ρ0
ρ̂B(r)

]
ρ̂A(r)dr

+
∫ [

κ

ρ0
ρ̂A(r) +

κ

ρ0
ρ̂B(r) +

χ

ρ0
ρ̂A(r)

]
ρ̂B(r)dr

}
=

1
2

[∫
ŴA(r)ρ̂A(r)dr +

∫
ŴB(r)ρ̂B(r)dr

]
(2.32)

where ŴA(r) and ŴB(r) are instantaneous auxiliary fields acting on parti-
cles of type A and B, respectively. We can understand the above transformed
interaction based on auxiliary fields as follows: the local density field ρ̂α(r)
interacts with its conjugated auxiliary field Ŵα(r). The product of the conju-
gated pair Ŵα(r)ρ̂α(r)dr gives us the local energy at position r contributed by
particles of type α. The total energy is obtained from the integration of local
energy over the whole space. In MF, one ignores the fluctuations and replaces
the instantaneous fields by their average values at a stationary state, or equiv-
alently a saddle point. We denote the average fields with ρ∗A(r), ρ∗B(r), W∗A(r)
and W∗B(r). Hence the average auxiliary fields in MF are defined as,

W∗A(r) =
κ

ρ0
ρ∗A(r) +

κ

ρ0
ρ∗B(r) +

χ

ρ0
ρ∗B(r)

W∗B(r) =
κ

ρ0
ρ∗A(r) +

κ

ρ0
ρ∗B(r) +

χ

ρ0
ρ∗A(r)

(2.33)

In blends, the average density fields ρ∗α(r) are contributed by identical nα

chains of type α. In di-BCPs, there are nAB identical chains comprising an
A-block and a B-block which contribute to the average density fields. These
identical chains are decoupled with the help of auxiliary fields W∗α (r). There-
fore, the average density fields can be expressed for blends as,

ρ∗α(r) = nα

〈
Nα

∑
s=1

δ[r− rα(s)]

〉
(2.34)

For di-BCP, we have,

ρ∗α(r) = nAB

〈
Nα

∑
s=1

δ[r− rα(s)]

〉
(2.35)
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where δ is the Dirac delta function and δ[r − rα(s)] represents a point par-
ticle at position rα(s). The angular bracket denotes the average over all the
possible single-chain configurations at the saddle point. The average can be
obtained by considering single chain partition functions. Hence we can write
ρ∗α(r) for blends,

ρ∗α(r) =
nα

Qα

∫
Drα(·)

{
exp

(
−βHs

b,α[rα(·)]
)
×

exp

(
−
∫

dr
Nα

∑
s=1

δ[r− rα(s)]W∗α (r)

)
Nα

∑
t=1

δ[r− rα(t)]
} (2.36)

and for di-BCPs,

ρ∗α(r) =
nAB

QAB
×∫
DrAB(·)

{
exp

(
−βHs

b,A[rA(·)]− βHs
b,B[rB(·)]

)
×

exp

(
−
∫

dr
NA

∑
s=1

δ[r− rA(s)]W∗A(r)

)
×

exp

(
−
∫

dr
NB

∑
s=1

δ[r− rB(s)]W∗B(r)

)
Nα

∑
t=1

δ[r− rα(t)]
}

(2.37)

where Drα(·) denotes functional integration over all possible conformations
of a single homopolymer chain or a di-BCP chain. βHs

b,α[r(·)] stands for the
bonded potential for the single chain or block comprising beads of type α.
Qα and QAB is single-chain partition functions for homopolymer chains in
blends and chains in di-BCPs, respectively. They are defined as,

Qα =
∫
Drα(·) exp

(
−βHs

b,α[rα(·)]
)

exp

(
−
∫

dr
Nα

∑
s=1

δ[r− rα(s)]W∗α (r)

)
(2.38)

QAB =
∫
DrAB(·) exp

(
−βHs

b,A[rA(·)]− βHs
b,B[rB(·)]

)
×

exp

(
−
∫

dr
NA

∑
s=1

δ[r− rA(s)]W∗A(r)

)
×

exp

(
−
∫

dr
NB

∑
s=1

δ[r− rB(s)]W∗B(r)

) (2.39)

The system of equations defined in eqs. 2.33, 2.36 and 2.37 clearly shows
the self-consistency between local density fields ρ∗α(r) and conjugated fields
W∗α (r). Namely, eq. 2.33 defines fields W∗α (r) in terms of ρ∗α(r). Eqs. 2.36 and
2.37 demonstrate the resulting density fields based on given fields W∗α (r).



2.5. Insights from self-consistent field theory and random phase
approximation

31

The equation set derived through the simple, intuitive way is same as the
equation set of saddle-point conditions one would obtain following formal
frameworks, e.g., Hubbard-Stratonovich transformation.

Once we know the form of the Helmholtz free energy within MF approx-
imation, we can further derive any desired thermodynamic properties. To
determine the Helmholtz free energy, we use the standard definition,

F = U − TS (2.40)

where F is Helmholtz free energy, U is average internal energy, T is absolute
temperature and S is entropy. The average internal energy U of DFT-based
models is determined by the predefined potentials. For blends,

βU = βHb + βHnb = ∑
α

nαβHs
b,α

+
κ

2ρ0

∫
dr (ρ∗A(r) + ρ∗B(r))

2 +
χ

ρ0

∫
drρ∗A(r)ρ

∗
B(r)

(2.41)
Similar expression holds for di-BCPs:

βU = βHb + βHnb = nAB

(
βHs

b,A + βHs
b,B

)
+

κ

2ρ0

∫
dr (ρ∗A(r) + ρ∗B(r))

2 +
χ

ρ0

∫
drρ∗A(r)ρ

∗
B(r)

(2.42)
where βHs

b,α =
〈

Hs
b,α[r(·)]

〉
denotes average bonded energy of a single chain

(block) of type α in the fields W∗A(r) and W∗B(r).

For systems containing decoupled chains, the entropy S can be calculated
based on statistical mechanics of non-interacting ideal chains. For blends,

βTS =βUid − βFid = βUid + ln Zid

=β ∑
α=A,B

nαU0,α + ln
VnA

nA!

(
QA[W∗A(r)]

V

)nA

+ ln
VnB

nB!

(
QB[W∗B(r)]

V

)nB

= ∑
α=A,B

nαβHs
b,α + ∑

α=A,B

∫
W∗α (r)ρ

∗
α(r)dr

+ ∑
α=A,B

nα

[
1− ln

(nα

V

)]
+ ∑

α=A,B
nα ln

(
Qα[W∗α (r)]

V

)
(2.43)
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For di-BCPs,

βTS =βUid − βFid = βUid + ln Zid

=βnABU0,AB + ln
VnAB

nAB!

(
QAB[W∗A(r), W∗B(r)]

V

)nAB

=nAB

(
βHs

b,A + βHs
b,B

)
+ ∑

α=A,B

∫
W∗α (r)ρ

∗
α(r)dr

+ nAB

[
1− ln

(nAB

V

)]
+ nAB ln

(
QAB[W∗A(r), W∗B(r)]

V

)
(2.44)

where Uid, Fid and Zid is average internal energy, free energy, and partition
function, respectively, of the system containing non-interacting ideal chains.
We insert volume V into the free energy term, i.e., − ln Zid, to signify the
extensive nature of free energy. U0,α and U0,AB is average internal energy of
a single homopolymer chain of type α and a di-BCP chain, respectively. The
Helmholtz free energy is obtained by substituting the entropy S defined in
eq. 2.43 or 2.44 and the internal energy defined in eq. 2.41 or 2.42 into the
standard definition of Helmholtz free energy in eq. 2.40. We separately write
the expressions for blends and di-BCPs,

βFblend = ∑
α=A,B

nα

[
ln
(nα

V

)
− 1
]
− ∑

α=A,B
nα ln

(
Qα[W∗α (r)]

V

)
− ∑

α=A,B

∫
W∗α (r)ρ

∗
α(r)dr +

κ

2ρ0

∫
(ρ∗A(r) + ρ∗B(r))

2dr +
χ

ρ0

∫
ρ∗A(r)ρ

∗
B(r)dr

(2.45)

and

βFBCP = nAB

[
ln
(nAB

V

)
− 1
]
− nAB ln

(
QAB[W∗A(r), W∗B(r)]

V

)
− ∑

α=A,B

∫
W∗α (r)ρ

∗
α(r)dr +

κ

2ρ0

∫
(ρ∗A(r) + ρ∗B(r))

2dr +
χ

ρ0

∫
ρ∗A(r)ρ

∗
B(r)dr

(2.46)

In both formulas, the first term comes from the factorial in eqs. 2.43 and 2.44.
The following two terms correspond to conformational entropy of chains,
and the last two terms are the contributions from non-bonded interactions.

Having found the form of Helmholtz free energy, we need to insert solutions
of density fields and conjugated fields at the saddle point to further derive
thermodynamic properties. However, there are generally multiple saddle
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points for one system. Each solution can be associated with a local minimum
of free energy146, at which point the state can be stable or meta-stable.

In our work, the solutions which allow us analytically derive thermodynamic
properties are preferred. One of such solutions corresponds to a fully homo-
geneous system146. Specifically, the system has homogeneous particle densi-
ties and homogeneous fields, which are defined as,

ρ̄0 = ρ̄A + ρ̄B = (nANA + nBNB)/V (2.47)

and
W̄A =

κ

ρ0
(ρ̄A + ρ̄B), W̄B =

κ

ρ0
(ρ̄A + ρ̄B) (2.48)

Here we consider the blends or di-BCPs with χ = 0 and the third term in
eq. 2.33 is ignored. The corresponding Helmholtz free energy F is,

βF = ∑
α

nα ln
(nα

V

)
+

κV
2ρ0

(ρ̄A + ρ̄B),2 (2.49)

in which the contribution of conformational entropy of chains is neglected.
Based on eq. 2.49, we can calculate the desired thermodynamic properties.
For example, the isothermal compressibility κT

160 can be derived with the
help of the equation of state P = −∂F/∂V,

1
kBTkT

= −V
∂P
∂V

= V
∂2F
∂2V

(2.50)

Then we can write:

1
kBTkT

= V
∂2
[
nA ln nA

V + nB ln nB
V + κ(nANA+nBNB)

2ρ0V

]
∂2V

=
nA + nB

V
+

κ

ρ0
ρ̄2

0

(2.51)

which is the eq. 2.17 having discussed in section 2.2.

The assumption of MF theory on ignoring all fluctuations is usually poor for
systems at atomistic scale. This is because the coordination number of atoms
is small146, ∼ 10. Hence the fluctuations of environment (fields) around
atoms are non-neglectable. While from a mesoscopic perspective, one con-
siders an effective coordination number of polymer chains, which is on the
order of ∼ ρ̄0R3

e. The effective coordination number can be very large in
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dense melts of large molecules. Since the fluctuations diminish with the in-
creasing of coordination numbers, the estimates of MF theory for dense melts
of large molecules are accurate19.

Notwithstanding, it is possible to take into account small fluctuations by us-
ing RPA, so that we can study phase stability in multi-component systems.
RPA assumes that fields can locally deviate from their average values in MF
theory by a small amplitude δWα(r), such that

∫
δWα(r)dr = 0. Notice that

the accuracy of RPA predictions decreases rapidly when one approaches the
phase transition point. This is because the magnitude of fluctuations at states
closing to phase transition is comparable with the average values and one
cannot assume the fluctuations are small.

When one considers a small perturbation of fields, the single-chain partition
functions are defined as follow. For blends we have,

Qα =
∫
Drα(·) exp

(
−βHs

b,α[rα(·)]
)
×

exp

(
−
∫

dr
Nα

∑
s=1

δ(r− rα(s))(W̄α + δWα(r))

) (2.52)

For di-BCPs we have:

QAB =
∫
DABrα(·) exp

(
−βHs

b,A[rA(·)]− βHs
b,B[rB(·)]

)
×

exp

(
−
∫

dr
NA

∑
s=1

δ(r− rA(s))(W̄A + δWA(r))

)
×

exp

(
−
∫

dr
NB

∑
s=1

δ(r− rB(s))(W̄B + δWB(r))

) (2.53)

We expand above single-chain partition functions to the second order in
δWα(r) and conveniently express them in Fourier space,

Qα ' Q0,α exp

[
Nα

2V2 ∑
q

gα(q)δWα(q)δWα(−q)

]
(2.54)
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QAB ' Q0,AB × exp

[
NAB

2V2 ∑
q

gA(q)δWA(q)δWA(−q)+

gB(q)δWB(q)δWB(−q) + 2gAB(q)δWA(q)δWB(−q)

]
(2.55)

where Q0,α are single chain partition functions in spatially homogeneous
fields. The direct and inverse Fourier transforms are defined as,

f (q) =
∫

dr exp[i q · r] f (r) f (r) =
1
V ∑

q
exp[−i q · r] f (q) (2.56)

gα(q) is single-chain structure factor of homopolymer chains of specie α. The
definition of gα(q) in blends is,

gα(q) =

〈
∑Nα

i ∑Nα
j exp

[
i q · (ri − rj)

]〉
Nα

(2.57)

For di-BCPs the corresponding (partial) single-chain structure factors in
eq. 2.55 are defined as:

gα(q) =

〈
∑Nα

i ∑Nα
j exp

[
i q · (ri − rj)

]〉
NAB

gAB(q) =

〈
∑NA

i exp (i q · ri)∑NB
j exp

(
−i q · rj

)〉
NAB

(2.58)

The angular brackets denote an average over all possible single-chain con-
formations and orientations of wavevectors, with given modulus q. It can
be numerically calculated by sampling configurations obtained from simula-
tions of ideal chains. For continuum Gaussian chains, one can directly adopt
an analytical formula of single-chain structure factor, which is known as the
Debye function113.

The approximated single-chain partition functions in eqs. 2.54 and 2.55 are
substituted into βFblend and βFBCP. The saddle-point condition given by
eq. 2.36 for blends and eq. 2.37 for di-BCP, is evaluated within the linear-
response approximation. The linearized saddle-point equations are used to
express the fields δWα(q) through linear functions of densities ρα(q). These
linear expressions of δWα(q) through ρα(q) are also substituted into βFm.
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Following a convenient matrix notation, the final result reads:

βFm =
1

2ρ0V ∑
q

[
ρ(q) φ(q)

]
Dm


ρ(−q)

φ(−q)

 (2.59)

where ρ(q) ≡ ρA(q) + ρB(q) (Fourier transform of total local density) and
φ(q) ≡ ρA(q)− ρB(q) (Fourier transform of local composition). The matrices
Dm for blends and di-BCPs are:

DBlend =


κ + χ

2 + 1
4φ̄AgA(q)

+ 1
4φ̄BgB(q)

1
4φ̄AgA(q)

− 1
4φ̄BgB(q)

1
4φ̄AgA(q)

− 1
4φ̄BgB(q)

−χ
2 + 1

4φ̄AgA(q)
+ 1

4φ̄BgB(q)

 (2.60)

DBCP =


κ + χ

2 −
gA(q)+gB(q)−2gAB(q)
4(g2

AB(q)−gA(q)gB(q))
− gB(q)−gA(q)

4(g2
AB(q)−gA(q)gB(q))

− gB(q)−gA(q)
4(g2

AB(q)−gA(q)gB(q))
−χ

2 −
gA(q)+gB(q)+2gAB(q)
4(g2

AB(q)−gA(q)gB(q))

 (2.61)

φ̄α denotes average volume fractions and are defined as φ̄A = NAnA/ρ0V
and φ̄B = NBnB/ρ0V.

Inspecting the structure of Dblend and DBCP we observe that for the special
case of compositionally and conformationally symmetric blends and di-BCPs
these matrices are diagonal. Therefore the fluctuations of ρ(q) and φ(q)
are decoupled. In this case, the structure factors of fluctuations of density,
〈ρ(q)ρ(−q)〉, and composition, 〈φ(q)φ(−q)〉, can be extracted from the di-
agonal elements of Dblend and DBCP, directly invoking equipartition theorem.

However, in this thesis the asymmetric systems are considered. Then Dm is
non-diagonal, meaning the variables ρ(q) and φ(q) are coupled. To calculate
structure factors, the quadratic form of F must be first diagonalized to the



2.5. Insights from self-consistent field theory and random phase
approximation

37

following form161:

βFm =
1

2ρ0V ∑
q

[
X(q) Y(q)

]
Am


X(−q)

Y(−q)

 (2.62)

with

Am = PT
mDmPm =

[
λ1 0
0 λ2

]
and


X(q)

Y(q)

 = PT
m


ρ(q)

φ(q)

 (2.63)

Here λ1 and λ2 are eigenvalues of the symmetric matrix Dm. The orthogonal
matrix Pm is defined through the components of two orthonormal eigenvec-
tors ν̃ and υ̃ of the matrix Dm as:

Pm =

[
ν̃1 υ̃1

ν̃2 υ̃2

]
m

(2.64)

Accordingly, the local density and composition can be expressed through
X(q) and Y(q),

ρ(q)

φ(q)

 = Pm


X(q)

Y(q)

⇒ ρ(q) = ν̃1X(q) + υ̃1Y(q)

φ(q) = ν̃2X(q) + υ̃2Y(q)
(2.65)

Because the matrix Am is diagonal, X(q) and Y(q) are decoupled variables.
Therefore 〈X(q)X(−q)〉 and 〈Y(q)Y(−q)〉 can be obtained from the diago-
nal elements of Am,

< X(q)X(−q) >
ρ0V

= λ−1
1 ,

< Y(q)Y(−q) >
ρ0V

= λ−1
2 (2.66)
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The structure factors of density and composition fluctuations are,

< ρ(q)ρ(−q) >
ρ0V

= ν̃2
1λ−1

1 + υ̃2
1λ−1

2

< φ(q)φ(−q) >
ρ0V

= ν̃2
2λ−1

1 + υ̃2
2λ−1

2

(2.67)

Hence, the RPA structure factors of density and composition fluctuations in
the most general case of asymmetric systems can be calculated via eq. 2.67
once we know the eigenvalues and the corresponding orthonormal eigen-
vectors of matrix Dm. For the matrix Dblend in eq. 2.60, the eigenvalues λ1,
λ2, and eigenvectors ν, υ are listed below.

λ1 =
GBlend,A(q) + GBlend,B(q) + 2κ −

√
(GBlend,A(q)− GBlend,B(q))2 + 4(χ + κ)2

4
(2.68)

λ2 =
GBlend,A(q) + GBlend,B(q) + 2κ +

√
(GBlend,A(q)− GBlend,B(q))2 + 4(χ + κ)2

4
(2.69)

ν =


2(κ+χ)−

√
4(κ+χ)2+(GBlend,A(q)−GBlend,B(q))2

GBlend,A(q)−GBlend,B(q)

1

 =


ν1

ν2

 (2.70)

υ =


2(κ+χ)+

√
4(κ+χ)2+(GBlend,A(q)−GBlend,B(q))2

GBlend,A(q)−GBlend,B(q)

1

 =


υ1

υ2

 (2.71)

with
GBlend,A(q) =

1
φ̄AgA(q)

, GBlend,B(q) =
1

φ̄BgB(q)
(2.72)

For di-BCPs, the eigenvalues and eigenvectors are,

λ1 =
−GBCP,A(q)− GBCP,B(q) + 2κ

4

−
√
(GBCP,A(q)− GBCP,B(q))2 + 4(GBCP,AB(q) + κ + χ)2

4

(2.73)
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λ2 =
−GBCP,A(q)− GBCP,B(q) + 2κ

4

+

√
(GBCP,A(q)− GBCP,B(q))2 + 4(GBCP,AB(q) + κ + χ)2

4

(2.74)

ν =


2(κ+χ)+2GBCP,AB(q)−

√
4(GBCP,AB(q)+κ+χ)2+(GBCP,A(q)−GBCP,B(q))2

GBCP,A(q)−GBCP,B(q)

1

 =


ν1

ν2


(2.75)

υ =


2(κ+χ)+2GBCP,AB(q)+

√
4(GBCP,AB(q)+κ+χ)2+(GBCP,A(q)−GBCP,B(q))2

GBCP,A(q)−GBCP,B(q)

1

 =


υ1

υ2


(2.76)

with

GBCP,A(q) =
gA(q)

g2
AB(q)− gA(q)gB(q)

, GBCP,B(q) =
gB(q)

g2
AB(q)− gA(q)gB(q)

GBCP,AB(q) =
gAB(q)

g2
AB(q)− gA(q)gB(q)

(2.77)
The normalized eigenvectors are trivially obtained as ν̃ = ν/

√
ν2

1 + ν2
2 and

υ̃ = υ/
√

υ2
1 + υ2

2.
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Chapter 3

Disorderd morphology in
blend-/BCP-based PLED

The study presented in this chapter has been published in the ref. [149]. In
order to integrate the published contents into this thesis, we include only the
sections of the paper which are compatible with the scope of this chapter,
and modify small parts of the original text at various places. Specifically,
Sections 3.1 and 3.2 are written based on sections 1 and 2 of ref. [149] and its
Supplementary Information. For these sections, parts of the contents in the
published paper are omitted for a better integration with the thesis, and a few
discussions are rewritten. Sections 3.3, 3.5, 3.6 and 3.7 are almost identical to
the corresponding parts of the published paper. The section 3.4 is taken from
the Supplementary Information of the published paper.

3.1 Introduction

In this chapter, we use the mesoscopic model to simulate the morphologies
within active layers of polymeric light-emitting diodes (PLED) 162. As shown
in Fig. 3.1, PLED consists of a thin active layer with typical thickness on the
order of 100 nm. The active layer contains luminescent semiconducting poly-
mers163, within which the electrons and holes injected from cathode and an-
ode can form excitions. Then the light is generated through radiative decay
of excitons. One needs at least one transparent electrode, so that light can
pass through. Fig. 3.1 shows one of the possible structures, i.e., top-emitting
PLED.
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FIGURE 3.1: The basic structure of a top-emitting PLED.

Having high luminous efficiency within PLED relies on the balanced trans-
port of holes and electrons. Though in commonly used polymeric semi-
conductors, electron transport – unlike hole transport – is limited by trap
states, likely caused by chemical impurities164. The disbalance in transport
of electrons and holes163caused by the trap sites reduces luminous efficiency.
Recent studies have shown that the negative impact of trap sites on lumi-
nous efficiency can be alleviated by using blend-based active layers, which
are formed by blends of semiconducting and insulating polymers165. This
approach is motivated by the theoretical prediction of Mark and Helfrich
(MH)166 that the trap-limited current density J scales as J ∼ N/Nr

t , where N
and Nt are the densities of transport and trapping sites. The exponent r is a
measure of the width of the energetic distribution of the trap states. For dis-
ordered visible light-emitting semiconductors165,167, r ≥ 4 typically. To first
approximation, blending with an insulator reduces both N and Nt by the
average volume fraction of the semiconducting polymer φ̄A (0 < φ̄A < 1).
Hence, the electron current density increases to Jblend ≈ φ̄

(1−r)
A J. It has been

shown that diluting the semiconductor with 90% of an insulator doubles the
luminous efficiency of the PLED165,167.

The concept of alleviating negative impact of trap sites by blending
requires intimate mixing between the semiconducting and insulating poly-
mers167, i.e., disordered phase is preferred. However, polymer blends are
prone to macroscopic phase separation: the strength of immiscibility is
proportional to chain length, so that even weak incompatibilities between
monomers are amplified in the blends containing large molecules. According
to an earlier study of active layers containing blends formed by poly[2-
methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and
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polystyrene167, one encounters phase segregation when working with
molecular weights commonly used in experiments, e.g., MEH-PPV with
∼ 300 kg/mol and polystyrene with ∼ 10 kg/mol.

One possibility to increase stability of disordered phases is to link semicon-
ducting and insulating polymers into an “equivalent” diblock-copolymer
(di-BCP), i.e., using BCP-based active layers. The rationale is simple: co-
valently linked blocks of dissimilar polymers cannot segregate into macro-
scopic phases (as homopolymers do) though microphase separate into reg-
ular domain patterns147,168,169. Because of entropy losses caused169,170 by
stretching of blocks inside domains and localization of block junctions at do-
main interfaces, microphase separation in BCPs requires stronger immisci-
bility (which for mixtures with UCST behavior is equivalent to lower tem-
peratures) than phase separation in the equivalent blend. For example, con-
sider compositionally and conformationally symmetric blends of homopoly-
mers comprised of N monomers each. Monomer/monomer incompatibil-
ity is quantified by the Flory-Huggins (FH) parameter, which in the simplest
case has only an enthalpic contribution: χ = B/T (B is a constant and T is the
temperature). For a symmetric blend, the phase transition from disordered
to the macroscopically separated phase occurs113 within MF at χN = 2. In
contrast, for an equivalent BCP comprising 2N monomers, the phase transi-
tion from disordered state to an ordered microdomain structure, i.e. order-
disorder transition (ODT), happens147 within MF at 2χN ' 10.49. Hence, in
this example, substituting a blend by a BCP reduces the threshold tempera-
ture, below which the disordered phase is unfavorable thermodynamically,
by 2.5 times.

Though the ideal of using BCP-based active layers is attractive, it requires
detailed investigation because disordered blends and BCPs are structurally
not equivalent. The phase transitions in blends and BCPs belong to differ-
ent universality classes: 3D Ising171–175 and Brazovskii176,177, respectively.
Depending on φ̄A, the phase transition in blends is first order (off-critical
φ̄A) or second order (critical φ̄A). For critical φ̄A the correlation length and
magnitude of composition fluctuations diverge at the phase transition, fol-
lowing 3D Ising critical exponents171–175. In BCPs the Brazovskii mechanism
always leads177 to a first order ODT, for which reason such divergences do
not occur. This mechanism also modifies177–179 in BCP the “topology” of
the phase diagram near ODT (comparing to MF predictions). Moreover, in
disordered blends mesoscopic heterogeneities are characterized by a single
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length scale, corresponding to the correlation length of composition fluctua-
tions. In contrast, in a disordered BCP there is180 an additional length scale
on the order of the average chain extension, related to the wavelength of
the emerging microphase-separated structure. This feature of BCPs is sig-
nified by a Lorentzian-like shaped structure factor of composition fluctua-
tions147. Interestingly,181,182 near the ODT disordered phases of lamellar-
and cylinder-forming BCPs with short chains contain bicontinuous random
networks. Each network is enriched in one of the blocks. Fluctuations of
the network topology provide additional entropy, stabilizing the disordered
phase182. it is unknown whether the properties related to charge transport
differ in disordered blends and BCPs and, if so, which system is more suit-
able for PLED.

Motivated by the above question, we simulate the disordered morpholo-
gies of blends and BCPs containing typical semiconducting polymer poly(p-
phenylene vinylene) (PPV) and insulating polymer polyacrylate. Based on
the morphologies, we use a phenomenological percolation model to explore
the influence of global polymer arrangement on macroscopic electrical con-
ductance. The obtained results of blends and BCPs are compared to under-
stand the differences between disorder phase of blends and BCPs. Addition-
ally, it is useful for further experimental studies to know the effects of com-
positions and processing conditions on the electrical conductance. Therefore
we also investigate their effects in both blends and BCPs by considering dif-
ferent compositions and processing conditions.

3.2 Model description

3.2.1 Mapping strategy

Our mesoscopic model represents an atomistic system containing nA PPV
and nB polyacrylate homopolymers or blocks in a volume V. For both poly-
mers, the general chemical structure of a monomer is shown in Fig. 3.2a.
For brevity, we indicate the chemical identity of a homopolymer (or BCP
block) with subscripts α = A for PPV and α = B for polyacrylate. Each ho-
mopolymer (block) is made of mα atomistic monomers; the molecular weight
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FIGURE 3.2: a) Chemical structure of PPV (top) and polyacry-
late (bottom) monomers. For PPV R1 and R2 stand for alkyl
substituents. For polyacrylates R3 is a small non-polar moi-
ety while R4 denotes a –H or –CH3 group. b) Scheme used
to map PPV (shown in an all trans configuration) on the dis-
crete WLC model. Each atomistic monomer (gray sphere) is
mapped on one interaction center (solid circle) placed at a junc-
tion or end-point of the WLC. c) Top: Sketch showing the rep-
resentation of PPV and polyacrylate homopolymers in blends
by WLC with NA (solid circles) and NB (open circles) beads, re-
spectively. Angles between WLC bonds are controlled by stiff-
ness parameters εα, while bond lengths are fixed to bα. Bottom:
coarse-grained representation of PPV-b-polyacrylate BCPs ob-
tained by covalently linking the WLC of PPV and polyacrylate

homopolymers.

(MW) of each monomer is Mα. The mass densities of pure PPV and poly-
acrylate phases are given by ρ̃α = mαnαMα/NAVα, where Vα are the volumes
that would be occupied by atomistic PPV and polyacrylate homopolymers
(blocks) in their pure phase. NA is the Avogadro number.

Our coarse-graining procedure conserves the number of chains nα and the
volume of each component Vα. Each CG chain (block) is defined to reproduce
key mesoscopic features of the molecular architecture of the atomistic chain
(block). Considering that we can estimate the contour length Lα and persis-
tence length lp,α of the atomistic chains (blocks) from experimental studies,
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we aim to conserve these two quantities. The target Lα and lp,α are quantita-
tively reproduced by using the discrete WLC model. Each WLC is discretized
by Nα interaction centers, beads, connected by bonds with fixed length bα.
The detailed description of WLC model has been already presented in sec-
tion 2.2 and the bonded potential is given by the eq. 2.10.

To determine the Nα, bα and the bonded parameter εα, one needs three con-
straints on these three unknown parameters. The invariant quantities Lα and
lp,α provide two constraints, i.e., Lα = f (Nα, bα) in eq. 2.15 and lp,α = g(bα, εα)

in eq. 2.12. We introduce an additional constraint on Nα based on the follow-
ing considerations. First, to facilitate qualitative studies of charge transport,
it is reasonable to use for the WLC, describing the electrically active compo-
nent, a level of discretization which is comparable to the actual polymer. In
spirit of earlier studies,183,184 we assign physical meaning to A-type beads,
assuming that NA is equal to the number of atomistic PPV monomers (see
Fig. 3.2b). This choice of NA facilitates qualitative studies of charge transport
within the electrically active component. The NB are chosen in a way that
the pure phase of coarse-grained polyacrylates has the same average num-
ber density of beads as the pure phase of the coarse-grained PPV, i.e. we
impose the constraint nANA/VA = nBNB/VB ≡ ρ0. This specific choice of NB

simplifies the definition of non-bonded interactions (see eqs. 2.21 and 2.23).
The additional constraint on the Nα leads to the relationships:

NA = mA, NB =
ρ̃A

ρ̃B

mBMB

MA
(3.1)

Provided that Lα, lp,α, mα, ρ̃α and Mα of actual polymers are known experi-
mental quantities, Lα = f (Nα, bα), lp,α = g(bα, εα), and eq. 3.1 fully define the
WLCs in our mesoscopic model, i.e., define the Nα, bα and εα.

3.2.2 Material-specific parameters and systems studied

To specify the input quantities for modeling, i.e., lp,α, Lα, mα, ρ̃α and Mα,
we choose the PPV derivative poly[2-methoxy-5-(3’,7’-dimethyloctyloxy)-
1,4-phenylenevinylene] (MDMO-PPV) and poly(methylmethacrylate)
(PMMA) as model systems. We emphasize that the conjugated polyaromatic
backbone, as well as the alkyl substitution pattern of MDMO-PPV are
representative for a broad range of non-polar polymeric (luminescent)
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semiconductors commonly applied in optoelectronics. Similarly, PMMA
represents a class of synthetically well-accessible insulating polymers, of
which the polarity (and hence solubility with PPV) can be easily tuned by
varying the alkoxy groups of the ester moieties. Hence, the parameterization
established on the basis of MDMO-PPV and PMMA can be considered, at
least, as qualitatively representative of a broad range of non-polar polymeric
semiconductor:insulator mixtures.

We focus on the special case of blends with nA = nB, i.e. equimolar mix-
tures. We make this choice to facilitate direct comparison with their equiv-
alent BCPs, where nA = nB by default. The atomistic PPV homopolymers
(blocks) underlying the WLC model have mA = 24 monomers. The MW
of an MDMO-PPV monomer is MA ' 288 g/mol, and we use for the mass
density185 ρ̃A = 0.91 g/cm3. We stress that considering such rather short
PPV polymers is relevant from an experimental point of view. Typically, PPV
derivatives exhibit poor solubility and processability if the MW is high.186

For this reason synthetic strategies have focused on suppressing chain length
and coupling defects,187 in order to arrive at well-processable materials while
exhibiting a high charge carrier mobility.

Different levels of dilution are realized by parameterizing the WLC model
such that it describes long atomistic polyacrylate chains with mB = 70, 138,
and 300. The MW of each atomistic PMMA monomer is MB ' 100 g/mol
and we set the mass density to ρ̃B = 1.09 g/cm3, which is a representative
value for the polyacrylate family188. Blending PPV with these three poly-
acrylates induces dilutions that approximately correspond to mass ratios of
1:1, 1:2, and 1:4. In the following, we index all modeled blends and BCPs by
these three mass ratios.

Having specified mA, MA, and ρ̃A, it is straightforward to calculate the aver-
age number density of CG beads ρ0 = 1.9 nm−3. The amounts of homopoly-
mers (blocks) comprising a sample with volume V are:

nA = nB =
ρ̃Aρ̃BVNA

mAMAρ̃B + mBMBρ̃A
(3.2)

The last set of material-specific parameters are contour lengths and persis-
tence lengths, required as input for the LHS of Lα = f (Nα, bα) and lp,α =

g(bα, εα). Experimental data on the persistence length of MDMO-PPV are
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TABLE 3.1: Parameters characterizing the discrete WLCs used
in this study.

Dilutions bA(nm) bB(nm) NA NB εA εB

1:1
0.657

0.937
24

20
9.6

0.99
1:2 0.923 40 1.01
1:4 0.923 87 1.01

not available, so we set lp,A = 6 nm. This choice is motivated by data189

on the persistence length of MEH-PPV, which has the same conjugated back-
bone and similar substitution pattern as MDMO-PPV. For PMMA we choose
an experimentally known190 value of persistence length lp,B = 0.8 nm. The
provided persistence lengths illustrate that PPV derivatives are significantly
less flexible than polyacrylates. Finally, contour lengths are obtained from
Lα = mαlα, where lα stands for the end-to-end distance of either atomistic
monomer when the polymer is in the all-trans conformation. We estimate
lA = 0.657 nm and lB = 0.268 nm based on the chemical structures of the
PPV and polyacrylate backbone (see Fig. 3.2a), as well as geometric parame-
ters such as bond lengths and angles. The latter are available from atomistic
force-fields.191,192 Table 3.1 summarizes the parameters of the WLC models
for all homopolymers and BCPs considered in this study.

The approach just described fully define both chains and blocks in the blends
or BCPs. For the covalent bond in BCPs, we set length of the covalent bond
to be bB, and the stiffness parameter controlling the angles formed by this
covalent bond with its two neighboring bonds to be εB (Fig. 3.2c). This choice
is somewhat arbitrary, though we expect that penalizing the angle between
the last PPV and the linking bond by εA, instead of εB, will not substantially
affect our results. The reasons are two: our flexible polyacrylate blocks are
long and we focus on disordered phases.

To support this statement, we performed MC simulations of BCPs in the ideal
chain limit, i.e. where only bonded interactions βHb are present, adopting the
two different scenarios for the stiffness. Fig. 3.3a compares the orientational
correlations of polyacrylate bonds with respect to the last PPV bond, for the
two scenarios, in a BCP 1:1. Fig. 3.3b shows a similar plot for the BCP 1:4.
We observe that the orientational correlations, for both scenarios, decay to
zero along the contour of the polyacrylate WLC after a comparable number
of bonds. Fig. 3.4a compares the distributions of the end-to-end distance,
ρ(Re), in the BCP 1:1 for the two scenarios. Fig. 3.4b presents a similar plot
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FIGURE 3.3: Average orientational correlations
〈u(NA − 1) · u(NA − 1 + i)〉 between the last PPV bond
and the i-th polyacrylate bond (counting from the junction) in
BCP 1:1 (left) and BCP 1:4 (right). The black and red curves
correspond to different choice of the coefficient εAB in the
angular potential at the linkage between two blocks, εAB = εA
and εAB = εB, respectively. The inset of panel b) is an enlarged

view of the decay of correlations at small i.

for the BCP 1:4. The distributions ρ(Re) for the two scenarios are indeed
close to each other. Of course, modeling shorter BCPs might require more
specific choices for the mesoscopic description of the linkage. Especially in
a microphase separated state, the architecture of the linkage might influence
the orientation of the blocks with respect to the interface.

FIGURE 3.4: Distribution of end-to-end distance of block
copolymers in BCP 1:1 (left) and BCP 1:4 (right) with different
coefficient εAB in the angular potential at the linkage between

the two blocks.

3.2.3 Non-bonded interactions

The non-bonded interactions of multi-component systems, i.e., blends and
BCPs, should account for limited compressibility of the polymer liquid and
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incompatibility between unlike beads. We use the DFT-based interaction in-
troduced in the section 2.2 to describe these non-bonded interactions. The
PM scheme with zeroth-order assignment function described in the sec-
tion 2.3 is employed to perform particle-based simulations on experimental
scales. Therefore, the non-bonded potential Hnb is given by the eq. 2.23.

We need to specify the parameters within the Hnb, i.e., lattice spacing ∆L,
parameters κ and χ. As discussed in the section 2.2, the ∆L of the cubic lat-
tice should not be significantly larger than the length-scales relevant to the
studied problem. In this study, it is important to reproduce the molecular
architectures of both stiff PPV part and flexible polyacrylate part. The rele-
vant length-scale is the length of Kuhn segment lk,α describing the chain stiff-
ness, i.e. the length scale below which the chains can be considered (approx-
imately) as stiff. Therefore, the lattice spacing ∆L in this study should be not
larger than the smallest Kuhn segments, i.e., the Kuhn segment of the poly-
acrylate chains (∼ 2lp,B = 1.6 nm). We define the lattice space ∆L as 1.8 nm,
which results in an average number of interacting particles η ≈ 10. Relatively
large η allows us to perform MF estimations for the CG systems. The param-
eter κ is chosen as 10. This choice of κ allows for high MC acceptance rates
and reasonable relaxation times, while maintaining sufficiently low isother-
mal compressibility κT for the coarse-grained polymers. The κT is estimated
according to eq. 2.17. For simplicity, we omit183,193,194 the small contribu-
tion from chain translational entropy within the eq. 2.17, and assume that the
average density ρ̄0 is equal to the reference density ρ0. The simplified expres-
sion of κT is κT = 1/kBTκρ0. For the representative temperature T = 423 K
we obtain κT ' 9 × 10−9 Pa−1. This value is only marginally larger than
the compressibility of actual polymeric liquids (10−9–10−10 Pa−1). Different
χ parameters are employed to realize different strength of incompatibility.
More details about the choice of parameter χ will be given in the next sec-
tion.

3.2.4 Simulation protocol

We perform MC simulations in the canonical ensemble. Our simulation pro-
tocol is inspired by a processing procedure, which is employed during lab-
oratory scale experiments where PLED active layers are manufactured by
spin-coating. To reduce non-equilibrium morphological features, caused by
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fast drying, spin-coated layers are annealed at elevated temperatures (after
the solvent has evaporated). After annealing, the structure of morphologies
is solidified by a rapid quench. Multicomponent polymer systems are char-
acterized by slow kinetics, originating from the combination195 of thermo-
dynamic barriers to mixing of different species, chain entanglements, and
segmental friction (which depends on local environment). Therefore, non-
equilibrium states may even survive long annealing times. For our materials,
we assume that it is possible to qualitatively mimic the effects of thermody-
namic barriers on morphology formation using only crankshaft move which
reproduces Rouse-like pseudo-dynamics.

Assuming that the spin-coated structure used as a starting point for anneal-
ing experiments is disordered, we initiate our pseudo-dynamic MC simu-
lations from configurations of disordered melts. Each MC run imitates an
annealing process performed at a specific temperature. To mimic the im-
plementation of different annealing temperatures in experiments, we simply
employ different χ parameters. As discussed in the section 2.2, parameter χ

is correlated with temperature and their relationship is described by a state-
dependence function χ(T). For our model with complex molecules and dras-
tic coarse-graining, nontrivial state-dependence function is expected. How-
ever, to mimic annealing at different temperatures it is sufficient to vary χ

considering it as a free input parameter, without specifying χ(T). We only
assume that the dependence χ(T) is identical for blends and BCP made of the
same material. Of course, specifying χ(T) becomes necessary for rephrasing
observations made for different χ in terms of actual temperature variations.
We scan the region 0 ≤ χ ≤ χmax with step ∆χ = 0.029 and identify the
χ-values for which each blend or BCP remains disordered (details follow in
Sec. 3.3.1 and Sec. 3.3.2).

Orthogonal to the electrodes, PLED active layers are finite systems with typ-
ical thickness of ∼ 100 nm. Therefore, we perform the simulations in cubic
samples with edge lengths L ∼ 100 nm, and employ periodic boundary con-
ditions (PBC) in all Cartesian directions. Technically, including free polymer
surfaces and polymer/solid interfaces into our model to simulate the thin
film condition is straightforward 126,194,196. This extension would allow for
a more realistic mesoscopic description of PLED layers at comparable costs
of computation. However, explicit considerations of film geometry would



52 Chapter 3. Disorderd morphology in blend-/BCP-based PLED

significantly expand the parameter space. Interfacial phenomena, e.g. sur-
face segregation and conformational changes, are driven by a complex bal-
ance197 between various entropic and enthalpic factors, which change across
different systems. Therefore, the choice of the relevant parameters of the
model, e.g. the strength of effective interactions with film boundaries, be-
comes much more materials specific. Hence just confining our blends and
BCPs in z-direction without tuning the effective interactions at the interfaces
guided by material-specific information, might not add realism. For the first
study reported in this work, we investigate only the structural differences
between blends and BCPs in the interior of PLED layers and it is sufficient to
use the simple PBC for all dimensions.

In the following, we report results obtained for samples with L = 6 Re, with
Re the root mean-square end-to-end distance of a BCP. In actual units, this
choice is equivalent to L ' 74 nm (1:1 dilution) and L ' 101 nm (1:4 dilu-
tion). To provide a better feeling for the sizes of the modeled systems, we
mention that the samples at 1:1 and 1:4 dilutions contain about 7.8× 105 and
1.9× 106 monomers, respectively. To estimate the influence of finite size ef-
fects when the system size is varied around ∼ 100 nm, we also consider
samples with L = 5 Re and 7 Re (for each dilution). For each χ, the start-
ing configuration is obtained from samples equilibrated at χ = 0. During
the simulations, the average acceptance rate of flip moves is about 50%. The
annealing runs are long: the number of MC cycles is equivalent (at least)
to ten decorrelation times for BCPs, i.e., 10 τrel, and 25 τrel for blends. The
decorrelation time τrel is estimated when χ = 0. For example, in 1:4 blends
and BCPs τrel approximately corresponds to 5× 104 and 2× 105 MC cycles,
respectively.

3.3 Location of disordered phase

3.3.1 RPA spinodals

Accurately locating the phase transition for each blend and BCP is outside
the scope of our work. Such calculations would require advanced sampling
techniques beyond the simple MC pseudo-dynamics realized in this study, as
well as sophisticated finite-size scaling methods specific to first-order phase
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transitions.198–200 However, we need to estimate a region of χ-values where
we can assume that the disordered phase is stable in our simulations.

We approximate the boundary of the region of bare χ-values where the disor-
dered phase can be considered as stable in our simulations by the value of the
bare χ at the MF spinodal, χs. To determine χs we calculate within RPA the
structure factor of composition fluctuations. The procedures of RPA calcula-
tion based on the potentials used in this study has been discussed in detail
in section 2.5. The final expression of structure factor of composition fluc-
tuations is given by the second formula of eq. 2.67. The involved quantities
in eq. 2.67, i.e., eigenvalues λ1, λ2 and components of orthogonal eigenvec-
tors ν̃, υ̃, can be calculated through equations from 2.68 to 2.77. The only
unknown quantities in these equations is the structure factor of composi-
tion fluctuations gα(q). In this study, we numerically obtain the single-chain
structure factors from a large ensemble of single chain conformations (see
section 2.5). This ensemble is generated for WLC of PPV homopolymers,
polyacrylate homopolymers, and BCPs, by adjusting our MC algorithm to
sample conformations of ideal chains. Specifically, for this MC sampling we
retain the bonded potential βHb,α and deactivate the non-bonded interactions
βHnb.

As discussed in section 2.5, RPA invokes several approximations120,201–203.
Part of these simplifications occurs on small scales, where RPA neglects lo-
cal correlations, e.g. monomer packing, and local fluctuations, present in the
statistical mechanics of the CG model. To correct120,201–204 for these local ap-
proximations the bare parameters κ and χ entering SRPA must be “renormal-
ized”. Namely, the scattering in MC simulations should be approximated by
SRPA(q, κe, χe) where the effective parameters are defined through functions
κe = κe(κ, χ) and χe = χe(κ, χ). The renormalized κe and χe encapsulate
contributions from local correlations and fluctuations. Even with renormal-
ized parameters κe and χe, the RPA accuracy is still limited120,201,203 for finite
chain lengths by approximations made on larger scales, such as assuming
ideal chain statistics at χ = 0, and neglecting long wavelength fluctuations
(essentially the MF nature of the theory). With the chosen value of bare κ, the
compressibility in our simulations is already small. Therefore, we assume
that κe ' κ and consider only χe 6= χ. Provided that the function χe(χ) is
known, χs is extracted from the divergence of the scattering, i.e. from the con-
dition 1/SRPA(q∗, κ, χe(χs)) = 0, where q∗ is the modulus of the wavevector
at which the structure factor has a maximum.
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FIGURE 3.5: Structure factors (black squares) and order param-
eters (blue open squares) calculated from MC simulations for
blends and BCPs at different dilutions indicated in each panel.
Black solid lines show the RPA prediction: 1/SRPA(q∗, λχs),
where λ is a renormalization coefficient (see main text and
Fig. 3.6). Black dashed lines indicate the location of RPA spin-
odals χs. In blend 1:1, blend 1:4, BCP 1:1, and BCP 1:4, χs =

0.1182, 0.1205, 0.3169, and 0.2406, respectively.

To estimate χe(χ) we calculate, in our simulations, the structure factor:

S(q, χ) =
1

N(tot)

〈∣∣∣∣∣
NA(tot)

∑
i=1

exp(−iq · ri)−
NB(tot)

∑
j=1

exp(−iq · rj)

∣∣∣∣∣
2〉

(3.3)

In eq. 3.3 the Cartesian components of the scattering vectors q comply with
PBC, i.e. qγ = 2πkγ/Lbox, where kγ are integers. Angular brackets de-
note an average over system configurations and orientations of vector q, at
given χ; accordingly q = |q|. For each χ, we average over ten configura-
tions taken from ten independent annealing runs, after the number of MC
cycles becomes larger than 25 τrel (blends) and 10 τrel (BCP). Fig. 3.5 presents
1/S(q̃∗, χ) (open squares) extracted for blends and BCP, for two composi-
tions: 1:1 (top panels) and 1:4 (bottom panels). For the blends q̃∗ = 0 whereas
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for the BCPs q̃∗ is finite. The “tilde” in the notation q̃∗ indicates that, in gen-
eral, the location of the scattering peak in simulations and RPA is different.

FIGURE 3.6: Examples of structure factors calculated from sim-
ulations (symbols) at χ-values indicated by the legends, com-
pared with RPA predictions (red solid lines). The latter are plot-
ted based on an effective parameter χe = λχ. For each mixture,
the renormalization coefficient λ is a single fit parameter ex-
tracted by simultaneously fitting the RPA result to the set of
structure factors available at the different χ-values (see main
text). Panel a: Structure factors for blends 1:1, where RPA pre-
dictions are obtained with λ = 0.734. The inset illustrates the
linear relationship between 1/S(q) and q2 in the regime of small
q. Panel b: Structure factors for BCP 1:1. The RPA predictions

are obtained with λ = 0.615.

For each system we assume that χe is proportional to the bare parameter
χ, that is χe = λχ. This simple renormalization can be understood as fol-
lows.202,203,205 Within RPA the average energy (per monomer) penalizing
mixing of unlike monomers is reduced to a MF term of random mixing
EAB = χφ̄Aφ̄B, with φ̄α being the average volume fractions (see section 2.5).
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This MF term does not account for basic correlations that are present in the
MC simulations. Importantly, random mixing neglects that chain connectiv-
ity in weakly compressible polymer melts expels intermolecular monomers
from the neighborhood of a test monomer and, consequently, reduces AB
contacts. The prefactor λ corrects for the reduced effective coordination
number of monomers. This linear renormalization of bare χ is expected
to be valid203–205 for small χ. We do not consider more sophisticated non-
linear203,204,206,207 renormalization which might be necessary for larger χ.

The renormalization coefficient λ is extracted separately for each blend and
BCP, by simultaneously fitting SRPA(q, λχ) to a set of structure factors calcu-
lated from simulations conducted at several small χ. We start with χ = 0
and choose empirically the largest χ in the set. The choice is based on
exploratory fits, taking into account that the quality of RPA deteriorates
when immiscibility increases. Our fit minimizes the mean-squared error:
δS2 = ∑{χ} ∑{q} [SRPA(q, λχ)− S(q, χ)]2 /NχNq. The first summation is per-
formed over the set of small χ; Nχ is the total number of χ-values in this
set. The second summation is performed over Nq moduli of wave vectors
for which the S(q, χ) is available from simulations (for given χ). The good
quality of the fits is illustrated in Fig. 3.6a and b, considering as examples 1:1
blends and 1:1 BCP, respectively. The two panels present the original struc-
ture factors calculated from simulations (symbols) for several χ (indicated in
the legends) and the fitted RPA prediction (red lines).

In structurally symmetric systems with flexible chains local correlations are
affected by the polymerization degree N, e.g. the intermolecular correlation
hole becomes more shallow as N increases, so that λ is also an N-dependent
quantity. For these systems the N-dependence of λ is known.202,203 It can be
used to determine the effective FH parameter in the limit of infinitely long
chains χe = λ∞χ, by extrapolating a sequence of λ extracted for different
N to N → ∞. For blends and BCPs as those considered in our study, such
extrapolation procedures are currently not available. The χe extracted from
the procedure outlined in the previous paragraph, implicitly encapsulates
local effects from system-specific features such as composition, asymmetry
in molecular structure, and chain length.

In all panels of Fig. 3.5, we present the functions 1/SRPA(q∗, λχ) (solid black
line) calculated from RPA after substituting the fitted λ. Interestingly, in BCP
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the RPA provides a reasonable approximation for the peak of SRPA(q∗) for im-
miscibilities well beyond the range of χ used to fit of the entire structure fac-
tor (see Fig. 3.6). The required MF spinodal χs is found at 1/SRPA(q∗, λχs) =

0 and is indicated in the panels of Fig. 3.5 by a vertical dashed line.

3.3.2 Order parameters

How reliable is our approach to assume that the disordered phase is sta-
ble in our simulations for χ < χs ? The answer would have been simple
for symmetric systems. There, within MF, the phase transition occurs at the
critical point where the MF binodal and MF spinodal touch. Because fluc-
tuations stabilize the disordered phase, the χ at which the phase transition
actually happens is larger than the MF χs. Hence, for χ ≤ χs the disordered
phase is stable. The case of first-order transitions in our asymmetric systems
is less straightforward. Thermal fluctuations still shift the actual binodal to
higher χ, comparing to the MF binodal. However, because the MF binodal
and MF spinodal are now separated by the metastability region, the χ where
the phase transition actually happens may still be smaller than χs. Such cases
have been observed experimentally.208 Therefore, the condition χ < χs does
not guarantee the thermodynamic stability of the disordered phase, which
motivates us to quantify the degree of order in our morphologies as a func-
tion of χ.

We consider the MC trajectories accumulated at every χ and calculate the
order parameter:209

ψ = ∆L6

V2

Ncell

∑
m=1

Ncell

∑
l=1

[〈
σmσl

〉
−
〈
σm
〉〈

σl
〉]2

where σm = ρ̂A(cm)−ρ̂B(cm)
ρ̂A(cm)+ρ̂B(cm)

(3.4)

Here angular brackets denote an average over the same configurations that
were used to calculate S(q, χ). The advantage of using the order parameter
ψ is its sensitivity to order:209 in a disordered phase (where correlations are
short-ranged) ψ ∼ V−1, whereas in an ordered phase ψ ∼ V0.

Figs. 3.5a and b present (open blue squares) ψ as a function of χ in the 1:1 and
1:4 blends. Figs. 3.5c and d provide similar plots for the 1:1 and 1:4 BCPs. We
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do not display results for the 1:2 systems since they are qualitatively simi-
lar to the 1:4 case (see Appendix). In all plots, ψ increases substantially only
when χ ≥ χs, demonstrating that we can indeed consider morphologies with
χ < χs as disordered. Actually, we expect that in our simulations some of the
disordered morphologies near χs are only metastable; long-lived metastabil-
ity is facilitated by the slow Rouse-like pseudo-dynamics.

As expected (see section 3.1), Fig. 3.5 demonstrates that blends become or-
dered at lower values of χ than their equivalent BCPs; in terms of actual ex-
periments this behavior is equivalent to PPV:polyacrylate blends becoming
ordered at higher temperatures (than the BCPs). Therefore, to compare these
different materials on a common basis, it is meaningful to refer the strength
of segregation not to χ = 0 but to their respective MF spinodals. In the fol-
lowing, all results will be reported in terms of the normalized χ̃ = χ/χs.

3.4 Sub-lattice polymer packing

As discussed in the section 2.3, PM schemes can lead21 to artificial packing
of material below the smallest physical scale of the model ∆L, manifested by
density variations within individual grid cells.

Δ
L

Δ
L

∼

∼
1:1

1:1

FIGURE 3.7: Panels a and b shows the three- and one- dimen-
sional plots, respectively, quantifying the normalized density
variation of PPV monomers within one lattice cell (see main

text for details).
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We explore the sub-lattice packing by quantifying the polymer distribution
within a lattice cell for all disordered blends and BCPs. As an illustration,
Fig. 3.7a presents 3D contour plots of normalized variation of local number
density of PPV monomers, δρA(r) = 〈(ρA(r)− ρ̄A)/ρ̄A〉, calculated for a 1:1
BCP. Here r is a vector of coordinates inside a lattice cell and ρ̄A is the number
density of PPV monomers averaged over this lattice cell. Angular brackets
denote an average taken over all lattice cells in a large sample of morpholo-
gies (in this example, of 1:1 BCP). The plot in the upper panel of Fig. 3.7a
considers the case χ̃ = 0 demonstrating that PPV density inside a cell varies
within 10–14 %. The bottom panel considers the case of strong segregation
χ̃ = 0.95 and we observe that the amplitude of sub-lattice density variations
stays on the same order. Fig. 3.7b serves as an additional quantifier of sub-
lattice structuring, presenting cross-sectional profiles of the PPV density vari-
ation in a cell. These profiles have been obtained for the 1:1 blend and BCP
for χ̃ = 0 and 0.95, by calculating the 1D analog of δρA(r). The amplitude of
the 1D density variation of ∼ 0.04 % is about an order of magnitude larger
than in previous studies21 based on a discrete Gaussian model. Presumably,
the stronger sub-lattice packing in our case is promoted by the WLC archi-
tecture and the somewhat smaller N̄. Importantly, Fig. 3.7b demonstrates
that the sub-lattice packing responds only weakly to increasing χ̃ and is very
similar in blends and BCP having the same dilution.

In Sec 3.6 we will demonstrate that the PM-related artefacts in microscopic
materials structure, quantified in Fig. 3.7, have no qualitative effects on our
analysis of percolation properties.

3.5 Local composition in blends and BCP

We identify qualitative differences in the structure of disordered morpholo-
gies of our blends and BCPs by analyzing the local environment of PPV and
acrylate monomers. Inspired by earlier studies210,211 of symmetric blends
and BCPs, we calculate the volume fraction φA, of PPV monomers in the sur-
roundings of each PPV and acrylate monomer. This volume fraction equals
a number fraction calculated as:210,211 φA = ΣA/(ΣA + ΣB). Here ΣA and ΣB

are, respectively, the number of intermolecular PPV and acrylate neighbors
of a test (PPV or acrylate) monomer. Considering intermolecular neighbors
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only, filters out211 effects from trivial contributions to monomer concentra-
tion in the local environment caused by chain connectivity.

We calculate ΣA and ΣB by summing particles that are found in a spherical
control volume centered at the test particle, i.e. we sum particles that are
closer than a cutoff radius, rc. To obtain physically meaningful information
on the local environment, unbiased by sub-lattice structure (see discussion in
section 3.4) we choose rc = 2∆L, which is larger than the lattice spacing.

FIGURE 3.8: Probability distributions Pα(φA) for the volume
fraction of PPV monomers in a spherical volume surround-
ing a test PPV (α = A, circles) or polyacrylate (α = B, lines)
monomer. Each of the four panels compares the distributions
Pα(φA) for blends and BCPs at the same composition and nor-
malized χ̃ value, indicated in the panel. Vertical dashed lines
correspond to the average volume fraction of PPV monomers

in a completely homogeneous mixture.

Fig. 3.8 presents the probability distribution Pα(φA) quantified around PPV
(α = A, circles) and acrylate (α = B, lines) monomers. We report results for
the 1:1 and 1:4 dilution (left and right panels, respectively). For each dilution,
two representative segregations are considered: far (χ̃ = 0) and near the MF
spinodal (χ̃ = 0.84). For χ̃ = 0 (see Figs. 3.8a,b) the distributions PA(φA) are
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indistinguishable from PB(φA) in both blends and BCPs. The slight difference
in the width of the distributions calculated in blends and BCPs suggests that
local composition fluctuations in the former are somewhat stronger than in
the latter. For χ̃ = 0 the maximum of all distributions is found at the average
number fraction of PPV monomers in the system (indicated by the vertical
dashed line). In Figs. 3.8c,d the distributions PA(φA) and PB(φA) become
distinguishable, demonstrating that the local segregation in the disordered
phase increases as χ becomes larger. This trend is consistent with previous
studies.210,211 For the more asymmetric 1:4 systems the difference in local
segregation between blends and BCPs becomes evident even from simple vi-
sual inspection of their morphologies. As an illustration, the left column of
Fig. 3.9 shows instantaneous configurations of the 1:4 blend and the 1:4 BCP,
that have been considered in Fig. 3.8d. In the BCP morphology PPV blocks
(yellow color) show a stronger tendency for clumping together, comparing
to the blend. To demonstrate more clearly the segregation in these configura-
tions, we divide the simulation box into cubic cells with length 2∆L, calculate
the number density of PPV monomers in each cell, and extract the instanta-
neous density distribution. The right column of Fig. 3.9 shows a random slice
of the 3D density distribution for the blend and the BCP. We observe that the
density distribution in the BCP is more heterogeneous than in the blend.

For a more quantitative comparison of local environments in blends and
BCPs it is useful to consider the quantity:

∆I(φA) =
∫ 1

φA

[
PA, BCP(φ

′
A)− PA, blend(φ

′
A)
]

dφ
′
A (3.5)

Here we introduce an additional index to indicate the type of the material
(blend or BCP) where PA(φA) was calculated. The meaning of ∆I(φA) is
transparent: it quantifies the difference between BCPs and blends in proba-
bility to observe a local volume fraction larger than φA.

Figs. 3.10a and b show plots of ∆I(φA) at several representative values for χ̃,
for dilutions 1:1 and 1:4, respectively. The plots demonstrate that for segrega-
tions χ̃ > 0.5 the probability to observe large values of φA is higher in BCPs
than in blends, for the same distance from the MF spinodal. In other words,
the local segregation in the disordered morphologies of BCPs is stronger.
This trend is more pronounced in the more asymmetric 1:4 mixtures.
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FIGURE 3.9: Left column: representative configurations of a
1:4 blend (top) and a 1:4 BCP (bottom) obtained from our hy-
brid simulations at χ̃ = 0.84. PPV and polyacrylate chains
(blocks) are colored with yellow and blue, respectively. Right
column: two slices of the instantaneous 3D contour plot of the
local number density of PPV monomers calculated for the con-

figuration of the blend (top) and BCP (bottom).

Finding stronger local segregation in disordered BCPs than in blends (at the
same χ̃ and dilution) suggests that in the latter the effect of electron trap alle-
viation by blending may be more pronounced than in the former. However,
we emphasize that the MH relation for the trap-limited current density166

(see section 3.1) is not sufficient for verifying this hypothesis. Although the
MH model has served to explain in what way a trap-limited current in an or-
ganic semiconductor is enhanced by spatially separating transport and trap
sites,165,167 it remains a macroscopic theory. By construction, it considers only
the global average of the semiconductor concentration and overlooks any ef-
fects related to local inhomogeneities in composition.
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FIGURE 3.10: Difference between BCPs and blends in probabil-
ity to observe, in the surroundings of a test PPV monomer, a
volume fraction of PPV monomers larger than φA, see eq. 3.5.
In both panels, the probability difference is denoted by ∆I(φA)
and is plotted as a function of the threshold value φA. Panel
a shows ∆I(φA) calculated for BCPs and blends with dilution
1:1 found at the same normalized χ̃, indicated by the legends.
Panel b is similar to panel a but refers to BCPs and blends with

dilution 1:4.

3.6 Percolation analysis

In this section, we identify structural differences between disordered blends
and BCPs concerning the spatial distribution of the charge conducting PPV
component over large scales. Our approach attempts to establish a qualita-
tive link to electric conductivity. The analysis assumes that we are dealing
with solid-state structures corresponding to vitrified instantaneous configu-
rations of an annealed morphology. Whenever we refer to χ, we implicitly
mean the value of χ (equivalently the temperature) at which annealing was
performed. Because we are interested in disordered morphologies, we focus
on the range 0 ≤ χ̃ ≤ 1.
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We identify conducting clusters of PPV monomers through a percolation
analysis in spirit of qualitative charge transport models212–214. First, we take
into account that our PPV homopolymers (blocks) are semiflexible, since
they are only slightly longer than a single PPV Kuhn segment. Consider-
ing the restricted conformational freedom, we make the approximation that
there are no conjugation breaks along the entire PPV backbone of the ho-
mopolymers or blocks. Therefore each PPV homopolymer (block) is a single
charge-carrier transport site. Within this picture, electric conductivity is lim-
ited only by factors disrupting interchain charge transfer. To group transport
sites into conductive clusters we postulate that charges can hop between two
PPV homopolymers (blocks) only if the minimum distance between these ho-
mopolymers (blocks) is smaller than a hopping threshold d. With this crite-
rion in hand, it is straightforward to identify the conductive clusters using an
“ants-in-labyrinth” algorithm215 with PBC. We determine the minimum dis-
tance of two PPV homopolymer (blocks) by comparing the distances within
all possible intermolecular pairs formed by their monomers.

From the perspective of the Miller-Abrahams model41,216–219 it is tempting to
interpret d as a characteristic cutoff distance at which the charge tunneling
probability between two conjugated segments has exponentially decayed to
an extent that they can be considered as electrically decoupled.220 Yet, the
nanoscale structure of morphologies in our model and real materials dif-
fers significantly because of drastic coarse graining, soft potentials, and grid-
based calculation of interactions. Therefore, it is not meaningful to quantita-
tively compare the d at which percolation occurs in our samples with length
scales typical to charge transport in real systems, such as the localization
length221. d should rather be seen as a phenomenological parameter. Still,
we can quantify similarities or differences across morphologies, for example,
by systematically comparing the properties of conducting clusters identified
at a value of d which is fixed across different systems.

We focus on the spanning probability, Ps, and percolation probability, Pc. A
cluster is classified as spanning when it connects two opposite sides of the
sample, at least, along one of the three Cartesian directions. The spanning
probability is calculated as the frequency of observing a spanning cluster in
a set of independent morphologies obtained for a fixed set of system pa-
rameters, i.e. class of material (blend or BCP), degree of dilution, and χ.
Specifically, Ps = ns/no where ns is the number of spanning clusters ob-
served in no independent simulations. The error in estimating Ps is given
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by222 δPs =
√

Ps(1− Ps)/no.

Percolation transitions are subjected to finite system size effects.199 In an in-
finite system, Ps is a step function of the geometrical parameter controlling
percolation, i.e. Ps is zero or unity, whereas in finite systems it grows and
saturates smoothly around the percolation threshold. In this work we are
explicitly interested in a percolation analysis that includes effects of a finite
system size, because (as has been elaborated previously) PLED layers them-
selves have finite dimensions, especially in the vertical coordinate.
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FIGURE 3.11: Contour plots quantifying the probability, Ps, to
observe a spanning PPV cluster in disordered blends and BCPs
as a function of normalized χ̃ and hopping threshold d. Blue
and red colors correspond to low and high probabilities, respec-

tively. The type of the mixture is indicated at each panel.

Figs. 3.11a–d present contour plots quantifying Ps as a function of d and χ̃

for blends and BCPs. Mixtures with weight fraction 1:1 are presented in
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Figs. 3.11a, c while the 1:4 case is addressed in Figs. 3.11b, d. For each (d, χ̃)

pair, the Ps has been extracted from 10 independent morphologies. The res-
olution of the color map is consistent with the error estimate δPs. For each
fixed χ̃, Ps varies with d as expected. Small d lead to Ps = 0, i.e. the systems
are always non-conducting, whereas a large d results in Ps = 1, i.e. the sys-
tems are always conducting. Between the two extremities, there is a rather
narrow region of d-values where 0 < Ps < 1. In our contour plots, this re-
gion is indicated by the multicolored band and stems from finite system size
effects.

For χ̃ = 0 the percolation transition in our blends and BCPs occurs at
about the same value for d, provided that the degree of dilution is the same.
This trend is consistent with the local environment analysis for χ̃ = 0 (see
Figs. 3.8a, b) where the distribution PA(φA) in blends was found to be only
marginally broader than in their corresponding BCPs. However, Ps behaves
qualitatively different for blends and BCPs when χ̃ > 0. In blends, we ob-
serve that the position of the d-boundary, separating non-conducting and
conducting regimes, changes with χ̃ only weakly. In contrast, for the BCPs
the boundary shifts substantially towards smaller d, as χ̃ increases to reach
χ̃ = 1. This effect is particularly evident for more diluted 1:4 BCP, where the
boundary shifts between χ̃ = 0 and χ̃ = 1 by about 15 %. The results ob-
tained for the 1:2 dilution are consistent with this statement and can be found
in Appendix. These qualitative differences in the behavior of Ps in blends
and BCPs are consistent with our conclusions from Figs. 3.8 and Figs. 3.10
that disordered blends are locally less segregated than BCPs (as χ̃ increases
towards χ̃ = 1). The observation that increasing χ̃ strongly promotes the for-
mation of a percolating PPV phase in BCPs, is consistent with the build-up
of a disordered fluctuating network-like morphology.181,182

It should be emphasized that the above percolation analysis is insensitive to
the choice of chain discretization. The obtained results are qualitatively same
with a moderate, at least, modification of bond length bPPV. To prove this,
we perform the same percolation analysis based on systems with different
discretization of PPV chains (blocks). Performing the entire set of simula-
tions using a model with different chain discretization would require sub-
stantial computational time. Therefore, we obtain simple insights from an al-
ternative approach. The PPV chains (blocks) in the configurations of blends
and BCPs that have been already equilibrated with the old WLC model are
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coarse-grained into chains (blocks) with segmental length of 2b. The sub-
stituting monomer is placed at the center of mass of the coarser bond. An
example of original and ”decimated” WLC is shown in Fig. 3.12. The results
of percolation analysis based on the decimated WLCs in blends 1:4 and BCPs
1:4 are shown in Fig. 3.13. Compared with the original percolation behav-
ior (Fig. 3.11 c and d), the new results deliver, qualitatively, the same trends.
The only difference is that for the coarser description, the values of the phe-
nomenological parameter d that are relevant for percolation become larger.
This shift is caused by the convention we use to define the minimum dis-
tance of two PPV chains (blocks) during percolation analysis. As has been al-
ready mentioned, we find this distance by looping over all pairs of monomers
of the two blocks. Obviously, the fewer monomers of decimated chains are
more sparsely distributed in space than in the case of the original WLC.

FIGURE 3.12: An illustration of the original (left) and ”deci-
mated” (right) WLC describing PPV.

We observe that all changes in percolation occur for d � ∆L. Therefore
we also need to verify that the observed trends do not originate from the
model-specific sub-lattice polymer packing quantified in Sec. 3.4 but stem
from generic physical mechanisms. We perform this test through an alter-
native, more coarse-grained, percolation analysis223 which involves length
scales larger than ∆L and excludes, therefore, artefacts from sub-lattice poly-
mer packing. Specifically, we disretize the volume of each morphology (see
section 3.5 and Fig. 3.9) by a cubic mesh with spacing 2∆L, i.e. twice as large
as that of the original lattice in the MC simulations used to prepare these
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FIGURE 3.13: Probability Ps for observing a spanning cluster
in disordered blend 1:4 and BCP 1:4. The results are calculated
based on decimated configurations. Blue and red colors cor-
respond to low and high probabilities, respectively. In each
panel, Ps is calculated as a function of normalized χ̃ and hop-

ping threshold d.

morphologies. The cells of this superlattice are colored black or white de-
pending on whether or not the number density of PPV monomers in a su-
percell is larger or smaller than a threshold density ρth. The 3D lattice-based
graphs are screened for percolation using the “ants-in-labyrinth” algorithm
with the criterion that two neighboring lattice cells are connected if they have
the same color. The criterion considers cells that are nearest neighbors only
and accounts for PBC.

Figs. 3.14a–d report the Ps from the lattice-based analysis. To present the
results in the same format as Figs. 3.11a–d we do not report ρth on the abscis-
sas, but seek a derived variable which has the same physical meaning as d.
We consider that224 in a large volume, containing randomly oriented slender
rods with density ρr and length λo, the average minimum distance between
rods is dmin ' 2/πρrλ

2
o. Let g be the average number of monomers that a

single PPV block has in a lattice cell. To first approximation g is a constant,
determined by geometrical parameters: LA and ∆L. Substituting ρr = ρth/g
and λo = gbA transforms ρth into an equivalent minimum threshold distance
dmin ' 2/πρthgb2

A. Therefore, we display on the abscissa axes in Fig. 3.11
the variable 1/b2

Aρth. We neglect all prefactors because the estimate is quali-
tative, e.g. we use the approximation of slender rods and apply the original
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expression for dmin to the rather small volumes of individual lattice cells.

The coarser lattice-based analysis confirms the trends obtained from the
continuum-space analysis – Figs. 3.11e–h are qualitatively similar to the pat-
terns reported in Figs. 3.11a–d. Of course, the continuum-space analysis is
a more general method and allows for various extensions. For example,
intramolecular breaks in conjugation can be included, because individual
molecules are explicitly considered (and not just densities).
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Although d acts in Figs. 3.11a–d as an adjustable phenomenological param-
eter, we can make qualitative estimates concerning effects of annealing tem-
perature on the conductance of disordered PLED layers, prepared in experi-
ments. Namely, the weak dependence of percolation threshold on χ̃ in blends
suggests the following hypothesis. Suppose that the concentration of insulat-
ing polymer is such that there is no flow of current through active layers pre-
pared by annealing the blend at a given temperature. Then it is unlikely that
macroscopic conductance will be recovered by preparing the layers at lower
annealing temperatures (but still above the phase transition). The situation
in BCPs is radically different. Because increasing χ̃ substantially reduces the
maximum hopping length required for percolation, annealing these mate-
rials at lower temperatures may recover conductance. The practical conse-
quence of the finite system size effects on the percolation transition in both
blends and BCPs (multicolored bands in Fig. 3.11) can be understood as fol-
lows: if, because of materials parameters or processing conditions, PLED
layers are found near a percolation transition, their electronic properties may
not be reproducible: conducting and non-conducting samples will be ran-
domly mixed within a single batch.

We remind that in our simulations blends and BCPs, at the same dilution,
have the same physical size and number of particles. Therefore, they are
compared in Figs. 3.11 on equal basis, as far as finite system size effects are
concerned. We performed the same analysis for systems with box sizes L =

5 Re and 7 Re. As expected, increasing L makes the percolation transitions
sharper; the multicolored bands in Fig. 3.11 become narrower. At the same
time, the overall shape of the boundary between blue (non-percolating) and
red (percolating) areas is conserved. In other words, increasing the system
size does not change our conclusions, provided that L stays on the scale of
∼ 100 nm.

3.7 Summary and outlook

We performed mesoscopic computer simulations of disordered morphologies
of blends of semiconducting and insulating homopolymers and their equiva-
lent BCP melts. Polymers were coarse-grained into discrete worm-like chains
and non-bonded interactions were introduced through a quadratic, generic,
functional of instantaneous local densities of monomers of different chemical
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species. The functional accounts for limited compressibility and repulsion
between unlike monomers. The strength of the repulsion is controlled by
a bare120 Flory-Huggins-like parameter, χ. We transformed the functional-
based definition of interactions into particle-based potentials via a simple
PM scheme126,194,225,226 and sampled the configurational space with local MC
moves, that realize Rouse-like pseudo-dynamics. The model was parame-
terized to mimic characteristic conformational and volumetric properties of
PPV and polyacrylates – two typical families of semiconducting and insulat-
ing polymers relevant to PLED applications.

The hybrid approach enabled the simulation of samples with dimensions on
the order of 100 nm, which is the typical thickness of active layers in an ac-
tual PLED, for a broad range of χ-values. We found that for the Rouse-like
pseudo-dynamics used in our simulations, the disordered phase is stable or
metastable for 0 ≤ χ < χs. The upper boundary χs is the MF spinodal ob-
tained from standard RPA theory, which we adapted to the specific features
of our model: worm-like chain architecture and compressibility (see section
2.2). We analyzed the structure of the disordered morphologies on local and
more global scales, focusing on the spatial distribution of the electrically ac-
tive PPV component.

Structural analysis demonstrated the local heterogeneity of disordered mor-
phologies due to thermal fluctuations in composition, as well as segregation
of PPV and polyacrylate monomers. We found that the local segregation
near the MF spinodal is stronger in BCPs than in the equivalent blends. This
qualitative difference between blends and BCP is stronger for higher com-
positional asymmetries, i.e. higher fractions of insulating homopolymers or
blocks in the mixture. Our BCP did not show a clear tendency to form spher-
ical domains at high χ because the surplus of acrylate was not sufficiently
high. Therefore, we cannot conclude whether the observed difference be-
tween BCP and blends persists for very asymmetric compositions. In this
case, BCPs can micellize in the disordered phase.168,181,227,228

Our observations on the heterogeneity of disordered morphologies high-
light the phenomenological character of effective medium charge-transport
models165 based on the MH formalism.166 These models only yield effective
transport and trap site densities when fitted against experimental current-
voltage data. However, global averaging of composition in combination
with a one-dimensional drift-diffusion model is insufficient to explain how
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a reduction in trapping depends on local morphological details of the ac-
tive layer of the PLED. The present mesoscopic description of morpholo-
gies could be combined with an advanced model for charge-carrier dynam-
ics219,229–231 to provide for a more appropriate description of the effect of
composition heterogeneity on trap elimination. Such a model is necessary
because a non-homogeneous composition automatically leads to spatial in-
homogeneities in charge distribution, local electric field, and hence carrier
mobility.

Instead of employing sophisticated models of charge-transport, we used a
simplified percolation analysis to qualitatively link the global distribution of
the PPV component with macroscopic electric conductance. Strikingly, we
found that the χ – equivalently the temperature – at which the disordered
morphology is annealed prior to solidification, has a stronger influence on
electrical percolation in BCPs than in their equivalent blends. Specifically, if
there is no flow of current through a disordered BCP morphology prepared
by annealing at low χ (high temperatures) it might be still possible to re-
cover conductivity by preparing the morphology at higher χ (lower temper-
atures) which are near (but do not cross) the ODT. For an equivalent blend,
it is less likely that one can switch between conducting and nonconducting
morphologies simply by changing the χ (temperature) of annealing. Simi-
lar to local segregation, the differences between blends and BCPs with re-
spect to their electrical percolation increase as the compositional asymmetry
of the mixture becomes larger. The percolation analysis also suggests an un-
expected consequence of finite size effects related to the limited thickness of
active layers. Because finite size effects smoothen the percolation transition,
the macroscopic current conductance of layers annealed under conditions,
e.g. temperatures, close to this transition may be erratic.

Here we considered isotropic systems and neglected the confined film geom-
etry of actual PLED layers. Even in disordered polymer blends and BCPs
confinement profoundly affects microstructure: the boundaries of the film
modify polymer conformations and are usually enriched in one component.
Of course, conjecturing local environment and percolation properties in these
anisotropic regions from “bulk-like” systems is not valid. However, we be-
lieve that our analysis can provide useful insights into structural differences
between blends and BCPs in the interior of PLED layers, i.e. their bulk-like
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part. The part of the layer that can be considered as bulk is largely deter-
mined by the decay of compositional perturbations into the film, character-
ized232–234 by a correlation length ξ. The quantity ξ relates directly232–234 to
the correlation length of bulk composition fluctuations and is, therefore, pro-
portional to the size of the chains quantified, e.g. by the average end-to-end
distance, Re. The prefactor in this proportionality depends on the incom-
patibility of unlike monomers – for symmetric systems, within MF232,235,
ξ diverges as one approaches232,233,235 the phase transition. For strongly
asymmetric systems (the focus of our work) simulations233 suggest that the
changes of ξ as a function of incompatibility are less pronounced. For con-
jugated polymers similar to those considered in our study, the typical thick-
ness of PLED layers is equivalent to several Re. Therefore, for thermody-
namic conditions away from the phase transition we expect these layers to
have an extended bulk-like region. At higher χ the isotropic approximation
for the interior of the layers deteriorates for symmetric systems (because of
the significant increase of ξ) but might be still reasonably accurate for the
application-relevant case of asymmetric blends and BCPs.

The model described in this study can be extended126,194,196 to include free
polymer surfaces and polymer/solid interfaces. This extension will allow
for a more realistic mesoscopic description of PLED layers at comparable
costs of computation. However, we emphasize that explicit considerations
of film geometry will significantly expand the parameter space. Indeed in-
terfacial phenomena, e.g. surface segregation and conformational changes,
are driven by a complex balance197 between various entropic and enthalpic
factors, which change across different systems. Therefore, the choice of the
relevant parameters of the model, e.g. the strength of effective interactions
with film boundaries, becomes much more materials specific. Inevitably, the
scenarios that can be considered at each simulation study are rather limited.

Our modeling results suggest that, from a fundamental point of view, it is
of interest to study the electronic behavior of blend- or BCP-based devices
of which the active layer has been processed in the disordered phase near
the phase transition. To our knowledge such studies are currently lacking.
Structure-conductivity relationships on both sides of the phase transition
have been explored experimentally for other polymer-based systems, such
as ion-conducting mixtures.236

In relation to our current findings, we note that the non-trivial structure of
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disordered BCP morphologies, especially close to ODT, makes them poten-
tially interesting for other devices. For instance, the motivation of using
donor(D)-acceptor(A) BCPs,237,238 or BCP compatibilizers239 in OPV has fo-
cused on ordered phases, following the philosophy of obtaining thermody-
namically relaxed microstructures that provide for stable domains with di-
mensions commensurate with the exciton diffusion length.237,238 However,
despite exhibiting enhanced thermal stability compared to classical blends,
such BCP-based OPV cells have never outperformed blend-based devices.
With this respect, so far, possible advantages of stabilized disordered D-A BCP
morphologies near the ODT have not been explored.
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Chapter 4

When can soft models describe
polymer knots?

We are currently preparing a publication240 on the basis of this chapter. The
main figures in the publication will be same as the figures shown in this chap-
ter. Parts of the text in the publication is going to be similar to the correspond-
ing content in this chapter.

4.1 Introduction

The soft potentials of mesoscopic models usually lead to simplified local liq-
uid structure. This approximation does not affect the mesoscopic description
of those properties that show scale separation. Such properties are governed
on large scales by universal laws19, encapsulating effects of microscopic de-
tails – including local liquid packing – into numerical prefactors of generic
expressions. However, for many properties the concept of scale separation
does not apply. Our work in this chapter is concerned with one of such cases:
the behavior of polymer self-entanglements or “knots”.

Already for single (isolated) chains, simulations have shown that micro-
scopic features largely affect knotting behavior241,242. While short flexible
ideal chains tend to form numerous243 highly localized knots, adding ex-
cluded volume interactions between monomers can significantly increase the
chain lengths at which knots are frequently formed244. These knots are still
(weakly) localized, but considerably larger than in the ideal case. Globular
polymers and confined polymers, in contrast, are heavily knotted, but their
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knots tend to be loose and delocalized244, and thus become a global property
of the chain.

For many chain systems, modeling studies of knotting behavior are sparse.
For the special case of polymer melts one can naively try to apply basic poly-
mer physics. According to the Flory hypothesis48,245, the effects from ex-
cluded volume interactions in melts are screened on scales exceeding the mi-
croscopic Edwards correlation length. Therefore, the conformations of poly-
mers follow the statistics of ideal chains that have the same contour length
and mean-squared end-to-end distance as the chains in the melt. Recent stud-
ies246,247 have demonstrated that the Flory hypothesis is an approximation,
which, nevertheless, becomes highly accurate for long chains. Therefore, one
might expect that the properties of knots in melts of long chains and their
equivalent ideal chains are similar.

Intriguingly, recent modeling studies47 have demonstrated that this assump-
tion is too simplistic. In polymer melts, knots appear significantly less fre-
quently and are more loose, comparing to their equivalent isolated ideal
chains. Apparently, even local excluded volume effects, or, more generally,
microscopic liquid structure can significantly influence the behavior of poly-
mer knots. These observations lead to a basic question: Can mesoscopic
models describe knots in polymer melts, given the absence of hard excluded
volume and simplified local liquid structure?

Here, we address this fundamental question using a model that is typical
for mesoscopic simulations of polymeric materials. The molecular architec-
ture of long polymers is described through the WLC model (see section 2.2).
The DFT-based potential (see section 2.2) is employed to describe the non-
bonded interactions between CG monomers. By using a PM scheme (see
section 2.3) to perform particle-based simulations, we deliberately want to
obtain polymer liquids with very crude local liquid structure. The meso-
scopic model is parameterized to accurately reproduce mesoscopic structure
and conformations of microscopic polymer melts that have been equilibrated
in a previous study47 using a bead-spring model. We directly compare the
knotting properties in mesoscopic melts with their counterparts in the equiv-
alent microscopically-resolved samples.

We find that the ability of mesoscopic models to accurately describe knot-
ting properties is crucially affected by the relationship between two length
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scales: the size of the excluded volume and the length scale characterizing
the stiffness of polymer chains. We qualitatively explain the trends of knot-
ting behavior in mesoscopic and microscopic simulations benefiting from a
free-energy model of simple knots available in the literature.241,248

4.2 Qualitative insights from a free energy model

To qualitatively understand the effect of local liquid structure on knots, we
focus on knots with the simplest possible topology: the trefoil knots (see
Fig. 4.1). According to the Grosberg-Rabin theory for ideal chains248, the
free energy cost – with respect to the unknotted state – to form a trefoil knot
includes two contributions, the bending energy and the loss of entropy due
to confinement. Dai et al.241 adapted the above theory to chains with finite
thickness w and derived the free energy cost for forming a trefoil knot with
contour length Nknot. The thickness of chains is determined by the size of
excluded volume and sets the characteristic length-scale of local liquid struc-
ture.

We rewrite the expression derived by Dai et al. in terms of the normalized
contour length of knots Ñknot and thickness w̃ as follows,

βFknot =
k1

2
1

Ñknot
+ k2

3
√

2
Ñ1/3

knot(
1− pw̃

Ñknot

)2/3 (4.1)

The first term and second term in eq. 4.1 corresponds to the bending energy
and the loss of entropy due to confinement, respectively. k1, k2 are positive
coefficients. The normalized contour length of knot and chain thickness are
defined as Ñknot = Nknot/lk and w̃ = w/lk, where lk is the length of the Kuhn
segment of chains. The prefactors 1/2 and 3

√
2 make eq. 4.1 equivalent to the

original expression241, casted in terms of Nknot/lp. Here lp is the persistence
length and we assume lk ' 2lp. p248 is related to the topology of knots
and is defined as the ratio between the contour length of the knot Nknot and
the diameter D of a maximally inflated virtual tube confining the knots (see
Fig. 4.1). For trefoil knots, p is approximately equal to 12249.

From the definition of p we know that the minimum knot that a chain can
form has the contour length pw̃. Therefore, the term

(
1− pw̃

Ñknot

)
≥ 0 and
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FIGURE 4.1: Illustration of a trefoil knot formed in an open
chain (red). The knot is confined in a virtual tube (gray) with

diameter D. The figure is taken from ref. [241].

the loss of entropy due to confinement is always positive. It should be em-
phasized that the entropy loss can be expressed by the second term in eq. 4.1
only if the trefoil knots are tight enough so that we can consider the knots are
strongly confined in virtual tubes249.

The free energy cost βFknot returns to the simple expression within Grosberg-
Rabin theory when w̃ = 0, i.e.,

βFknot,id =
k1

2
1

Ñknot
+ k2

3
√

2Ñ1/3
knot (4.2)

It can be easily seen from eq. 4.2 that the bending energy and the loss of
entropy due to confinement monotonically decreases and increases, respec-
tively, with the increasing of Ñknot. Therefore, the bending energy and the
loss of entropy tends to swell and shrink, respectively, the knot sizes. How-
ever, the loss of entropy for real chains with non-zero w̃,which is defined by
the second term in eq. 4.1, does not monotonically increase with Ñknot, but
has a minimum at Ñknot = 3pw̃. Therefore it tends to swell very small knots
with size smaller than 3pw̃, but shrink knots with size larger than 3pw̃. For
both ideal and real chains, the competition between the bending energy and
the loss of entropy due to confinement leads to a local minimum of Fknot,id or
Fknot, corresponding to a metastable and most probable trefoil knot with size
Ñ∗knot.

By comparing eqs. 4.1 and 4.2, we observe that the free energy cost of real
chains βFknot can be approximated by βFknot,id when chains are sufficiently
stiff making w̃ = w/lk ≈ 0. This indicates that the behavior of trefoil knots
formed in melts containing stiff chains approaches the universal limit of ideal
chains and the impact of w̃ can be ignored. To be more general, this means
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that local liquid structure of polymer melts does not have significant influ-
ence on the behavior of trefoil knots when the chains are stiff enough. The
same tendency can be expected for more complex knot types. Accordingly,
we can predict from the simple free-energy model that, mesoscopic models
can describe relatively small knots in polymer melts quite well when chains
are sufficiently stiff.

If the chain thickness w̃ cannot be ignored, the free energy cost βFknot for
forming a trefoil knot with contour length Ñknot in a real chain with stiffness
lk increases with the increasing of w̃. This is because the loss of entropy due to
confinement always increases as w̃ becomes larger, and the bending energy
is not affected by w̃. Assuming that the monotonic increase of βFknot with
respect to w̃ also holds for more complex knots, the simple free-energy model
suggests that the probability of a randomly picked chain being in knotted
state decreases as w̃ increases.

Moreover, larger w̃ increases the size of the most probable trefoil knot Ñ∗knot.
This can be seen by analyzing the derivative of βFknot with respect to Ñknot.
Ñ∗knot corresponds to the value of Ñknot at the local minimum of βFknot. Then
one can write,

βF′knot|Ñ∗knot
= 0 (4.3)

where

βF′knot = −
k1

2Ñ2
knot

+
3
√

2k2

3(Ñknot − pw̃)2/3
− 2 3

√
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2Ñ2
knot
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·
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K(w̃,Ñknot)

(4.4)

We define the part of second term within the bracket in eq. 4.4 as a function
K(w̃, Ñknot). Before we discuss how chain thickness w̃ influences the local
minimum of eq. 4.4, it is important to know several properties of K(w̃, Ñknot).
First, K(0, Ñknot) = 1, making eq. 4.4 correspond to the derivative of βFknot,id,

βF′knot,id = − k1

2Ñ2
knot

+
3
√

2k2

3Ñ2/3
knot

(4.5)

Second, ∂K(w̃, Ñknot)/∂Ñknot > 0 when w̃ > 0. This means K(w̃, Ñknot) and
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also the entire derivative βF′knot monotonically increase with the increasing
of Ñknot. Considering K(w̃, Ñknot) → 1 as Ñknot → ∞, we can conclude that
the relationship K(w̃, Ñknot) < 1 always holds.

Then we can demonstrate that larger w̃ shift the local minimum of eq. 4.4 to
larger values, by comparing the Ñ∗knot of an extreme case, ideal chains with
w̃ = 0, with that of real polymer chains. Suppose the size of the most proba-
ble trefoil knot formed in ideal chains with stiffness lk is Ñ∗knot,id. According
to eq. 4.5 we can write,

3
√

2k2

3Ñ∗2/3
knot,id

=
k1

2Ñ∗2knot,id
(4.6)

For real chains with the same stiffness, we assume the coefficients k1, k2 are
same as that of ideal chains. Note that this assumption is a simplification
serving for qualitatively predicting the influence of w̃ on Ñ∗knot. In reality,
k1, k2 can vary between different models. Then the derivative of free energy
cost of real chains βF′knot at the size Ñ∗knot,id is,

βF′knot|Ñ∗knot,id
= − k1

2Ñ∗2knot,id
+

3
√

2k2

3Ñ∗2/3
knot,id

K(w̃, Ñ∗knot,id) (4.7)

By substituting eq. 4.6 into βF′knot|Ñ∗knot,id
, we obtain,

βF′knot|Ñ∗knot,id
=

k1

2Ñ∗2knot,id

[
K(w̃, Ñ∗knot,id)− 1

]
< 0 (4.8)

Taking into account that the derivative βF′knot exhibits monotonic increase
with Ñknot, the size of the most probable knot of real chains corresponding
to βF′knot = 0 should be larger than that of ideal chains Ñ∗knot,id. Therefore,
for chains having larger w̃, the most probable trefoil knots formed in these
chains have larger sizes.

It should be noted that all the predictions obtained from free-energy model
work only for (trefoil) knots with relatively small sizes. For larger (trefoil)
knots, the free-energy model becomes invalid241,248. In the following sec-
tions, a detailed simulation study quantifying the effects of local liquid struc-
ture on behavior of both small and large knots formed in melts will be dis-
cussed. The qualitative predictions obtained from the simple free-energy
model will be verified based on the simulation results of small knots.
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4.3 Model description

4.3.1 The reference bead-spring model

The reference data of microscopic polymer melts are taken from ref [47].
Meyer, Horwath, and Virnau generated microscopic melts based on a bead-
spring model by using standard molecular dynamics simulations. In the
following paragraphs, we summarize the main elements of the bead-spring
model, which are of importance for the following discussions. The detailed
description can be found in the ref. [47].

The microscopic melts contain nmic identical chains in the volume Vmic. Each
chain is formed by Nmic hard beads with excluded volume. The repulsion
between these hard beads is described by the classic Lennard-Jones (LJ) po-
tential,

VLJ(r) = 4ε̃
[
(σ/r)12 − (σ/r)6

]
(4.9)

where σ = 1 and ε̃ = 1. The LJ potential is shifted at the cutoff distance
rc =

6
√

2σ. The bonds between beads are described by harmonic springs, and
the bonded potential is defined as:

Vb(ri,i+1) = k(ri,i+1 − b0)
2 (4.10)

where k = 400 and b0 = 0.967σ. ri,i+1 is the distance between two bonded
beads with indices i and i + 1. The parameters in the bonded potential in
practice lead to rigid bonds with lengths fixed to b0. In addition to eq. 4.10,
an augular potential is added to control the stiffness of chains,

Va(θ) = B(1− cos θ) (4.11)

here θ is the angle between two connected bonds. Setting B = 0 results in
fully flexible chains, whereas larger B lead to stiffer chains.

As listed in the table 4.1, different microscopic melts containing chains with
different stiffness parameters B are simulated based on this model, i.e., B =

0, 2, 4. For each B, several chain lengths are considered: Nmic = 128, 256, 512
and 1024. The average bead densities of these systems are same and set to be
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TABLE 4.1: The contour length L, mean-squared end-to-end
distance

〈
R2

e
〉

and invariant degree of polymerization
√

N̄ of
the reference microscopic melts with different B parameters

and Nmic. The units of L and
〈

R2
e
〉

are σ and σ2, respectively.

Systems B Nmic L
〈

R2
e
〉 √

N̄

B0a

0

128 122.8 249.4 20.9
B0b 256 246.6 500.7 29.8
B0c 512 494.1 1003.4 42.2
B0d 1024 989.2 2008.9 59.8
B2a

2

128 122.8 427.5 47.0
B2b 256 246.6 858.4 66.8
B2c 512 494.1 1720.2 94.8
B2d 1024 989.2 3443.7 134.2
B4a

4

128 122.8 831.3 127.3
B4b 256 246.6 1669.1 181.1
B4c 512 494.1 3344.8 256.9
B4d 1024 989.2 6696.2 363.9

ρmic = 0.68 σ−3. In table 4.1, we also summarize the properties of these mi-
croscopic melts, including contour length L, mean-squared end-to-end dis-
tance

〈
R2

e
〉

and invariant degree of polymerization
√

N̄. All lengths are ex-
pressed in units of σ.

√
N̄ is an important property of polymer melts and

will be discussed in detail in the next section. All the microscopic melts are
labeled with short names, listed in the first column of table 4.1.

4.3.2 Mesoscopic model

Mapping strategy

The microscopic melts are mapped onto equivalent mesoscopic melts, which
contain ncg identical chains in volume Vcg and each chain is formed by Ncg

soft beads. The mapping procedure conserves the chain density and key
conformational properties. The same chain density implies the relationship,

nmic

Vmic
=

ncg

Vcg
(4.12)
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To reproduce the key conformational properties, we recall that within the
Flory hypothesis48,245 the average behavior of long flexible chains in poly-
mer melts can be described by equivalent Kuhn chains. Each Kuhn chain
comprises freely-jointed Nk Kuhn segments, with length lk each. The Kuhn
segments are the smallest units along polymer chains that can be considered
as uncorrelated. Therefore, lk is a measure of chain stiffness and sets the
scale at which the formation of knots becomes unlikely. Accordingly, one of
the requirements for mesoscopically- and microscopically-resolved melts to
have the same knotting properties is that mapping them on the same Kuhn
chains, i.e. they have the same lk and Nk. We emphasize that this require-
ment is only a necessary but not sufficient47 condition. Clarifying additional
conditions for having the same behaviour of knots is among the objectives of
our study.

The parameters of a Kuhn chain, lk and Nk, are expressed113 through the
contour length L and mean-squared end-to-end distance

〈
R2

e
〉
, i.e.,

lk =
〈

R2
e

〉
/L (4.13)

Nk = L/lk = L2/
〈

R2
e

〉
(4.14)

L and
〈

R2
e
〉

are properties that can be easily sampled from simulations and
their values of microscopic chains are given in the table 4.1. In our meso-
scopic simulations, the same lk and Nk are achieved by conserving the L and〈

R2
e
〉

of microscopic melts as invariant quantities.

We employ WLC model to quantitatively reproduce L and
〈

R2
e
〉
. To fully

define the three parameters of WLCs, i.e., Ncg, bcg and ε, three constraint
functions are needed. The invariant quantities L and

〈
R2

e
〉

already provide
two constraints: L = f (Ncg, bcg) (see eq. 2.15) and

〈
R2

e
〉
= h(Ncg, bcg, ε) (see

eq. 2.14). Apart from that, it is necessary to consider several restrictions on
Ncg. First of all, the discretization of WLCs should be finer than or at least
comparable to the Kuhn chain, meaning Ncg ≥ Nk. Though finer discretiza-
tions lead to larger CG systems and longer relaxation times. As a compro-
mise, we set the third constraint on Ncg as Ncg = 2Nk. Then we can find
the bcg and ε from the relationship L = f (Ncg, bcg) and

〈
R2

e
〉
= h(Ncg, bcg, ε),

respectively. It is worth recalling that in a melt of interacting WLCs, the pre-
dicted ε should be further tuned to quantitatively reproduce the

〈
R2

e
〉
.
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Our mapping strategy also conserves another important property of ho-
mopolymer melts, the invariant degree of polymerization N̄. The invariant
degree of polymerization N̄ for coil-like chains is defined21 as,

√
N̄ = ρ̄cR3

e (4.15)

where ρ̄c is the average number density of chains in the homopolymer melts.
R3

e is proportional to the average volume of coil chains. Physically,
√

N̄
quantifies the number of chains interdigitating with a given chain. There-
fore, it plays a central role for determining the deviation of chain confor-
mations from the ideal random walk statistics. The chain conformations in
polymer melts can be described by the simple ideal random walks when√

N̄ → ∞ (Flory hypothesis48,245). The deviation increases as
√

N̄ becomes
smaller250,251. Moreover, many mesoscale conformational and structural
properties of polymeric systems are universal functions of N̄ 250,252,253. For
example, the depth of the correlation hole for entire chains in polymer melts
scales as ∼

√
N̄. Hence it is essential to preserve N̄ as an invariant quantity

when one maps the homopolymer melts. Our mapping strategy assumes the
same chain density and mean-squared end-to-end distance between meso-
scopic and microscopic melts, thus we naturally conserve the N̄.

Non-bonded potential

The most simple DFT-based potential considering only mutual repulsion be-
tween CG beads is employed to describe non-bonded interactions in meso-
scopic melts. The volume taken by the melts is discretized through a cubic
lattice. Then we perform particle-based simulations based on the PM scheme
with zeroth-order assignment function. The DFT-based potential Hnb has
been introduced in eq. 2.23. Because only a single component is involved in
homopolymer melts, the incompatibility parameter χ is set to be zero, and
we omit the subscript α indicating components in eq. 2.23. For a better un-
derstanding of the following discussion, we recapitulate the simple form of
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Hnb for homopolymers,

βHnb =
1
2

κ

ρ0∆L3

ncg

∑
i=1

Ncg

∑
s=1

ncg

∑
j=1

Ncg

∑
t=1

U(ri(s), rj(t))

with

U(ri(s), rj(t)) =
Ncell

∑
m=1

Π[ri(s), cm]Π[rj(t), cm]

(4.16)

The parameters ∆L and κ are chosen based on the objectives of this study. We
know that ∆L relates to the average number of overlapping particles η (see
section 2.3). To understand correlations between knotting properties and lo-
cal liquid structure in mesoscopic models, we must be able to model melts
with η corresponding to the regime of weak (η < 1) and strong (η > 1) over-
lapping. Therefore ∆L is an adjustable parameter in our model. Obviously,
∆L can only be varied within the range (0, lk). This constraint ensures that
∆L is not significantly larger than the smallest length-scales that characterize
the physical phenomena, which is the lk in this study. The parameter κ is
varied to realize different repulsion strength νk = κ/ρ0∆L3 (see section 2.3),
which also determines the softness of potential. The ratio νk varies from a
fraction of kBT to a few tens of kBT.

Simulation details

We perform simulations in the canonical ensemble. The melts are placed in
cubic simulation boxes and PBC is applied to all dimensions. The lengths of
boxes are set to be ∼ 2

√
〈R2

e〉. This choice is widely accepted as the min-
imum requirement for avoiding finite-system size effects in the disordered
melts95. Both crankshaft and reptation moves are employed to accelerate the
relaxation of dense melts.

4.4 Knot detection

The analysis of knotting properties is carried out in collaboration with Dr.
Peter Virnau and a program developed by Dr. Peter Virnau is employed for
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knot detection. In this section, we will provide basic knowledge on the de-
tection method used in this study, a variant of Alexander polynomial. Essen-
tially, our presentation recapitulates the presentation of the method provided
in several topical reviews and books254–256. A complete discussion on the
definition of Alexander polynomial can be found in the relevant books255,257.

Normally knots are only well-defined in closed loops. Different knot types
are distinguished according to the minimum number of crossings (crossing
number) in a projection of the chain onto a plane. Several basic knot types
are shown in Fig. 4.2, including unknot (0), trefoil knot (31), and figure-eight
knot (41), which has 0, 3, or 4 crossings, respectively. The subscripts distin-
guish different knot types with the same number of crossings. Note that the
number of knot types increases considerably with the number of crossings.
For example, the number of knot types having 15 crossings is on the order of
105 258.

FIGURE 4.2: The structures of the most basic knot. a) unknotted
loop (0), b) trefoil knot (31), c) four-eight knot (41). The figure is

replotted from ref. [256].

In order to distinguish between different knots, one can define a knot invari-
ant assigning a unique value to every knot type. However, considering the
huge number of involved knot types when crossing number is large, up to
now, no algorithm can distinguish between all the knot types47. Alexander
polynomial ∆ is a popular invariant that distinguishes between simple knots
and assigns a polynomial to each knot type. For the basic knots shown in
Fig. 4.2, each of them has a unique polynomial among the knots having up
to 10 crossings.

However, Alexander polynomial is only defined for closed loops. For linear
open chains concerned in this study, one must first carefully connect the two
ends. For both microscopic and mesoscopic chains involved in our study, a
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closure that has been successfully used for macromolecules is chosen47,259.
As shown in Fig. 4.3, one first determines the center of mass (COM) of the
analyzed chain, and then obtains two lines defined by the COM and the two
ends of the chain. These two lines are extended to the outside of the chain.
By connecting two points along the line (one point each line), which are far
from the chain, the open chain is closed.

FIGURE 4.3: The mechanism of defining the closure for an open
chain. Two lines are determined based on the center of mass
(COM) and two ends of the chain. The open chain is closed by
connecting two points which are far away from the chain. The

figure is taken from ref. [259].

Then the closed chain is simplified into a chain containing fewer beads. In
this way, the computational cost of the calculation of Alexander polynomi-
als is significantly reduced. The bead reduction is performed47 by grouping
every three successive beads along the chain and considering the triangles
formed by them. If the chain itself does not cross the triangle, the middle
bead is deleted. Otherwise, all three beads remain. The above procedures
are repeated for several times to ensure the simplest chain is obtained.

The Alexander polynomial ∆260 of a simplified closed polymer chain is de-
termined based on the crossing number along the chain and the handedness
of crossings47. The crossing number is counted according to a projection of
the polymer chain, e.g., projection on the x-y plane. By choosing an arbitrary
starting point and direction for walking along the chain projection, we can
determine the handedness of each crossing. As shown in Fig. 4.4, there are
three crossings in the projection (¬, ­, ®). According to the chosen starting
point (l) and direction (arrow)47, the crossings are numbered as 1, 2, and 3.
From the starting point, we first underpass a later section of the projection
at crossing 1, then overpass at crossing 2 and again underpass at crossing 3.
Then we can divide the projection into several arcs (I, II, III), which are de-
fined from underpass to underpass. Depending on the direction of two arcs
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FIGURE 4.4: The numbering of crossing (1, 2, 3) and arcs (I,
II, III) according to a chosen starting point (l) and direction

(indicated by arrows). The figure is taken from ref. [47]

forming the crossing, the crossing is either right-handed or left-handed (as
shown in Fig. 4.5). Specifically, we assume that the projection is on x-y plane,
and if the cross product of the vectors defined by two arcs forming the cross-
ing is positive, the crossing is right-handed. The crossing is left-handed if the
cross product is negative. Accordingly, we can find that all the crossings in
Fig. 4.4 are right-handed. The detailed rules for defining ∆ based on cross-
ing numbers and handedness are too technical and beyond the scope of this
thesis. Hence we do not elaborate upon this point and refer the interested
reader to the reviews and books that have been mentioned earlier.

FIGURE 4.5: Definition of handedness of a crossing. The figure
is replotted from ref. [256].

Based on the presented detection method, we quantify the knotting behavior
of microscopic or mesoscopic melts through knotting probability Pk and sizes
of trefoil knots. Specifically, we generate sufficient number of melt configu-
rations which are decorrelated. Suppose the total number of chains within
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these configurations is n. We identify the chains in knotted state and count
the number of knotted chains nknot. The knotting probability Pk is defined as
Pk = nknot/n. For every chain forming a trefoil knot, the size of trefoil knot
is determined by successively deleting beads from one side, then from the
other side until the Alexander polynomial changes47.

4.5 Structural and conformational properties

Before we compare the knotting properties of mesoscopic and microscopic
melts, we first characterize the basic structural and conformational properties
of the melts generated through our mesoscopic model. First of all, the results
of structural and conformational properties are required for quantifying the
accuracy with which our model reproduces the mesoscopic features of the
microscopic melts. Secondly, these results are important for interpreting the
behavior of knots. Considering that knots involve multiple scales, we study
in this section structural and conformational properties on both local and
mesoscopic scales.

We first investigate the ability of mesoscopic model to describe structural
and conformational properties of microscopic melts by focusing on the meso-
scopic melts mapped from B2c microscopic melt. Different mesoscopic melts
equivalent to B2c melt are generated by using different repulsion strength
νk and average number of overlapping particles η (see table 4.2). νk is
varied by tuning the non-bonded parameter κ at constant ρ̄0 and ∆L, and
η is adjusted by changing the lattice size ∆L at constant ρ̄0. According
to the data provided in table 4.1, B2c microscopic melt has chain density
ρ̄c = ρ̄0/Nmic = 0.0013 σ−3 and Nk = L2/

〈
R2

e
〉
= 142 Kuhn segments per

chain. Based on our mapping strategy, the mesoscopic melts have the same
chain density ρ̄c = 0.0013 σ−3. The bonded parameters Ncg, bcg and ε of melts
with different νk and η are listed in table 4.2. In particular, Ncg = 2Nk = 284
and bcg is accordingly determined as 1.75 σ. ε is tuned to quantitatively
match the

〈
R2

e
〉

of the B2c melt (see section 2.2).

The local liquid structure of mesoscopic melts can be described by monomer-
monomer radial distribution function g(r). It measures the probability of
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TABLE 4.2: The parameters of mesoscopic melts mapped from
the B2c microsocopic melt.

νk η ρ̄0 (σ
−3) κ ∆L (σ) Ncg bcg (σ) ε

3

0.1

0.37

0.3 0.64

284 1.74

1.0
0.2 0.6 0.82 0.99
0.5 1.5 1.1 0.94
1 3 1.37 0.94
15 45 3.46 0.97

0.2

1 0.37

0.2

1.37 284 1.74

0.97
0.8 0.8 0.97
10 10 0.94
15 15 0.94
20 20 0.94

finding a bead at distance r away from a reference bead, and is defined as,

g(r) =
1
A

〈
Ntot

∑
i

Ntot

∑
j,j 6=i

δ(rij − r)

〉
(4.17)

where A = 4πr2ρ̄0Ntot is a normalization constant. Ntot is the total number
of beads in the system, and rij denotes the distance between beads i and j.

FIGURE 4.6: The radial distribution functions obtained from
mesoscopic models mapped from B2c. The mesoscopic models
have the same average number of overlapping particles η = 1

and different repulsion strengths (see legends).
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The g(r) of melts with different repulsion strengths νk are shown in Fig. 4.6.
In this figure, the distance r is scaled by the bond length of WLC bcg, so
that the main peak of g(r) originating from chain connectivity is always at
r/bcg = 1. We observe from Fig. 4.6 that, νk mainly influences the struc-
ture on length scales smaller than 2 bonds, i.e., r/bcg < 2. In addition, the
value of g(r) at r ≈ 0, the so called depth of monomer-monomer correlation
hole, decreases with the increasing of repulsion strength νk, or equivalently
decreasing of softness. This tendency indicates that stronger repulsion leads
to fewer overlaps between beads. However, g(r ≈ 0) saturates to ∼ 0.08
with respect to νk and cannot reach zero as in microscopic melts with hard
excluded volume. This means that we cannot completely eliminate overlaps
between beads by increasing the repulsion strength.

The peculiar dependence of g(r ≈ 0) on the repulsion strength νk stems from
the zeroth-order assignment function used in the PM scheme. According to
the definition of zeroth-order assignment function (see section 2.3), beads do
not interact with each other when they belong to different cells. Therefore,
two beads in different but neighboring cells can be arbitrarily close to each
other without any energy penalty. As shown in Fig. 4.7, when two beads are
at the two sides of the common surface, edge or corner of neighboring cells,
the distance between them can be arbitrary small. Strong repulsion cannot
separate these closed packed non-interacting beads.

FIGURE 4.7: Illustration of close-packed pair of beads in two
neighboring cells. Depending on the relative position of neigh-
boring cells, they can share a common a) surface, b) edge or c)

corner.

The above discussion about the saturation of g(r ≈ 0) can be conveniently
illustrated by decomposing g(r) into two types of contributions. We consider
the contributions from pairs of beads in the same cell gsc(r) and in different
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cells gdc(r), which are defined as,

gsc(r) =
1
A

〈
Ntot

∑
i

Ntot

∑
j,j 6=i

δ(rij − r)ω(ri, rj)

〉
(4.18)

and:

gdc(r) =
1
A

〈
Ntot

∑
i

Ntot

∑
j,j 6=i

δ(rij − r)(1−ω(ri, rj))

〉
(4.19)

with

ω(ri, rj) =
Ncell

∑
m=1

Π[ri, cm]Π[rj, cm] (4.20)

where ri, rj are the coordinates of beads i and j, respectively. Function ω(ri, rj)

identifies whether particles i and j are in the same cell. ω(ri, rj) = 1 if particles
i and j belong to the same cell, and ω(ri, rj) = 0 otherwise.

a)

L

b)
a)

L

FIGURE 4.8: The decomposed radial distribution functions ob-
tained from mesoscopic models mapped from B2c. The meso-
scopic models have the same average number of overlapping
particles η = 1 and different repulsion strength νk (see legends).
Panel a shows the radial distribution function gsc(r) between
pairs within the same cell. Panel b shows the radial distribution
function gdc(r) between pairs involving two different neighbor-
ing cells. The values of r/bcg range here from 0 to the cell size,

i.e. ∆L/bcg = 0.79 for all the models.

Since the closed-packed pairs only exist in the same or neighboring cells, we
decompose the part of g(r) when r ≤ ∆L. For the melts involved in Fig. 4.6,
they have the same lattice size ∆L/bcg = 0.79. The corresponding results
are presented in Fig. 4.8a and b, respectively. From gsc(r) we conclude that
there are less and less pairs of beads found in the same cell as νk increases.
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When νk ≥ 10, gsc(r) ≈ 0, and all non-zero data points are less than 10−4.
In contrast, the saturation of gdc(r) demonstrates that the contribution from
beads in neighboring cells becomes constant at large νk. This result verifies
our hypothesis, stating that beads in two neighboring cells can be arbitrary
close and cannot be separated by increasing νk.

FIGURE 4.9: The radial distribution functions obtained from
mesoscopic models mapped from B2c. The mesoscopic models
have the same repulsion strength νk = 3 and different average

number of overlapping particles η (see legends).

The g(r) of melts with different η are compared in Fig. 4.9. Because of the
softness of our potential, it is possible to employ a high value of η. For η = 15,
g(r ≈ 0) ∼ 1, indicating that the beads are locally highly overlapped. One
can reduce the overlapping by using a smaller η, because it is energetically
favorable to have beads in different cells at low η. For η ≤ 1, we observe
that the width of correlation hole decreases as η becomes smaller. This is
because η is reduced by reducing the range of interactions ∆L. However,
the depth of correlation hole shows a more complex behavior. The inset of
Fig. 4.9 shows the variation of g(r ≈ 0) with respect to η. It can be seen
that, g(r ≈ 0) decreases from ∼ 1 to ∼ 0.2 when η is reduced from 15 to 0.5.
However, if we further reduce η, the depth of g(r) becomes more shallow.
The non-monotonous change of g(r ≈ 0) as a function of η has the same
origin as the non-trivial effects of νk on g(r ≈ 0). By decomposing the g(r)
from Fig. 4.9 into gsc(r) and gdc(r), shown in Fig. 4.10, we demonstrate that
the contribution from pairs in the same cell decreases as η becomes smaller.
In contrast, the contribution from pairs in neighboring cells increases. When
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η ≤ 0.5, the value of gsc(r ≈ 0) starts to be comparable or even smaller than
gdc(r ≈ 0). Consequently, the behavior of g(r ≈ 0) is dominated by the
gdc(r ≈ 0), making the g(r ≈ 0) to grow again.

a) b)

FIGURE 4.10: The decomposed radial distribution functions
obtained from mesoscopic models mapped from B2c. The
mesoscopic models have the same repulsion strength νk = 3
and different average number of overlapping particles (see leg-
ends). Panel a shows the radial distribution function gsc(r) be-
tween pairs within the same cell. Panel b shows the radial dis-
tribution function gdc(r) between pairs involving two different
neighboring cells. The values of r/bcg range from 0 to the small-

est cell, i.e. ∆L/bcg = 0.37 when n∗ = 0.1.

Different from the local liquid structure, the mesoscopic features of the ref-
erence microscopic melt can be accurately reproduced by our mesoscopic
model. To illustrate this point, we calculate three typical properties which
characterize the features on mesoscopic scales: radial distribution function of
the COM of chains, mean-squared internal end-to-end distance, and autocor-
relation function of bond vectors. In particular, radial distribution function
of the COM of chains quantifies the mesoscopic liquid structure within the
melts. Mean-squared internal end-to-end distance and autocorrelation func-
tion of bond vectors explicitly take into account chain conformations and,
similar to knotting properties, contain the features on both local and meso-
scopic scales.

The results of radial distribution function of the COM of chains gchain(r) are
shown in Fig. 4.11. Panel a) contains the results obtained from mesoscopic
models with constant η and varied νk, while panel b) contains the results
obtained from mesoscopic models with constant νk and varied η. In both
panels, the gchain(r) obtained from mesoscopic melts are compared with that
of the corresponding microscopic melt (red line). The radial distances r are
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b)a)

FIGURE 4.11: Radial distribution function gchain(r/Re) of COM
of polymer chains. The radius r is normalized by the end-to-
end distance Re of the chains. gchain(r/Re) are obtained from
mesoscopic melts mapped from the B2c melt (red solid line).
The mesoscopic models with a) different repulsion strength νk,
or b) different average number of overlapping particles η are

used to generate these equivalent melts.

normalized by end-to-end distance Re. It can be seen that the gchain(r) of
mesoscopic melts follow closely the gchain(r) of microscopic melt. The largest
deviation, ∼ 1.5%, is observed for the mesoscopic melt with η = 0.2.

a) b)

FIGURE 4.12: a) Internal distance plot Cα,B2c(s̃), presented as a
function of s̃ for mesoscopic melts mapped from the B2c melt.
The results obtained from mesoscopic models with several rep-
resentative parameters are compared with the reference B2c
melt (red solid line). The inset shows the relative deviation
δB2c(s̃) between mesoscopic and microscopic melts. b) δm(s̃) of
mesoscopic melts mapped from microscopic melts containing
chains with different stiffness. The inset shows the enlarged
plot at small s̃. The vertical dash line indicates the relative de-

viations at s̃ = 3.
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Fig. 4.12 shows the internal distance plot Cα,m(s), which is defined as,

Cα,m(s) ≡
〈

R2
α,m(s)

〉
/s (4.21)

where
〈

R2
α,m(s)

〉
is mean squared internal end-to-end distance. s is chemical

distance between monomers i and j along the same chain, i.e., s = |i − j|.
α = cg or mic, which indicates a microscopic melt or a mesoscopic melt, re-
spectively. The subscript m denotes a specific system listed in table 4.1, e.g.,
B2c. Cα,m(s) is considered as one of the most sensitive quantifiers of poly-
mer conformations261,262. In Fig. 4.12a, we compare the Ccg,B2c(s) for several
representative mesoscopic analogs of B2c melt with Cmic,B2c(s) obtained from
the B2c melt. Although the mesoscopic and microscopic chains have different
discretization, i.e., Nmic 6= Ncg, we can compare the Cα,B2c(s) on a common
graph using a rescaled chemical distance s̃ = s · bα/lk. To better quantify the
difference between Ccg,B2c(s) and Cmic,B2c(s), we define a relative deviation
δm(s̃),

δm(s̃) =
Ccg,m(s̃)− Cmic,m(s̃)

Cmic,m(s̃)
(4.22)

The results of δB2c(s̃), shown in the inset of Fig. 4.12a, demonstrate that for
chemical distances that are equal or larger than three Kuhn segments, the de-
viation between the internal distance of mesoscopic melts and the reference
B2c system is already reduced to ∼ 3% at most. Such conformational devia-
tion is considered small in other areas of polymer modeling, e.g., hierarchical
backmapping263,264. For s̃ < 3,

〈
R2

cg,B2c

〉
is much larger than

〈
R2

mic,B2c

〉
. This

large deviation stems from the difference of local chain structure between
mesoscopic and microscopic chains.

To better clarify the difference of local chain structure of mesoscopic and mi-
croscopic chains, we mapped two additional microscopic melts containing
more flexible or stiffer chains, B0d and B4c. The parameters of the cor-
responding mesoscopic models are listed in table 4.3. Note that ε of the
mesoscopic melt mapped from B0d is very small. This is because the lattice
size ∆L in the mesoscopic melt representing B0d melt is comparable with
bond length bcg. Then the repulsive interactions between monomers that are
nearest neighbors along the chain contribute substantially to local stiffness.
Therefore we need to employ smaller ε.

Fig. 4.12b presents the relative deviation for mesoscopic melts representing
B0d and B4c. Because these mesoscopic melts are generated by models with
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νk = 3 and η = 1, we have added the the relative deviation for B2c when
νk = 3 and η = 1 to facilitate comparison. From the main plot of Fig. 4.12b,
we can see that our mesoscopic melts accurately reproduce the

〈
R2

e
〉

of the
corresponding microscopic melts, i.e., δm(s̃ = Nk) ∼ 0. For smaller s̃, the
relative deviation is small (< 3%) for the most part of the chains. Especially
the most flexible chain with B = 0 exhibits the best agreement: δB0d(s̃) ≈ 0
within a relatively large range of s̃. The deviation at local scales can be seen
from the inset of Fig. 4.12b. Compared with δB2c, the relative deviations δB0d

and δB4c are somewhat larger. For example, the deviations at s̃ = 3, indicated
by the dash vertical line, are about 3%, 2% and 5% for melts representing
B0d, B2c and B4c.

TABLE 4.3: The parameters of mesoscopic melts mapped from
the B0d and B4c microsocopic melts.

systems νk η ρ̄0 (σ
−3) κ ∆L (σ) Ncg bcg (σ) ε

B0d 3 1 0.65 3 1.15 976 1.01 0.5
B4c 0.19 3 1.7 144 3.5 1.0

FIGURE 4.13: Bond-bond autocorrelation function for meso-
scopic melts mapped from B2c melt. The results obtained from
mesoscopic models with different average number of overlap-
ping particles η and repulsion strength νk are compared with
the reference B2c melt (red solid line). The expected power law
decay in polymer melts with exponent −3/2 is shown with a
purple solid line. The exponential decay of random walks is

also shown in the plot.



98 Chapter 4. When can soft models describe polymer knots?

Fig. 4.13 shows the autocorrelation function of bond vectors P(s̃) =

〈u(s0)u(s0 + s)〉. Here u(s0) and u(s0 + s) are vectors oriented along the s0

and s0 + s bonds. For random walks, P(s) decays exponentially as a func-
tion of chemical distance s. Recent studies246,247 have demonstrated that in
polymer melts P(s) does not decay exponentially at large s (as predicted by
the Flory Hypothesis) but follows the scaling P(s) ∼ s−3/2. Fig. 4.13 shows
the P(s) calculated for all equivalent mesoscopic representations of B2c melt.
To compare with the P(s) of microscopic melts (red line), we again use the
rescaled chemical distance s̃. For the region 0 < s̃ < 10, where the statis-
tics are fairly good, we observe that the decay of bond-bond correlations ob-
tained from mesoscopic melts reproduces the correct power-law decay and
follows closely the reference data.

4.6 Properties of knots in mesoscopic models

From the discussion of structural and conformational properties, we can see
that local liquid structure of mesoscopic melts is very coarse compared to the
equivalent microscopic melts. Moreover, the local liquid structure of meso-
scopic melts with different parameters is also different from each other, al-
though these melts are mesoscopically equivalent to the same reference sys-
tem. Therefore our mesoscopic melts are well suited for verifying our quali-
tative predictions based on the simple free-energy model.

a) b)

FIGURE 4.14: The influence of a) repulsion strength νk and
b) average number of overlapping particles η on the knotting
probability Pk of mesoscopic melts. All the mesoscopic melts
are mesoscopically-equivalent to the B2c system. The knotting
probabilities in the reference B2c, and in random walks with

same Nk are shown with two horizontal solid lines.
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We first summarize the knotting probability Pk in mesoscopic melts mapped
from B2c system. According to the reference data provided in ref. [47], the
knotting probability in B2c system and the random walks having the same
Nk is 9.58% and 30.05%, respectively. Based on the discussion in section 4.2,
this large difference of Pk between chains in the melt and ideal random walks
indicates that the microscopic chains with B = 2 are rather flexible and our
mesoscopic model is not expected to reproduce accurately the knotting prop-
erties.

In Fig. 4.14, the knotting probability of reference B2c melt and correspond-
ing random walks are indicated by two horizontal solid lines. Indeed, the Pk

in mesoscopic melts (black squares) interpolate between the reference lines.
From Fig. 4.14a, we observe that Pk decreases as repulsion strength νk be-
comes larger but converges to a value that is ∼ 65% larger than the Pk in
the reference B2c melt. This behavior of Pk stems from the zeroth-order PM
scheme which cannot completely avoid close-packed beads even at strong
repulsion strengths (see Fig. 4.7). This effect reduces the effective excluded
volume, i.e., the parameter w̃, speaking in terms of the simple free-energy
model.

Fig. 4.14b compares the Pk in mesoscopic melts generated by models with
the same νk but different average number of overlapping particles η. The
dependence of Pk on η is non-monotonous. Pk starts from a high value at
η � 1, decreases as the η increases, then reaches a broad minimum at η ≈
1, and grows again (presumably towards the limit of the ideal chain). As
mentioned earlier, η is increased by using larger ∆L. Within the regime of
weak overlapping (η < 1), enlarging lattice size ∆L increases the effective
range of excluded volume w̃ within mesoscopic melts, which can be seen
from the width of correlation hole in g(r) (see Fig. 4.9). According to the
prediction of simple free-energy model, the knotting probability Pk decreases
as the w̃ increases. Therefore, Pk decreases with the increasing of η within the
regime of weak overlapping. Within the regime of strong overlapping (η �
1), a test bead finds itself in a uniform ”background field” of other beads.
Because there is no penalty for overlapping, the effective range of excluded
volume is not mainly determined by ∆L, but highly influenced by the degree
of overlapping. Larger η leads to smaller effective range of excluded volume,
although ∆L is getting larger. Therefore Pk increases with the increasing of η

within the regime of strong overlapping.
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a) b)

c) d)

FIGURE 4.15: Comparison of distributions of the size of tre-
foil knots in microscopic (mic) melts, the equivalent mesoscopic
(cg) melts and the ideal chains (id) with the same Nk. The dis-
tributions obtained from the systems mapped from the B0d are
presented in the panels a and b considering different ways of
normalization. The integrals of distributions in panel a and b
are unity and knotting probability of trefoil knots P31,α, respec-
tively. The distributions obtained from the systems mapped
from B2c and B4c melts are presented in the panels c and d,

respectively. These distributions are normalized to unity.

We now focus on trefoil knots (31). The distributions of trefoil knot sizes in
mesoscopic melts P(Ñknot,cg) are shown in Fig. 4.15. Three different meso-
scopic melts mapped from microscopic melts B0d, B2c and B4c are consid-
ered. All these mesoscopic melts are generated by using the same νk and
η, i.e., νk = 3 and η = 1. For comparison, Fig. 4.15 also shows the distri-
butions in the reference microscopic melts P(Ñknot,mic) and in ideal chains
with the same chain length P(Ñknot,id). In panels a, c and d, the distribu-
tions are normalized to unity. In panel b, the distributions are normalized to
the probability P31,α that a randomly picked chain forms a trefoil knot in the
corresponding systems. The necessity of considering two different ways of
normalization will become clear in the following discussions.
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To better understand the results shown in Fig. 4.15, we discuss the distri-
butions based on their two main features, the peak position and the decay
of tail part, which reflects the behavior of relatively small and large knots,
respectively. Fig. 4.15a compares the distributions obtained from the B0d
melt containing the most flexible chains (mic), and its equivalent systems
generated by mesoscopic model (cg) and ideal chain model (id). We first
focus on the peaks of the distributions, which correspond to the sizes of
the most probable knot Ñ∗knot,α formed in these models. Comparing to the
Ñ∗knot,mic of microscopic B0d melt, the sizes of the most probable knot formed
in ideal chains and in mesoscopic melts are much smaller. This result is con-
sistent with the prediction obtained from the free-energy model that the size
of the most probable knot formed in thicker chains is larger. Additionally,
the value of Ñ∗knot,cg is very close to the Ñ∗knot,id in ideal chains, where the
chain thickness is zero. This indicates that the close-packed non-interacting
beads in mesoscopic model (see Fig 4.7), which effectively have no repulsion
between each other, promote the formation of small knots with size compa-
rable with Ñ∗knot,id and dominate the size of the most probable knot. These
closed-packed beads stem from the zeroth-order PM scheme and are inde-
pendent of parameters of the mesoscopic model.

The knots corresponding to the tails of the distributions are no longer tight.
Therefore, the simple free-energy model cannot be applied in this regime
and simulations become crucial for understanding the behavior of these large
knots. The results shown in Fig. 4.15a suggest that the tails of distributions in
mesoscopic and microscopic melts are parallel with each other, while the tail
part of the distribution in ideal chains has a slightly steeper slope. This point
can be better illustrated when the distributions are normalized to the knot-
ting probability of trefoil knots P31,α, shown in Fig. 4.15b. It is clear that the
tails of P(Ñknot,cg) · P31,cg and P(Ñknot,mic) · P31,mic overlap with each other,
and they are both above the ideal chain curve. Moreover, by normalizing the
size distributions to P31,cg, one obtains the distributions of the probability to
obtain a trefoil knot with a certain size. Therefore, Fig. 4.15a also demon-
strates that the probability that a randomly picked chain forms a relatively
large trefoil knot in ideal chains is smaller than that of polymer melts.

From previous studies, it is expected that the trefoil size distributions fol-
low universal limiting behavior when Ñknot,α is very large. For example, for
trefoil knots formed in an isolated closed self-avoiding loop, it is known that
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the size distribution follows a power-law decay265 when knot size is substan-
tially larger than the size of the most probable knot. The power-law decay
also can be observed in distributions obtained from linear ideal chains47 after
appropriate chain end corrections have been applied. However, the limiting
behavior of P(Ñknot,α) in polymer melts has not been investigated so far. We
cannot conclude on the limiting behavior in polymer melts based on our re-
sults, although the slopes of the tails of P(Ñknot,mic) and P(Ñknot,cg) are differ-
ent from that of P(Ñknot,id). The reason is that the difference in the behavior
of tail parts observed in Fig. 4.15 can be caused by two different reasons.

First of all, it is possible that the chain length Nk of systems in Fig. 4.15a
is not long enough to show the limiting behavior, and the difference in tail
parts only indicates different cross-overs from the behavior of small knots to
that of very large knots. Within the cross-over regime, the distributions are
still influenced by the behavior of relatively small knots and have not fully
shown the limiting behavior. We already know that the behavior of small
knots is different in ideal chains and polymer melts. Therefore, if Nk is not
large enough, the observed difference in tail parts of the distributions in ideal
chains and polymer melts is simply caused by the strong deviation between
the behavior of small knots, and the limiting behavior might be not shown at
all.

On the other hand, it is also possible that the limiting behavior in ideal chains
and melts is indeed different. This can be understood when we consider an
important property of polymer melts, the invariant degree of polymerization√

N̄. For the B0d melts, the
√

N̄ is very small and only 59.8 (see table 4.1).
By default, the chain conformations in such melts strongly deviate from the
ideal chain statistics. Therefore, the behavior of large knots formed in ideal
chains can be very different from that of knots formed in melts, which results
in different limiting behavior of the distributions in ideal chains and polymer
melts.

Note that the difference in tail parts observed in Figs. 4.15a and b also can
be a result of a synergy of both two influencing factors, i.e., cross-over and√

N̄. To draw a solid conclusion on the limiting behavior of distributions
obtained from polymer melts, one needs to model melts containing much
longer chains.

Figs. 4.15c and d shows the distributions obtained from mesoscopic melts
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mapped from B2c and B4c, respectively. For the tight knots, as expected by
the simple free-energy model, the influence of local liquid structure on knot-
ting properties is weaker as chains become stiffer. Especially in Fig. 4.15d, we
observe that Ñ∗knot,id ≈ Ñ∗knot,cg and these two values are only slightly smaller
than Ñ∗knot,mic. To better quantify the deviation, we define a relative deviation
δknot. For example, when comparing mesoscopic and microscopic melts the
δknot is,

δknot =
2(Ñ∗knot,mic − Ñ∗knot,cg)

Ñ∗knot,mic + Ñ∗knot,cg
(4.23)

In panel d, the relative deviation between mesoscopic and microscopic melts
δknot is 38%, which is smaller than the relative deviation observed in panels
a and c, where δknot is 162 % and 52 %, respectively.

Interestingly, for the tail parts of distributions in Fig. 4.15d, all three models
agree with each other. We can understand this observation from two per-
spectives. First of all, the similar behavior of small tight knots (local regime)
makes the behavior within cross-over regime of P(Ñknot,id) and P(Ñknot,cg)

close to that of P(Ñknot,mic). Second, because the
√

N̄ of B4c melt is already
very large, i.e.,

√
N̄ = 256.9, the chain conformations approach the ideal

chain limit. Therefore, both ideal chain and mesoscopic model can describe
the knotting behavior of B4c melt quite well. Fig. 4.15c shows an intermedi-
ate case. The chains are stiffer than the chains in B0d melt but more flexible
than chains in B4c melt. The

√
N̄ = 94.8 (see table 4.1). In both local and tail

parts of the distributions, the deviations of P(Ñknot,id) and P(Ñknot,cg) with
respect to the P(Ñknot,mic) are weaker than the deviations in Fig. 4.15a but
stronger than that in Fig. 4.15d.

From the results shown in Fig. 4.15, we can draw an important conclusion:
the stiffer the chains in microscopic melts, the better the agreement between
knotting properties in mesoscopic and microscopic melts. However, this con-
clusion is based on the results of the simplest trefoil knots. It is important to
investigate whether this conclusion holds for more complex knots. There-
fore, we mapped all the microscopic melts listed in table 4.1 by employing
νk = 3 and η = 1. The total knotting probability (Fig. 4.16) is analyzed,
which takes into account all the possible knots types in the systems. We ob-
serve that, indeed the difference between Pk in mesoscopic and microscopic
melts decreases as the chains in microscopic melts become stiffer. For the
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FIGURE 4.16: Comparison of knotting probabilities in micro-
scopic melts (lines with filled symbols) and mesoscopic melts
(lines with open symbols). The results of random walks are
shown by a solid line. The reference results obtained from mi-

croscopic melts and random walks are taken from ref [47].

melts containing the most stiff chains (B = 4), the Pk obtained from micro-
scopic, mesoscopic, and ideal chain models are very close to each other. Ac-
cordingly, we can expect that, as the microscopic chains become stiffer, the
mesoscopic model also can reproduce the behavior of knots with more com-
plex topologies.

4.7 Summary and conclusions

Our work focused on a fundamental question, whether and under which
condition mesoscopic models with soft potentials can describe the knotting
behavior of polymer melts. We employed a typical mesoscopic model rep-
resenting polymers by wormlike chains and defining the non-bonded inter-
actions through a generic soft repulsive potential based on a PM scheme.
We chose the PM-based non-bonded potential to deliberately create melts
with crude local liquid structure. The model was parameterized to accu-
rately reproduce mesoscopic structure and conformations of melts that have
been previously modeled47 with a bead-spring model. The latter captures51

generic features of polymer conformations and structures at all length scales
and provides, therefore, reliable reference data on knots.
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We compared characteristic knotting properties in mesoscopic and reference
microscopic melts. Different microscopic melts containing chains with dif-
ferent stiffness were considered. For the simplest possible knot, the trefoil
knot, we analyzed the distributions of knot sizes (length of chain contour in-
volved in the knot). Regarding general knotting properties, we compared the
probability that a chain is in knotted state.

The main conclusion in this work is that mesoscopic models can accurately
reproduce the knotting properties of microscopic melts when the characteris-
tic length scale associated with the stiffness of microscopic chains is substan-
tially larger than the size of excluded volume. This conclusion was first illus-
trated by considering the size distribution of trefoil knots in polymer melts.
The size distributions were discussed by focusing on their peak position and
tail part. The position of peak reflects the knotting behavior of relatively
small trefoil knots, while the behavior of larger trefoil knots is described by
the tail part of distributions.

For relatively small trefoil knots, our simulation results indicated that, the
knotting behavior is sensitive to local liquid structure, but this sensitivity de-
creases as the microscopic chains become stiffer. The local liquid structure
in mesoscopic melts was found to be different from that of the traditional
bead-spring model with hard excluded-volume and is very crude. There-
fore, mesoscopic models can accurately reproduce the behavior of relatively
small trefoil knots in microscopic melts only if the microscopic chains are
sufficiently stiff.

The knotting behavior of small trefoil knots was qualitatively explained
through a simple free-energy model. This model is developed for relatively
small trefoil knots formed in single chains241,248. It claims that the free en-
ergy cost for forming such a trefoil knot includes the bending energy and the
entropy loss caused by confining chain contour into the knot core. The bend-
ing energy is independent of the local liquid structure, while the entropy
loss due to confinement is influenced by how the length scale of chain stiff-
ness, e.g., the length of Kuhn segment lk, compares with the chain thickness
w, which is determined by the size of monomer-monomer excluded volume.
When the ratio w̃ = w/lk is very small, the behavior of relatively small trefoil
knots formed in microscopic melts is close to that in the ideal chains, mean-
ing the influence of local liquid structure on knotting behavior is marginal.
Therefore, in such systems, mesoscopic models can accurately describe knots
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even though the local liquid structure is simplified compared to microscopic
melts.

For larger trefoil knots, the free-energy model is not valid and our simu-
lations provided important insights for understanding the corresponding
knotting behavior. According to earlier studies of single chains265, one can
expect that very large knots formed in polymer melts may follow certain uni-
versal limiting behavior. Though the size of knots observed in our study is
not large enough, and we cannot conclude on the limiting behavior in poly-
mer melts. For the range of Ñknot involved in this study, we expect there
are two possible reasons that may influence the behavior of large knots ob-
served in our study, because the behavior of observed large knots mainly
corresponds to the behavior within cross-over regime. Within the cross-over
regime, the corresponding knotting behavior gradually approaches the lim-
iting behavior, but is still influenced by the behavior of smaller knots. Ac-
cordingly, on the one hand, the ability of mesoscopic model to describe the
behavior of observed large knots is influenced by the agreement between
the behavior of small knots in mesoscopic and microscopic melts. On the
other hand, the behavior of the observed large knots can also be influenced
by the quantity

√
N̄, which frequently enters the universal functions of con-

formational and structural properties of polymer melts. Because mesoscopic
models can easily reproduce the

√
N̄ of microscopic melts, the behavior of

large knots formed in reference microscopic melts can be accurately repro-
duced by mesoscopic models when the chains in microscopic melts are suf-
ficiently stiff, so that the agreement between the behavior of small knots in
mesoscopic and microscopic melts is good enough.

Additionally, to demonstrate that the discussions on trefoil knots can be ap-
plied to more complex knots, we considered another property, total knot-
ting probability Pk. It is affected by all the possible knot types formed in the
systems. We observed that the knotting probability of mesoscopic melts is
closer to that of microscopic melts when the microscopic chains are stiffer.
This observation is consistent with the conclusion obtained from the analy-
sis of trefoil knots. Therefore, we expect the same conclusion also holds for
more complex knot types and mesoscopic models can accurately reproduce
the properties of all the knots formed in microscopic melts when the micro-
scopic chains are substantially stiff.

A corollary of our main conclusion is that knotting properties in melts of
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chains with excluded volume converge to their counterparts in ideal chains,
as w̃ decreases. This trend has been observed in an earlier modeling study47

but was not linked to knot thermodynamics. In our study the trends of all
knotting properties as a function of w̃ are consistent with this expectation.

Interestingly, for flexible chains with non-negligible w̃, the deviation of knot-
ting properties between mesoscopic and microscopic melts has been ob-
served even though other conformational descriptors matched very well.
Specifically, the deviation of internal distance plots at chemical distances
larger than a few Kuhn segments was less than 2%. This observation is
important methodologically, because it suggests that knots provide an ad-
ditional sensitive quantifier of chain conformations.

To summarize, one encouraging message that our study conveys is that
mesoscopic models with soft potentials can be used to study polymer knots
in melts where the characteristic length scale of chain stiffness is substantially
larger than the size of the monomer-monomer excluded volume. In this way,
it is possible to benefit from the computational efficiency of mesoscopic mod-
els and study open questions related to the fundamental physics of knots in
polymers. For example, as mentioned earlier, one can simulate melts con-
taining extremely long chains and investigate the limiting behavior of very
large knots. Besides, it would be of interest to explore the behavior of knots
in confinement, in mixtures, in chains with special structures, etc.
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Chapter 5

Summary and conclusions

In this thesis, we focused on modeling polymeric systems using drastically
CG mesoscopic models. These models use CG beads to represent a large
number of microscopic degrees of freedom. Consequently, these CG beads
interact with each other via soft potentials20–22. The reduced degrees of free-
dom and soft potentials allow drastically CG models to access large length
and time scales, which are frequently involved in polymeric systems.

However, drastically CG mesoscopic models are designed to accurately re-
produce features on mesoscopic scales, and many features on small scales
in these models are simplified, such as local features of polymer chains and
local molecular arrangement (packing) of the materials. Yet many interest-
ing properties of polymeric systems are affected not merely by mesoscopic
features, but also by features on small scales. Therefore, a basic methodolog-
ical question arises: can one use drastically CG models to study properties
affected by features on multiple scales (multiscale properties)? Motivated by
this question, we considered two cases in which a typical mesoscopic model
is employed to study representative multiscale properties.

The employed model belongs to a class of mesoscopic models that have been
successfully used to address a broad range of questions in polymers99,101–103.
These models are developed through a functional-based approach and con-
sist of separated bonded and non-bonded potentials. The bonded poten-
tial describes the chain connectivity explicitly through particle coordinates.
The non-bonded potential is expressed by a functional of local density
fields. After defining the local density fields through particle coordinates,
the functional-based interaction is further converted into a particle-based in-
teraction. In the studies presented in this thesis, we used generic discrete
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WLC model to describe polymer chains, and a particle-to-mesh scheme was
used to define local density fields based on particle coordinates. The sys-
tems described by the mesoscopic model were studied using MC simulation
method.

In Chapter 3, we used the mesoscopic model to simulate disordered mor-
phologies in blend- and BCP-based active layers of PLEDs and correlated
the morphologies with properties related to charge transport. The proper-
ties related to charge transport are affected by multiscale features and here
we call them charge transport properties in short. The simulated disordered
morphologies were characterized by analyzing the local composition around
particles. Our results suggested that the morphologies within active layers
based on BCPs and equivalent blends are structurally different, and BCPs
show stronger local segregation when systems approach the order-disorder
transition. These morphologies were linked to charge transport properties
through a simple percolation analysis, which identifies the clusters provid-
ing conductive pathways. Because we have accessed experiment-relevant
scales with the mesoscopic model, the results obtained from the analysis
provided useful guidance for future experiments. For example, the impact
of processing temperatures, compositions, and finite size of active layers on
charge transport properties was discussed based on our percolation analysis.

To illustrate how the results of charge transport properties are influenced by
the simplified description of local features in the mesoscopic model, we con-
sidered different approaches of performing the percolation analysis. In the
first approach, the structure on small scales within the model was used to
define percolation, e.g., distances between CG beads. The second approach
defined percolation only based on the density distribution on substantially
larger scales. Interestingly, the two approaches produced quantitatively dif-
ferent but qualitatively same results. This observation indicates that our
mesoscopic model cannot quantitatively reproduce charge transport prop-
erties of active layers, but is still useful for qualitatively predicting their de-
pendence on mesoscopic features of the morphology within the layers.

In Chapter 4, we employed the mesoscopic model to investigate the knotting
properties of polymer melts. In an earlier study47, the knotting properties
in polymer melts were found to be influenced not only by mesoscopic chain
features but also by the excluded volume of beads. We compared the knot-
ting properties of microscopically-resolved polymer melts generated in this
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earlier study with that of mesoscopically-equivalent melts generated by our
mesoscopic model. In the earlier study, they employed a bead-spring model
which accounts for excluded volume and reproduces the general features on
both small and large scales. From the comparison, we observed that the influ-
ence of excluded volume on the knotting properties can be either significant
or weak depending on specific features of melts. When another local feature
of melts, the length scale describing the stiffness of chains, e.g., the Kuhn
length, is substantially larger than the size of excluded volume, the local fea-
ture influencing the knotting properties is not the excluded volume, but the
chain stiffness. Otherwise, the knotting properties are highly influenced by
the excluded volume. This finding is complementary to the earlier study. Be-
cause the WLC model was parameterized to accurately reproduce the chain
stiffness of polymer melts, our mesoscopic model can quantitatively repro-
duce the knotting properties of those polymer melts where the chain stiffness
is substantially larger than the size of excluded volume.

These two studies demonstrated that, the accuracy of mesoscopic models re-
duces as we approach the microscopic scales. Still, some of the microscopic
features can be described reasonably well by mesoscopic models. Usually it
is easier to reproduce with mesoscopic models some key properties related
to chain conformations, e.g., chain stiffness, than the local molecular arrange-
ment. Therefore, mesoscopic models describe better those phenomena and
properties that are dominated on small scales by the behavior of chain confor-
mations and not the liquid structure. The case of polymer knots considered
in this thesis is an illustrative example.

In any case, to rigorously study multiscale properties, mesoscopic models
should be incorporated into hierarchical back-mapping schemes93–95. Then
the mesoscopic model delivers an accurate description of the material on
large scales, and the underlying microscopic picture is recovered through the
insertion of atomistic degrees of freedom. Of course, one requirement for per-
forming hierarchical back-mapping is the appropriate design of mesoscopic
models95. The mesoscopic models should be designed in a way to accurately
reproduce the conformational and structural features that are mandatory for
the insertion of finer details. Note that this requirement is not fulfilled by the
specific mesoscopic model employed in this thesis. In the future, to simulate
multiscale properties of polymeric systems, it is important to develop meso-
scopic models, which facilitate the hierarchical back-mapping, especially for
complex multi-component systems.
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Appendix

Results for dilution 1:2

FIGURE A.1: Structure factors (black squares) and order param-
eters (blue open squares) calculated from MC simulations for
blends (left panel) and BCPs (right panel) at dilution 1:2. Black
solid lines show the RPA prediction: 1/SRPA(q∗, λχs) where λ
is a renormalization coefficient (see main paper). Black dashed
lines indicate the location of RPA spinodals, χs = 0.085 (blend)

and χs = 0.232 (BCP).



114 Chapter 5. Summary and conclusions

d (nm)

0.01 0.15 0.29 0.43 0.57 0.71 0.85 0.99

∼

a)

c)

0.24 0.26 0.28 0.3
0

0.2

0.4

0.6

0.8

1

d (nm)

∼

Blend 1:2

0.24 0.26 0.28 0.3
0

0.2

0.4

0.6

0.8

1

BCP 1:2

2 2.2 2.4 2.6 2.8
0

0.2

0.4

0.6

0.8

1

2 2.2 2.4 2.6 2.8
0

0.2

0.4

0.6

0.8

1

b)

∼

d)

∼

d (nm)

d (nm)

Blend 1:2

BCP 1:2BCP 1:2

Ps

FIGURE A.2: Contour plots quantifying the probability, Ps, to
observe a spanning PPV cluster in disordered blends and BCPs
with dilution 1:2. Blue and red colors correspond to low and
high probabilities, respectively. Panels a and c demonstrate the
Ps calculated for various normalized χ̃ and hopping thresholds
d using the continuum-space percolation analysis. The type of
the mixture is indicated at each panel. Panels b and d demon-
strate the Ps calculated for the same mixtures but using the
lattice-based percolation approach. The PPV density threshold
used in this analysis is denoted by ρth (see main paper for de-

tails).
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