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1. Abstract

In three eutrophic coastal environments, the Chilean coast, the

Namibian coast, and the Danish Limfjorden the abundance of nitrate-storing

sulfur bacteria was investigated. During a 14 months period the marine

Thioploca community off the Bay of Concepcion (Chile) was studied with

respect to changes in the population induced by seasonal variations in the

upwelling intensity. The major results of this study were:

• In summer 1996, oxygen concentrations in the bottom water were near zero

and the biomass was highest near the coast (~ 160 g m-2 wet weight without

sheaths).

• During winter, biomass declined at all stations due to higher oxygen

concentrations under reduced upwelling intensity, but some filaments

remained in deeper parts of the sediment.

• The depth distribution of thioplocas changed strongly with seasonal

variations, but the community structure, e.g. species distribution, diameter of

sheaths and number of trichomes per sheath, remained unchanged. These

parameters were different at each station.

• In the Bay of Concepcion, Thioploca spp. were found occasionally, but

reached high biomass during summer.

• An undescribed morphological form of thioplocas with very short cells was

discovered which is according to 168 rDNA sequences a close relative of

the normal thioplocas but more diverse in its morphology and sequence.

• The short-cell morphotype of Thioploca occurs with highest frequency in

near-shore sulfide-rich sediments, preferably at 5 - 10 cm depth in the

sediment. Especially during growth phase these filaments populate deep

parts of the sediment (~ 26 cm).

A survey for filamentous sulfur bacteria along the coast of Namibia

resulted in the discovery of an unknown giant sulfur bacterium which was

named Thiomargarita namibiensis. The characteristics of these bacteria are:

• Thiomargarita occurs as single round cells hold together in a string by a

common slime sheath. The cells are not motile.
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• Most of the cells are 100 - 300 J.lm in diameter but frequently single cells

with diameters of :s; 750 J.lm occur. Thus, Thiomargarita is the largest known

prokaryote.

• Thiomargarita namibiensis has internal sulfur globules and accumulates

nitrate in a central vacuole in :s; 800 mM concentration.

• According to 168 r DNA sequences it is closely related to the large nitrate­

storing Thioploca and Beggiatoa species.

• The population of Thiomargarita was found in very fluid sediments off Walvis

Bay in biomass of :s; 47 g m-2.

• Thiomargarita cells are not sensitive to high oxygen or sulfide

concentrations which is their special adaptation to survive under the

changing conditions in the fluid diatom ooze off Walvis Bay.

In the Danish Limfjorden Beggiatoa filaments with a diameter of 12 J.lm

contain internal nitrate accumulated to :s; 240 mM and occurred with highest

frequency below the sediment surface where no free oxygen was available.

Thus, the ability of using nitrate as electron acceptor is not restricted to the

large sulfur bacteria abundant in upwelling areas.

In conclusion it was found that nitrate-storing sulfur bacteria are more

abundant than previously assumed. Within this group of bacteria there were

undescribed, morphologically distinct types that passed the attention in earlier

studies.
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2. Preface and Acknowledgment

The idea to carry out the following study arose in March 1994 on the last

day of the "Thioploca-cruise" of the Max Planck Institute for marine

Microbiology (Bremen). In many respect, this study is based on knowledge

about thioplocas that originated in the combined information obtained by many

different researchers that participated in this cruise in 1994.

The backbone of this study is an annual observation on the Thioploca

community off the Bay of Concepcion, Chile. From December 1995 to February

1997 four different stations were sampled during 14 cruises onboard the RV

Kay Kay which belongs to the University of Concepcion. The processing of the

samples was done in the laboratories of the marine field station of the

University of Concepcion in Dichato. This part of the study which led to the two

manuscripts "Population study of the filamentous sulfur bacteria Thioploca spp.

off the Bay of Concepci6n, Chile" and "Two Morphotypes of marine Thioploca

spp. observed off the coast of Chile" could only be realized with the enormous

logistical help of Prof. Dr. Victor Ariel Gallardo. The cruises and the lab work

were done in close collaboration with Bettina Strotmann who concurrently

performed geochemical studies on the same stations. Both V. A. Gallardo and

B. Strotmann are therefore co-authors on both manuscripts that resulted from

this study. For the description of the new morphotype of Thioploca, a

comparison of 16S rONA sequences was important. For this samples of

thioplocas were prepared which were processed for obtaining a sequence by

Dr. Thorsten Brinkhoff. The phylogenetic tree was established by Dr. Ramon

RosseIl6-Mora. Therefore, both are co-authors on the second manuscript: "Two

Morphotypes of marine Thioploca spp. observed off the coast of Chile". During

twelve months of the stay in Chile the author was financed by the DAAD

(German academic Exchange service). All other expenses were covered by

the Max Planck Society.

In January and February 1997 Prof. Dr. Bo Barker J0rgensen, Prof. Dr. J.

Gijs Kuenen, Dr. Lars Peter Nielsen, Sandra Otte, Thomas Kjc:er and Jakob

Zopfi visited the marine field station in Dichato. Sandra Otte and Gijs Kuenen

performed incubation experiments on Thioploca filaments that resulted in the
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manuscript: "Ecophysiological studies on partially purified mixed cultures of

Thioploca species" written by Sandra Otte. The authors contribution to this

study was to give advises on how to treat Thioploca filaments and studies on

the survival rates of filaments with different media.

In April 1997, the author participated in a cruise along the Namibian

coast onboard the Russian RV Petr Kottsov. The results of this study are

presented in the manuscript: "Dense Populations of a Giant Sulfur Bacterium

in Namibian Shelf Sediments". Dr. Timothy G. Ferdelman made it possible for

to participate in this cruise by shipping equipment to Namibia. He was cruise

leader during most of the cruise and helped obtain sediment samples. Dr.

Thorsten Brinkhoff obtained the 16S rONA sequences from the newly

discovered Thiomargarita which Dr. Andreas Teske included into a

phylogenetic tree. Mariona Hernandez Marine made transmission electron

micrographs of Thiomargarita. For these contributions all of them are co­

authors of the resulting manuscript.

In November 1997 the author took part in a study on Beggiatoa in the

Danish Limfjorden together with Bettina Strotmann, Thomas Kjcer, Dr. Lars

Peter Nielsen and Prof. Dr. Bo Barker JliHgensen. The results of this project are

described in the chapter "Nitrate storage by marine Beggiatoa spp. in

Limfjorden, Denmark" and will ultimately be published by Bettina Strotmann.

The authors contribution to this work was the description of the Beggiatoa

population and measurements of internal nitrate concentrations.

Prof. Dr. Bo Barker J0rgensen is the last author on each manuscript

included in this study, partly because he encouraged, supported and financed

the projects. Furthermore, he invested much effort, time and patience in

correcting and improving each manuscript.

I am very grateful for all the support, guidance and trust in my work that I

received from my supervisor Bo B. J0rgensen. I would also like to thank Prof.

Dr. W. Arntz for his efforts in evaluating this PhD. thesis, as well as the

members of the committee: Prof. Dr. H. Willems, PO Dr. A. Mackensen, Dr. B.

Donner and J. Klump.
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Apart fram those colleagues that contributed directly to my work and are

co-authors on the manuscripts, there are many other friends and colleagues in

Bremen and Concepcion who helped me. Not all of them can be named, but I

would like to express special thanks to Andrea Friedrich, Vanessa Madrid,

Sabine Nienstedt, Michael Schr6dl, Christoph Suppes, Bettina Stratmann,

Paula Urrutia, Anyola Vega and Wiebke Ziebis for their help and friendship.
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3. Current state of knowledge

3.1 The group of colorless sulfur bacteria

The sulfur-oxidizing bacteria are referred to as colorless sulfur bacteria to

distinguish them from the purple sulfur bacteria which accumulate internal

sulfur globules during anoxygenic photosynthesis. The colorless sulfur

bacteria form two principle groups: one group oxidizes reduced sulfur species

such as sulfide or thiosulfate without accumulating internal sulfur globules. The

second group comprises all colorless bacteria that accumulate elemental

sulfur in the presence of sulfide and gain energy by the oxidation of reduced

sulfur species (see Table 3.1). These bacteria are generally rather large and

characterized by a specific morphology, thus they are often referred to as

"morphologically conspicuous sulfur bacteria". Although many of the genera in

this group were described in the early days of microbiology because they were

easy to describe, few strains have as yet been obtained in pure culture.

Nevertheless, they are frequently observed in high numbers in marine and

fresh water environments where sulfide and oxygen are present, and their

significance for the sulfur cycle is widely recognized (KUENEN, 1989; LA RIVIERE

and SCHMIDT, 1992). A third group of sulfur-oxidizing bacteria, that is normally

not included in the group of colorless sulfur bacteria, is represented by the

endosymbiontic sulfur oxidizing bacteria first discovered in Riftia pachyptila

and other invertebrates living at deep sea hydrothermal vents (CAVANAUGH,

1981; FELBECK 1981).

The group of "morphologically conspicuous sulfur bacteria" harbors both

filamentous and unicellular types (Fig. 3.1). The four filamentous genera form

the family of Beggiatoaceae, named after the genus Beggiatoa (TREVISAN,

1842), which was the first genus to be described and is one of the most

abundant. Beggiatoa filaments consist of rows of cells (trichomes) with single

cells separated from one another by their cytoplasmic membrane and a

peptidoglycan layer. Thioploca (LAUTERBORN, 1907) filaments resemble

Beggiatoa, the main difference is that they usually do not occur as single

trichomes, but as bundles within a common sheath. Both Beggiatoa and

Thioploca species show a gliding movement accompanied by rotation.
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'Thiospirillopsis" (UPHOF, 1927) looks like a Beggiatoa filament but is coiled in

a spiral form, giving the impression of a corkscrew motion when gliding.

Beggiatoa strains occasionally show the same morphology under certain

culture conditions. The validity of the genus IIThiospirillopsisII is therefore

uncertain. In contrast to these three genera, the filaments of Thiothrix

(WINOGRADSKY, 1888) are attached at one end to a solid surface by a hold-fast

structure. At the free end of the filament, single motile cells or homogonia of

several cells can be released. Each filament of Thiothrix is surrounded by a

slime sheath, and sometimes rosettes are formed. In the group of Beggiatoa­

ceae, only Beggiatoa and Thiothrix strains have been isolated in pure culture.

With the exception of marine beggiatoas, all of these strains grow

chemolithoheterotrophically, gaining at least most of their energy via the

oxidation of organic compounds.

Table 3.1 Genera of bacteria that oxidize reduced sulfur compounds and

are generally known as the "colorless sulfur bacteria" (adapted

from KUENEN, 1989).

with sulfur inclusion
unicellular

Thiovulum

Thiospira

Macromonas

Achromatium

Thiobacterium

"Bilophococcus II

filamentous

Beggiatoa

Thioploca

Thiothrix

"Thiospirillopsis II

without sulfur inclusion
mesophil thermophil

Thiobacillus Sulfolobus

Thiomicrospira Acidianus

Thiodendron Thermothrix

Th iospaera

The round to egg-shaped cells of Thiovulum (HINZE, 1913) are motile by

means of peritrichous flagella. Cells are 5 - 25!J.m in diameter. Their

cytoplasm is generally concentrated at one end of the cell, with the rest of the

remaining space occupied by a large vacuole (LA RIVIERE and KUENEN, 1989).

They are often observed as a white veil on top of sulfidic marine sediments

within the oxygen / sulfide interface (J0RGENSEN and REVSBECH, 1983).

Although Thiovulum cells have not been isolated in pure culture, enrichment

culture studies gave strong evidence for a lithoautotrophic metabolism based
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on the oxidation of sulfide with oxygen and CO2-fixation (WIRSEN and

JANNASCH, 1978). Within a veil, the cells may induce advective transport of

oxygen-rich water towards the sediment surface by a collective spinning

movement, thereby increasing the oxygen availability (FENCHEL and GLUD,

1998). In decaying veils, "swarming cells" are frequently observed, which are

slightly smaller than the usual Thiovulum cells and extremely fast swimming

(WIRSEN and JANNASCH, 1978; GARCIA-PICHEL, 1989).

The genus Thiospira (WISLOUCH, 1914) is characterized by spirillum­

formed, motile cells with polar flagella and sulfur inclusions. The cells of the

type strain T. winogradskyi are maximally 50 J.lm long and 2.5 J.lm wide.

Thiospira spp. are found in sulfurous marine and freshwater environments.

The validity of the genus is uncertain, because some organotrophic strains of

the genus Spirillum also accumulate sulfur in the presence of sulfide (LA

RIVIERE and KUENEN, 1989). Macromonas cells (UTERMOHL and KOPPE, 1924)

are cylindrical to bean-shaped and filled with calcite and sulfur inclusions. The

cells can be up to 40 J.lm long and are motile by a polar flagellum. All strains

obtained in pure culture are organotrophs (LA RIVIERE et aI., 1989). Like

Macromonas, Achromatium cells (SCHEWIAKOFF, 1893) from freshwater

habitats have many calcite inclusion and sulfur globules, but the form of the

cells is more spherical to oval shaped, and they can be much larger in

diameter (~80 J.lm). On solid surfaces, a slow gliding type of movement is

reported without apparent means of locomotion (LA RIEVIERE and SCHMIDT,

1992). No Achromatium strain could be isolated into pure culture, but

ecophysiological studies indicate an enhanced oxidation of sulfide to sulfate

when Achromatium cells are present (GRAY et aI., 1997).

The genus Thiobacterium (LA RIVIERE and KUENEN, 1989) consists of a

single species, T. bovista , that has not been successfully grown in pure or

enrichment culture. The non-motile rod-shaped cells of up to 9 j.lm length

have sulfur inclusions and are embedded in a gelatinous mass. These

colonies tend to have a spherical form when free floating and a dendroid form

when attached to a solid surface. Thiobacterium colonies have been found in

fresh and brackish water, where sulfide is present and in thermal springs of up

to 45 cG. Also represented by a single species is the genus "Bilophococcus"

(MOENCH, 1988). "B. magnetotacticus" is the only known sulfur-accumulating

bacterium which is magnetotactic. The coccoid cells of 1.4 -1.8 J.lm are motile
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by means of two adjacent tufts of flagella. Near the flagella there are numerous

magnetosomes, and each cell contains 1 - 3 sulfur globules. "B. magneto­

tacticus" was isolated magnetically from reconstructed waste water aeration

basin environments. The abundance of the organism in fresh water or marine

environments is unknown.

Beggiatoa

---.........._-
Thioploca

Thiothrix
"Thiospirillopsis "

Thiovulum Achromatium

)1

Macromonas Thiobacterium Thiospira

Fig. 3.1 Genera of bacteria that belong to the group of "morphologically

conspicuous sulfur bacteria" (adapted from KUENEN, 1989 and

SCHLEGEL, 1992).
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The phylogenetic affiliation of "morphologically conspicuous sulfur

bacteria", as determined by 168 rDNA sequences, is still incomplete because

of the general lack of pure cultures in this group. However, some complete and

incomplete sequences have been obtained for members of the genera

Beggiatoa, Thioploca, Thiothrix, Achromatium, and Thiovulum. With the

exception of Thiovulum majus, which is a member of the epsilon group of

proteobacteria (LANE et aI., 1992), all other genera belong to the gamma group

of proteobacteria (TESKE et aL, 1995; HEAD et a., 1996), which also harbors

many sequences of endosymbiontic sulfur oxidizers and some strains of

colorless sulfur bacteria without sulfur globules e.g. Thiobacillus and

Thiomicrospira species. The sequences of Beggiatoa and Thioploca spp.

together form a monophyletic branch in this cluster, although within these

group the large, vacuoleted Beggiatoa and Thioploca spp. seem to be closer

related to each other than to the other species of both genera (AHMAD et aL,

1999; J0RGENSEN et aL, submitted). Both Thiothrix spp., which used to be

included in the family of Beggiatoaceae, and Achromatium oxaliferum are

more remotely affiliated to Beggiatoa and Thioploca species.

3.2 Beggiatoa

In the group of "morphologically conspicuous sulfur bacteria" the genus

Beggiatoa was the first to be described (1804, as "Oscillatoria alba") and is

today the most frequently investigated and well-known genus of sulfur-storing

bacteria. Early observations of WINOGRADSKY on the appearance and

disappearance of sulfur globules in Beggiatoa filaments led him to the

conclusion that Beggiatoa spp. gain energy by oxidizing sulfide (1887). These

studies are seen today as a major watershed in microbiology: for the first time,

the concept of bacteria living on the oxidation of reduced inorganic

compounds (Iithotrophy) was introduced (ZAVARZIN, 1989). Ironically, the

studies of Beggiatoa filaments led to a whole new emphasis in microbiology

and subsequently many Iithotrophic strains could be isolated with the

exception of Beggiatoa.

For almost 100 years a basic discrepancy persisted: many field studies

of Beggiatoa spp. suggested a lithotrophic physiology, but only organotrophic

strains could be isolated into pure culture. Native Beggiatoa spp. were shown

to form distinct mats of ~0.5 mm thickness exactly in the oxygen / sulfide
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interface (J0RGENSEN and REVSBECH, 1983), and many details of their phobic

reaction toward oxygen and light could be demonstrated (M0LLER et aL, 1985;

NELSON and CASTENHOLZ, 1982). In 1983, NELSON isolated a chemoauto­

trophic marine Beggiatoa strain using a gradient culture system (NELSON and

JANNASCH, 1983) which finally ended the discussion of a principal possibility

for beggiatoas to gain energy from the oxidation of sulfide. Several marine

Beggiatoa isolates could be grown chemolithoautotrophically in gradient

cultures, whereas all fresh water isolates were chemoorgano-heterotrophs

(NELSON, 1992).

The discovery of dense populations of very large Beggiatoa filaments at

a hydrothermal deep-sea vent site in Guaymas Basin (Gulf of California) led to

a new interest in the genus Beggiatoa (JANNASCH et aL, 1989). These

beggiatoas form layers up to 3 cm thick on top of the sediments and up to

30 cm thick between vestimentiferan tube worms. The mats consist almost

exclusively of Beggiatoa filaments of three size classes, with the largest

filaments being 116-122 Jlm in diameter. Judging from their enzyme activities,

the giant beggiatoas from this hot vent have a potential for Iithoautotrophic

growth (NELSON et aL, 1989).

3.3 Thioploca

The genus Thioploca was established by LAUTERBORN in 1907 for a group of

filamentous bacteria resembling beggiatoas that he discovered in Lake

Constance. The main differences noted between Beggiatoa spp. and

Thioploca was that Thioploca filaments occur as bundles in a common sheath

and are often tapered at the ends. These two criteria remain the major

distinguishing features of the two genera. The filaments of the type species

T. schmidlei have diameters of 5 - 9 Jlm. LAUTERBORN found that in Lake

Constance, thioplocas occurred in greater water depths than beggiatoas. He

also observed that thioplocas protruded deep into sediments which did not

smell of sulfide, whereas beggiatoas were found at the surface of sediments

smelling strongly of sulfide. Since this first description, fresh water Thioploca

spp. have been found in various lakes and springs in Germany, Russia, North

America and Japan (KOLKWITZ, 1912; WISLOUCH, 1912; KOPPE, 1924;

KOLKWITZ, 1955; MAIER and MURRAY 1965; MAIER AND PREISSNER, 1979;

NAMSARAEV et aL, 1994; NISHINO et aL, 1998).
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In 1965, MAIER described a population of Thioploca ingrica (2 - 4.5 J..lm

diameter) from Lake Erie that he compared with respect to ultra structure to a

fresh water Beggiatoa species. Apart from many similarities, he found that

T. ingrica contained an additional wall component, and the cytoplasm of

Beggiatoa sp. was richer in ribosomes but less dense than that of T. ingrica

(MAIER and MURRAY, 1965). This led him to conclude that in spite of their re­

semblance, the two genera were distinct. T. ingrica was maintained in enrich­

ment cultures in original sediment for several years and was recognized as a

species (MAIER, 1984) described first by WISLOUCH (1912).

The first marine population of Thioploca spp. was found in the upwelling

area off the Chilean coast (GALLARDO, 1977) and subsequently in Peruvian

coastal sediments (ROSENBERG et aL, 1983). The marine Thioploca com­

munities are often high in biomass (up to 106 g wet weight per 0.1 m2 including

sheath material), exceeding even the wet weight of benthic animals

(GALLARDO, 1977). Two species of marine Thioploca have been described,

T. araucae with filament diameters of 30 - 43 J..lm, and T. chileae with dia­

meters of 12 - 20 J..lm (MAIER and GALLARDO, 1984). Apart from being larger

and occurring at higher densities, the marine species differ from the fresh

water thioplocas in ultra structure (MAIER et aL, 1990). The cytoplasm is

restricted to a thin outer layer of 1-2 J..lm, whereas the inner part of the cells is

filled up by a large central vacuole that appears empty. This particular feature

also occurs in the large marine Beggiatoa spp. from hydrothermal vents

(NELSON et aL, 1989).

3.4 Nitrate storing sulfur bacteria

Under natural conditions Beggiatoa spp. living in microoxic environments

within the oxygen / sulfide interface should also be able to survive transient

anaerobic conditions in these changing environments. Several electron

acceptors have been proposed and tested as an alternative to oxygen for

beggiatoas. NELSON and CASTENHOLZ (1981) showed that a chemorgano­

trophic Beggiatoa strain could reduce sulfur to sulfide under anaerobic

conditions in the presence of acetate to support growth for at least five days.

For Beggiatoa alba (VARGAS and STROHL, 1985) and several other marine and

fresh water strains of Beggiatoa (NELSON et aL, 1982), nitrate uptake could be
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demonstrated, but these strains used nitrate only as nitrogen source and not

as electron acceptor. SWEERTS et al. (1990) showed steep nitrate gradients

into a mat of native fresh water Beggiatoa filaments that was placed on top of

an agar. On the base of a 48 hour incubation with 15N-labeled nitrate, they

concluded that the Beggiatoa filaments were denitrifiers, reducing nitrate to

nitrogen, in addition to using oxygen which was also consumed by the

filaments. This study was later criticized because of the relatively long

incubation time which could have allowed denitrifying contaminants to grow

(McHATION et aI., 1996).

Fig. 3.2 Schematic picture of a sheath of marine thioplocas at the

sediment surface with trichomes sticking up into the water. The

insert shows the light-microscopic appearance.

During an expedition off the Chilean coast near Concepcion in March

1994, NIELSEN measured internal nitrate concentrations of up to 500 mM in

marine Thioploca filaments, a $ 20,000-fold concentration increase over

ambient seawater (FOSSING et aI., 1995). FOSSING et al. (1995) concluded that

the purpose of the large, central vacuole of the marine thioplocas is not only to

counteract a potential diffusion limitation (LARKIN and HENK, 1989), but also to

serve as "anaerobic lungs" enabling the marine thioplocas to store their
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electron acceptor in high concentrations (J0RGENSEN and GALLARDO, in

press).

HUETTEL et al. (1996) investigated the chemotactic behavior of native

Thioploca filaments in original sediment cores kept in a recirculating flume.

Under anoxic conditions with addition of nitrate (25 f.lm), the terminal ends of

the Thioploca filaments ascended from their sheaths and stretched up to 30

mm into the overlying seawater (Fig. 3.2), increasing the total nitrate uptake of

the sediment. Oxygen concentrations of ~ 15 f.lm caused the filaments to

retreat to the sediment. Anoxic seawater without nitrate did not provoke a

extension of filaments into the overlying water, whereas after 3 days of nitrate

starvation, filaments extended from their sheaths when nitrate was added even

with oxygen present at 160 f.lm concentration. Positive chemotaxis towards

nitrate overruled the negative chemotaxis toward oxygen, strongly supporting

the suggestion, that nitrate is the principal electron acceptor of the marine

thioplocas. The chemotactic response of Thioploca filaments towards sulfide

was found to be dependent on concentration. Below 150 f.lm, it caused a

extension of filaments, whereas sulfide added at ~ 150 f.lm concentration to

the water led to a retreat of filaments.

Due to their ability to store nitrate and elemental sulfur and to positive

chemotaxis for both nitrate and sulfide, marine thioplocas are not dependent

on co-occurrence of their electron acceptor and donor. In March 1994, nitrate

was only present in the bottom water and the few upper mm of the sediment,

whereas sulfide was mostly < 2f.lM in the upper 20 em of the sediment

inhabited by thioplocas (THAMDRUP and CANFIELD, 1996). An investigation of

the community structure revealed that the orientation of Thioploca sheaths in

the sediment was mainly vertical (Fig. 3.3), thus enabling the filaments to

shuttle between sediment surface and deeper parts of the sediment in a

directed manner (SCHULZ et aI., 1996).
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Fig. 3.3 Three-dimensional reconstruction of Thioploca sheaths (black) in

a block of sediment (5 cm x 2.5 cm x 1 cm) from Station 7 (left

panel), near the Bay of Concepcion, and Station 21 (right panel),

on the shelf. At the sediment surface there was a layer of most

horizontally oriented sheaths. Underneath this the sheaths were

oriented more or less vertically. The arrow in the right panel

points to a second layer of more horizontally oriented filaments

beneath the horizontal surface layer. The lower ends of the

sheaths frequently bend back up towards the surface. At Station 7

there was a mat of Beggiatoa filaments on the sediment surface.

Parallel to the finding of nitrate storage by marine thioplocas, the large

Beggiatoa spp. living at hydrothermal deep sea vents were also shown to store

nitrate at 130 - 160 mM concentration (McHatton et aI., 1996). Thus, the

possession of a large central vacuole is consistent with accumulation of nitrate.

Similar to thioplocas, hot vent beggiatoas occur in an oxygen-poor
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· environment, but the sulfide concentrations at the vents are higher than in

Chilean sediments and the filaments do not protrude into the sediment or

stretch into the overlying water. Possibly, they receive nitrate by small-scale

hydrothermal fluid circulation suggested by GUNDERSEN et al. (1992).

The "morphologically conspicuous sulfur bacteria" are generally difficult

to isolate in pure culture which is the base of classical microbiological studies.

Nevertheless, these bacteria are abundant in many coastal sediments, where

they can play an important role for the oxidation of sulfide. The recent finding of

the use of nitrate as electron acceptor by large filamentous sulfur bacteria

emphasizes the environmental importance of these bacteria, especially in

areas where they occur in high density.
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4. Aim of this study

The aim of this study was a quantitative analysis of the population

dynamics and species distribution of nitrate-storing sulfur bacteria. These

organisms couple the sedimentary sulfur and nitrogen cycle in a previously

unknown manner. Thus, their distribution and biomass are a measure of the

significance of their metabolism in coastal marine environments. Three

regions, the Chilean coast, the Namibian coast, and the Danish Limfjorden

were investigated with respect to abundance and morphology of these

bacteria.

The principal focus of the study was on the Thioploca community off the

Chilean coast, because this population of filamentous sulfur bacteria is

extremely dense, occurs in a large area, and therefore is of great ecological

importance. During a 14 months study, the population was analyzed and

quantitative data on biomass and distribution of thioplocas were obtained in

relation to bottom water oxygen and nitrate concentrations. The study was

repeated in March 1998 to observe the influence of the "EI Nino" phenomenon

on the Thioploca community.

The hydrographic conditions off Namibia are comparable to the Chilean

upwelling area, but no firm reports existed of dense populations of sulfur

bacteria in the Benguela upwelling system. During a four week cruise along

the coast of Namibia, sediment samples from 100 m water depth were taken

and the biomass and depth distribution of nitrate-storing sulfur bacteria were

investigated. The third part of the study comprised a more inconspicuous

population of moderately sized beggiatoas (5-35 11m) that occur in the Danish

Limfjorden. This population of filamentous sulfur bacteria was the only one

whose seasonal variations had already been studied (J0RGENSEN, 1977a). In

Limfjorden, the maximum density of Beggiatoa filaments was often observed in

deeper parts of the sediment where no oxygen was available. Thus, this

investigation focused on nitrate storage in these beggiatoas.
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5.1.1 Abstract

A community of filamentous sulfur bacteria, Thioploca spp., living in the

Bay of Concepcion, Chile and the adjoining shelf area was sampled from

January 1996 to February 1997 at 4 -6 weeks intervals to investigate the

influence of seasonal variations in upwelling intensity and oxygen

concentrations on the population dynamics. The Thioploca community was

described by its biomass, total number and diameter of sheaths, number of

trichomes and species per sheath and abundance and depth distribution of

different morphological forms, e.g. trichome diameters and ratios of cell-length

to diameter. Bottom water concentrations of oxygen and nitrate were

measured. The study was repeated in March 1998 to describe the influence of

the "EI Nino" Southern Oscillation on the Thioploca community. Throughout

the summer 1996, oxygen concentrations in the bottom water were near zero,

nitrate was 10 - 20 IJ,m and the biomass was high, up to 160 g m-2 wet weight

without sheaths. During winter, biomass declined due to higher oxygen

concentrations under reduced upwelling intensity. The depth distribution of

thioplocas changed strongly with seasonal variations, but the community

structure, e.g. species distribution, diameter of sheaths and number of

trichomes per sheath, remained unchanged. These parameters were different

at each station. On the shelf the Thioploca community never vanished

completely, although during "EI Nino" the biomass was very low. In the Bay of

Concepcion, Thioploca spp. were only found occasionally, but reached high

biomass during summer. Two populations of filamentous sulfur bacteria were

observed in the Bay, filaments with short cells in sheaths, populating the upper

7 cm of the sediment, or filaments without sheaths living at the sediment

surface.

5.1.2 Introduction

The filamentous sulfur bacteria of the genus Thioploca are abundant in

the upwelling areas along the coast of Chile and Peru (GALLARDO, 1977;

ROSENBERG, 1983). They are found in shelf sediments within the oxygen

minimum zone and reach high biomass of up to 1 kg m-2 (including sheaths)

(GALLARDO, 1977), being at times the most abundant benthic organism in the

sediment. In contrast to the free-living, closely related sulfur bacteria,
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Beggiatoa spp, Thioploca filaments live as bundles within a common sheath.

The mainly vertically oriented sheaths may reach down many cm into the

sediment (SCHULZ et aI., 1996). Studies on partially purified mixed cultures of

Thioploca spp. showed that they oxidize sulfide to sulfate while reducing

nitrate to ammonia (OTTE et aI., manuscript submitted). The bacteria store

elemental sulfur as globules in the peripheral cytoplasmic layer and

concentrate nitrate in a central vacuole in concentrations of up to 0.5 M

(FOSSING et aI., 1995). These and other observations suggest that the marine

thioplocas commute in their sheaths between the sediment surface, where

they take up nitrate from the overlying seawater, and deeper parts of the

sediment, where free hydrogen sulfide is available.

Because of the high biomass of Thioploca communities, they may play

an important role in controlling the biogeochemistry of sediments in the oxygen

minimum zone off Chile and Peru (J0RGENSEN and GALLARDO, in press). In the

sea floor off Concepcion, the thioplocas transport large amounts of nitrate into

the sediment, thereby increasing the total nitrate pool of the sediment up to

1DO-fold (THAMDRUP and CANFIELD, 1996). Different approaches have been

used to estimate the proportion of sulfide production which is oxidized by

thioplocas. Using the amount of elemental sulfur bound by Thioploca spp. and

the average sulfate reduction rates, FERDELMAN et al. (1997) concluded, that

17 - 34 % of the sulfide produced in the sediment could be re-oxidized by

thioplocas, whereas based on CO2 uptake rates they calculated that Thioploca

spp. could only account for approximately 18 % of the sulfide oxidation. Much

lower values were suggested by THAMDRUP and CANFIELD (1996) estimating

from depth-integrated nitrate consumption rates of bag-incubations, that 2-4 %

of the sulfide was oxidized with nitrate, while FOSSING et al. (1995) concluded

from areal nitrate uptake rates measured in situ, that up to 20 % of the sulfide

produced in the sediment was oxidized by nitrate presumably consumed by

Thioploca filaments. In the absence of oxygen during much of the year, it is not

clear how the rest of the sulfide is oxidized.
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Fig. 5.1 Map of the sampling area (Chile) showing the Bay of Concepcion

and the adjoining shelf area. The four stations are marked with

open circles. The dashed lines (isobaths) indicate water depths.

A general problem in estimating the significance of thioplocas for the

sulfur and nitrogen cycling in Chilean and Peruvian sediments is the lack of

knowledge concerning the population dynamics of thioplocas. Most earlier

investigations on the abundance of Thioploca spp. did not provide accurate

biomass data, as the principal method used for measuring biomass was

sieving the sediment for thioploca-sheaths with 1.0, 0.5 or 0.25 mm sieves and

taking the wet weight, dry weight or ash free dry weight without distinguishing

between living trichomes and dead sheath material (GALLARDO, 1977;

ROSENBERG et aL, 1983; GALLARDO, 1985; ZAFRA et aL, 1988; GALLARDO et aL,

1995). As the sheaths account for ca 90 % of the wet weight (SCHULZ et aL,

1996) but have no significance for the metabolic activity, the biomass including

sheaths does not reflect the physiological potential of a Thioploca population.
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For this study, the sediment was sampled with a small Rumohr gravity­

corer or a Multi-corer, which preserves the sediment surface, where most of the

thioplocas are situated (SCHULZ et aI., 1996).. The biomass of Thioploca spp.

was calculated using the biovolume of living trichomes. From January 1996 to

February 1997, four stations were sampled at 4 - 6 weeks intervals. Bottom

water nitrate and oxygen concentrations were measured and the Thioploca

community was characterized in terms of biomass, total number of sheaths,

abundance and depth distribution of different morphological forms, average

trichome diameters and ratios of cell-length to diameter, number of sheaths

inhabited by different species, diameters of sheaths and number of trichomes

per sheath. In March 1998 the sampling program was repeated in order to

characterize the Thioploca community under "EI Nino" conditions. Thioplocas

are much larger than normal bacteria and have distinct morphological

characteristics. This enabled us to quantify and describe the population and its

reaction to environmental changes directly, which is otherwise not possible for

non-photosynthetic prokaryotes.

5.1.3 Materials and Methods

Sampling Four stations in the Bay of Concepcion and the adjoining

shelf area (Fig. 5.1) were sampled during 12 cruises onboard the Chilean

research ship, Kay Kay, of the University of Concepcion. Sediment and bottom

water samples were obtained from Station 4 (36° 38' 8" S, 73° 02' 3" W),

Station 7 (36° 36' 5" S, 73° 00' 6" W), Station 14 (36° 32' 1" S, 73° 03' 0" W),

and Station 18 (36° 30' 8"S, 73° 01' 6" W). Water depths were 24 m, 32 m, 64

m and 88 m, respectively. Sediment samples were taken by a small Rumohr

gravity-corer of 74 mm inner diameter and 1 m length. At each station, three

cores were taken and immediately subsampled into Plexiglas tubes of 3.6 cm

inner diameter and 30 cm length. Bottom water samples were taken with a 5 I

Niskin bottle approximately 1 m above the sediment. Bottom water

temperatures were 11 to 12°C throughout the year. At the end of May and

beginning of June only one sediment sample for each station could be taken.

24



Bottom water oxygen and nitrate Oxygen concentrations were

measured by Winkler titration using 300 ml bottles. The reagents were added

immediately after taking the samples and the bottles were stored in the dark

until they were titrated the same day. Bottom water samples for later

determination of nitrate (including nitrite) were frozen. The nitrate and nitrite in

these samples were reduced to NO in 80°C Vanadium(lIl) and detected by

chemiluminescence (BRAMAN and HENDRIX, 1989).

Biomass and species distribution Sediment cores were stored in

the laboratory at 5 °C for up to 10 days, open at the top and with 3 - 5 cm of

bottom water over the sediment. The first core taken from each station was

processed on the following day to be compared later with results from the other

two cores processed within the following 10 days to check for changes in

biomass or species distribution due to storage. Within 10 days no significant

changes were observed. Sediment cores were extruded from the tubes and

placed on a slightly tilted surface. The sediment around the sheaths was

washed away carefully with sea water from a squirt bottle starting at the bottom

of the core. One cm of sediment was consecutively washed away and the

exposed sediment was examined for sheaths of Thioploca using a binocular

microscope at 16 x magnification. At each depth interval the exposed sheaths

were counted and five sheaths were randomly picked for observation under

the microscope. For each of the five sheaths, the diameter of the sheath was

measured, the number of filaments counted, and the diameter of one filament

and the length of 5 to 10 cells of this filament were measured at 1000 x

magnification. A preliminary investigation had shown that trichomes of one

size class within a sheath have very similar diameters and cell lengths. In

sheaths containing filaments of two or three different diameter classes the

number of filaments, the diameter and the cell length were measured

separately for each of those classes.
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Fig. 5.2 Trichomes of Thioploca spp. in sheaths. (A) The long-cell

morphotype, here T. araucae, with a normal ratio of cell-length to

diameter. (B) Two short-cell trichomes with diameters of 35 J.1m

and 75 J.1m living in the same sheath. Bars represent 50 J.1m.
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Calculations At each depth interval for each of the five observed

sheaths the volume of Thioploca trichomes was calculated using the diameter

of the trichomes, the number of trichomes in the sheath, and the average

length of sheaths in this particular sediment depth. The average length of

sheaths at different sediment depths was determined in an earlier study where

the three-dimensional position of the sheaths in the sediment was investigated

(SCHULZ et aI., 1996) and could be used for this study. The average biovolume

of the five sheaths removed at each depth interval was multiplied by the

number of sheaths per cm 2
. The biovolumes at all depths were added up to

give the total biovolume per unit surface area. The biomass of Thioploca

filaments was calculated from biovolume assuming that the density of the

trichomes is 1 g cm-3
. The mean of three cores was calculated.

5.1.4 Results

Observations on different morphotypes During a preliminary

study of the Thioploca community in December 1995 it was observed that, in

addition to the usual morphological form of Thioploca trichomes with

cylindrical or slightly barrel-shaped cells, there was an undescribed

morphotype with much shorter cells and rounded sides (Fig. 5.2). To

discriminate this morphotype from the known Thioploca spp. the cell-lengths of

each trichome were measured and it became apparent that, using the ratio

between average cell-length and trichome diameter, the population fell into

two groups of ratios, one :s; 0.48 and one > 0.48. The diameters of short-cell

filaments do not separate as clearly into different size classes as diameters of

normal thioplocas, but peaks of frequency occur at 14 - 20 j..lm and 24 ­

32 j..lm.

For a comparison of trichome and sheath parameters the data of all

three cores per sampling station and time have been separated into two

morphological groups of trichomes. One group included data of filaments with

ratios of cell-length to trichome diameter of :s; 0.48, which was defined as the

short-cell morphotype of Thioploca species. The second group contained long­

cell morphotype filaments with ratios> 0.48. This group contained T. chileae

and T. araucae, which can be distinguished on the basis of their trichome

diameters (MAIER and GALLARDO, 1984; TESKE et aI., 1995; SCHULZ et aI.,
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1996). For all parameters the average, median and most frequent value at

each time and station were calculated to evaluate whether the parameter

followed a Gaussian distribution. For all parameters these 3 values yielded

very similar results, except for the depth distribution of morphotypes, where the

most frequent value was clearly higher than the average value for the short­

cell morphotype and lower for T. chileae and T. araucae.

Bottom water parameters During the summer and fall months of

January - June 1996 the bottom water overlying the sediment was almost

oxygen free at all stations (Fig. 5.3 A). In winter (July - September 1996) the

oxygen concentrations increased to values around 20 J.lm and decreased

again to near zero in spring and early summer 1996 (October - December).

During summer 1996 / 1997 oxygen concentrations were higher and more

fluctuating than in the previous summer. Nitrate concentration were generally

rather constant (10 - 30 J.lm). Only during winter 1996 lower values near zero

were found (Fig. 5.3 B).

Biomass The total biomass of Thioploca filaments at all stations was

highest in summer 1996 (January - March) and declined during autumn (Fig.

5.4 A and B). At Station 18, which was furthest offshore, the biomass tended to

be lower during summer 1996. During winter 1996 biomass remained low at

all stations, but the Thioploca population never disappeared completely. In

spring and summer 1996 / 1997 only the biomass at Station 7 increased

significantly but remained lower than observed in the previous summer.

Number of sheaths The total number of inhabited sheaths per cm 2

(Fig. 5.4 B) generally followed the pattern of the total biomass, but the

fluctuations were not as pronounced as for the biomass (Fig. 5.4 A). At all

stations the number of sheaths per cm2 was high in summer 1996 and

declined during the fall (April - May 1996). The number of sheaths remained

low during winter and only in spring and summer 1996 / 1997 did the number

again increased at Station 7, however remaining low at Station 14 and 18.

The percentage of observed sheaths of the different groups (Fig. 5.5)

showed how the composition of the Thioploca communities changed with time

and between stations. At Station 18, sheaths containing trichomes of the short­

cell morphotype occurred rarely throughout the year, while they were mostly
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abundant at Station 14 and even more abundant at Station 7. At Station 14

and 18 sheaths containing T. chileae were more frequent than T. araucae

throughout the year, while at Station 7 sheaths containing T. araucae were

more common.
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Fig. 5.3 Bottom water concentrations of oxygen (A) and nitrate (B)

measured on the three shelf stations from January 1996 until

February 1997.
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Depth distribution To describe the depth distribution (Fig. 5.6), the

most frequent depth of each type of sheath is given rather than the average

depth, as the latter does not follow a Gaussian distribution. Sheaths containing

more than one type of trichome have been counted for each type of trichome

they contained. As a general tendency, sheaths containing the short-cell

morphotype of Thioploca occurred mostly in deeper parts of the sediment,

while T. chileae and T. araucae were more frequent at the sediment surface.

The short-cell morphotype was most abundant at 5 - 8 em depth at Station 7,

while at Stations 14 and 18 the most frequent depth was more variable

reaching depths of up to 15 em in the sediment.

Stable trichome parameters The average diameter of trichomes

(Fig. 5.7) as well as the average ratio of cell-length to trichome diameter (Fig.

5.8) were found to be remarkable stable throughout the year at each station.

This was particularly true for T. araucae, which showed constant dimensions

also between stations. For T. chileae ratios of cell-length to diameter were

generally slightly higher at Station 14 and slightly lower at Station 7. The

diameters of the short-cell morphotype showed more variability without a clear

seasonal change, whereas their ratios of cell-length to diameter remained

constant.

Stable sheath parameters The average percentage of mixed

sheaths containing more than one morphological type of trichomes, as well as

the average diameter of the different types of sheaths and the number of

trichomes per sheath remained stable over the 14 months of observation, but

were different between stations. Average values of all observations have been

summarized in Table 5.1.1. Occasionally, the smallest Thioploca species,

"T. marina" (2.5 - 5 Jlm), was observed in sheaths together with T. chileae or

T. araucae, but their frequency could not be quantified, because the very

small filaments are easily hidden by the larger filaments. In general, they

appeared at all stations within the upper 3 em of the sediment during most of

the year.
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The mixed sheaths were separated into 3 groups, one containing only

trichomes of the long-cell morphotype (i.e. T. araucae and T. chileae) , one

containing only short-cell filaments of two groups with different diameter, and

one containing long-cell and short-cell trichomes mixed. The last two groups

occurred very rarely at all stations, never comprising more than 1 % of all

sheaths observed, while sheaths containing T. chileae and T. araucae

together were much more abundant. At Station 7 and 18 about 10 % of the

sheaths were inhabited by mixed T. chileae and T. araucae, while at Station

14 it was only 3 %.

The diameters of sheaths inhabited by T. araucae were larger than of

those inhabited by T. chileae or short-cell trichomes at all 3 stations. At Station

14 sheaths containing T. chileae or short-cell trichomes were smaller than at

the other two stations. T. chileae-inhabited sheaths were larger at Station 7

than at the other two stations. The same was the case for sheaths containing

short-cell trichomes at Station 18. In sheaths containing T. araucae the

average number of trichomes per sheath was around 6 - 7 at all stations. At

Station 14 and 18 there were about 8 trichomes of T. chileae per sheath,

while at Station 7 there were only about 4 trichomes. The average number of

short-cell trichomes per sheath was around 3 at all stations. Occasionally,

maximal numbers of around 100 trichomes per sheath occurred especially for

T. chileae, but the majority of sheaths contained much less trichomes, e.g.

95% of the sheaths had $ 7 trichomes for the short-cell morphotype, and $ 20

for T. chileae and T. araucae, respectively.

Maximal biomass densities and depths of filaments The

highest biomass density was generally found in the upper 0.5 - 1 em of the

sediment (Fig. 5.9). In August 1996, this depth increased at Station 7 and 14,

followed by Station 18 in September 1996. At Station 7 the depth of highest

biomass density returned to 0.5 - 1 em, while at Station 14 it remained at

1 em depth and at Station 18 at 2 em. During the 14 months of observation,

the maximal depths at which Thioploca trichomes could be found changed

considerably between 8 and 22 em. This was mainly due to short-cell

trichomes which penetrated deepest into the sediment at all stations during

summer 1996 and summer 1997. The maximal depth to which long-cell

trichomes could be found, 4 - 13 em, was more stable at each station and

decreased towards the coast.
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Tab. 5.1.1 Stable sheath parameters (mean of 14 months ± standard

deviation) for each of the three shelf stations: percentage of

mixed sheaths, occupied by trichomes of different diameter, with

filaments of only long-cell morphotype, only short-cell morpho­

type or short-cell and long-cell morphotype living together. Mean

diameter of sheaths inhabited by the short-cell morphotype or by

one of the long-cell morphotype species, T. chileae or T. arau­

cae. Mean number of trichomes in sheaths inhabited by tri­

chomes of the short- cell morphotype or by one of the long-cell

morphotype species, T. chileae or T. araucae.

Parameter Thioploca type Station 7 Station 14 Station 18

Mixed Long-cell morphotype 11.0 ± 5.7 3.2 ± 1.7 8.9 ± 5.5

sheaths Short-cell morphotype 0.4 ± 0.7 0.6 ± 1.0 0.2 ± 0.4

(%) both morphotypes mixed 0.7 ± 0.8 0.9 ± 0.6 0.8 ± 0.7

Diameter of Short-cell morphotype 108 ± 12 99 ± 22 137 ± 29

sheaths T. chileae 159 ± 31 93 ± 11 113±13

(u.m) T. araucae 176 + 25 187 ± 22 167 ± 19

Number of Short-cell morphotype 2.5 ± 0.6 3.2 ± 1.0 2.9 ± 0.9

trichomes T. chileae 3.8 ± 1.5 8.1 ± 1.7 7.6 ± 1.7

per sheath T. araucae 6.1 ± 1.9 6.9 ± 2.6 5.8 ± 2.0

The Bay of Concepcion Station 4 , in the middle of the Bay of Con­

cepcion, was not constantly populated by typical thioplocas and the type of

community was different from the shelf stations. In February 1996 a population

of short-cell Thioploca living in sheaths with a total biomass of 40 g m·2 was

found in the upper 7 em of the sediment. From July 1996 to February 1997 this

short-cell community was also observed, but with very low biomass « 1 g m-2
).

In January and February 1997, sheath less filaments (per definition beggia­

toas) with diameters typical for T. araucae were found on top of the sediment

with a biomass of 15 and 5 g m-2
, respectively. Similar populations were

observed in February, July, August and October 1996, but with very low

biomass. The bottom water oxygen and nitrate concentrations at Station 4

were similar to the shelf stations.
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Observations during "EI Nino" in March 1998 At Station 18 the

oxygen concentrations measured in the bottom water in March 1998 were high

compared to winter 1996 (16 ~m), and even higher at Station 4, 7 and 14 (30 ­

35 ~m). Nitrate concentrations were 16 - 28 ~m. The total biomass of

Thioploca spp. was very low at Stations 7, 14 and 18 (3, 1 and 5 g m-2
), even

lower than in winter 1996. The total number of sheaths was correspondingly

low. The average sediment depth of highest biomass density was at 2 cm at

Station 14 and 18, and at 3 cm at Station 7. The downward extension of the

population was 6 -10 cm at Station 7, as much as 8 -11 cm at Station 14 and

8 - 9 cm at Station 18. Average trichome diameters and ratios of cell-length to

diameter of Thioploca trichomes remained unchanged on the shelf stations,

except for the short-cell trichomes which decreased in diameter. Sheath

diameters were slightly greater at Station 7 and 18, but the number of

trichomes per sheath was unchanged at all stations. The number of mixed

sheaths with trichomes of different size classes remained the same at Station 7

and 18, but at Station 14 no mixed sheaths were found. The proportion of

different morphological types remained generally the same, except for Station

14, where T. chileae decreased to 22 %, while the short-cell trichomes

increased to 64 %. Generally, replicate samples showed larger heterogeneity

than before with respect to distribution of morphotypes and total biomass. At

Station 4, a population of sheath less trichomes with diameters typical for

T. araucae was found at the sediment surface at a biomass of 2 g m-2
.

5.1.5 Discussion

Seasonally changing parameters The variations in biomass (Fig.

5.4 A) corresponded well to the changes in bottom water concentrations of

oxygen and nitrate (Fig. 5.3), which are dependent on the hydrographic

conditions. Under normal spring and summer conditions, long periods of

strong southerly winds induce coastal upwelling, and equatorial subsurface

water rich in nutrients and depleted in oxygen covers much of the continental

shelf. During winter or "EI Nino" conditions, northerly winds dominate, which

reduce the upwelling, and the shelf is covered by subantarctic water of lower

salinity and higher oxygen concentrations (STRUB et aI., 1998). The seasonal

upwelling off the coast of Concepcion was most pronounced during summer
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1995 / 1996, but in the summer 1996 / 1997 upwelling was less stable. Con­

sequently, the oxygen content of the bottom water fluctuated more and the

biomass of thioplocas was significantly lower than the previous summer.
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The increase in bottom water oxygen seems to have been the main

reason for a decline in Thioploca biomass under winter conditions. Trichomes

in the upper 1 em of the sediment, where most of the biomass is located

during summer (SCHULZ et aI., 1996), disappeared and, consequently, the

highest biomass density was found deeper in the sediment (Fig. 5.9). This is

consistent with observations from the Peruvian upwelling areas, where highest

biomasses of Thioploca spp. were clearly associated with the lowest bottom

water oxygen concentrations (ZAFRA, 1988). However, in contrast to what was

observed by GALLARDO (1985; 1995) and ZAFRA (1988), the decrease in

biomass was not accompanied by a decrease in the average number of

trichomes per sheath (Table 5.1.1), but was mainly correlated with a decrease

in the number of sheaths (Fig. 5.4 Band 5.10), especially at Stations 14 (~ =

0.9) and 18 (~ = 0.8). At Station 7, this correlation was less pronounced (~ =

0.5) and a much higher biomass was observed with a comparably low number

of sheaths. During the decline of the biomass, a high proportion of empty

sheaths was occasionally found at the sediment surface, but these sheaths

decomposed rapidly and disappeared within the following month.

The depth extension of the Thioploca community was also affected by

seasonal changes. During summer 1996, filaments of the short-cell

morphotype were found deep down in the sediment (Fig. 5.9) but disappeared

in autumn and winter 1996, leaving behind empty sheaths which were often

stained black from iron sulfide. In summer 1996 / 1997, the short-cell filaments

again colonized deeper parts of the sediment at Station 7, but did not expand

significantly at Station 14 and 18 (Fig. 5.9). Thus, colonization of deeper parts

of the sediment by short-cell filaments generally co-occurred with times of high

biomass (Fig. 5.4 A).
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three shelf stations during 14 months of investigation.

37



A 0 Station 7

0 Station 14 +
+ Station 18

0 iJ + + +
0 0

~
+

0
OED 0 0 ° 0 0B ° + §I+ 0

~ 0 0

short-cell morphotype

B 0 Station 7 T. chileae

0 Station 14

+ Station 18

f-

~m @5 ~ ~ D~ 8 ~ b 19 ~ ~

c 0 Station 7 T. araucae

0 Station 14

+ Station 18

I:i! ~ ~ $1 ~ D~
~ $I ~ i 19) ~

--80E
:::i.---­....
2 60
Q)

E
~ 40
Q)

E
o 20..c
()
'C

I- 0

Jan Feb Mar Apr Mai Jun Jul Aug Sep Oct Nov Dec Jan Feb
1996/97

--80E
:::i.----
CD 60-Q)

E
"~ 40
"0
Q)

§ 20
..c
()

"C

I- 0
Jan Feb Mar Apr Mai Jun Jul Aug Sep Oct Nov Dec Jan Feb

1996/97

E'80
:::i.

---­....
2 60
Q)

E
aj

:0 40
Q)

E
o 20..c
()
"C

I- 0

Jan Feb Mar Apr Mai Jun Jul Aug Sep Oct Nov Dec Jan Feb
1996/97

Fig. 5.7 Average diameter of trichomes of (A) short-cell morphotype, (8)

T. chileae and (C) T. araucae on each of the three shelf stations

from summer 1996 until summer 1997.

38



Population dynamics From the increases in biomass between

subsequent· observations it is possible to assume minimum doubling times of

Thioploca spp. under natural conditions. At Station 7 the highest rates of

increase were found in February and October 1996 and corresponded to

doubling times of 23 and 22 days, respectively. The mean doubling time of

biomass during periods of biomass increase was 38 days at Station 7,

compared to 56 and 55 days at Station 14 and 18. At Station 14, the shortest

doubling time of biomass, 35 days, was observed in September 1996.

However, this is probably not the fastest growth rate since the Thioploca

population at Station 14 was already decreasing at the beginning of the study

and did not reach a similarly high biomass the following summer. At Station 18

the greatest increase in biomass was found in February 1996 and

corresponded to a doubling time of 24 days. Thus, it can be assumed that the

maximum growth rates of Thioploca spp. under the environmental conditions

correspond to a doubling time of approximately 3 weeks, which compares well

to the 26-52 days doubling time of filaments growing on acetate estimated from

laboratory experiments with thioplocas from Station 7 (OnE et aL, manuscript

submitted).

At Station 4 the population of sheathless trichomes at the sediment

surface increased 14-fold during September 1996, which corresponds to a

doubling time of 5 days. These filaments were found to be identical to

T. araucae according to their 16S rONA sequence (TESKE et aL, in press). As

the population of sulfur bacteria at Station 4 was generally more patchy in

distribution and fluctuated more than at the three shelf stations, this doubling

time is only a rough estimate. Compared to the thioplocas living in shelf

sediments, the value appears to be high. However, compared to chemo­

autotrophic marine Beggiatoa strains, which have doubling times of 1 - 4 days

(NELSON and JANNASCH, 1983; NELSON et aL, 1986a) the number might still be

realistic, although the Beggiatoa filaments were much smaller (4 - 5 /-lm in

diameter) and should therefore grow faster. Nevertheless, the distribution of

filamentous sulfur bacteria seems to be more heterogeneous within the Bay,

thus a more precise estimation of growth rate would demand a higher number

of samples.
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Parameters unaffected by seasonal changes The average

trichome diameters of T. chileae and T. araucae remained constant at each

station throughout the period of observation (Fig. 5.7). Thus, they can be

regarded as stable morphological features of the species, unaffected by

varying environmental conditions. The diameter of the trichomes is probably

genetically determined, which is also indicated by 16S rONA sequences

(TESKE et aI., 1995). A similar, remarkable invariance was observed for the

ratios of cell-length to diameter for these two species (Fig. 5.8). Thus, cell

division during growth apparently does not lead to cells that are in average

shorter than those during stationary phase. Although the average ratios of cell­

length to diameter remained unchanged over the year, they were different

between stations for T. chileae , whereas for T. araucae no differences

between stations were observed. This may indicate that each station was

populated by a slightly different type of T. chileae. The average diameters of

the short-cell filaments were less constant than observed for T. chileae and

T. araucae, which is probably because they comprise different species with

different diameters (see chapter 5.2). The variance in diameters did not

correspond to seasonal changes of the biomass. Furthermore, the average

ratios of cell-length to diameter were almost as stable as observed for

T. chileae and T. araucae and, thus the average cell-lengths are stable

parameters for each station unaffected by seasonal changes.

The variations in the relative abundance of the short-cell morphotype of

Thioploca over the period of observation (Fig. 5.5) seem to correlate with the

seasonal changes in biomass (Fig. 5.4 A). For T. araucae and T. chileae, the

differences in relative abundance between the three shelf-stations were

greater than the seasonal variations at each station. Thus, it appears that the

species composition of the Thioploca community is not affected greatly by

seasonal changes but is influenced rather by conditions that. are characteristic

for each station. This could be the sulfate reduction rates, which were

increasing significantly towards the coast but expressed a less pronounced

seasonality (STROTMANN et aI., in prep.).

The percentage of mixed sheaths, occupied by different morphotypes or

species of Thioploca , as well as the diameter of sheaths and the number of

trichomes per sheath, varied between sampling times without showing a

general trend or a correlation with changes in biomass (Table 5.1.1). Again,
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differences between stations were more pronounced than temporal variations.

Sheaths containing short-cell trichomes of different diameters (> 5 Ilm

difference) and sheaths inhabited by short-cell trichomes together with

trichomes of T. araucae or T. chileae occurred rarely at all stations « 1 %)

while sheaths containing T. chileae together with T. araucae trichomes were

much more abundant (3-11 %). An earlier study showed that in 85 % of mixed

sheaths T. araucae was the dominant species. This led to the hypothesis that

mixed sheaths form when trichomes, penetrating into the bottom water, retreat

into their sheaths and draw other trichomes with them, which can happen more

easily in the larger sheaths of T. araucae (SCHULZ et aI., 1996). This

hypothesis is supported by the observation that mixed sheaths were most

abundant at Station 7, where T. araucae dominated, and least abundant at

Station 14, where T. araucae was rarest.

The average diameter of sheaths and the average number of trichomes

per sheath for T. araucae were quite similar at all stations, while for sheaths of

T. chileae clear differences were found. At Station 14 sheaths of T. chileae

were on average smaller than at any other station while the average number of

trichomes in these sheaths was the highest. The T. chileae sheaths at Station

7 were the largest of this group and contained the lowest number of trichomes.

For the short-cell morphotype the number of trichomes per sheath was low at

all stations, while the diameter of sheaths were quite distinct. Thus, an

increasing diameter of sheaths is not necessarily proportional to higher

numbers of trichomes. Rather, these two parameters vary independently, and

do not correlate with the growth state of the population. Comparison of the

number of trichomes per sheath at the different stations indicates that at

Station 7 the number of trichomes per sheath is much higher for T. araucae

sheaths than for the other sheath types, while at Stations 14 and 18 T. chileae

sheaths have the highest number of trichomes. Thus, at each station the

dominating species had the highest number of trichomes per sheath

irrespective of seasonal changes. Since all sheaths were on average below

200 /-lm thick and many even below 100 Ilm (Table 5.1.1), sieving with 1.0,

0.5 or even 0.25 mm sieves will lead to loss of sheaths. The resulting error is

probably variable, as average sheath diameters differed among stations.

42



A 0

5

E 10
~

R
~ 15

20

Station 7

25...L...--+---+-t---+--+---+-f---+--+--i-+--+---+--'
Jan Feb Mar Apr Mai Jun Jul Aug Sep Oct Nov Dec Jan Feb

B 0

5

E 10
~
.c
Ci.
~ 15

20

Station 14

tation 18

20 lTI] long-cell trichomes
D only short-cell trichomes
- highest biomass density

25 ..L-t--+---+:===t=::=::t~==+=+==+=:::+:::::::;"'--+-~
Jan Feb Mar Apr Mai Jun Jul Aug Sep Oct Nov Dec Jan Feb

5

25...L...--+---+-t---+--+---+-f---+--+--+-+--+---+--'
Jan Feb Mar Apr Mai Jun Jul Aug Sep Oct Nov Dec Jan Feb

C 0

E 10
~
.c
Ci.
~ 15

Fig. 5.9 Maximum downward extension of long-cell trichomes (T. arau­

cae and T. chileae) (dark gray) and short-cell trichomes (light

gray) and the average depth of highest biomass density (dashed

line) for each of the three shelf stations during 14 months of

observation.

43



Differences between shelf stations As a general trend, the

biomass of the Thioploca community increased towards the coast and was

accompanied by an increased number of short-cell trichomes that reached

deeper into the sediment during growth phases. Concurrent with this, the

highest biomass of thioplocas reported to date, 106 g per 0.1 m2
, including

sheaths, was found near Station 7 (GALLARDO, 1977). The changes in the

community across the shelf coincided with sulfate reduction rates that were

higher towards the coast (FERDELMAN et aI., 1997; STRaTMANN et aI., in prep.).

With the increasing sulfide production the energy available from sulfide oxi­

dation increases, which apparently leads to higher populations of thioplocas

near the coast.

Some parameters, that were independent of seasonal changes, such as

the relative proportion of T. chileae and T. araucae (Fig. 5.5) and the maximal

depth to which these two species occur (Fig. 5.9), showed increasing

fluctuations when approaching the coast. A reason for this might be that in

more shallow waters fluctuations in the intensity of upwelling and thus in the

primary production have a stronger effect on the sediment. Since a smaller

fraction of the primary production is degraded in the shallower water column,

also short-term productivity fluctuations may influence the processes in the

sediment more, which is seen from stronger variations in the sulfate reduction

rates on coastal stations (STRaTMANN et aI., in prep.). The most frequent depth

for short-cell trichomes (Fig. 5.6) was the only parameter showing less

fluctuations towards the coast. At the same time, these filaments were more

abundant in coastal sediments. Thus, the stronger variations of depth might

have been a result of lower numbers of observation at Station 14 and

especially at Station 18.

Station 14 can be considered intermediate between Station 18 and 7 in

terms of biomass and stability. Nevertheless, in some respects this station was

exceptional. The relative proportion of T. araucae filaments was the lowest

(Fig. 5.5) and they occurred more consistently in deeper parts of the sediment

than at other stations (Fig. 5.6). The T. chileae filaments at this station had

generally shorter cells (Fig. 5.8), and their sheaths were much smaller in

diameter and contained more trichomes than at Stations 7 and 18 (Table

5.1.1). Comparably high biomass was accompanied by highest numbers of

sheaths of all stations (Fig. 5.10), and the number of mixed sheaths was on
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average 3 times lower at Station 14 (Table 5.1.1). Altogether, it seems that the

T. chileae population, dominating at Station 14, is different from the T. chileae

populations at the other two shelf stations.

The Bay of Concepcion The areal sulfate reduction rates reported

for Station 4 are 3 - 4 times higher than for the shelf stations and, other than in

the shelf sediments, free hydrogen sulfide regularly accumulates in the pore

water up to the sediment surface (FERDELMAN et aL, 1997; STROTMANN et aL, in

prep.). Probably as a result of this, Station 4 was not continuously populated

by thioplocas and, occasionally, two distinct types of populations occurred. In

the summer of early 1996, short-cell filaments populated the upper 7 cm at

Station 4 in high biomass (40 g m-2
). At this time oxygen was not detectable in

the bottom water, nitrate was present in 11 11m concentration and the

sediment smelled strongly of hydrogen sulfide. During summer 1997,

sheathless filaments populated the surface sediment with a biomass of up to

15 g m-2
. Except for the absence of a sheath, these filaments looked identical

to T. araucae and they had the same 16S rONA sequence (TESKE et aL, in

press). Consequently, they may be considered sheathless thioplocas.

However, recent studies indicate that the phylogenetic affinity of the genera

Thioploca and Beggiatoa needs to be reconsidered (AHMAD et aL, 1999;

J0RGENSEN et aL, submitted). Although the biomass of filamentous sulfur

bacteria seems low compared to the biomass of Thioploca spp. on the shelf

(10 - 160 g m-2
), it is in the same range as the biomass of Beggiatoa spp.

encountered in a Danish fjord (5 - 20 g m-2
) (J0RGENSEN, 1977a). In March

1997 oxygen concentrations as high as 12 11m were found in the bottom water

and nitrate was present at 1 - 6 11m. Thus, it is not clear whether the

sheath less filaments accumulated at the top because they switched to an oxic

respiration, or whether they still oxidized sulfide with the nitrate present in the

bottom water, but without penetrating into the sediment. The latter seems more

likely, since the filaments still possessed a central vacuole used for storing

nitrate. Both types of populations seem to be able to endure higher sulfide

concentrations than the type of Thioploca community found in shelf sediments.

Nevertheless, the conditions in the Bay of Concepcion do not support a stable

population of sulfur bacteria. The general trend of higher fluctuations in the

community towards the coast and higher proportions of T. araucae and short­

cell filaments continues into the bay.
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Effect of "EI Nino" 1998 Effects of "EI Nino" conditions on the total

biomass of thioplocas including sheaths have been described for off Chile

(GALLARDO et aL, 1995), and off Peru (ARNTZ et aI., 1985; TARAZONA et aL,

1988, 1996; ZAFRA et aL, 1988). In many respects the changes induced by the

"EI Nino" were similar to the changes observed in winter only more pro­

nounced. Due to the prolonged absence of upwelling and the higher oxygen

concentrations in the bottom water the Thiop/oca community on the shelf was

strongly reduced, but on all stations these bacteria could still be found in low

numbers. The highest biomass was found deeper in the sediment, as also

observed in winter 1996. The highest biomass was found at Station 18 which

was least affected by seasonal changes during the previous year. Some of the

parameters that were independent of seasonal changes remained the same

under "EI Nino" conditions, e.g. the average diameters and cell-lengths and

the number of trichomes per sheath, but the species composition at Station 14

changed significantly as well as the mean downward extension of the sheaths

at Stations 7 and 14. Whereas the maximal sediment depth of T. chi/eae and

T. araucae decreased continuously towards the coast in 1996 / 1997 (Fig.

5.9), the population extended down to about 10 em at all stations in March

1998 and the average diameters of sheaths at Stations 7 and 14 increased

slightly. Again, these parameters could be a consequence of the sulfate

reduction rates, that were equally low at all shelf stations (5 -10 mmol m-2 d-1
)

in March 1998 during the "EI Nino" (STRaTMANN et aL, in prep.). At Station 4,

with bottom water oxygen and nitrate concentrations comparable to the

previous summer, a population of sheathless filaments was found again on the

sediment surface, similar to the population found in summer 1996 / 1997 but

lower in biomass.

Summary The Thiop/oca community in the shelf sediments thrived best

under intense upwelling conditions during summer 1996, which led to high

biomasses increasing towards the coast and which was accompanied by a

much deeper extension of the population. The high biomass was mainly

comprised by T. chi/eae and T. araucae filaments living directly at the

sediment surface, whereas filaments with short cells colonized the deeper

parts of the sediment. Under winter and "EI Nino" conditions, the T. araucae

and T. chi/eae filaments living at the sediment surface disappeared, probably

due to higher oxygen concentrations, and the population of short-cell filaments
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in the deeper parts of the sediment also vanished. Each of the three shelf

stations was distinct in its community composition, which was not greatly

influenced by seasonal variations but did change under "EI Nino" conditions.

The average diameters and cell lengths remained stable at each station. In the

Bay of Concepcion thioplocas could not always be found, but in each of the

three summers one of two different types of populations was found, either: a

population comprised exclusively of short-cell filaments living in the upper

7 em of the sediment, or a population consisting of sheath less filaments living

on top of the sediment.
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Fig. 5.10 Relation between the total number of Thioploca sheaths per cm 2

(y-axis) and total biomass of Thioploca spp. in g wet weight m-2

(x-axis) for the three shelf stations.
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5.2.1 Abstract

Filamentous sulfur bacteria, Thioploca, occur at high biomass in

continental shelf sediments along Chile and Peru. They oxidize sulfide with

nitrate, accumulated in a central vacuole and form bundles of trichomes in

mainly vertically oriented sheaths of several centimeters length. During a

seasonal study of the Thioploca community off the coast of Chile, an

undescribed morphological form of thioplocas with very short cells was

frequently observed. The ratio of trichome diameter to cell length separated the

new morphotype from the known thioplocas, which have more cylindrical cells.

A comparison of ca 800 bp partial 168 rDNA sequences of both morphotypes

revealed that the short-cell trichomes comprise separate phylotypes

distinguished from, but also clearly related to, the more homogeneous group of

known Thioploca species. From 10 % to 95 % of the observed Thioploca

trichomes were of this unusual morphology, the highest frequency was found

in near-shore sulfide-rich sediments. They live preferably at 5 - 10 em depth in

the sediment, in contrast to the long cell thioplocas, which have highest density

at the sediment surface. This suggests a difference in physiology between the

short-cell and long-cell morphotypes.

5.2.2 Introduction

In 1972, marine Thioploca spp. were discovered along the coast of

Chile and Peru (GALLARDO, 1977; ROSENBERG et aI., 1983). These populations

occurred at high biomasses and are the dominant benthic organisms in the

Bay of Concepcion and the adjoining shelf area (GALLARDO, 1977). Two

marine species of Thioploca are recognized: T. araucae with filament dia­

meters of 30 to 43 j.lm and T. chileae with diameters of 12 to 20 j.lm (MAIER

and GALLARDO, 1984). Morphologically, Thioploca spp. are very similar to

Beggiatoa spp., as both form multicellular filaments (trichomes) that shine

white due to elemental sulfur inclusions. The main criteria to distinguish the

two genera are that Beggiatoa spp. are free-living, whereas Thioploca spp.

form bundles of filaments in a common sheath (LAUTERBORN, 1907). The

morphological similarity of the two genera is consistent with a close

phylogenetic relationship according to 168 rDNA sequences (TESKE et aI.,

1995). Attempts to isolate Thioploca spp. into pure culture have failed so far.
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The marine Thioploca spp. concentrate nitrate to 0.5 M (FOSSING et aL, 1995)

in a central vacuole, that occupies> 90 % of the cell (MAIER et aL, 1990). They

appear to gain energy by the oxidation of sulfide to sulfur and sulfate with

nitrate (FOSSING et aL, 1995), which is reduced to ammonium (OnE et aL,

manuscript submitted). They incorporate 14C-labeled CO2 and acetate and may

be facultative autotrophs capable of mixotrophic growth (OnE et aL, manus­

cript submitted).
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Fig. 5.11 Map of the sampling area showing the Bay of Concepcion (Chile)

and the adjoining shelf area. The four stations are marked with

open circles. The dashed lines (isobaths) indicate water depths.

The marine Thioploca spp. seem to outcompete uniceillular sulfide

oxidizers by using nitrate as the only available electron acceptor, which they

spatially separate from the sulfide. As the sheaths of Thioploca spp. are orien­

ted mainly vertically (FOSSING et aL, 1995; SCHULZ et aI., 1996), they enable

the filaments to commute between the sediment surface where nitrate is

available in the overlying seawater and deeper parts of the sediment where
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high sulfate reduction rates produce abundant hydrogen sulfide. Thus, by

moving in an oriented manner within the sediment Thioploca spp. are able to

take up and store both electron acceptor and electron donor (J0RGENSEN et aI.,

in press; J0RGENSEN et aI., submitted).

The typical morphology of Thioploca cells is cylindrical or slightly barrel

shaped. During a seasonal study of the Thioploca community off the Bay of

Concepcion, Chile, we observed another morphotype with much shorter and

rounded cells. These Thioploca filaments also seemed to occupy another

ecological niche than the normal morphotype with longer cells.

5.2.3 Materials and Methods

Sampling Sediment samples for measuring filament diameters and

cell lengths were obtained on four stations during 12 cruises between January

1996 and February 1997 onboard the Chilean research ship, Kay Kay, of the

University of Concepcion. Station 4 (36° 38' 8" S, 73° 02' 3" W) and Station 7

(36° 36' 5" S, 73° 00' 6" W) were within the Bay of Concepcion at 24 and 32 m

water depth, and Station 14 (36° 32' 1" S, 73° 03' A" W) and Station 18 (36°

30' 8"S, 73° aT 6" W) in the adjoining shelf area at 64 and 88 m water depth

(Fig. 5.11). At each station, three cores of 8 cm diameter were taken by a small

Rumohr gravity corer. During most of the study, oxygen concentrations in the

bottom water were extremely low « 2 /-lm), but in January 97 and during the

winter months, July - September 96, oxygen concentrations rose to 25 /-lm.

Bottom water temperatures were 11 ° to 12°C.

Processing of samples Subsamples were taken from the gravity­

cores onboard the ship with Plexiglas tubes of 3.6 cm inner diameter and

30 cm length. They were stored in the laboratory at 5 °C for up to 7 days with

the upper stopper removed. Sediment cores were extruded from the tubes and

placed on a slightly tilted surface. The sediment around the sheaths was

washed away carefully with sea water from a squirt bottle starting at the bottom

of the core. One cm of sediment was consecutively washed away and the

exposed sediment was searched for sheaths of Thioploca using a binocular

microscope at 16 x magnification. At each depth interval, five sheaths were

randomly picked for observation under the microscope. In each sheath, the
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diameter of one filament and the length of 5 to 10 cells of this filament were
measured at 1000 x magnification.

Sequencing Sheaths containing filaments of Thioploca spp. were

taken from sediment sampled in March 1998 as described before. These cores

were kept in a tank with 300 I of oxygen-poor sea water at 12°C with addition

of nitrate and slow circulation of the water. Due to this treatment, the filaments

of Thioploca could be kept viable and growing until they were processed four

months later. The diameter and the length of the cells were measured as

described above and the sheaths were washed in DNA free water. Each

sample prepared for sequencing contained a single sheath with filaments of

similar diameter and cell morphology. The sheaths were placed in 10 to 20 ~I

of DNA free water. As the filaments could not be separated completely from the

bacteria attached to the sheaths, the sequence of an in situ hybridization

probe, specific for Thioploca and Beggiatoa (probe 829) (TESKE et aI., 1995)

was used as primer in the PCR reaction. By this method, only sequences

belonging to the genus Thioploca or Beggiatoa were amplified in the PCR

reaction and the products were clean enough to be sequenced directly without

further cloning.

Comparative sequence analysis The new partial sequences of

805 bp were added to an alignment of about 5,300 homologous bacterial 16S

rRNA primary structures (MAIDAK et aI., 1999) by using the aligning tool of the

ARB program package (STRUNK and LUDWIG, 1998). Aligned sequences were

inserted within a stable tree by using the parsimony ARB tool (STRUNK and

LUDWIG, 1998) that enables a reliable positioning of new sequences without

allowing changes of the overall tree topology (LUDWIG et aI., 1998).
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Fig. 5.12 Light micrographs of Thioploca filaments. (A) Bundle of

T. araucae filaments with normal long cell morphology

protruding from a sheath. (B) Trichomes of the long-cell morpho­

type, showing the cylindrical cells. (C) Sheath filled with

trichomes of the short-cell morphotype, with some of them turning

around within the sheath (D) Bundle of trichomes of the short-cell

morphotype showing a similar roundish structure in each cell. (E)

and (F) Single trichomes of the short-cell morphotype with barrel­

shaped cells and internal round structures of different sizes. The

Scale bars in (A) and (C) represents 100 ~m, in (B) and (D)

25 ~m and in (E) and (F) 1O~m.
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5.2.4 Results

Differences in morphology The classical morphotype of Thioploca

has straight filaments of cylindrical cells that appear square in the light

microscope (Fig. 5.12 A and B). The new morphotype, in contrast, is much

more flexible, protruding trichomes are not as straight and they have short cells

with rounded sides (Fig. 5.12 C - F). In the large filaments of this short-cell

morphotype, round structures of various sizes were frequently observed within

the cells (Fig. 5.12 D - F). To the naked eye, inhabited sheaths of the short-cell

morphotype appeared less white than those of the long-cell morphotype,

although in the microscope the trichomes did not seem to contain less internal

sulfur globules.

At station 7, 14 and 18 very large trichomes (84-217 Jlm diameter) were

occasionally observed deeper in the sediment (5-21 em depth). All of these

trichomes were sheath less and had ratios of cell length to diameter below 0.3.

In some of these filaments several of the round inner structures could be

observed in each cell.

Cell lengths and diameters The diameter and cell length of nearly

5,000 filaments were measured during 14 months. Their ratios of cell-length to

filament diameter separated into two groups in accordance with two distinct

morphologies, one with shorter cells (Fig. 5.13, hatched bars) and one with

longer cells (Fig. 5.13, white bars). The short-cell morphotype had a ratio of

cell length to diameter of ~ 0.48, i.e. the diameter of the filament was more than

twice the cell length, whereas the long-cells morphotype showed ratios> 0.48,

thus appearing more square in shape.
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Fig. 5.13 Ratio of cell length to trichome diameter measured in 4848

randomly chosen filaments. The frequency of the ratio per class

(0.02) is expressed in percentages of all measured ratios.

Hatched bars represent short-cell filaments with a length :

diameter ratio ~ 0.48 and white bars normal filaments with a ratio

> 0.48. The black lines show curves fitted for the values of each

group extrapolating into the area of overlap.

Diameter distribution The frequency of diameters in the long-cell

morphotype (Fig. 5.14 A) showed three separated groups, that correspond to

the three marine species of Thioploca (MAIER and GALLARDO, 1984; TESKE et

aI., 1995; SCHULZ et aI., 1996): "T. marina" (3-6/-lm), T. chileae (12-22 /-lm),

and T. araucae (28-42/-lm). The group of T. chileae did not show a

Gaussian distribution, but had two peaks, one at 16-18 /-lm and a smaller at

20-22 /-lm, while T. araucae had one peak at 34-36 /-lm. "T. marina" occurred

less frequently and usually in mixed bundles together with one of the two

larger species. Also the short-cell morphotype separated into different groups

of diameter (Fig. 5.14 B), but these were not clearly separated. Peaks occurred

at 16-18 /-lm and 26-28 /-lm. Many filaments were >36 /-lm diameter gradually

tailing off at larger diameters.
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16S rONA sequences Twelve partial 16S rONA sequences were

obtained for seven Thioploca of the long-cell morphotype and five of the short­

cell morphotype and inserted into a phylogenetic tree (Fig. 5.15). All Thioploca

sequences affiliated with the single nearly complete 16S rRNA gene sequence

of T. ingrica. Within the group of Thioploca and other nitrate-storing sulfur

bacteria two phylogenetic branches appeared. One comprised T. chileae,

T. araucae plus all sequences of the long-cell morphotype (and one

sequence of the short-cell morphotype with a trichome diameter of 21 ~m) and

a sheath less filament from the Bay of Concepci6n (TESKE et aI., in press). Most

of the long-cell morphotypes with diameters between 15 and 22 ~m (L15-1,

L15-2, L19, L21 and L22) shared nearly identical sequences with T. chileae

while a trichome of 34 ~m (L34) and a trichome of 17 ~m (L17) was closely

related to T. araucae as well as the sheathless trichomes from the Bay of

Concepci6n. The second branch was comprised of the large (84 ~m) Beggia­

toa sp. of Monterey Canyon (AHMAD et aI., 1999), Thiomargarita namibiensis

(see chapter 5.4) and the short-cell morphotype sequences.

Spatial distribution The two morphotypes were differently distributed

in the sediment (Fig. 5.16). In the group of the long-cell morphotype, almost

30 % of the observed filaments were found at the sediment surface. The

frequency of filaments declined exponentially with depth down to 18 cm within

the sediment and 97 % of the filaments were found in the upper 10 cm (Fig.

5.16 A). The filaments of the short-cell morphotype were found most frequently

at 6-7 cm depth and occurred down to 24 cm in the sediment (Fig. 5.16 B)

and> 30 % of the filaments were found below 10 cm.

About 25 % of all filaments observed were of the short cell morphotype,

however their abundance differed among the stations (Fig. 5.17). At Station 4,

in the Bay of Concepci6n, > 90 % of the filaments in sheaths were of the short­

cell morphotype, while at Station 18, some 20 km off the coast, only 10 %

were of the short-cell type. At Station 7 and 14, near the mouth of the bay (Fig.

5.11), one third of thioplocas belonged to the short-cell group. Thus, the

frequency of the short-cell morphotype declined with increasing water depth.
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Fig. 5.14 Distribution of filament diameters for long-cell (A) and short-cell

(8) Thioploca trichomes expressed as percent frequency per

class (2 /-lm). The circles indicate the diameters of filaments used

for 168 rONA sequencing. The total number of observation was

3461 for long-cell and 1387 for short-cell trichomes.
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5.2.5 Discussion

Morphological differences The most obvious feature of the new

morphotype of Thioploca, is that the cells are much shorter than previously

described for that genus. The ratios of cell length to filament diameter, clearly

separates the marine thioplocas into two morphotypes (Fig. 5.13). Thus, there

is not a continuous transition between the two morphological forms. However,

there is an area of overlap between the two groups (ca. 0.40 - 0.56) where a

clear classification is not possible based on cell length: diameter ratio. Cells of

the new morphotype also have roundish sides. Although new for thioplocas,

this particular morphology occurs regularly in Beggiatoa , especially in the

wide forms (NELSON et aL, 1989; LARKIN and HENK, 1996). This confirms the

close affiliation of the two genera (TESKE et aL, 1995).

The single trichomes of the short-cell morphotype appeared less rigid

when outside of their sheath than those of the long-cell morphotype (Fig. 5.12

A). This observation and the presence of intracellular spheres of different sizes

in the short-cell morphotype (Fig. 5.12 D-F), could indicate that the vacuole in

the short-cell morphotype is under development or that the filaments have

lower turgor pressure, e.g. due to low internal nitrate concentrations. However,

the large vacuolated Beggiatoa spp., found at hydrothermal vents of the

Guaymas basin, resemble in morphology the short-cell Thioploca spp.

(NELSON et aL, 1989), yet they store nitrate in concentrations comparable to

the long-cell morphotype (McHATTON et aL, 1996). Internal nitrate was also

measured in filaments of the short-cell morphotype, although in lower

concentrations, than in the long cell morphotype of Thioploca spp. (J. ZOPFI,

pers. com.) Therefore, a high internal nitrate concentration does not

necessarily result in the rigid morphological form of the long-cell morphotype. It

seems more likely that the short-cell morphotype has more flexibility due to the

rounded cells and the higher proportion of joints in a filament. As a result of

their larger flexibility, the filaments of the short-cell morphotype are even able

to turn around within the sheath (Fig. 5.12 C), whereas filaments of the long­

cell morphotype are always unidirectional and can only reverse the direction of

their gliding movement.
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The long-cell morphotype of Thioploca separated into three groups of

diameters (Fig. 5.14 A), which corresponds to the three species previously

observed on in the Chilean shelf (MAIER and GALLARDO, 1984; TESKE et aI.,

1995; SCHULZ et aI., 1996). The trichomes defined as T. chileae (14-22 ~m)

did not show a Gaussian distribution, although the high number of obser­

vations should suffice statistically to reveal a bell-shaped curve, as was found

for the T. araucae group (30-44 ~m) (Fig. 5.14 A). This could indicate, that

there are two slightly different groups of T. chileae overlapping in their

trichome diameter, although this was not revealed by 16S rONA sequencing

(Fig. 5.15). A clear distinction of diameter groups was not possible for the

short-cell morphotype (Fig. 5.14 B). Thus, the trichome diameter is a less

useful character to distinguish species of the short-cell morphotype.

Phylogenetic relation The analysis of the 16S rONA sequences

showed that the short-cell morphotype of Thioploca is phylogenetically distinct

from, but closely related to the known long-cell Thioploca. Two of the short-cell

morphotype sequences we investigated were closely related to beggiatoas

living at hydrothermal vents (AHMAD et aI., 1999), while others affiliated with the

recently discovered Thiomargarita from Namibia (SCHULZ et aI., in press,

chapter 5.4.) or the smaller Thioploca ingrica (3 - 4 ~m) from Randersfjord in

Denmark (TESKE et aI., 1995) (Fig. 5.15). It seems that only the long-cell

morphotype of Thioploca is a monophyletic branch with very similar se­

quences congruent with a stable morphology, while the rest of the nitrate­

storing marine sulfur bacteria: short-cell thioplocas, Thiomargarita and large

vacuolated Beggiatoa spp. are more diverse in morphological appearance

and 16S rONA sequence. The sequences of the long-cell morphotype had a

high similarity and formed two groups clustering around T. araucae and

T. chileae. The sequence data, thus, confirmed the validity of these two

species defined by their trichome diameter. The sequences of the short-cell

morphotype were more diverse, which is in accordance with the large variation

in diameters. The higher genetic diversity in this group is also demonstrated by

the occurrence of single very large trichomes of more than 100 ~m in

diameter. Yet, one of the short cell bundles possessed a sequence identical

with the long cell T. chileae. As this occurred only once it might have been an

error or an example of a filament of the overlapping zone of the two

morphotypes, where a clear separation using the ratio of cell length to

diameter is not possible (Fig. 5.13).
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Spatial distribution From the spatial distribution of motile bacteria it

is possible to gain information about their preferred environment and, thus,

their physiological requirements. The bacteria often show a positive

chemotaxis towards chemical compounds required for their growth and a

negative chemotaxis against harmful conditions. Among the sulfur bacteria,

such movements have been demonstrated for Beggiatoa (J0RGENSEN and

REVSBECH, 1983; NELSON and CASTENHOLZ, 1982; NELSON et aL, 1986b),

Thiovulum (GARCIA-PICHEL, 1989; FENCHEL and GLUD, 1998) and Thioploca

(HUETTEL et aL, 1996). The long-cell morphotype of Thioploca is found most

abundantly at the sediment surface (SCHULZ et aL, 1996) and the density

decreases exponentially with sediment depth (Fig. 5.16 A). The long-cell

Thioploca have a positive chemotactic response towards nitrate and low

sulfide concentrations « 100 J.1m) and a negative response to oxygen and

higher sulfide concentrations (HUETIEL et aL, 1996). As nitrate is available at

the sediment surface (THAMDRUP and CANFIELD, 1996), their vertical

distribution may indicate, that the filaments are drawn by a positive

chemotactic movement towards the sediment surface, or that the filaments

avoid high sulfide concentrations in the sediment. The latter seems unlikely, as

the sulfide concentrations measured in the sediments did not exceed 100 J.1m

(FERDELMAN et aL, 1997) (B. STROTMANN, in prep.). In the vertical distribution of

short cell trichomes there is a small peak of frequency at the sediment surface

and a very pronounced peak at a sediment depths of 5 -10 cm (Fig. 5.16 B).

As the short-cell filaments are motile, it can be assumed, that they are attracted

by certain chemical conditions at this depth, implicating a difference in

physiology towards the long-cell filaments, that accumulate at the sediment

surface.
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Fig. 5.15 16S rONA phylogenetic tree showing the affiliation of marine

Thioploca spp., Thiomargarita and Beggiatoa sp. from Monterey

Canyon based on sequenced fragments of 805 bp (E. coli

positions from 21 to 825) (BROSIUS et aI., 1981). The tree is based

on a parsimony analysis including only complete or almost

complete 16S rONA sequences of representative bacteria (MAI­

DAK et aI., 1999). Phylogenetic. position of the fragments resulted

from the insertion of the aligned sequences into the tree by using

the parsimony ARB tool (STRUNK and LUDWIG, 1998) without

modifying its topology during the sequence positioning. Partial

sequences of T. chileae and T. araucae (Teske, unpublished

sequences) were treated identically as the newly obtained

sequences. The bar indicates 10 % estimated sequence diver­

gence.
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Fig. 5.16 Distribution with depth of the long-cell (A) and the short-cell (B)

morphotypes given as frequency per 1 em depth interval. The

total number of observation was 3461 for long-cell and 1387 for

short-cell trichomes.

The frequency of short-cell trichomes (Fig. 5.17) increased strongly

towards the coast. A reason for this could be that the sulfate reduction rates on

the shelf off Concepcion generally increase towards the coast (FERDELMAN et

aI., 1997). Within the Bay of Concepcion (Station 4), almost all trichomes were

of the short-cell morphotype. However, Thioploca filaments occurred only
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occasionally there, probably due to toxic sulfide concentrations above 1 mM

(FERDELMAN et aI., 1997, B. STRaTMANN, in prep.). During a survey for

Thioploca spp. in Namibian shelf sediments, only few Thioploca trichomes

could be found and all were of the short-cell morphotype. This coincided with

high sulfide concentrations, > 400 ~m at the sediment surface (T. FERDELMAN

pers. com.). Thus, it seems that a high proportion of the short-cell morphotype

correlates with high sulfide concentrations.
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Fig. 5.17 Frequency of the short-cell morphotype of Thioploca at four

stations. The total number of observation was 4848.

Comparison with Beggiatoa spp. The morphological appearance

of the short cell morphotype of Thioploca is more similar to Beggiatoa spp.

than the long-cell morphotype (NELSON, 1992; Strohl and Larkin, 1978). The

ratio of cell-length: diameter becomes gradually smaller for larger filaments of

the short-cell morphotype (Fig. 5.18), which is a tendency that can also be

seen for Beggiatoa spp. (NELSON et aI., 1989; LARKIN and HENK, 1996). The

vertical distribution of short-cell filaments with a peak of frequency at 5 - 7 em

depth is in contrast to the accumulation of long-cell filaments at the sediment

surface (Fig. 5.16). Beggiatoas are usually reported to occur in a layer on top

of the sediment, similar to the long-cell morphotype of Thioploca. However, a
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Beggiatoa population living in greater sediment depths is less conspicuous

than a population on the sediment surface and therefore can be overlooked

(NELSON, 1992). An investigation of the depth distribution of Beggiatoa spp. in

a Danish fjord e.g. showed a maximum number of Beggiatoa spp. below the

sediment surface (2 - 3 em) (J0RGENSEN, 1977a). Recent studies of the phylo­

genetic affinity of Beggiatoa spp. with Thioploca spp. reveal that the large

vacuolated beggiatoas and thioplocas are a monophyletic group within the

family of Beggiatoaceae (AHMAD et aI., 1999; J0RGENSEN et aI., submitted). The

short-cell morphotype of Thioploca seems to be closer related to the

vacuolated beggiatoas (Fig. 5.15) than the long-cell morphotype and also

affiliates with the morphologically distinct Thiomargarita from Namibia.

Obviously, the morphological and phylogenetical diversity in the group of

nitrate-accumulating sulfur bacteria is higher than has been expected.

Altogether, the sequence differences are quite small, so that further studies

based on complete 16S rONA sequences are needed to reveal the details of

the phylogenetic relationships between the different morphological forms of

the genera Thioploca, Beggiatoa and Thiomargarita.
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Fig. 5.18 Average ratios of cell length to trichome diameter in short-cell

filaments of 6 size classes. Standard deviations are indicated.
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summary

The purpose of the study was to investigate the physiology of the marine

Thioploca spp. with respect to A) the electron acceptor and the terminal

product of its reduction, B) the electron donor and the terminal product of its

oxidation, C) the rates at which oxidation and reduction occur, and D) the

potential carbon sources of Thioploca. Experiments were performed during

January and March 1997 at the marine station of the University of Concepcion

in Dichato, Chile. It was not possible to obtain pure cultures of Thioploca

species. Therefore, investigations were carried out on whole sheaths with

filaments which were taken fresh from natural sediment samples and washed

several times in artificial sea water. The whole procedure was anaerobic and

without removing the filaments from the water. Since Thioploca filaments could

not be separated from the bacteria attached to their sheaths, controls with

mechanically destroyed Thioploca trichomes were done. The filaments were

incubated anaerobically in artificial seawater of 11 DC for several hours to days

with addition of substrates. At specific time intervals samples were taken for

analysis of ammonium, nitrite, sulfide, thiosulfate and sulfate. In addition,

uptake experiments were carried out with 15N-labeled N03-, 14C-labeled

NaHC03 and acetate, and filaments were incubated for microautoradiography.

During the washing procedure and the incubation the filaments were kept

under dinitrogen atmosphere, cooled and mechanical stress was avoided.

In the initial incubations nitrite accumulated in the medium, which was

probably a stress reaction of the Thioploca filaments. With improved handling

and a modified medium, nitrite concentrations were very low and ammonium

accumulated instead. The average rate of ammonium production was around

1 nmol min-1 mg protein-1 and was independent of the sulfide concentrations of

the medium. Incubation with 15N-labeled N03- confirmed that ammonium was

the major terminal product of the reduction of nitrate, although partial reduction

to nitrogen could not be completely ruled out. Produced ammonium was only

50 % labeled indicating that part of the ammonium resulted from reduction of

unlabeled nitrate stored in the central vacuole. Nevertheless, the specific label

was higher than could be expected, if all labeled nitrate was taken up and

diluted internally with unlabeled nitrate of the vacuole. Thus, presumably part

of the incorporated, labeled nitrate was directly reduced before reaching the

vacuole.
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Sulfide oxidation rates were estimated by the rate of disappearance of

sulfide in the medium and the accumulation of thiosulfate or sulfate. Sulfate

accumulated in the medium with rates of 2-3 nmol min-1 mg-1 protein. Addition

of sulfide led to a small accumulation of thiosulfate in the medium while the

sulfate accumulation did not change significantly. Nevertheless, addition of

thiosulfate instead of sulfide yielded only very low rates. A small accumulation

of thiosulfate could also be observed in control incubations, suggesting that it

was probably formed by bacteria living on the sheaths. Sulfide was

incorporated at an average rate of 5 nmol min-1 mg protein-1. This rate could be

increased to 10.7 nmol min-1 mg protein-1 after starvation. The average ratio

between sulfide oxidation and ammonia production was 2.2 suggesting that

part of the sulfide taken up from the medium was oxidized to elemental sulfur

and the other part to sulfate. Both sulfate and ammonium production were not

influenced by the sulfide concentration of the medium. These results are best

explained if sulfide was first oxidized to elemental sulfur and that in a second

independent step elemental sulfur was oxidized to sulfate.

Incubation with 14C-labeled NaHC03 and acetate revealed that both

substrates were taken up at similar rates (0.4 nmol min-1 mg protein-\ Addition

of sulfide did not increase the uptake rate. Incorporation of acetate and CO2 by

Thioploca filaments was confirmed by microautoradiography, showing that the

importance of bacteria attached to the sheath was negligible. These results

suggest that Thioploca spp. are facultative autotrophs capable of mixotrophic

growth. 14C-labeled CO2 was not formed during incubation with acetate, thus

acetate was not used as energy, but only as carbon source.

In conclusion, it could be demonstrated that Thioploca spp. are

lithotrophic bacteria gaining energy from the oxidation of sulfide to sulfate

without significant potential to use thiosulfate. Oxidation of sulfide to sulfur and

oxidation of internal sulfur to sulfate seem to be independent from each other.

The nitrate stored in the central vacuole is used as electron acceptor and

appears to be mainly reduced to ammonium, although alternative reduction to

dinitrogen gas cannot completely be ruled out. Thus, the dense populations of

Thioploca probably do not cause a loss of nitrogen from the sediments.

Thioploca spp. are capable of fixing CO2 but alternatively they may also use

acetate as carbon source. Rates of sulfide oxidation by thioplocas correspond

to 20 - 70 % of the sulfide produced in the natural environment, which
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emphasizes the significance of thioplocas for the sulfur cycle in Chilean and

Peruvian shelf sediments.

70



5.4 Dense Populations of a Giant Sulfur Bacterium in

Namibian Shelf Sediments

HEIDE N. SCHULZ, THORSTEN BRINKHOFF, TIMOTHY. G. FERDELMAN,

MARIONA HERNANDEZ MARINE, ANDREAS TESKE, and Bo B.

J0RGENSEN

Heide N. Schulz, Timothy G. Ferdelman, Bo B. J0rgensen, Max

Planck Institute for Marine Microbiology, Celsiusstrasse 1,

0-28359 Bremen, Germany

Thorsten Brinkhoff, Institute for the Chemistry and Biology of the

Marine Environment (ICBM), University of Oldenburg, P.O. Box

2503, 0-26111 Oldenburg, Germany

Mariona Hernandez Marine, Facultat de Farmacia, Universitat de

Barcelona, Av. Joan XXIII, sin, 08028 Barcelona, Spain

Andreas Teske, Department of Biology, Woods Hole

Oceanographic Institution, Woods Hole, Mass. 02543, USA

71



5.4.1 Abstract

A previously unknown giant sulfur bacterium is abundant in sediments

underlying the oxygen minimum zone of the Benguela Current upwelling

system. The bacterium has a spherical cell that exceeds by up to 1DO-fold the

biovolume of the largest known prokaryotes. Based on 16S rONA sequence

data, these bacteria are closely related to the marine filamentous sulfur

bacteria, Thioploca, abundant in the upwelling area off Chile and Peru. Similar

to Thioploca, the new bacteria oxidize sulfide with nitrate that is accumulated

to S 800 mM in a central vacuole.

5.4.2 Results and Discussion

Filamentous, nitrate-accumulating sulfur bacteria of the genus Thioploca

form extensive populations of up to 120 g wet weight per m2 along the coast of

Chile and Peru (GALLARDO, 1977; FOSSING et aI., 1995; SCHULZ et aI., 1996).

Similar to the South American continental shelf, the shelf off Namibia has

strong upwelling with high plankton productivity and oxygen depleted bottom

water (HART and CURRIE, 1960; CALVERT and PRICE, 1971; SHILLINGTON,

1998). In a search for Thioploca along the Namibian coast, we obtained

sediment samples from water depths of -100 m during a cruise in April 1997

aboard the RN Petr Kottsov. Thioploca and its close relative Beggiatoa were

present, but only in low numbers. Instead, we discovered large populations of

a previously undescribed sulfur bacterium, that occurred at biomasses of up to

47 g m-2. These giant bacteria grow as a string of pearls, which shine white

due to refractive sulfur globules and are large enough to be visible to the

naked eye (Fig. 5.19 A). We suggest the new genus and species name,

Thiomargarita namibiensis, "Sulfur pearl of Namibia", for this organism.

Thiomargarita was found at stations between Palgrave Point and

LClderitz Bay. The highest biomasses were between Cape Cross and

Conception Bay. The surface sediment in this area is a fluid, green diatom

ooze (BRONGERSMA-SANDERS, 1983; BREMNER, 1983; SCHUETTE and SCHRA­

DER, 1981). Oxygen concentrations were low, 0-3 ~m, in the overlying water at

all stations, while nitrate was present at 5-28 ~m. Sulfate reduction rates
measured by the 35S042- tracer technique were high, 14-76 mmol m-2 d-1 in the

upper 19 cm, and gave rise to high sulfide concentrations of 100-800 ~m in
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the upper 3 cm of the sediment. Frequently, also the water directly overlying

the sediment smelled of sulfide. Most of the bacteria were found in the top

3 cm of the sediment. The biomass of Thiomargarita declined exponentially

with sediment depth down to 10 to 14 cm (Fig. 5.20 A).

The giant cells of Thiomargarita have many similarities to those of the

gliding, filamentous relatives, Thioploca (FOSSING et aI., 1995; SCHULZ et aI.,

1996; FERDELMANN et aI., 1997; MAIER et aI., 1990). Thiomargarita also oc­

curred in an oxygen-poor environment with high sulfate reduction rates. Each

cell possessed a large central vacuole (Fig. 5.19) in which nitrate was

accumulated to a concentration of 0.1-0.8 M. Electron micrographs showed

that the cytoplasm was restricted to a thin outer layer of 0.5-2 Ilm thickness

(Fig. 5.19 D and E). The remaining 98% of the biovolume consisted of a liquid

vacuole. The bacteria contained sulfur stored in the form of globules, which

were situated in the thin outer layer of cytoplasm at a concentration per total

biovolume equivalent to 0.4-1.7 M. The depth distribution of biomass in the

sediment observed for Thiomargarita (Fig. 5.20 A) was similar to that of

Thioploca off the Chilean coast (SCHULZ et aI., 1996). In contrast to the multi­

cellular Thioploca and Beggiatoa, the cells of Thiomargarita were not attached

to each other but were evenly separated by a mucus sheath (Fig. 5.19). Motility

was not observed. Most of the chains were linear and contained in average 12

cells, but sometimes they branched or coiled together in a ball. Long chains of

e.g. 40-50 cells tended to break easily when manipulated.

Most cells had diameters of 100-300 Ilm (Fig. 5.20 B). Most cells in a

chain were of a similar diameter (Fig. 5.20 C), but in some chains, a single cell

occurred with a much larger diameter of up to 750 Ilm. These extremely large

forms also occurred as single cells (Fig. 5.19 A). The average Thiomargarita

with a diameter of 180 Ilm had a volume of 3x1 06 Ilm3, the largest observed

cells had a biovolume of 200x106 Ilm3. In comparison, the largest known

sulfur bacteria, Beggiatoa spp., found at hydrothermal vents in the Guaymas

Basin, Gulf of California, can reach diameters of 160 Ilm (JANNASCH et aI.,

1989; NELSON et aI., 1989). The height of their disc-shaped cells is ca 50 Ilm

and their volume is 1x1 06 Ilm3 per cell. The largest described bacteria,

Epulopiscum fishelsoni, a symbiont of the surgeonfish (ANGERT et aI., 1993), is

typically 250 by 40 Ilm large, but individual cells can reach 600 by 80 Ilm.

This corresponds to a volume of 0.3x1 06-3x1 06 Ilm3 per cell.

73



0.1 mm

Fig. 5.19 Thiomargarita namibiensis. (A) The white arrow points to a single

cell of Thiomargarita, 0.5 mm wide, which shines white because

of internal sulfur inclusions. Above there is an empty part of the

sheath, where the two neighboring cells have died. The cell was

photographed next to a fruit flight (Drosophila viriles) of 3 mm

length to give a sense of its size. (B) A typical chain of Thio­

margarita as it appears in the light microscope. (C) At the left end

of the chain there are two empty mucus sheaths, while in the

middle a Thiomargarita cell is dividing. (0) Confocal laser scan­

ning micrograph showing cytoplasm stained green with FITC and

the scattered light of sulfur globules (white). Most of the cells

appear hollow due to the large central vacuole. (E) Transmission

electron micrograph of the cell wall showing the thin layer of

cytoplasm (C), the vacuole (V), and the sheath (8).
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The phylogenetic position of Thiomargarita was determined by

fluorescent in situ hybridization and 16S rRNA sequencing. A hybridization

analysis with competitive beta- and gamma-proteobacterial probes (MANZ et

aI., 1992) identified Thiomargarita as a gamma proteobacterium, a bacterial

phylum which also harbors Beggiatoa and Thioploca (TESKE et aI., 1995). We

then tested Thiomargarita with the Thioploca araucae and Thioploca chileae­

targeted probe 829 (TESKE et aI., 1995) and found a positive hybridization.

This probe was subsequently used as a specific primer to amplify positions 24­

828 of the 16 S rRNA gene of Thiomargarita (To avoid contamination with

other sulfur bacteria, the sheaths of Thiomargarita were dissolved using a

common washing powder with enzymes and the cells were washed several

times in DNA-free water until no other bacteria could be detected

microscopically.). Thiomargarita was found to be the closest relative to the

marine, vacuolated, nitrate-accumulating Thioploca species, T. araucae and

T. chileae, thus separating them from the smaller freshwater species, which

do not possess large vacuoles (MAIER and MURRAY, 1965) (Fig. 5.21).

Apparently, the possession of a large vacuole in connection with intracellular

nitrate accumulation is congruent with this phylogeny.

Our attempts to isolate Thiomargarita into pure culture have not been

successful. The bacteria may survive and grow in the laboratory in samples of

their natural sediment for at least a year. Nitrate and sulfide addition led to a

doubling of the cell number within 1-2 weeks. Addition of organic substrates

such as acetate or glucose had no immediately detectable effect on growth.

Although Thiomargarita appear to thrive best under low oxygen or anoxic

conditions, exposure to atmospheric oxygen levels were not toxic as has been

observed for Beggiatoa (NELSON et aI., 1986b) and Thioploca (MAIER and

GALLARDO, 1984). Thiomargarita showed an unusual ability to survive without

growing. Small samples of 15 cm3 fluffy surface sediment collected during an

earlier research cruise, that were kept in 80 ml of air-saturated sea water and

stored at 5°C without addition of nitrate or sulfide, contained intact cells after

more than 2 years. The surviving cells were all rather small with diameters of

50-110 J.lm occurring singly or in pairs.
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Fig. 5.20 Distribution of biomass and diameters. (A) Depth distribution of

biovolume of Thiomargarita in ~I per ml. Mean values of three

measurements. (8) Frequency of diameters of 214 randomly

chosen cells. (C) Cell diameter distributions in three different

chains.
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The thickness of the cytoplasm corresponds to the usual small width of

bacteria, and its peripheral distribution counteracts a potential diffusion

limitation within the cell (LARKIN and HENK, 1989). Since the thickness of

cytoplasm is independent of cell size, the ratio of vacuole- to cytoplasm­

volume increases with the diameter. By doubling the diameter, the volume of

vacuole storage capacity relative to cytoplasm also doubles. The observed

potential of Thiomargarita to survive nitrate starvation for long periods might,

accordingly, be explained by the following calculation: the mean protein

content of Thiomargarita was 4.5 mg cm-3 volume (including the vacuole), less

than half of what has been measured for the large, vacuolated Beggiatoa,

which also accumulate nitrate (MCHATTON et aL, 1996). For a nitrate reduction

rate of 1 nmol N03- min-1 mg-1 protein as observed for Thioploca (OnE et aL,

manuscript submitted), a Thiomargarita cell with a diameter of 180 f.lm and 0.3

M nitrate stored could survive for at least 40-50 days without taking up nitrate.

As the intensity of the upwelling off the Namibian coast frequently changes

(HART and CURRIE, 1960; CALVERT and PRICE, 1971; SHILLINGTON, 1998), Thio­

margarita could survive until sulfide or nitrate appear in higher concentrations

and can be stored again for later use.

In most marine sediments, the zones of nitrate and hydrogen sulfide do

not overlap. Thioploca has developed a strategy to overcome the problem that

their electron acceptor and energy source do not coexist. They live in sheaths

that allow the filaments to glide up and down and thereby commute between

nitrate uptake from the overlying sea water and sulfide uptake within the

sulfate reduction zone of the sediment (FOSSING et aL, 1995; SCHULZ et aL,

1996). The high fluidity and instability of sediments at Walvis Bay

(BRONGERSMA-SANDERS, 1983; BREMNER, 1983; SCHuEnE and SCHRADER,

1981), however, seem to prevent Thioploca from forming vertical sheaths an d

establishing dense populations. Instead balloon-shaped sulfur bacteria thrive

here. The discovery of Thiomargarita expands the range of known adaptations

of prokaryotic organisms to a life in sulfide gradients. Whereas motility is a

fundamental prerequisite for the filamentous Thioploca and Beggiatoa

(NELSON et aL, 1986a; M0LLER et aL, 1985; HUETTEL et aI., 1996),

Thiomargarita appear unable to move actively to an environment where its

energy source and electron acceptor are optimally supplied. Instead, they may

rely on passive transport by external processes such as periodic resuspension
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of the loose sediment or on temporal variations in the chemical environment. In

accordance with this, it is more resistant to high levels of oxygen and sulfide

than are the filamentous relatives, which show a phobic chemotactic response

to oxygen (M0LLER et aI., 1985; HUETTEL et aI., 1996). Both Thiomargarita and

Thioploca face the same ecological challenge: to oxidize sulfide with nitrate,

although their two substrates do not coexist. By their solution, to store both

nitrate and sulfur, they may successfully compete with faster growing

anaerobic sulfide oxidizers, such as Thiobacillus denitrificans and Thiomicro­

spira denitrificans. With Thioploca, sulfide and nitrate are spatially separated,

and Thioploca commute between these two sources. In contrast, Thiomargarita

only obtain nitrate during occasional sediment resuspension events. Mean­

while they can effectively endure high sulfide concentrations until the next re­

suspension event occurs.
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Lucinoma magnifica

aequizonata symb. symb. S I I b
. 0 emya ve um sym .
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orbicularis symb. B . t Ib

Riftia eggla oa a a
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Fig. 5.21 Distance tree of Thiomargarita namibiensis and related sulfur­

oxidizing bacteria of the gamma-proteobacterial subdivision. The

distance tree is based on 168 rRNA position 358-802, which is

the overlap of the partial 168 rONA sequence of Thioploca

araucae, T. chileae and Thiomargarita. The tree was rooted with

Thiovulum majus of the epsilon-proteobacterial subdivision as

outgroup. Bootstrap values (200 runs) are given for nodes which

have at least 70 % support by distance (first) or parsimony

bootstrap (second value). The scale bar corresponds to 0.1

Jukes-Cantor substitutions per nucleotide.
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Sulfide production rates are high in coastal sediments around the world,

wherever the sediment is rich in organic matter, particularly in upwelling

regions (FERDELMANN et aI., 1997). The bottom water in these areas is often

depleted of oxygen because of intense heterotrophic respiration. As the

second-most favorable electron acceptor, nitrate may be used for the oxidation

of sulfide. This results in a close coupling of the sulfur and the nitrogen cycles

through these specialized sulfur bacteria. Thioploca predominates along the

Pacific coast of South America, whereas Thiomargarita is abundant along the

Namibian coast. In both upwelling areas, sediments with extremely high

organic content and sulfate reduction rates harbor dense and conspicuous

populations of giant sulfur bacteria. However, even the well-known Beggiatoa,

frequently encountered along the coast, have recently been shown in Baltic

Sea sediments to accumulate nitrate (STROTMANN et aI., in prep.). These new

findings indicate, that a chemolithotrophic coupling of nitrate and sulfide

through nitrate storing sulfur bacteria may be a widespread feature of coastal

sediments.

5.4.3 Acknowledgments

We thank the crew of the Petr Kottsov and the participants of the

BENEFIT expedition especially L. Postel and C. Eichner for there friendly co­

operation. Special thanks to C. Suppes, J. Zopfi, F. Garcia-Pichel, F. Widdel

and A. Friedrich for their helpful assistance with practical problems and fruitful

discussions and to Prof. H. G. TrOper for his help in finding an appropriate

name. The study was supported by the Max Planck Society.

79



5.5 Nitrate storage by marine Beggiatoa spp. in Limfjorden,
Denmark (summary)

BETTINA STRaTMANN, THOMAS KJ,tER, LARS PETER NIELSEN, HEIDE

N. SCHULZ, and Bo B. J0RGENSEN

Bettina Strotmann, Heide N. Schulz, Bo B. J0rgensen, Max

Planck Institute for Marine Microbiology, Celsiusstrasse 1, 0­

28359 Bremen, Germany

Thomas KjGer, Lars Peter Nielsen, Institute of Biological Sciences,

Department of Microbial Ecology, University of Arhus, Ny

Munkegade, Bygning 550 or 540, DK-8000 Arhus C, Denmark

80



summary
As described in the previous chapters, it was found, that the im­

pressively dense population of Thioploca spp. at the South American West

coast and the very large Beggiatoa filaments living on hot vents use nitrate

instead of oxygen for the oxidation of sulfide (FOSSING et aI., 1995; McHatton et

aI., 1996). Therefore, the question arose, whether this alternative metabolism

could also occur in the well known and frequently encountered smaller

Beggiatoa filaments. A hint for this was, that during a study in Limfjorden,

Denmark in 1974 / 1975 Beggiatoa filaments of 8 - 1711m diameter were

frequently observed in 2 cm sediment depth where no oxygen was available

(J0RGENSEN, 1977a). This observation contradicted the common idea of

Beggiatoa spp. living exclusively in the narrow overlapping zone of sulfide and

oxygen (J0RGENSEN and REVSBECH, 1983; M. M0LLER et aI., 1985; D. NELSON

et aI., 1986a). To address this question, in November 1997 we returned to one

of the stations in Limfjorden, sampled in 1975 (Station 5), and took sediment

and bottom water samples. For this study bottom water nitrate and oxygen

concentrations were measured. In the sediment nitrate and oxygen profiles

were measured using microelectrodes, and sulfate reduction rates, sulfide,

iron and manganese concentrations were determined. The Beggiatoa com­

munity was described in terms of vertical distribution and diameter classes,

and the internal nitrate concentration of several Beggiatoa filaments was

measured.

During the time of investigation bottom water oxygen concentrations

were around 290 11m and oxygen penetrated 2 mm into the sediment. Nitrate

was present in 1711m concentration, penetrating the upper 0.4 cm of the

sediment. The areal sulfate reduction rates of 2.7 mmol m-2 d-1 in the upper

10 cm were comparable to those measured in November 1974 (ca 3 mmol m-2

d-1
) and November 1975 (ca 4 mmol m-2 d-1

) (J0RGENSEN, 1977b). Highest

sulfate reduction rates were found directly at the sediment surface (64

nmol cm-3 d-1
) decreasing exponentially with depth to ca 20 nmol cm-3 d-1 at

10 cm. Hydrogen sulfide concentrations were around 1 mM in 10 cm depth

decreasing continuously towards the sediment surface. In the upper 2.5 cm no

free hydrogen sulfide could be detected. Total biomass of Beggiatoa spp. was

14 - 16 g m-2 which fits well to an average yearly biomass of ca. 15 g m-2 found

at Station 5 in 1974 / 1975 (J0RGENSEN et aI., 1977a). The Beggiatoa

trichomes populated the upper 2.5 cm of the sediment, with very few filaments
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found in 2.5- 3.3 cm depth. Two peaks of biomass occurred at 0.25 - 0.5 cm

and 1.5 - 2 cm depth. Only 17 % of the total biovolume of Beggiatoa spp. was

located directly at the sediment surface (0 - 2.5 cm). In the upper 2 cm of the

sediment filaments of 12 Ilm diameter were most abundant. Filaments of this

size class contained nitrate in 60 - 240 mM concentration (150 mM in

average). The smaller Beggiatoa spp. «5 Ilm), which had populated the

sediment surface in 1974/75 (J0RGENSEN, 1977a) were found in low numbers

in 0 - 1 cm sediment depth and very few in 1 -2 cm depth.

It could be shown, that also Beggiatoa filaments of moderate size

(12 Ilm) accumulate nitrate in concentrations comparable to the marine

Thioploca spp. (Fossing et aI., 1995). In the upper 2.5 cm of the sediment,

which were populated by Beggiatoa spp., no free hydrogen sulfide was

detectable, although the sulfate reduction rates were high. This is also the

case in Chilean sediments populated by Thioploca spp., although thioplocas

penetrate much deeper into the sediment (FOSSING et aI., 1995). From the

biovolume and the average nitrate content of beggiatoas it can be calculated

that the upper 2.5 cm of the sediment were 4-5 times enriched in nitrate

(75 11m) compared to the bottom water (17 Ilm) due to the Beggiatoa

population. If all the sulfide produced in the upper 3 cm of the sediment was

oxidized by the beggiatoas, their nitrate pool would be turned over every 3 -4

days, which would equal a nitrate uptake rate of approximately 220 nmol cm-2

d-1
. This is in the same order of magnitude as the total flux of nitrate into the

sediment of 123 nmol cm-2 d-\ which was calculated from the maximal slope

of a nitrate profile measured with a microelectrode. The upper peak of biomass

at 0.25 - 0.5 cm occurred in a zone where oxygen was consumed but nitrate

was still present, while the second peak at 1.5 - 2 cm was directly above the

sediment depth where hydrogen sulfide could be detected. This might indicate,

that like Thioploca spp. also these nitrate-accumulating Beggiatoa spp. shuttle

between two sediment depths to take up either nitrate or sulfide, although the

distances they would have to overcome are much smaller.
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6. Conclusion and Outlook

Most of the "morphologically conspicuous sulfur bacteria" have been

described within the last century and the beginning of this century during a

time when microbiologists tried to approach the diversity of bacteria with

morphological descriptions comparable to approaches in zoology and botany.

As indicated by the name, the "morphologically conspicuous sulfur bacteria"

are one of the few groups of bacteria mainly defined by morphology. Never­

theless, compared to most other bacteria they are rather large and have a lot of

morphological features in addition to size and shape. For most bacteria,

morphological descriptions are not very informative. Therefore, microscopic

observations on bacteria are less recognized today than they used to be in the

beginning of this century, especially when there is no pure culture isolated. In

the case of the "morphologically conspicuous sulfur bacteria", however, there

are still many new and interesting things to learn on the basis of observation,

which is indicated by the discovery of a new genus and a new morphotype of

sulfur bacteria in this study (chapter 5.2 and 5.4).

The newest taxonomic approach in microbiology is the comparison of

168 rONA sequences. This tool has been applied on some genera of the

"morphologically conspicuous sulfur bacteria". Obtaining sequences for non­

cultivated species is more difficult than for pure culture strains. This has slowed

down progress in obtaining secure phylogenetic trees of this group. Clearly,

further studies are required to gain a more detailed impression of the

phylogenetic affiliations among sulfur-accumulating bacteria. The data

obtained until now indicate that the nitrate-storing sulfur bacteria are closely

related to each other, regardless of prominent differences in morphology

(chapter 5.2).

The ability to accumulate nitrate in a central vacuole occurs in the three

genera Thioploca, Beggiatoa, and Thiomargarita , and sets these prokaryotes

apart from the rest of the sulfur oxidizing bacteria. The use of nitrate instead of

oxygen for the oxidation of sulfide has great ecological importance in coastal

marine environments. High sulfate reduction rates which give rise to high

sulfide concentrations in the sediment are typically found in eutrophic areas
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where the sediment is rich in organic matter. For the degradation of organic

matter sulfate is a less favorable but more abundant electron acceptor than

oxygen or nitrate. Thus, high sulfate reduction rates occur in the sediment at

depths where oxygen and nitrate are depleted. Therefore, most sulfide

oxidizing bacteria can only use sulfide once it has diffused up to a zone where

nitrate or oxygen are present. Only the nitrate-accumulating bacteria are

capable of using sulfide as electron donor and nitrate as electron acceptor

without depending on the co-occurrence of the two compounds. This enables

them to use this source of energy, although compared to smaller sulfide

oxidizers they have relatively low growth rates (chapter 5.1 and 5.3). Sulfide

oxidation with nitrate is of great relevance in upwelling areas where dense

populations of nitrate storing sulfur bacteria occur (chapter 5.1 and 5.4).

Nevertheless, even in less productive coastal areas, the proportion of sulfide

oxidized by nitrate-accumulating bacteria might be larger than previously

assumed, which is indicated by the preliminary study of Limfjorden beggiatoas

(chapter 5.5).

The "morphologically conspicuous sulfur bacteria" are not only

characterized by a certain metabolism. Furthermore, it seems that each genus

occupies a particular ecological niche often including an individual "trick" for

obtaining their substrates. The microaerophilic Beggiatoa spp. and Thiovulum

have an efficient chemotaxis to orient themselves in the sulfide / oxygen

interface. The marine nitrate-storing Thioploca shuttle between the sediment

surface and deeper parts of the sediment, thus keeping their electron acceptor

and electron donor spatially separated. Thiomargarita is able to endure high

concentrations of oxygen or sulfide and can survive for at least several months

without nitrate or sulfide present. Thus, the special adaptation of Thiomargarita

is to use two substrates that are not necessarily available at the same time.

Much valuable information on several of the "morphologically

conspicuous sulfur bacteria" has been obtained by observation, field studies or

with the use of purified enrichment cultures. Nevertheless, for some genera of

this group there is still a lack of basic information on e. g. abundance, diversity

or details of morphology. However, a goal of future studies on "morphologically

conspicuous sulfur bacteria" has to be the isolation of these prokaryotes into

pure culture in order to study their physiology and biochemistry in more detail.
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