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Chapter 1

1. General Introduction

Foraminifera are small marine, eukaryotic organisms of the phylum

Sarcomastigophora in the sub-kingdom Protozoa (Fig. 1). They are structurally single-celled

species, showing no tissue-level organization. Foraminifera protrude a network of

pseudopodia for entrapping food, which are mainly algae, diatoms, protozoa, and

microcrustaceans. The nutrient material is digested within the cytoplasm or drawn into the

test, where digestion occurs in the endoplasm. Furthermore, pseudopodia are used for

locomotion, atlachment, and expulsion of waste material. The majority of foraminifera lives

on the sea bottom, where they are either free-living or attached to the substrate. Most

foraminifera are equipped with substantial shells of one or several chambers of mineral

material (commonly calcium carbonate) according to a specific morphology (Be 1977,

Farmer 1980, Caron and Swanberg 1990, Murray 1991, Lee and Anderson 1991, Mather

and Bennet 1994).

Kingdom: Protista (or Protoctista)

Subkingdom: Protozoa

Phylum: Sarcomastigophora

Subphylum: Sarcodina

Superclass : Rhizopodea

Class: Lobosea (amoebae)

Class: Granuloreliculosea (foraminifera)

Superclass : AClinopodea

Class: Acanlharea (acantharia)

Class: Polycystinea (radiolaria)

Class: Phaeodaria (radiolaria)

Class: Heliozoa (heliozoa)

Fig. 1 Taxonomic position of foraminifera (based on

Lee et al. 1985, Caron and Swanberg 1990).
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1. 1. Ecology of symbiotic foraminifera

1. 1. 1. Planktonic foraminifera

Planktonic foraminifera are worldwide distributed marine protists that inhabit all

oceans from the tropics to the polar seas (Be 1977, Boltovskoy and Wright 1976, Murray

1991). They are floating microplanktonic organisms that are transported by the oceanic

current system (Boltovskoy and Wright 1976). The productivity of planktonic foraminifera

depends on several biological factors including their life span, growth rate, reproduction

cycle, mortality, and turnover rate of each species (Be 1977). Five major faunal provinces

(polar, subpolar, transition, subtropical, tropical) of living planktonic foraminifera were

described that show a clear correlation with the surface circulation pattern of the ocean

(Sverdrup et al. 1942). Furthermore, the distribution of planktonic foraminifera is influenced

by abiotic parameters like temperature, salinity, light, oxygen, and nutrient concentrations.

The cold regions are marked by a low diversity and only a few indigenous species, whereas

the warm regions have a high diversity and many indigenous species (Be 1977). Highest

densities were reported for plankton-rich areas of the major currents, boundary currents,

divergence zones, and upweIling areas. Oligotrophic central water masses and continental

shelves showed low densities. The abundance of living foraminifera in surface waters

ranged from < 1 up to 100.000 specimens per 1 m) (Berger 1969). The concentration is

greatest in surface waters and decreases rapidly with depth. In coastal waters with relatively

steep bottom slope and no significant input from freshwater run off, as found e.g. along the

Californian coast, numerous planktonic foraminifera have been observed. At greater

distances from the shore the number of planktonic species increases. Symbiont-bearing

species are restricted to the euphotic zone, where the photoautotrophic microalgae are

exposed to sufficient light for photosynthesis. The highest densities of symbiont-bearing

planktonic foraminifera are generaIly found in a depth of 10-50 m below the surface

(Bradshaw 1959, Be 1960a, Boltovskoy 1964). Furthermore, the majority of spinose species

(i.e. with attached calcite spines) are surface dweIlers, whereas the non-spinose species live

preferentially below 50 m.
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Planktonic foraminifera show diurnal migration patterns and a vertical migration

during their ontogeny. During their growth they migrate between the reproductive depth (30

- >200 m) and the uppermost part of the photic zone (Berger 1969, Spindler and Hemleben

1983). In addition, it was recognized that the reproductive cycle of symbiont-bearing

spinose foraminifera is controlled by the lunar cycle. The population of spinose species is

strongly reduced during the period of the full moon. After this period a steady increase in

individual numbers was found in the surface waters (Spindler et al. 1978, Hemleben and

Bijma 1994).

1. 1. 1. 1. Experimental organism

The spinose symbiont-bearing species Orbulina universa, investigated in the present

study, is described as an ubiquitous species in subtropical, tropical, and transitional waters.

Highest population densities were found in the surface layers of strong current systems and

upwelling regions near the continental margins (Bradshaw 1959). 0. universa is a widely

distributed species in the Equatorial and Southeast Pacific (Parker 1960) and in the

subtropical zones (20 - 40 0 latitude) of the Atlantic and Indian ocean (Be and Tolderlund

1971). In the North and Equatorial Pacific highest densities were observed in the cool

California Current and near Hawaii (Bradshaw 1959). The dinoflagellate endosymbionts of

0. universa were described as the small coccoid species Gymnodinium beii (Spero 1987).

0. universa is characterized as "intermediate water" species living predominantly in

a depth of 50 - 100 m. The species tolerates salinities of 23 - 46%0 and temperatures of 12 ­

31 0 C (Bradshaw 1959, Be and Tolderlund 1971). Observations at Bermuda and Barbados

showed a reproduction depth of O. universa between 100 - 200 m (Hemleben and Spindler

1983).

The sampling sites where we collected O. universa for this study were (1) the

California Current near the Island Santa Catalina, California (Fig. 2A), and (2) the surface

waters near Curac;ao, Netherland Antilles, Caribbean Sea (Fig. 2B).
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General Introduction
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Fig.2 Sampling sites of the present study. Orbulina universa was collected near Santa Catalina Island (A)
and Cura<;ao, Netherland Antilles (B). Amphisorus hemprichii and Amphistegina lobifera were colleted in the
Gulf of Aqaba (C) and at Heron Island, Great Barrier Reef (D).
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1. 1. 2. Benthic foraminifera

Benthic foraminifera live as epifauna on various substrates such as rocks, seaweeds,

macroalgae, corals, and the sediment, others as infauna within the sediment (Murray 1991).

Benthic foraminifera inhabit diverse types of ecosystems. The major environments of

benthic foraminifera are marshes, mangroves, lagoons, estuaries, shelf seas, and the deep­

sea sediment. The distribution of benthic foraminifera is influenced by abiotic factors like

temperature, salinity, substrate type, turbidity, light, nutrients, oxygen, and tidal energy.

These factors interrelate with biotic parameters of food availability and abundance, and

interspecific competition. Many species are free living, i.e. able to move with their

pseudopodia, others live attached to the substratum by their pseudopodia (clinging) or by

cementation (sessile). The relationship of benthic foraminifera with their substratum, the

orientation of their tests, and to a certain degree the test form are closly linked with feeding

strategies and the exposure to physical energy (e.g. water motion) in their environments

(Murray 1991). Benthic foraminifera exhibit a typical patchy distribution. Several species

from intertidal or very shallow waters show patchy distribution patterns on a scale of < 1 to

several meters (Buzas 1968). Standing stocks can reach up to several hundred specimens

cm-2 (Muller 1974, Duguay 1983, Murray 1991). Oligotrophic areas of low fertility show

low densities « 10 individuals per 10 cm2
) whereas high fertile areas have a higher standing

stock of> 1000 individuals per 10 cm2
•

Most benthic foraminifera are of meiofaunal size « 2 mm) but some species grow

to giant protists of >16 mm (Smith and Wiebe 1977, Lee and Hallock 1987). The latter are

called larger foraminifera. They are symbiont-bearing species that occur in shallow areas of

tropical and subtropical seas. In warm shallow waters, metabolic rates are high and

sufficient energy is needed for survival. Therefore, the symbiosis with autotrophic algae

gives an energetic advantage, especially in nutrient-poor environments. Several authors

have suggested that benthic foraminifera in shallow-water environments are adapted to the

environmental conditions of their local habitat (Hallock et al. 1986, Murray 1991, Wetmore

and Plotnick 1992). For example, the test strength of larger foraminifera that inhabit a high­

energy exposed reef (i.e. high wave action) was greater as compared to species collected

from a low-energy, sheltered seagrass flat. Moreover, the growth of some larger

foraminifera mainly depends on photosynthesis of their endosymbionts and the
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concentrations of nitrate and micronutrients in the surrounding seawater (R6ttger et al.

1980). The different groups of endosymbionts seem to have varying light requirements. The

study of Leutenegger (1984) investigated the depth distribution of several benthic

foraminiferal groups. Foraminifera that host chlorophyceans were restricted to shallow

waters (0 - 15 m). Dinophycean and rhodophycean symbionts were found in foraminifera

living in a depth of 0 - 70 m, and diatom bearing species lived in depths of 0 - 130 m.

1. 1. 2. 1. Experimental organisms

For the present study, three different species of larger benthic foraminifera were

collected from two different sites.

1. Marginopora vertebralis that belongs to the family Soritidae of the suborder

Miliolina (= imperforated species), is characterized by a discoidal porceianeous, calcerous

shell. M. vertebra lis that lives in symbiosis with dinoflagellates is a conspicious form in

beach sediments, reaching shell diameters up to 2 cm. We collected M. vertebralis on the

reef flat of Heron Island, Great Barrier Reef (Fig. 2D), where we found M. vertebralis

attached to the calcerous algae Halimeda macroloba. M. vertebralis was described as major

contributor to reef sedimentation (Smith and Wiebe 1977).

2. Amphisorus hemprichii, also a member of the family Soritidae (suborder

Miliolina), consists of an imperforate porcelaneous shell (Hansen and Dalberg 1979). The

dinoflagellate endosymbionts are usually distributed in parts of the shell away from

digestive activities of the host. Like many other imperforate species, A. hemprichii acquires

a significant part of its energy from ingestion, mainly of unicellular algae (ter Kuile et al.

1987).

3. Amphistegina lobifera is a member of the family Amphisteginidae (suborder

Rotaliina =perforate species). As compared to M. vertebralis and A. hemprichii, this species

hosts diatom endosymbionts (e.g. Nitzschia sp., Fragilaria sp.). Furthermore, it consists of a

perforate calcerous shell. Amphistegenids are a very abundant group in shallow waters of

tropical and subtropical seas where they live on surfaces of algae, macrophytes, and

sediments (Hansen and Buchardt 1977, Hottinger 1993, Hohenegger 1994). Growth of A.

lobifera was stimulated by the addition of nutrients to the medium (ter Kuile et al 1997).

The ingestion of food seemed to be a less important energy source in this species.
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For this study, A. lobifera and A. hemprichii were collected in the Gulf of Aqaba,

Northern Red Sea (Fig. 2C), where they grow on biofilm coated stones in the sandy

intertidal zone. For microsensor studies they were transported to the laboratory of the Max­

Planck-Institute for Marine Microbiology, Bremen, Germany.

1. 1. 3. Foraminifer-symbiont interactions

The term "symbiosis" describes an association between different species of

organisms with mutual benefit (Smith and Douglas 1987, Murray 1991, Lee and Anderson

1991) (Table 1). The association of foraminifera with unicellular algae is very succesful and

a widespread phenomenon in the photic zone of nutrient-poor tropic and subtropic waters.

Table 1 Interactions between foraminifera and their symbiotic algae (based on Hausmann and
Hiilsmann 1996)

Symbionts benefit from:

- Optimal conditions for photosynthesis
(light, CO2)

- Habitat, constant environment,
transportation

- N- and P-containing host
metabolites

- Protection against
predation

Foraminifer benefits from:

- Release of symbiont
photosynthates

- Symbiont assimilation of
metabolic waste products (nitrogen
and phosphorus compounds)

It is suggested that foraminifera provide a good cellular habitat for the establishment

and maintenance of algal symbionts due to the fact that they can host a diversity of algal

types (Lee and Anderson 1991). Within the host cytoplasm, the symbionts are non-motile

and lack cell envelopes such as diatom frustules, dinophycean thecae, or cysts. The

symbionts are seperated from the host by a perialgal vacuole membrane, and it is still not

known how they are protected against digestion by the host.

The endosymbionts probably provide a major part of organic carbon required for the

host metabolism by releasing photosynthates to the foraminiferal cytoplasm. Photo­

assimilatory products including polyglucan, glucose, lipids, and glycerol have been

8



General Introduction

identified in several larger foraminifera (Kremer et al. 1980, Battey 1992). The contribution

of diatom symbionts to the nutrition of the benthic species Archais angulatus has been

investigated by Lee et al. (1974). They found that 60% of the non-respired fixed carbon was

released to the host. In addition, isolated symbionts of the benthic foraminifer Amphistegina

spp. showed a stimulated release of photosynthates in the presence of host homogenate

(Smith and Douglas 1987, Lee et al. 1994). This activating factor has not been identified in

foraminifera but its presence suggested that the host tissue affects the translocation of

nutrients within the symbiotic association. Recently, Gates et al. (1999) identified the 'host

factor' in a symbiont-bearing sea anemone as a mixture of free amino acids. Its presence

caused enhanced carbon fixation rates and photosynthetic O2 production in the

endosymbiotic algae. Other possible pathways of carbon transfer from the symbionts to the

host are the processes of symbiont autolysis or digestion. Furthermore, it is suggested that

the symbionts convert metabolic waste products (ammonia, urea, glycerophosphate) of

the host into vitamins, amino acids, and enzymes, which could otherwise inhibit the host

metabolism (Murray 1991). Thus, an efficient cycling of nutrients between both partners

takes place, which supports the survival in oligotrophic waters where external supply with N

and P is limited.

The importance of feeding for the growth of some larger foraminifera was found by

Faber and Lee (1991). Feeding experiments with the benthic species Peneroplis planatus

showed no growth of starved specimens, that were maintained in the light. The imperforate

species Amphisorus hemprichii, Archais angulatus, and Sorites marginalis did not grow in

experiments with no food supply. These species gain most of their carbon by feeding on

unicellular algae from the substrate (Farber and Lee 1991). In other larger foraminifera

feeding supplies only a minor part of energy and organic carbon. Nutrition experiments with

Amphistegina lessonii demonstrated that the species is mainly photoautotrophic and growth

was possible with light as the only energy source (R6ttger et al. 1980).

In planktonic foraminifera on the other hand, digestion of plankton organisms is a

major source of organic compounds and digestion of zooplankton prey results in a large

supply of Nand P (Be et al. 1981, Spindler et al. 1984, Lee and Anderson 1991). The

symbionts of planktonic species probably benefit from the food debris of caught prey within

the pseudopodial network of the host, where it is digested. The study of J(Ilrgensen et al.

(1985), however, demonstrated that the symbiotic association of the planktonic
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Globigerinoides sacculifer could be highly autotrophic at light saturation when the

dinoflagellates produced approximately the tenfold amount of the organic matter needed for

host respiration. JlIlrgensen et al. (1985) suggested that this enormous organic production

could theoretically cover the carbon requirement over the whole diurnal light-dark cycle.

Surface dwelling spinose foraminifera commonly have symbionts and in oligotrophic areas

such as the central water masses the environment is poor in nutrients. Thus, the presence of

symbionts might assist planktonic foraminifera to survive in areas of low food supply.

The close interaction of symbiotic algae and foraminifera was proven with isotope

fractionation experiments of benthic and planktonic species (Honjo and Erez 1981, Spero

and Deniro 1987, Uhle et al. 1998). The shells of the benthic foraminifer Heterostegina

depressa e.g. became depleted in 180 and l3C with increasing irradiance (Zimmerman et al.

1983). Enhanced uptake of 12C02 by symbiont photosynthesis resulted in an enrichment of

l3C in the inorganic carbon pool. Subsequently, photosynthesis results in a depletion of the

IJC of the foraminiferal shell, whereas the respiration of the foraminiferal-algal association

increases the IlC value.

Uhle et al. (1998) used 13C/12C and 15NrN isotope measurements to elucidate the

various metabolic and biosynthetic pathways e.g. of the nitrogen and carbon flow within

planktonic foraminifera. They suggested that the changes in isotope data in Orbulina

universa indicate a translocation of C and N from the symbionts to the host. Furthermore,

they assumed that certain amino acids such as glutamic acid, valine, and isoleucine might be

directly supplied from the fed Artemia nauplii to the foraminiferal host.

Radio tracer studies of carbon translocation from the host to its symbionts were

performed with 14C-labelled food. After 24 h the symbionts became heavily labelled by 14C

(Lee et al. 1988b). Additionally, the foraminifer-algal symbiosis may benefit from the

translocation of O 2 and CO2, It was hypothezised that O2 produced by photosynthesis is

utilized by the respiration of the host, whereas respired CO2 may supply inorganic carbon

for photosynthetic fixation in the symbiotic algae (Lee 1977, JlIlrgensen et al. 1985).
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1. 2. Processes affecting the chemical microenvironment of symbiont­
bearing foraminifera

1. 2. 1. Photosynthesis

The autotrophic symbiotic algae living in the foraminiferal cytoplasm remove CO2

and release O2 due to their photosynthetic activity (Fig. 3). All oxygenic photoautotrophs

incorporate CO2 to form carbohydrates by adding four electrons and four protons to the

carbon atom. The net equation of oxygenic photosynthesis can be described by:

( 1 ).

Symbiont photosynthesis:

CO2 + H20 .. CH 20 + O 2

~ CO2 faatlon
~ pH Increase

Respiration of host and symbionts :

CH 20 + O 2 ,, CO 2 + H2 0

'Calcification of foraminifer:

CaCO, + CO 2 + H 20

Fig. 3 Processes affecting the chemical microenvironment of symbiotic foraminifera.

Photosynthesis is a multistep process comprised of two independent series of

reactions (Badger 1985, Beardall 1989, Jones 1992, Raven 1994, Falkowski and Raven

1997, Foyer and Quick 1997). In the following a brief description of the light and dark

reactions will be given. The "light" reactions depend on the capture of photons by the
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photosynthetic pigments. The two systems of light reactions are called photosystem I (PSI)

and photosystem II (PSII). The concept of the two light reactions connected by an electron

transport chain is called the Z-scheme. The first step in oxygenic electron flow is the

splitting of water into oxygen and hydrogen atoms. An electron from water is donated to the

oxidized P680 molecule, the reaction center of PSII. Light energy converts P680 into a

strong reductant capable of reducing the intermediate acceptor phaeophytin a. From

phaeophytin a the electron travels through several membrane carriers including quinones,

cytochromes, and plastocyanin, that donate electrons to photosystem I. The electron is

accepted by the reaction center chlorophyll of PSI, P700. The oxidation of P700 is followed

by the transfer of the electron to a phylloquinone (AI). From latter the electron is passed to

an iron-sulfur complex (Fx) which is then oxidized by a second iron-sulfur complex (FJFJ.

FsiFA transfers the electron to a nonheme iron protein, ferredoxin, which reduces NADP' to

NADPH.

During the transfer of an electron from the acceptor in PSII to P700, electron

transport occurs in a thermodynamic favorable direction. This generates a proton motive

force from which ATP can be produced. The NADPH and ATP generated by the electron

transport chain in the thylakoid membranes couple the light reaction to carbon fixation. In

eukaryotic algae both the electron carrier as well as the enzymes which use the NADH and

the ATP to convert CO2 and H20 to carbohydrates, are localized in the chloroplast. In

symbiotic algae the enzymes for CO2 fixation (e.g. ribulose-l,5-bisphosphate

carboxylase/oxygenase) are located in the pyrenoid within the chloroplast (Leutenegger

1984, Raven 1994, Al-Moghrabi 1996). Ribulose-l,5-bisphosphate carboxylase/oxygenase

(Rubisco) is involved in the photosynthetic carbon reduction cycle (PCRC), the globally

most significant metabolic pathway for carbon reduction (Geider and Osborne 1992, Jones

1992, Raven 1997).

ATP and NADPH provided by the "light" reactions are used to reduce CO2 into

complex organic molecules. The reaction that lead to carbon reduction can proceed in the

dark as well as in the light. There are two characteristic pathways of carbon fixation during

the dark reactions (Raven 1994, Badger 1995, Falkowski and Raven 1997). First a

carboxylation reaction incorporates inorganic CO2 into ribulose-l,5-bisphosphate. This is

catalyzed by the enzyme ribulose bisphophate carboxylase/oxygenase (Rubisco). The

enzyme catalyzes both a carboxylase and oxygenase reaction. Latter results in oxygenation

12
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of ribulose-1,5-bisphosphate and the production of 2-phosphoglycolate and 3­

phosphoglycerate (PGA). Carboxylation results in the production of two molecules 3­

phosphoglycerate. The rate of each reaction is dependent on the concentrations of O2 and

CO2 in the chloroplast. Plants where primary carboxylation of atmospheric CO2 resulted in

the production of PGA were denoted as "C3" plants. In the "C3" pathway the first product

of carbon fixation is a 3-carbon compound called 3-phosphoglyceric acid (PGA) which is

then converted to triose phosphate using ATP and NADPH. In "C4" plants CO2 is initially

incorporated into phosphoenolpyruvate by the action of phosphoenolpyruvate carboxylase

producing oxaloacetate (OAA) as the first product of fixation, with subsequent formation of

other 4-carbon compounds (malate and aspartate). The 4-carbon compounds are

decarboxylated, and the CO2 thus released is fixed by the enzymes of the PCR cycle. The

initial fixation by PEP carboxylase acts as a 'C02 concentrating' mechanism because PEP

carboxylase has a much higher affinity for CO2 than does ribulose-1,5-bisphosphate

carboxylase/oxygenase (Rubisco).

The inorganic carbon fixation by marine algae involves carboxylation of Rubisco

(Geider and Osborne 1992). Experiments of Burns and Beardall (1987) indicate that

microalgae do not have a C4 mechanism as originally suggested from 813C experiments. In

marine diatoms, enzymatic studies indicate that ribulose bisphosphate carboxylase was the

predominant active enzyme (Descolas and Fontugne 1985). Zimba et al. (1990) detected 3­

phosphoglycerate as the first product of photosynthetic carbon fixation in marine benthic

diatoms. They assumed that the predominant carbon fixation pathway is similar to that in C3

plants. Symbiotic algae are suggested to belong to the group of C3 plants (Streamer et al.

1993). The process of carbon fixation of the diverse types of endosymbiotic algae associated

with foraminifera remains to be identified.

CO2 is the major substrate for photosynthesis in marine environments (Raven 1994,

Raven 1997). In seawater of pH 8.2, the CO2 concentration reaches -1% of the total

inorganic carbon (DIC) and> 95% of the inorganic carbon is present as HC03'. Rates of

inorganic carbon fixation in marine algae can only be accelerated by the transport of C j

(C02, HC03') from the surrounding seawater into the organism. CO2 can cross the

plasmalemma or chloroplast envelope membrane to the site of carbon fixation (Raven

1997). CO2 is dissolved in the membrane lipid phases, diffuses across the membrane, and

dissolves back to the aqueous phase intracellularly.
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An active transport of HC03' in marine phytoplankton as well as in several

symbiotic algae has been proven (Badger et al. 1980, Weiss et al. 1988, Al-Moghrabi et al.

1996). This C j pump was described as the carbon-concentrating mechanism (CCM)

(Burns and Beardall 1987, Badger and Price 1992, Falkowski and Raven 1997). The CCM

elevates CO" around the active site of the primary photosynthetic carboxylating enzyme

Rubisco (ribulose-l,5-bisphosphat carboxylase).

The photosynthetic quotient (PQ) is the ratio of 0" evolved to CO2 consumed.

This metabolic quotient provides information on the physiology and metabolism of plants.

Variations in the PQ have been attributed to the effects of nitrate assimilation and

photorespiration in marine algae (Geider and Osborne 1992). The PQ value depends further

on 0" and CO2 concentrations, nutrients used by photosynthesis, light conditions, and on the

photosynthetic products (Burris 1981, Gattuso and Jaubert 1988). In addition, the process of

calcification which leads to a reduction of TC02 without affecting O2 could influence the

PQ value. The stoichiometry of inorganic carbon assimilation of carbohydrates

approximates the release of one O2 molecule for one fixed CO2 molecule. Organic carbon in

lipids and proteins is more reduced increasing the PQ. Beside the different reductants which

increase the PQ value, the process of photorespiration reduces the value (Geider and

Osborne 1992). Conditions of O2 supersaturation that enhance photorespiration reduced the

PQ value in microalgae (Burris 1981). In unicellular algae PQ values ranged between 0.7 ­

4.2 (Arantza 1999). The values increased with increasing experimental irradiance and were

higher in algae grown at higher irradiances. Downton et a1. (1976) also found a wide range

of PQ values for symbiotic microalgae ranging between 1.3 - 5. Gattuso and Jaubert (1990)

investigated the PQ of endosymbionts associated with their host coral, which reached values

between 1.14 - 1.57. The authors suggested that light controls the quality of products

photosynthesized.
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1. 2. 2. Respiration

The combined respiration of the foraminifer and its symbionts results in O2 uptake

and CO2 release of the community (Fig. 3). Respiration is generally known as the oxidation

of organic compounds to CO2 and H20 by a series of oxidative reactions:

(2 ).

Respiration is the sum of metabolic processes that consume O2 and evolve CO2, Two main

types of respiration are described, dark respiration and photorespiration (Burris 1977,

Geider and Osborne 1989, Beardall and Raven 1990, Kromer 1995, Falkowski and Raven

1997). The dark respiration includes various pathways of substrate oxidation such as

glycolysis, the oxidative pentose phosphate pathway, and the tricarboxylic acid (TCA or

Krebs) cycle. Dark respiration can occur in all cells under dark and light conditions. In most

primary producers it provides the sole source of energy during periods when photosynthesis

is inactive. In algae dark respiration varies widely in dependence of photosynthesis. On the

average the dark respiration of microalgae is in the order of -10% of the gross production

(Beardall and Raven 1990).

In glycolysis, hexose is oxidized to pyruvate, and the oxidation is coupled to the

reduction of NAD+. In the absence of 02' pyruvate can be anaerobically oxidized to lactate

or, via pyruvate decarboxylase, to acetaldehyde and ethanol. The major role of glycolysis is

to provide substrates for further respiratory oxidative processes.

The oxidative pentose phosphate pathway phosphorylates and subsequently

oxidizes hexose to produce NADPH; CO2, and pentose phosphate. The latter is converted

via heptulose and tetrose phosphate to hexose phosphate and triose phosphate. Hexose and

triose phosphates can be recycled or fed into glycolytic reactions.

In the Krebs cycle, the pyruvate produced in glycolysis is aerobically oxidized to

CO2 by a sequence of electron transfer reactions. These oxidations are mediated by NAD+

and FAD. Intermediates in the Krebs cycle are withdrawn to form carbon skeletons for

amino acids, lipids, tetrapyroles, and other biosynthetic processes.

The fourth component of dark respiration is the respiratory electron transport in

the inner mitochondrial membrane. This process oxidizes most of the NADH generated in

15



Chapter 1

the Krebs cycle. It leads to the phosphorylation of ADP via a proton flux through the ATP

synthase complex and is the largest source of ATP in respiratory processes.

The second type of respiration described for microalgae that consumes O2 and

produces CO2 is called photorespiration (Burris 1977, Ogren and Badger 1985, Beardall

1989, Beardall and Raven 1990, Falskowski and Raven 1997). Photorespiration is enhanced

under conditions of high light and/ or reduced CO2 supply or increased O2 concentrations. In

this pathway CO2 is produced via the photorespiratory carbon oxidation (PCO) cycle (also

known as the glycolytic pathway). Photorespiration is obligatorily coupled to the operation

of the PCR cycle and therefore occurs only in the light. Moreover, the process is affected by

the concentration of both O2 and CO2 due to the competitive nature of oxygenation versus

carboxylation of the enzyme Rubisco. Increases in CO2 concentration increase the

proportion of ribulose-1,5-bisphosphate (RuBP) that is carboxylated. Under high partial

pressure of O2 the oxygenase activity and thus the carbon lost in photorespiration increases.

In contrast to terrestrial "C3" plants photorespiration in aquatic plants is usually low (Raven

1984). Aquatic inorganic carbon suppress the oxygenase and stimulate the carboxylase

activities of Rubisco.

The respiratory quotient (RQ) of algae is measured as the molar ratio of CO2

released to O2 absorbed during respiration. Respiration of glucose and other hexoses results

in a respiratory quotient of 1. The oxidation of reduced compounds such as fats or proteins

yields a quotient of less than 1 (0.7 for many lipids, 0.8 for some proteins). Oxidized

compounds including organic acids yield a RQ greater than 1 (about 1.33 for citric acid)

(Jones 1992).

1. 2. 3. Calcification

Calcification contributes to the formation of CO2, leading to a higher pC02 while

simultaneously reducing the concentration of total dissolved inorganic carbon:

(3 ).

In the literature a number of hypothesis about biogenic calcification in foraminifera exists.

The "Theory of biological induced CaC03 precipitation" is explained as a pH driven
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process in symbiotic foraminifera that displaces the carbonate equilibrium of the seawater

(Borowitzka 1982a, Duguay 1983, Lea et al. 1995). The principal processes controlling the

pH in the vicinity of the foraminifer are the photosynthetic removal and respiratory addition

of CO2 (Fig. 3). Photosynthetic fixation of CO2 raises the pH and increases the carbonate

concentration, largely at the expense of bicarbonate, according to the following equilibrium

reaction:

( 4 ).

At high pH the equilibrium reactions are shifted towards the right and at low pH to the left.

For example a pH shift from 8 to 9 will cause a fivefold increase in carbonate concentration

(Barnes and Chalker 1990, Falkowski and Raven 1997).

The precipitation of CaC03 occurs when the solubility product of the ions in solution

is exeeded (Barnes and Chalker 1990). Furthermore, the nucleation of CaC03 crystals is

facilitated by the existence of surfaces. The tendency of surfaces to order the ions decreases

the time or degree of supersaturation that is required for nucleation. Surfaces of existing

crystals provide ideal substrates for nucleation of new crystal growth. This process is

suggested in foraminifera by the "Theory of an organic matrix" (Hemleben et al. 1977,

Anderson and Be 1978, R6ttger et al. 1984, Weiner and Erez 1984). The tertiary structure of

a primary organic lining is involved in the initiation and direction of calcification by the

spatial ordering of calcium and carbonate ions. The orientation in which a crystal is

nucleated can be controlled by the pre-existing orientation of favouring substances.

The inhibition of CaC03 precipitation in foraminifera by a number of ions like

ammonium, phosphate, and magnesium is suggested by the "Poison removal theory"

(Borowitzka 1977, Chalker 1983, Swart 1983). This theory proposes that the organism

removes ions and thereby induces a spontaneous precipitation. Simkiss (1964b) supposed

that photosynthesis in corals removes phosphate from the internal environment and thus

enhances calcification.

Calcification is a process requiring metabolic energy. The uptake and concentrating

mechanisms of calcium and carbonate are energy-dependent. In benthic and planktonic

foraminifera the existence of an inorganic carbon pool was suggested by studies of

Anderson and Faber (1984), ter Kuile and Erez (1988), and ter Kuile et al. (1989a). The
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energy- dependent carbonate uptake was formulated as the "Theory of energy-dependent

concentration of reactants". Moreover, it was hypothesized that photosynthesis could

enhance calcification. Photoautotrophic endosymbionts supply energy via the photosynthate

release to the host and/ or remove of interferring substances due to the nutrient uptake from

the sites of calcification (Barnes and Chalker 1990). The calcification in symbiotic

foraminifera is probably the result of combined physico-chemical processes as well as of

biologically induced reactions as mentioned in the previous hypothesis. Despite the

investigation of different aspects of foraminiferal calcification (carbon supply, light

enhancement) our knowledge about the basic mechanisms is still quite limited.

1. 3. The geological importance of planktonic foraminifera

Based on the global distribution of planktonic foraminifera through passive transport

by ocean currents, on their enormous productivity, and on their sensitivity to environmental

variations, isotope measurements of foraminiferal shell calcite have been used as a standard

tool for the interpretation of ancient marine conditions (Be and Tolderlund 1971). Their

skeletons are abundantly preserved in the oceanic sediments in the so-called 'Globigerina

ooze', which is the most widespread sediment type over greater parts of the deep Atlantic

and much of the Indian and Pacific Oceans, covering nearly 50% of the deep-sea floor. It

contains up to 95% calcium carbonate, mainly in the form of foraminiferal shells (Sverdrup

et al. 1942, Bradshaw 1959). The enormous productivity of planktonic foraminifera is

reflected by the fact e.g. that several thousand specimens (> 200 t-tm size) have been found

in one gram of'Globigerina ooze sediment' (Correns 1939).

Planktonic foraminiferal shells play a major role in paleoclimatology and paleo­

geography, e.g. to reconstruct the paleotemperature, paleosalinity, and productivity of past

oceans (Epstein et al. 1953, Emiliani 1954, Berger et al. 1971, Erez 1978, Berger et al.

1981, Erez and Luz 1983, Broecker and Peng 1986). Oxygen isotope data contain important

information about the physical and chemical environment where the organisms precipitated

their shell carbonate. Based on the assumption that the foraminiferal shells precipitated in

equilibrium with the ambient seawater the 180rO ratio is used e.g. to reconstruct the

paleotemperature.
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12C is the most common carbon form, which constitutes 98.9% of the natural carbon

in the world. 1.1 % is present in the form of l3C (Falkowski and Raven 1997). In chemical

processes involving carbon, the lighter isotope J2C undergoes a higher rate of collision as a

consequence of its smaller mass as compared to l3c. This tendency is called isotopic

fractionation and leads to different l3C/2C ratios in different natural C pools. Disequilibrium

precipitation of CaC03 shells can be explained in terms of ontogenetic migration and

biological fractionation in foraminifera that modifies the <s l3C signal of foraminiferal shells.

The seawater pool of total CO2 (IC02= HC03', CO/', CO2) that surrounds the symbiont­

bearing foraminifer is enriched with 13C due to the preferentially uptake of 12C by symbiont

photosynthesis. Therefore, enhanced photosynthetic activity of the endosymbionts increases

the l3C value of inorganic carbon in the surrounding seawater. Both the symbiont density,

which increases with foraminiferal size, as well as their light-dependent photosynthesis that

is regulated due to the foraminiferal position in the euphotic zone, affect the l3C signal of

the foraminiferal shells (Hemleben and Bijma 1994). Other metabolic processes such as the

respiration of the community counteracts this enrichment (Spero 1992). Respiration

processes, that are mainly affected by temperature, organism size, and feeding rate decrease

the J3C value.
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1. 4. Microsensors

Microsensors can measure chemical and physical parameters with high spatial

resolution due to their small tip diameters (1 - 20 Ilm). In previous studies they were mainly

used to measure environmental conditions and metabolic processes in complex microbial

communities (e.g. microbial mats, biofilms and aggregates) (hJrgensen and Revsbech 1985,

Revsbech and J0rgensen 1986, Kiihl and J0rgensen 1992, Ploug et al. 1997, de Beer et al.

1997). But they also found increasing applications in studies of symbiotic associations like

the symbiotic planktonic foraminifer Globigerinoides sacculifer (J0rgensen et al. 1985), the

hermatypic corals Favia spp. and Acropora spp. (Kiihl et al. 1995, de Beer et al. 2000), and

the didemnid ascidian Diplosoma virens (Kiihl et aI., unpublished). Recently, the O2 and pH

microenvironment of two symbiont bearing radiolaria, Sphaerozoum punctatum and

Physematium mulleri, was studied (Kohler-Rink et aI., unpublished). The small dimensions

of microsensors allow the investigation of the physico-chemical microenvironment and rates

of metabolic processes at high spatial and temporal resolution in such small, sensitive

organisms. Several chemical parameters can be measured simultaneously without any

destruction of the organisms. The combined use of 02' CO2, and pH microsensors can

therefore provide important information about basic regulatory mechanisms of the major

metabolic processes like photosynthesis and respiration in such symbiotic communities.

This thesis presents for the first time the application of CO2 and Ca2
+ microsensors

and a fiber optic scalar irradiance microprobe (PAR) in studies of symbiont-bearing

foraminifera. In combination with O2 and pH microsensors the physico-chemical

microenvironment and the regulation of photosynthesis, respiration, and calcification has

been investigated in symbiotic planktonic and benthic foraminifera. The following table and

graph summarize the different types of microsensors used in this study (Table 2, Fig. 4).
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Table 2 Microsensors used in the present study

Sensor type Principle Tip size Detection References
(Jim) limit

1. Clark-type Reduction of O2 on aAu-cathode 5 -15 0.1 !-lM O2 Revsbech (1989)
oxygen micro- behind a silicone membrane
sensor

2. Glass pH Build-up of a potential across a 20 - 200 pH 1 -14 Thomas (1978)
microelectrode special pH glass

3. LIX micro- Build-up of a potential across 1 - 10
electrode a liquid ion-exchanger membrane

(UX)
a) pH a) pH 3 - 11 de Beer et al. (1997)

b) Ca2+ b) 10 !-lM Cah Tsien and Rink (1980)
(seawater) Amman et al. (1987)

4. CO2 micro- CO2 induced pH change of a 10 - 20 < l!-lM CO2 de Beer et al. (1997)
sensor bicarbonate solution behind a

silicone membrane

5. Fiber optic Measurement of quantum scalar 70 - 200 < 1 !-lmol Lassen et al. (1992a)
microprobe irradiance (400 - 700 nm) with a photons Kiihl et al. (1994b.

small diffusing sphere at the tapered m-2 s· 1 1997)
end of an optical fiber

• modified from Kiihl and Revsbech (2000)
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B
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, Fig. 4 Microsensors. Clark-type oxygen microsensor (A), CO2 microsensor (B), LIX microelectrode (pH,
Cal» (C), fiber optic microprobe (PAR) (0).
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1. 5. Outline of this thesis

This thesis investigates the physico-chemical microenvironment of symbiont-bearing

planktonic and benthic foraminifera with microsensors. The aim of this thesis was to study

the effect of metabolic processes including photosynthesis, respiration, and calcification on

the chemical microenvironment of the foraminiferal-algal association.

In chapter 2 microsensors for 02' pH, and light (PAR) were used to investigate the

physico-chemical microenvironment of the planktonic species Orbulina universa. The effect

of light on algal photosynthesis and on the respiration of the symbiotic system was studied.

Chapter 3 complemented the investigation of the chemical microenvironment of 0.

llniversa. The aim of this study was to investigate the influence of symbiont photosynthesis

on the CO2and Ca2
+ microenvironment of this planktonic species. Furthermore, the potential

inorganic carbon sources for symbiont photosynthesis were studied. For this purpose we did

combined measurements of O2 and CO2 fluxes and studied simultaneous concentration

changes of 02' CO2, and pH within the symbiont swarm.

In addition to the planktonic foraminifera chapter 4 and 5 describe the investigation

of symbiont-bearing benthic foraminifera. The combined effect of photosynthesis,

respiration, and calcification on the chemical microenvironment of the larger foraminifera

Marginopora vertebralis, Amphisorus hemprichii, and Amphistegina lobifera was studied

with 02' CO2, pH, and Ca2
+ microsensors (chapter 4). Additionally, irradiance effects on

photosynthesis of the symbiotic microalgae that live inside the foraminiferal cytoplasm and

on the foraminiferal microenvironment were investigated (chapter 5). Potential inorganic

carbon sources for photosynthetic assimilation were studied. Furthermore, a small

measuring chamber was developed to estimate the total O2 production and consumption

rates of single larger foraminifera. The combination of this method with the point

measurements of gross and net photosynthesis allowed a detailed study of the primary

production of symbiont-bearing foraminifera with O2 and C02 microsensors.
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ABSTRACT

Oxygen and pH microelectrodes were used to investigate the microenvironment of

the planktonic foraminifer Orbulina universa and its dinoflagellate endosymbionts. A

diffusive boundary layer (DBL) surrounds the foraminiferal shell and limits the Oz and

proton transport from the shell to the ambient seawater and vice versa. Due to symbiont

photosynthesis, high Oz concentrations of up to 206% air saturation and a pH of up to 8.8,

i.e. 0.5 pH units above ambient seawater, were measured at the shell surface of the

foraminifer at saturating irradiances. The respiration of the host-symbiont system in

darkness decreased the Oz concentration at the shell surface to < 70% of the oxygen content

in the surrounding air saturated water. The pH at the shell surface dropped to 7.8 in

darkness. We measured a mean gross photosynthetic rate of 8.5 ± 4.0 nmol Oz h·1

foraminife(l. The net photosynthesis averaged 5.3 ± 2.7 nmol Oz h-I. In the light, the

calculated respiration rates reached 3.9 ± 1.9 nmol O2 h- I
, whereas the dark respiration rates

were significantly lower (1.7 ± 0.7 nmol Oz h· I). Experimental light-dark cycles

demonstrated a very dynamic response of the symbionts to changing light conditions. Gross

photosynthesis versus scalar irradiance curves (P vs. Eo curves) showed light saturation

irradiances (Ek) of 75 and 137 !!mol photons m'z S-I in two O. universa specimens,

respectively. No inhibition of photosynthesis was observed at irradiance levels up to 700

!!mol photons m-z S-I. The light compensation point of the symbiotic association was 50

!!mol photons m-z S·I. Radial profile measurements of scalar irradiance (Eo) inside the

foraminifera showed a slight increase at the shell surface up to 105% of the incident

irradiance (Ed)'

INTRODUCTION

Planktonic symbiont-bearing foraminifera often occur in oligotrophic ocean waters.

Probably due to their close relationship with autotrophic dinoflagellates, they can survive in

nutrient limited environments. Symbiont-bearing foraminifera populate the euphotic zone,

where the symbionts are exposed to light levels sufficient for photosynthesis. It has been
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suggested that the zooxanthellae live well protected in the cytoplasm of the host where they

benefit from the respired CO2 as well as from nitrogen and phosphorus from prey digested

by the foraminifer (Be 1977, J0rgensen et al. 1985, Gastrich and Bartha 1988). The density

of endosymbionts can reach a mean of 3.300 cells per foraminifer and specific

photosynthetic rates of 1.72 pmol C symbionr ' h- I were measured at saturating irradiances

(Spero and Parker 1985). The importance of the endosymbionts for the host was

demonstrated in experiments, where the symbionts were treated with the photosynthetic

inhibitor DCMU. Be et al. (1982) thus found significantly shorter survival times, reduced

shell growth rates, and a smaller final shell size after inhibition of zooxanthellae

photosynthesis.

Spinose planktonic foraminifera have a perforate calcareous shell with thin spines.

The spines can reach a length of several mm and enlarge the effective surface area of the

foraminifera thereby increasing the chance of capturing prey with its sticky rhizopodial

network (Be 1977). Due to the enormous productivity of foraminiferal shells large parts of

the ocean floor are covered with them and constitute the so called "globigerina ooze".

Because the geochemical composition, i.e. the stable carbon and oxygen isotope

composition, planktonic foraminiferal shells can be used for paleo-environmental

reconstructions of the world's oceans for the last 120 * 106 years, these organisms have

become a major tool in geology to reconstruct the productivity of past oceans. However,

photosynthesis of endosymbionts can affect the isotopic composition of the foraminiferal

shells due to the higher affinity of the CO2 fixing enzyme for 12C02 (see e.g. Spero and de

Niro 1987).

Symbiotic associations of planktonic spinose foraminifera with microalgae have

been reported for at least seven species. The predominant algal symbionts are coccoid

dinoflagellates (Hemleben et al. 1989). They are found in the species Orbulina universa,

Globigerinoides sacculifer, G. ruber, and G. conglobatus (Spindler and Hemleben 1980,

Hemleben and Spindler 1983, Spero 1987). The endosymbiont of 0. universa, an

opportunistic species from the temperate to tropical provinces (Be 1977), is the

dinoflagellate Gymnodinium beii. The species Globigerinella aequilateralis, Globigerina

cristata, and G. falconensis host symbiotic chrysophycophytes (Spindler and Hemleben

1980, Gastrich 1987, Faber et al. 1988). Oxygen and pH microelectrodes have already been

used to study symbiotic associations, such as the foraminifer G. sacculifer and the
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hermatypic corals, Favia sp. and Acropora sp. (J0rgensen et aI. 1985, Kiihl et aI. 1995).

Microsensor techniques proved to be useful tools for measuring the processes of

photosynthesis and respiration with a high spatial and temporal resolution in these

symbiotic associations (Revsbech and J0rgensen 1986). The light-dark shift technique

(Revsbech et aI. 1981, Revsbech and J0rgensen 1983) measures gross photosynthetic rates

independent of the respiration process, and light and dark respiration rates in symbiont-host

systems can be assessed independently. Due to their small tip diameter, microsensors can be

used without any destruction of the organism and several measurements in one specimen,

e.g. under changing light or temperature conditions, are possible.

Photosynthesis in planktonic symbiotic foraminifera has previously been

investigated with two different techniques. J0rgensen et aI. (1985) used O2 microsensors to

measure the gross and net photosynthetic rates of G. sacculifer (J0rgensen et aI. 1985).

Radio tracer 14C methods have been used to estimate the cell specific carbon uptake of

symbionts of two different species (Spero and Parker 1985, Gastrich and Bartha 1988). It

was estimated that a single 0. universa specimen would contribute approximately 0.2% of

the fixed carbon in 1 m3 of seawater (Spero and Parker 1985). The foraminifer-algal

association has been characterized as a "hot spot" of productivity in oligotrophic seawater.

Symbiont-bearing planktonic foraminifera are cosmopolitan calcifying organisms,

but there are still a lot of open questions about their biology and the physiological and

biochemical interactions of the host-symbiont association. Several hypotheses about their

mutual benefit, e.g. the nutritional relationship, the transport of metabolic gases, and the

calcification process are discussed in the literature (e.g. Erez 1983, J0rgensen et aI. 1985,

Hemleben et aI. 1989, Lea et aI. 1995). Although the photosynthetic rates of the symbionts

of O. universa have been studied (Spero and Parker 1985), the microenvironment of this

foraminifer and its importance for host-symbiont interaction is still unknown. We used O2

and pH microsensors and a fiber-optic scalar irradiance microprobe to investigate the

physico-chemical microenvironment of this symbiotic system. Our study demonstrates the

influence of changing light conditions on the foraminifer-algal symbiosis and a close

coupling of photosynthesis and respiration in O. universa.
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MATERIALS AND METHODS

Collection Adult O. universa with sphere diameters ranging between 290 to 550 ~m

(Fig. 1A) were hand-collected by SCUBA divers in the surface waters of the California

Bight, near Santa Catalina Island, California between July and August 1995.

Fig. lA Adult Orbulina lIniversa with dinoflagellate symbionts surrounding the shell. Juvenile trochospiral
shells are visible in the center of the transparent spherical chamber (diameter of the spherical shell was - 500
f.lm) (photo: T. Mashiotta). B Collection of planktonic foraminifera by SCUBA diving. Individual specimens
are sampled in glass jars (photo: E. Meesters). C Orbulina lIniversa sticking to the nylon mesh inside the
measuring chamber.
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Individual specimens were sampled in glass jars at a depth of 5 - 10 m (Fig. 1B).

During the collection period the mean water temperature was 19.2° C. Light measurements

at the collection site showed an average downwelling irradiance of 2100 flmol photons m-2

S·1 at the water surface at full sunlight (S. Anderson, pers. comm.). After sampling in the

morning hours (9 - 11 a.m.), individual foraminifera were kept in separate glass vessels at

22° C and -80 flmol photons m·2
S·1 without feeding. Experiments were conducted within

less than 24 h after collection in the laboratory of the Wrigley Institute for Environmental

Studies (WIES).

Experimental setup For microsensor measurements, a specimen was placed on a

nylon mesh in a small Plexiglas chamber (V =10 ml) with filtered seawater (Figs. 1C, 2A).

The microsensors were manually positioned with a micromanipulator (Martzhauser,

Germany). The angle of inclination of the microsensor was 30° relative to the vertically

incident light. Positioning of the microsensor tip relative to the foraminiferal shell surface

was adjusted under a dissection microscope. Measurements were performed at room

temperature (20 - 22° C) in a dark room under defined light conditions. The light source was

a fiber optic halogen lamp (Schott KL-1500) equipped with a collimating lens, and incident

irradiance (0 - 1000 flmol photons m·2 S·I) was adjusted by neutral density filters (Oriel).

Downwelling quantum irradiance (400 - 700 nm) was measured with a quantum irradiance

meter (LiCor, LI 189). The light was controlled by a mechanical shutter, installed in the

light path of the halogen lamp, without influencing the light quality. The specimens were

allowed to adapt to conditions in the measuring chamber for 0.5 - 1 h and the experiments

were started when the symbionts were distributed in a concentricalhalo around the shell

(Figs. lA, 2B).
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Fig. 2 A Schematic drawing of the measuring chamber (II = 10 ml) with a single foraminifer placed on a
nylon mesh. Microsensor positioning was done with a micromanipulator and the incident light was adjusted
by neutral density fjlters. B Schematic drawing of an adult Orbulina universa. Concentric spheres of 50 ~m

thickness indicate the microsensor positioning for the photosynthesis measurements (ro = radius of the
spherical shell; r = distance to the shell).
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Oxygen microelectrodes Photosynthetic rates and radial concentration profiles of 0,

from the ambient seawater to the shell surface were measured by a Clark-type O2

microelectrode with a guard cathode connected to a picoammeter and a strip chart recorder

(Revsbech 1989). The microelectrodes had an outer tip diameter of 5 - 12 Ilm, a 90%

response time of < 0.4 - 1.8 s and a stirring sensitivity of 0 - 2%. Linear calibration of the

electrode signal was done at room temperature in air saturated seawater and in O2 free

seawater (reduced with sodium dithionite). The O2 concentration of the air saturated

seawater was determined by Winkler-titration (Grasshoff et al. 1983).

pH microelectrodes pH was measured with glass pH microelectrodes (Revsbech et

al. 1983) in combination with a calomel reference electrode (Radiometer, Denmark) both

connected to a high impedance mY meter. The pH electrodes had a pH sensitive tip of 12 ­

25 Ilm diameter and of 80 - 150 Ilm length. They were calibrated in NBS buffers (Mettler

Toledo, pH 4, 7, and 9) at room temperature.

Scalar irradiance measurements A fiber optic microprobe (Lassen et al. 1992a)

connected to a PAR meter (Kiihl et al. 1997) was used for measuring radial profiles of

quantum scalar irradiance (400 - 700 nm) from the surroundings towards the shell of O.

universa. The diameter of the scalar irradiance microprobe tip was < 100 Ilm. Linear

calibration of the fiber optic scalar irradiance microprobe was done in darkness and in a

collimating light field at a known downwelling irradiance over a black light trap (Kiihl et al.

1997). Downwelling irradiance was measured with a quantum irradiance meter (LiCor, LI

189). All light measurements in this paper refer to visible light (400 - 700 nm), i.e. the

photosynthetic available radiation for oxygenic photosynthesis.

Photosynthesis measurements Oxygen microelectrodes with a fast response time

« 0.5 s) were used for measurements of gross and net photosynthesis. Gross photosynthesis

was estimated with the light-dark shift technique (Revsbech et al. 1981, Revsbech and

J~rgensen 1983) by measuring the initial decrease of O2 in the first seconds after darkening.

The O2 depletion is equal to the photosynthetic O2 production during the previous light

period (more details in Revsbech and J~rgensen 1983, Glud et al. 1992, Kiihl et al. 1996).

Gross photosynthetic rates, P (r), were measured inside the symbiotic swarm at 50 Ilm

intervals starting at the shell surface. Radial profiles of photosynthetic activity were used to

calculate the total gross photosynthetic production assuming that the symbionts surround

the shell in a spherical symmetry (Fig. 2B). The total gross photosynthetic rate, Plolal, in
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nmol O2 h'l foraminife(1 was calculated as the sum of the photosynthetic rates, measured

per volume of each concentric segment in the symbiotic halo (hJrgensen et al. 1985) :

L p(r;)(~ tz-(r; +ri_1Y- (ri-I Y)
,

where i = 0, 50, 100... f-lm.

(I)

Net photosynthesis and respiration rates were calculated from the measured steady

state O2 profiles in light and in darkness, respectively. The area integrated O2 flux, QI, in

nmol O2 h'l foraminife(t, was calculated by the radial gradient dC/dr, the molecular O 2

diffusion coefficient in seawater, D, and the surface area of the sphere 4 1t r2 (J0rgensen et

al. 1985, Ploug et al. 1997):

, de
Q = 41fr-D­

, dr
(II).

Respiration measurements The respiration of the symbiont-host system in the light

was calculated as the difference between total gross photosynthesis and net photo-synthesis

(J0rgensen et al. 1985). In the dark, the O2 flux to the sphere is determined by the combined

respiration rate of the foraminifer and the symbionts, and dark respiration was calculated

from the O2 profiles measured in the dark by using equation II.

P vs. EQcurves Gross photosynthetic rates (nmol O2 cm" S·I) were measured with the

light-dark shift method at the shell surface inside the symbiont swarm as a function of

increasing scalar irradiance. Orbulina universa was exposed to each irradiance level for 15 ­

30 min before the measurements started. Light intensities (0 - 700 f-lmol photons m,2 S'I)

were adjusted with neutral density filters (Oriel). An exponential function: P = Pm (1 - exp (­

aEo / Pm» (Webb et al. 1974) was fitted to the P vs. Eo data measured at the shell surface,

where Pm is the light-saturated photosynthetic rate and a the initial slope of the P vs. Eo

curve at subsaturating scalar irradiance (Geider and Osborne 1992).
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RESULTS

Microenvironment of the symbiotic O. universa

The zooxanthellae of O. universa showed a diurnal migration pattern. During the

day, the dinoflagellates spread out on the rhizopodial network between the spines, while at

night they were located inside the shells. During our experiments the symbionts formed a

200 - 400 ~m thick concentric halo surrounding the spherical shell of the foraminifer (Figs.

1A,2B).

Around the shell, a diffusive boundary layer (DBL) was established, that limited the

solute transport between the surrounding seawater and the foraminifer. In the light, the O2

concentration started to increase in the distal part of the spines and very high concentrations

were measured towards the shell (Figs. 3A, 7A). Profiles of gross photosynthesis inside the

symbiont swarm showed highest rates at the foraminiferal shell, where a maximum gross

photosynthesis up to 13.7 nmol O2 cm'3 S,I was measured (Fig. 3C). The photosynthetic

activity of the symbionts and the presence of a DBL thus created a microenvironment of

high pH and high O2 concentrations around the shell of O. universa as compared to the

ambient seawater (Figs. 3A, B). At the shell surface, we measured O2 supersaturation up to

206% of air saturation at high irradiances (Fig. 3A). During measurements of the dark

profiles the symbionts moved into the shell. In darkness, the respiration of the foraminifer

and the symbionts decreased the O2 concentration to

< 80% air saturation at the shell surface of this specimen (Fig. 3A). Due to photosynthetic

CO2 fixation in the light, pH increased to up to 8.8 at the shell surface under saturating light

conditions. In darkness, pH was lowered down to pH 7.9 at the shell surface as a result of

CO2 release during respiration of the host and its symbionts (Fig. 3B). The average rate of

gross photosynthesis per adult 0. universa was 8.9 nmol O2 h'l foraminifer-I (Table 1), but

rates of 13.9 nmol O2 h'l foraminiferar l saturating irradiance (782 ~mol photons m'l S'I)

were found in one specimen (No I). The net photosynthetic rate of the same specimen

reached 8.7 nmol O2 h'l.
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Fig.3 Light profiles (0) and dark profiles (e) of 0, (A) and pH light (D) and dark(-) profiles (8) measured
from the ambient seawater to the spherical shell (Eo = -700 flmol photons m" S·I), Profiles of scalar

irradiance (.) and gross photosynthesis (bars) measured in steps of 50 flm towards the shell surface of
Orbulina universa (C). The arrow indicates the outer periphery of the symbiont swarm,
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Radial O2 and pH profiles measured at different positions in the foraminifer showed

similar concentration gradients (data not shown) supporting our assumption of a radial

symmetry of solute concentration and diffusion around the foraminiferal shell under

stagnant conditions. Radial profiles of scalar irradiance from the ambient seawater to the

shell showed values up to 105% of the incident irradiance (Fig. 3C). This increase probably

resulted from light scattering and reflection within the spines and the calcite shell.

Table 1 Orbulina universa. Photosynthesis and respiration measured in several individuals of different sizes at
saturating irradiances

Foraminifer Shell Incident Photosynthesis Respiration

diameter irradiance Gross Net Percentage of gross

photosynthesis

No. (!-1m) (!-Imol photons mol s·') (nmol 0, h·' foraminifer')

554 782 13.89 8.72 5.17 37%

II 554 782 11.00 5.06 5.94 54%

III 463 288 9.26 4.57 4.69 51%

IV 473 446 8.16 6.45 1.71 21%

V 297 750 2.29 0.57 1.72 75%

Mean ± SO 468 ± 105 609 ± 228 8.92 ± 4.29 5.07 ± 2.99 3.85 ± 1.99 47.6 ± 20.14
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Oxygen, pH, and photosynthesis at the shell surface

Experimental light-dark cycles resulted in very dynamic changes in the Oz

production at the shell surface (Fig. 4). After a steady state Oz level was reached, light was

turned off and the 0zlevel decreased from 190% to 80% air saturation within 5 min. When

the light was turned on again, the Oz concentration increased immediately and reached

100% air saturation within 15 s. A steady state supersaturation of 190% was reached again

after 3 - 4 min.

250
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200 + +.........
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:.;::;
CO....
::J
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Fig. 4 0, dynamics at the shell surface of Orbulina universa during experimental light-dark cycles. Incident
irradiance was 683 ~mol photons m" S·I. Dashed line indicates the 0, concentration of the ambient seawater.

Oxygen and pH conditions at the surface of the foraminiferal shell were investigated

as a function of scalar irradiance (Fig. 5). The Oz and pH versus scalar irradiance curves

demonstrated the saturation of photosynthesis with increasing incident light. Both pH and

the O2 level at the shell surface saturated at approximately 250 ~mol photons m'z S·I.
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surface of Orbulina Llniversa. Dashed line: ambient seawater level of O2 and pH.

Gross photosynthetic rates at the shell surface increased with increasing scalar

irradiance (Figs. 6A, B). The exponential function of Webb et al. (1974) was fitted to the P

Ys. Eo measurements and estimated a maximum photosynthetic rate of 9.3 nmol O2 em') S'I

in one specimen. The initial slope a in the linear part of this P Ys. Eo curve was 0.07 (Fig.

6A). The onset of light saturation of photosynthesis expressed by the light saturation

irradiance, Ek, was Pma,/a = 137 !Amol photons m'2 S'I. In a second specimen, we found a

lower Ek of 75 !Amol photons m -2 S,l caused by a lower Prna, of 5.6 nmol O2em') S·l and the

same initial slope (a =0.07) (Fig. 6B). Up to 700 !Amol photons m,2 S·1 no photoinhibition

was observed in 0. universa.
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r' =0.86, X2 = 1.95; B: r2 =0.85, X2 =0.63). Dashed lines: 95% confidence intervals. E. =onset of light
saturation.
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Radial distribution of O2 and pH

Radial O2 and pH profiles in dependence of the incident irradiance were measured

from the ambient seawater towards the shell surface (Fig. 7). The O2 concentration started to

increase outside the spines and reached the highest values at the shell surface due to the

presence of the DBL. The O2 profiles varied as a function of the light level (Fig. 7A).
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The pH increased towards the surface of the shell from the ambient seawater level at

the end of the spines. Due to increasing photosynthetic CO2fixation with irradiance and the

presence of a DBL we measured increasing pH values at the shell surface (Fig. 7B). The

highest pH of 8.8 was found at 717 f-tmol photons m,2 S,I. In the darkness the surface pH of

this specimen decreased to 7.9.

At 50 f-tmol photons m'2 S-1 the compensation irradiance, Ec, where the respiratory Oz

consumption of the system balanced the zooxanthellae O2 production, was reached (Fig. 8).

With increasing incident irradiance (> 50 f-tmol photons m'z S,I) the photosynthetic Oz

production exceeded the O2 uptake and net photosynthesis approached saturation at > 450

f-tmol photons m'2 S'I (Fig. 8).
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Fig. 8 Net photosynthesis of Orbulina universa (nmol 0, h'l) as a function of incident irradiance. The
compensation light intensity, E" was found at 50 Ilmol photons m" S,I.
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Respiration rates in light and darkness

In the light we observed a high variability of respiration rates in different specimens

(Tablel). When light respiration was calculated as % of gross photosynthesis we found an

average of 47.6 ± 20.1 % (n=5) (Table 1, Fig. 9). Orbulina universa and its zooxanthellae

showed a lower average O2 consumption in darkness (1.7 ± 0.7 nmol O2 h,l; n=24) (data not

shown) compared to the respiration at light saturation (3.9 ± 1.9 nmol O2 h,l; n=5, see Table

1). Thus, respiration was stimulated in the light by a factor of 2.
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Fig. 9 Photosynthesis and respiration rates of different Orbulina 1I/1iversa specimens (No J-V) calculated in
% of gross photosynthesis.
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DISCUSSION

Foraminiferal microenvironment

The O2 and pH of the microenvironment around the foraminiferal shell differs from

the ambient seawater, depending on the rates of photosynthesis and respiration of the host­

symbiont association. The pH varied approximately one unit between saturating irradiances

and dark conditions, and the O2 level ranged between < 70 - 206% of air saturation. The

foraminifer and its endosymbionts thus live in a dynamic microenvironment of constantly

shifting physico-chemical conditions.

The steep O2 and pH gradients from the shell to the bulk medium at higher

irradiances (> 150 ~mol photons m-2
S-l) (Figs. 7A, B) are caused by the high photosynthetic

activity of the endosymbionts and the existence of a diffusive boundary layer (DBL) that

surrounds the shell of the foraminifer (J~rgensen et al. 1985). The DBL constitutes a barrier

for the mass transfer of gases, ions, and other solutes between the foraminifer and the

ambient seawater. The thickness of the DBL around a sphere is generally measured by

extrapolating the gradient of O2 at the sphere-water interface to the ambient seawater

concentration (J~rgensen and Revsbech 1985, Ploug et al. 1997). While the DBL thickness

around the shell of 0. universa could be estimated in the dark (-200 ~m) when the

symbionts reside inside the shell, the DBL thickness in light could not be estimated by the

extrapolation method due to the presence of the symbiont swarm around the shell. The

steady state O2 gradients towards the shell in the light are thus affected by diffusion as well

as photosynthesis and respiration.

The relative importance of small scale physical processes around the shell and

between the spines (eddy and molecular diffusion) are still unknown and should be

investigated to characterize the DBL in more detail. Due to the presence of the calcite

spines, the DBL probably shows different characteristics than a sublayer over a sphere with

a smooth surface (e.g. turbulent wakes) (Mann and Lazier 1991).

To understand zooxanthellae photosynthesis the scalar irradiance is the most

relevant light intensity parameter (Kirk 1994, Ktihl et al. 1995). In hermatypic corals, Ktihl

et al. (1995) measured scalar irradiance profiles with a fiber optic microprobe and

demonstrated that the scalar irradiance could reach up to 180% of the downwelling

irradiance at the tissue surface. This increase was explained by multiple scattering and
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diffuse reflection of light within the coral tissue-skeleton matrix. Our measurements

showed a slight increase of scalar irradiance towards the spherical shell of O. universa that

is probably caused by the combined scattering of the calcite spines and the reflection of

light by the spherical shell (Fig. 3C). The light measurements thus demonstrated no

significant self shading of the dinoflagellate cells inside the swarm.

Photosynthetic rates

The photosynthetic rates determined for O. universa are similar to published data.

The photosynthetic productivity of 0. universa, when measured with the 14C method (Spero

and Parker 1985), showed a photosynthetic rate per symbiotic dinoflagellate of 1.72 pmol C

h-I. Assuming an average symbiont density of about 3.3 * 103 algae per adult 0. universa

(Spero and Parker 1985), the total photosynthetic rate of a single foraminifer would amount

to a rate of 5.7 nmol C h- I Globigerinoides sacculifer showed a mean gross photosynthetic

rate of 18 nmol O2 foraminife(1 h- I and a net photosynthesis of 15 nmol O2 foraminife(1 h- I

(J0rgensen et al. 1985). The carbon fixation rates of symbiotic planktonic foraminifera

collected in the surface waters near Bermuda ranged between 1.2 - 4.2 nmol C h- I

foraminife(1 (Caron et al. 1995). Assuming an 0/ CO2 conversion ratio of unity, these

numbers compare well with the rates measured in this study.

During our experiments some zooxanthellae remained in the calcite shell. Because we

only measured the gross photosynthesis towards the shell surface, we did not record the O2

production inside the shell, which may not be negligible. Earlier measurements of the

photosynthetic rates inside the shell of the symbiotic G. sacculifer showed a high O2

production. 10rgensen et al. (1985) estimated an O2 production of 3.8 nmol O2 h- I inside the

shell. Thus the total gross photosynthetic rates per 0. universa specimen we report here

could be underestimated.

Due to the close coupling of photoautotrophic and heterotrophic processes in the

symbiont-bearing foraminifera, the photosynthesis measurements with the 14C method

shows some disadvantages. Geider and Osborne (1992) pointed out methodological and

interpretative problems of the 14C method, e.g. the impossibility to measure the light

respiration as well as the transport of carbon between the intracellular carbon pools. In

symbiotic associations, the 14C method probably understimates the production rates due to
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the production of unlabeled CO2 by respiration (Michaels 1991). Here we estimated the

photosynthesis and respiration rates of 0. universa from O2 gradients and discrete

measurements inside the symbiont swarm. Because we did not determine the chlorophyll a

content of the endosymbionts and the number of endosymbionts, we present the rates on a

per foraminifer basis.

The radial profiles of gross photosynthesis inside the symbiont swarm of O.

universa showed a significant increase towards the shell surface. This is due to the fact that

the symbiont density increased towards the shell. When measurements of gross

photosynthetic rates were done by the light-dark shift technique, the zooxanthellae tended to

move back into the shell of 0. universa after a while. Our measurements of total gross

photosynthesis are based on point measurements with a spatial resolution of 50 - 100 flm.

This means that the O2 production within the symbiont swarm was measured for a small

volume around the electrode tip (Jl'lrgensen et al. 1985). Consequently, a change of the

spatial distribution of the zooxanthellae will affect the photosynthetic rates.

The variability of the gross photosynthetic rates is probably due to several reasons.

First, the symbiont photosynthetic activity is affected by the available light and the nutrient

supply. Second, the number of symbionts and their distribution may play an important role.

Spero and Parker (1985) observed a positive correlation between the shell diameter and the

symbiont number of juvenile O. universa. The symbiont density depends on the rate of cell

division of the endosymbionts and on the age of O. universa. The dinoflagellate

Gymnodinium beii shows division rates of 0.65 per day (25 0 C) in culture (Spero 1987).

Although Spero and Parker (1985) could not determine a correlation between the size of the

adult chamber and the number of symbionts, we observed a positive correlation between the

size of the spherical shell and the total gross photosynthetic rate (Table 1). The specimen

with the largest shell diameter showed the highest total gross photosynthesis. Lea et al.

(1995) found that the shell diameter of O. universa specimens is independent of age.

Therefore, the diameter of the spherical shell can not serve as an estimate for age. The

correlation between the total gross photosynthetic rate and the foraminiferal shell size as

well as the number of symbionts should be proved in further studies, e.g. by detailed

pigment analysis.

The total photosynthetic rates of the symbiotic foraminifera can also be influenced

by the pigment content of the symbiotic dinoflagellates. For example Bijma (1986) studied
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the pigment composition of symbionts of Globigerinoides ruber and G. sacculifer and

found a -1.5 times higher chlorophyll a/carotenoid ratio in the symbionts of G. ruber. The

type of endosymbionts is a further important parameter affecting the total photosynthesis. In

some planktonic foraminifera smaller chrysophyte symbionts occur in higher abundances

than the bigger dinoflagellate symbionts (Caron et al. 1995). In addition, daily variations of

the photosynthetic rates were demonstrated in 14C experiments with O. universa (Spero and

Parker 1985). The photosynthetic rates of the symbiotic dino-flagellates started to increase

in the late morning and highest rates were found in the late afternoon.

Light regulation of photosynthesis

Measurements of O2 profiles and pH profiles (Figs. 7A, B) showed a very dynamic

response to the incident light intensity and experimental light-dark cycles demonstrated a

rapid reaction of the symbionts to changing irradiances (Fig. 4). Light-dark cycle

experiments in G. sacculifer showed similar O2 dynamics at the shell surface (J0rgensen et

al. 1985).

The onset of light saturation of the symbiont photosynthesis (Ek) was estimated in

two specimens of O. universa of different sizes. The Ek values were found at irradiances of

75 and 137 !lmol photons m'2 S'I, respectively. The difference is due to the different

maximum photosynthetic rates (Pmax) of the two specimens because both P-I curves showed

nearly identical slopes (n) of 0.067 and 0.07 (Figs. 6A, B). The specimen with the higher Ek

value also had a larger diameter (483 f-lm compared to 297 f-lm). One explanation for the

higher Ek is thus a higher number of endosymbionts. However, higher Pmax values can also

indicate high growth irradiances (Herzig and Dubinsky 1992).

The study of photosynthesis versus irradiance curves in several symbiotic systems

reported Ek values between 160 - 390 f-lmol photons m'2 S'I (J0rgensen et al. 1985, Spero and

Parker 1985, Kiihl et al. 1995). Globigerinoides sacculifer collected in the Gulf of Aqaba

showed higher Ek values of 160 - 170 Ilmol photons m'2 S'I (J0rgensen et al. 1985) as

compared to O. universa. 14C measurements of photosynthetic rates of O. universa showed a

much higher I;. value of 386 f-lmol photons m'2 S,I (Spero and Parker 1985). The onset of

light saturation at higher light levels demonstrate the adaptation of the symbionts to high

irradiances in the surface waters. An adaptation to high light exposure is also indicated by
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the fact that no photoinhibition was observed in our study even at high irradiances (Figs.

6A, B).

The calculation of the onset of light saturation (Ek) is also affected by the definition

of the light field parameter (Kiihl et al. 1995). Photosynthesis versus irradiance curves

plotted against the downwelling irradiance (P vs. Ed) result in a lower Ek compared to the

photosynthesis versus scalar irradiance curves (P vs. Eo) (Kiihl et al. 1995). In our study, the

Ek values estimated from the P vs. Ed curves were only slightly lower due to the smaller

difference between Ed and Eo at the shell surface. However, scalar irradiance is always the

most relevant light field parameter when measuring light regulation of photosynthesis in

microscale (Kiihl et al. 1994, Kiihl and J0rgensen 1994).

The light compensation point (Ec) is dependent on gross photosynthesis and

respiration of the host-symbiont system. In addition, processes that change the symbiotic

light respiration, e.g. the mitochondrial respiration or photorespiration, may influence the

light compensation point. A change of the foraminiferal light respiration due to growth rate

or prey digestion may also result in a change of the compensation light intensity.

Respiration measurements of O. universa before and after feeding thus demonstrated an

increase of the respiration rate within a few hours after feeding with one day old Artemia

nauplii (Rink, unpublished). Falkowski and Owens (1980) found a dependence of the light

compensation point on the irradiance level during growth. The compensation light intensity

of the symbiotic G. sacculifer was 26 - 30 f-lmol photons m·l S·1 (J0rgensen et al. 1985).

Compared to O. universa this lower compensation point is probably caused by adaptation to

lower irradiances (150 !-tmol photons m,l S·I) during the maintenance in the laboratory

several days before measurements (J0rgensen et al. 1985).

Light measurements at full sunlight at the collecting site showed irradiances up to

2070 f-lmol photons m,l S,I at the surface and 556 f-lmol photons m,l S·1 in 12 m depth (S.

Anderson 1995, pers. comm.). Depth profiles of scalar irradiance (Eo) measured at the

collection site showed a mean light attenuation coefficient (~) of 0.07 (SD ± 0.023)(Fig.

10). The light compensation point (Ec) of 0. universa would thus be reached in a depth of

ca. 50 m at the sampling site (Fig. 10). Theoretically, a net 0 1 production of the symbiont­

host system is possible down to this water depth at full sunlight. The 0 1 production of 0.

universa exhibited a pronounced light dependency (Fig. 7A) and high net primary
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production rates of the symbiotic O. universa are limited to the regions of photosynthesis

saturating irradiances in the surface waters (0 - 35m).
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Primary production of planktonic foraminifera

The symbiont-bearing foraminifera constitute microenvironments of concentrated

photosynthetic activity (Caron and Swanberg 1990) and were reported to have the highest

rates of primary production in plankton communities because of the extremly high density

of the endosymbiotic algae in their cytoplasm. Due to the high algal biomass, the amount of

primary production occuring in the symbiont-host association is generally much higher than
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In an equivalent volume of seawater (JQlrgensen et al. 1985, Spero and Parker 1987).

JQlrgensen et al. (1985) estimated that a single foraminifer would increase the CO2 fixation

rate in a 125 ml productivity bottle 5-fold above the CO2 fixation in ambient seawater.

Spero and Parker (1985) made the assumption that a single large 0. universa may represent

a potential source of net primary production that would contribute approximately 0.2% of

the fixed carbon in 1 m3 of seawater.

Although the associations are packages of high productivity it is still difficult to

estimate their total primary production. The foraminiferal part of the total phytoplankton

primary production is dependent on their population density in the oceans (Be 1977). Their

productivity depends on the population dynamics and the patchiness of foraminifera. The

distribution of most species shows a correlation with sea surface temperatures (Bradshaw

1959). Currents and mixing of surface waters may also cause a change of the foraminiferal

distribution. Changes of the depth habitat due to the lunar periodicity of the reproductive

cycle were reported by Hemleben and Spindler (1983).

Diurnal variations of the depth habitat, rising of the foraminifera during the daytime

and falling in the night, are discussed by Berger (1969) and Boltovskoy (1973). Bradshaw

(1959) suggested that the rapidly production of O2 by the symbiotic algae in the protoplasm

could form oxygen bubbles that increase the buoyancy of the foraminifera during the day

and could cause a rising to the surface. Fairbanks and Wiebe (1980) observed a maximum

abundance of planktonic foraminifera in the deep chlorophyll maximum layer (DCM) with

changing seasonal depth levels. They suggested that the foraminifera exploit the DCM as a

major source for food and nutrients. Population studies of Be et al. (1985) showed

seasonally changing abundances of planktonic foraminifera in the Panama Basin. Because

of this distributional patchiness in horizontal and vertical direction the estimation of the

primary productivity by planktonic foraminifera is difficult and only be possible for small

oceanic areas that are well studied.

To calculate the net primary production of O. universa from our microsensor data

we assumed a density of 5 specimens m-3 (Spero and Parker 1985). An average net

photosynthetic rate of 5 nmol O2 h-I foraminife(1 (Table 1) over a daily light exposure about

10 h would result in a production of 0.25 !lmol O2 m-3 day-I at light saturation. For the same

parameters JQlrgensen et al. (1985) found a three times higher primary production of 0.75

!lmol O2 m-3 day-3 for G. sacculifer in the Gulf of Aqaba. The whole population of G.
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sacculifer would contribute about 0.1 % of the mean yearly primary production in the Gulf.

Caron et al. (1995) reported that the total symbiont production of sarcodines (acantharia,

radiolaria, foraminifera) in oligotrophic waters of the Sargasso Sea contribute only a small

fraction « 1 %) of the total primary production. They found production rates of acantharia

and foraminifera to contribute with an average of -5% to the total annual primary

production in the surface waters. A vertical biomass distribution for foraminifera was given

by Michaels (1991) who formulated a depth dependent relationship for symbiont

productivity that is related to the exponential decline of the light field.

The percentage of the total primary production of planktonic foraminifera in 1 m3 of

seawater is probably overestimated and the production rates are more variable because

several parameters are limiting the primary production rates as mentioned before. Symbiont

densities and productivties as well as light exposure and nutrient supply are changing the

maximum net O2 production. If the planktonic foraminifera are changing their depth habitat

due to vertical migration light will be a limiting factor.

There are still open questions about the nutritional relationship in the foraminifer­

dinoflagellate symbiosis. For instance, which kind of photosynthates are released by the

dinoflagellates and how much of the primary fixed carbon is translocated to the host. With

regard to the predation on plankton the significance of the photosynthate supply for the

energy budget of the host will be of great interest. Due to the vertical ontogenetic migration

of the planktonic foraminifera a combination of two energy sources, planktonic prey, and

photosynthates, is probably of importance. Detailed investigations of the migration patterns

and changing abundances of 0. universa and other species in the water column would help

to provide more information about their total primary productivity (Hemleben and Bijma

1994).

Respiration in light and darkness

One advantage of the microsensor technique compared to other methods is the

possibility to estimate the respiration rate of the symbiont-host system in the light. We were

able to calculate the light respiration of a O. universa by measuring the total gross

photosynthesis and the net photosynthesis of the same specimen. Direct comparison of dark

and light respiration rates was therefore possible. In the light, we found higher respiration
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rates of the symbiont-host association (3.9 nmol O2 h·1 foraminife(J) compared to the dark

respiration (1.7 nmol O2 h· 1 foraminife(J). This enhanced respiration in the light was

described for several symbiotic systems (Edmunds and Davies 1988, Kiihl et al. 1995,

Harland and Davies 1995) and for microalgae (Falkowski et al. 1985, Grande et al. 1989).

Different mechanisms are discussed to explain the enhanced respiration in the light

(Falkowski et al. 1985, Weger et al. 1989).

The respiration of the host is enhanced in the light via the production of

photosynthates by the dinoflagellate endosymbionts. Symbionts of larger benthic

foraminifera have been shown to release soluble photosynthates like polyglucan, glycerol,

glucose, and lipids (Kremer et al. 1980). The zooxanthellae probably increase the quantity

of respiratory subtrates translocated to the host in the light. The tissue of larger foraminifera

contains some activating factors that stimulate the release of the photosynthates. Lee et al.

(1984) found that the level of the photosynthate release of isolated endosymbionts increased

dramatically in the presence of host homogenates. Due to the supply of carbohydrates and

lipids by the endosymbionts foraminiferal respiration can thus be stimulated in the light.

Photosynthesis results in O2 supersaturation around the foraminiferal shell that

could stimulate the respiration of the symbionts and the foraminifer. This internal O2 supply

alleviates the diffusion limitation due to the presence of the DBL. Experiments showed

increased dark respiration when the symbiotic sea anemone Anemonia viridis was exposed

to hyperoxic water (Harland and Davies 1995). They suggested, therefore, that the day time

respiration is influenced by the O2 release of the endosymbionts. Also, J0rgensen et al.

(1985) suggested that the limited O2 supply in the darkness due to the presence of the DBL

caused reduced dark respiration rates. They measured a decrease of the O2 at the shell of G.

sacculifer down to 50% of air saturation in darkness. In 0. universa we found an O2

decrease to the shell surface down to 67% air saturation during darkness.

A higher O2 consumption in the light can also be caused by photorespiration.

Photorespiration is defined as a light dependent O2 uptake and CO2 release due to the

bifunctional enzyme Rubisco (Falkowski et al. 1985, Beardall and Raven 1990). The high

0/ CO2 ratio produced by the photosynthesis of the zooxanthellae could promote the

oxygenase activity of Rubisco. However, an efficient inorganic carbon uptake mechanism

present in most microalgae seems to be able to decrease the importance of photo-respiration
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(Beardall and Raven 1990). To our knowledge no investigation of photorespiration or

inorganic carbon uptake by the foraminiferal symbionts has been reported in the literature.

In principle the pseudocyclic photophosphorylation (Mehler reaction) represents

another light induced O2 consuming process (Raven and Beardall 1981, Falkowski et al.

1985). However, Glud et al. (1992) suggested that the measurement of gross photosynthetic

rates with the light-dark shift method probably does not include the O2 consumed by the

Mehler reaction.

Due to the limitation of the 14C method to measure respiration in the light, some

authors investigated the dark respiration after exposure to high irradiances. This process of

post-illuminated O2 consumption in the darkness was discussed for different microalgae

(Burris 1977, Falkowski et al. 1985, Weger et al. 1989, Beardall et al. 1994) as well as for

symbiotic sea anemones (Harland and Davies 1995) and corals (Edmunds and Davies

1988). Burris (1977) obtained a post-illumination burst of oxygen uptake in the

dinoflagellate Glenodinium sp. and in the zooxanthellae of the coral Pocillophora capitata

that lasted about 5 - 10 min. The dinoflagellates showed a longer post-illumination burst

compared to other algae (1 - 2 min). Burris (1977) explained this increase by the possibility

of a different photorespiratory pathway or by higher dark respiration rates. Beardall et al.

(1994) demonstrated that low light adapted cells of Thalassiosira weissf7.ogii were more

susceptible to the enhanced post-illumination respiration (EPIR) compared to cells grown

under high light conditions. Harland and Davies (1995) found a stimulation of dark

respiration of 39% after 6 h exposure to saturating irradiance (300 !-lmol photons m-z sol).

The reef coral Porites porites showed a mean increased dark respiration rate of 39% relative

to the pre-illumination dark respiration rate (Edmunds and Davies 1988).

The estimation of the light respiration with the microsensor technique showed much

higher respiration rates during light conditions compared to the dark respiration rates (Kiihl

et al. 1995). 10rgensen et al. (1985) measured for G. sacculifer a similar respiration rate in

the light (3.0 nmol Oz h-I foraminifer") as we did for 0. universa but they did not find a

lower dark respiration (2.7 nmol O2 h- 1). In O. universa, we found a two times lower dark

respiration (1.7 ± 0.7 nmol Oz hot, n=24). If we assume higher total photosynthetic rates per

foraminifer due to additional O2 production inside the shell, the difference between

respiration rates in the light and darkness may be even larger. Generally, the dark respiration

rates of microalgae are in the order of 10% of the gross photosynthesis (Beardall and Raven
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1990). In our study we measured a mean total dark respiration of the symbiont host

association of 1.7 nmol O2 h· 1 and an average total gross photosynthetic rate of 8.9 nmol O2

h-I. If we assume that 50% of the total O2 uptake is due to the symbiont respiration

(J0rgensen et al. 1985), the dark respiration rate of the zooxanthellae is nearly in the order

of 10% of the gross photosynthesis.

The P/R ratio is used to estimate the physiological state of marine microalgae and to

scale the relationship of consumption and production of organic material (Burris 1977). This

ratio has been investigated for several algal species and the numbers for dinoflagellates

varied between 1.3 and 5.7 (Humphrey 1975, Burris 1977, Daneri et al. 1992). The

zooxanthellae of coelenterate hosts can supply most of the carbon required by the host, as

was demonstrated in 70 species of corals with P/R ratios of 2.4 ± 1.5 (Battey 1992). In our

study we measured a mean net photosynthesis of 5.0 nmol O2 h-I during light saturation and

an average dark respiration of 1.7 nmol O2 h-I foraminife(l. Consequently, the PneJRdark ratio

of the symbiont-host system is about 3, which indicates that the required carbon for the

foraminifer can be supplied by its symbionts. However, to estimate, if the net primary

production of the endosymbionts can provide the required organic carbon for growth and

respiration of the symbiont-host association, the total net photosynthesis over the daily light

period as well as the growth rates and the respiration rates of the host and the symbionts

have to be calculated on a daily basis.

It has been suggested that foraminifera supply their endosymbionts with the respired

CO2 (Be 1977). The respiration of O. universa in the light showed an average rate of 48% of

the gross photosynthesis. This value demonstrates a much higher CO2 availability for the

symbionts as compared to free living dinoflagellates. Geider and Osborne (1989) reported,

that a dark respiration vs. photosynthesis rate of 0.25 is generally found in dinoflagellates.

Orbulina universa can, thus, supply its endosymbionts with additional CO2, that may

support the photosynthetic CO2 fixation. However, recent model calculations (Wolf­

Gladrow et aI., subm) as well as laboratory experiments (Bijma et aI., subm) demonstrate

that G. btiii in symbiosis with O. universa as well as isolated in culture also tap into the

bicarbonate pool as a carbon source.
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Conclusions

Microsensors are useful tools for studying photosynthetic processes in symbiotic

systems and for comparing light and dark respiration rates. The respiration of O. universa

in the light was significantly higher than dark respiration. Possible mechanism for this

observation might be the increase of respiratory substrate (photosynthates) released by the

symbionts and/ or photorespiration.

Varying incident irradiances caused dynamic changes of the symbiont

photosynthetic activity that affected the chemical microenvironment around the

foraminiferal shell. High photosynthetic rates in combination with a slow efflux of O2 and

protons due to the diffusive boundary layer created an O2 oversaturation and a pH increase

in the foraminiferal microenvironment as compared to the ambient seawater. The symbiotic

associations of O. universa thus represent highly productive "hot spots" in the light

saturated photic zone of oligotrophic pelagic environments.

To understand the complexity of interactions between photosynthesis, respiration, and

calcification in symbiotic foraminifera, new methods have to be explored. A new CO2

microsensor (de Beer et al. 1997) could provide more information about the CO2 uptake and

dynamics. Furthermore the CO2 microsensors could be used in combination with Ca2
+

microelectrodes (Tsien and Rink 1980, Amman et al. 1987) to investigate the process of

calcification in symbiont-bearing foraminifera.
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ABSTRACT

We used microsensors for 0z, pH, and photosynthesis rate measurements together

with the first direct COz and Caz+ measurements in the vicinity of a symbiont-bearing

foraminifer Orbulina universa. The chemical microenvironment was affected by the

combined processes of symbiont photosynthesis, respiration of the community, and host

calcification. Furthermore, the presence of a diffusive boundary layer (DBL) with a

thickness of 250 - 800 11m limited the solute exchange between the foraminifer and the

surrounding seawater. Under saturating light conditions, microprofiles measured towards

the shell surface showed an Oz increase up to 210% air saturation, a COz decrease down to

4.9 11M, and a pH increase up to pH 8.8 due to symbiont photosynthesis. In darkness, the

respiration of the community decreased the Oz concentration down to 82% air saturation,

COz increased up to 15 11M, and pH decreased down to pH 8.0. Consequently, the

carbonate system in the vicinity of the foraminifer was significantly different from

conditions in the surrounding seawater both in light and darkness. Net fluxes of Oz and CO2

measured at the shell surface in the symbiont swarm demonstrated much higher rates of O2

influx and efflux as compared to the CO2 fluxes. At high irradiance (664 Ilmol photons m-z

S-I) a molar 0iCOz conversion ratio of about 38.5 was estimated. Combined concentration

measurements of CO2 and pH in the symbiont swarm during experimental light-dark cycles

showed a time delay of the CO2 response, whereas simultaneously measured O2 and pH

concentrations changed immediately when the light conditions changed. These observations

indicate sufficient CO2 supply for high carbon fixation rates of the symbiotic algae via

conversion of HCOJ-or via COz release from calcification and host respiration.

Calcium concentration profiles as well as Caz+ dynamics measured during

experimental light-dark cycles demonstrated a light dependent Ca2+microenvironment of O.

universa. Microprofiles measured from the ambient seawater towards the shell surface

showed a significant Ca2+ concentration change at the shell as compared to the seawater

level (10 mM). In the light, Ca2+concentration decreased down to 9.65 mM and under dark

conditions Ca2+ increased up to 10.8 mM. Our findings on the carbonate system and

calcification in the vicinity of foraminifera have important implications for paleoclimatic

interpretations on foraminiferal analyses.
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INTRODUCTION

Symbiotic planktonic foraminifera are widespread calcifying protozoa living in

symbiosis with phototrophic microalgae (Lee et al. 1965, Be 1977, Murray 1991, Hemleben

and Spindler 1983). They are most abundant in the euphotic zone of subtropical and tropical

oceans with highest densities of 10 - 100 individuals m-3 (Bradshaw 1959, Be 1977).

Symbiont-bearing planktonic foraminifera inhabit the euphotic zone and reach depth down

to ca. 100 m. Highest numbers have been found at 10 - 50 m depth, where the

endosymbionts are exposed to sufficient irradiance. The planktonic foraminifera show

diurnal and ontogenetic vertical migration patterns in the water column, and sinking into

deeper waters was observed during reproduction.

Orbulina universa was described as an ubiquitos species in subtropical, tropical, and

transitional waters. Like most spinose species, it host high numbers of the endosymbiotic

dinoflagellate Gymnodinium beii (Spero 1987). During daytime, when the symbionts are

light-exposed in the host cytoplasm strechted out along the calcite spines, high

photosynthetic activities have been measured (J0rgensen et al. 1985, Rink et al. 1998).

Symbiont-bearing planktonic foraminifera can be described as "hot spots" of primary

productivity in oligotrophic seas. However, the inorganic carbon sources that the

endosymbionts use to maintain such high photosynthetic activities still remain to be

identified.

It has been demonstrated that photosynthesis of the symbiotic microalgae can affect

the calcification process in planktonic foraminifera, Lea et al. (1995) measured up to three

times higher calcification rates in 0. universa under high light conditions as compared to

individuals grown in the dark. Thus, they hypothezised that symbiont photosynthesis

enhances calcification and creates a microenvironment with optimal conditions for CaC03

precipitation. The role of endosymbionts in relation to the shell growth was studied in the

species Globigerinoides sacculifer that builts up one chamber per day. Inhibition of

symbiont photosynthesis with the inhibitor DCMU resulted in smaller shell growth rates of

the foraminifera (Be et al. 1982).

The physico-chemical microenvironment of several symbiotic systems including

planktonic foraminifera (J0rgensen et al. 1985, Rink et al. 1998), benthic foraminifera

(Kohler-Rink and Kilhl 2000), corals (Kilhl et al. 1995, de Beer et al. 2000), didemnid
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ascidians (KGhl, unpublished), and radiolaria (Kohler-Rink et al. unpublished) has been

studied with microsensors for 02' pH, CO2, Ca2+, and scalar irradiance (PAR). In the

planktonic foraminifera 0. universa and G. sacculifer such experiments demonstrated

significantly different O2 and pH levels at the shell surface as compared to the ambient

seawater conditions. In the light, O2 supersaturation up to 200% air saturation and pH values

up to 8.8 were measured (J0rgensen et al. 1985, Rink et al. 1998). Moreover, O2

microsensores were used to study the effect of light on photosynthesis and respiration of the

foraminifera demonstrating enhanced respiration rates in the light as compared to the dark

respiration (Rink et al. 1998). Based on such microsensor measurements, a diffusion­

reaction model of the seawater chemistry surrounding the shell of symbiont-bearing

foraminifera has been applied (Wolf-Gladrow et al. 1999). With this model concentration

profiles of the carbonate species HC03', CO/", and CO2 including pH have been simulated

during light and dark situations.

In the present study, we used microsensors for CO2, 02' pH, and Ca2
+ to obtain

additional information about the chemical microenvironment of the symbiotic species O.

universa under light and dark conditions. Combined measurements of CO2, 02' pH, and Ca2
+

within the symbiont swarm demonstrated a dynamic response of the community to changing

light conditions and a close interaction of photosynthesis, respiration, and calcification in

planktonic foraminifera. Our experiments with the photosystem II inhibitor DCMU (3-(3-4

dichlorophenyl-1.1-dimethylurea) indicate a complex dependence of the Ca2
+ micro­

environment on the foraminiferal metabolism.
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MATERIALS AND METHODS

Sampling site Adult specimen of Orbulina universa with spherical shell diameters of

570 - 1000 ~m were collected from surface waters near Cura<;ao, Netherland Antilles in the

Caribbean Sea in March and April 1999. Individual organisms were captured in glas jars by

Scuba divers at 5 - 10 m depth. At the sampling site, surface waters were characterized by

calcium supersaturation and high temperatures up to 28° C. In-situ salinity was 38%0 and pH

was 8.2. Experiments were conducted in the laboratory of the Caribbean Marine Research

Station (CARMABI, Netherlands Institute of Sea Research). Individual specimen were

maintained in glas jars with filtered seawater at room temperature of 26°C. Measurements

were performed at the day of sampling.

Microsensor measurements and experimental setup For microsensor measurements,

freshly collected foraminifera were placed on a nylon mesh in a measuring chamber with

filtered seawater as described by Rink et al. (1998). The chamber was mounted in a water

bath to reduce temperature changes. Incident light was provided by a fiber optic halogen

lamp (Schott KL-1500, Germany). Light intensity (0 - 1000 ~mol photons m·2 S·I) was

varied by neutral density filters (Oriel Inc., USA) inserted in the light path and was

calibrated with a quantum scalar irradiance meter (OSL 101, Biospherical Instruments Inc.,

USA). Experimental light-dark cycles were controlled by an electro-mechanical shutter

(Vincent Association, USA) installed between the halogen lamp and the measuring

chamber. The microelectrodes were fixed to a motor controlled micromanipulator

(Martzhauser & LOT-ORIEL, Germany). Their positioning relative to the foraminiferal

shell surface was observed through a dissection microscope (Zeiss, SV 11, Germany).

Micromanipulator and shutter control as well as data acquisition were controlled by the

program LabVIEW (National Instruments) that also collected the signals by the custom

made data acquisition system (Insight, PyroImagination).

Microprofiles with a spatial resolution of 50 - 100 ~m were measured from the

ambient seawater towards the shell surface of O. universa. For simultaneous measurements

of two chemical compounds the two microsensors were placed in close proximity « 100

~m) at the shell surface of the foraminifer during experimental light-dark cycles.

Microsensors Microsensors for 02' CO2, pH, and Ca2
+ were used. Clark-type O2

microelectrodes (Revsbech 1989) were constructed with an outer tip diameter of 7 flm, a
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90% response time of 0.3 s, and a stirring sensitivity <1 %. A linear calibration was

performed from readings in aerated and N2 flushed seawater. The O2 detection limit was 0.1

!lM. CO2 microelectrodes with a detection limit down to 1 !lM and a response time of ca.

10 s were composed of an outer glas casing with an internal pH liquid ion-exchange (UX)

microelectrode. The CO2 sensor was calibrated in a degassed phosphate buffer (50 mM, pH

8.0) by adding aliquots of 200 mM carbonate solution (de Beer et al. 1997). pH and Ca2
+

were measured with liquid ion-exchange (UX) microelectrodes with tip diameters of 2 - 5

!lm and a response time of < 1 s. The UX microelectrodes are shielded with an outer casing

containing 1 M KCI to reduce electrical noise. The detection limit for Ca2
+ was 10 !lM, and

calibration was performed in 1, 10, and 20 mM Ca2
+ solutions with added back ground ions

of seawater concentration (Mg, Na, and K). pH microelectrodes were calibrated in standard

pH buffers (Mettler Toledo).

Oxygen signals were measured with a fast responding custom made picoammeter.

pH, CO2, and Ca2
+ were measured with high impedance mY-meters (Mascom, Germany and

Keithley, USA). Signals were recorded with a strip chart recorder (Servogor, SY 124)

connected to the computer data acquisition system.

DCMU experiments The herbicide DCMU (3-(3,4-dichlorophenyl)-1,1-dimethyl

urea), an inhibitor of photosystem II, was dissolved in ethanol and added to the seawater

(10-5 M final concentration) to inhibit symbiont photosynthesis and foraminiferal

calcification (Erez 1983). During light-dark cycles, O2 and Ca2
+ were simultaneously

measured at the shell surface of 0 universa before and after the incubation time of 0.5 h

with inhibitor.
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RESULTS

Microenvironment of COz, 0z, pH, and Caz
+

Photosynthesis, respiration, and calcification in O. universa affected the chemical

microenvironment in the vicinity of the foraminiferal shell (Fig. 1-3).
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In light an O2 and pH increase and a CO2 decrease towards the shell surface was due

to the photosynthesis of the symbiotic algae (Fig. lA). Oxygen and pH increased up to 394

IlM (218% air saturation) and pH 8.76, respectively. CO2 was lowered down to 4.9 IlM at

the shell surface. Under dark conditions the respiration of the community caused an O2 and

pH decrease down to 147 IJ.M (82% air saturation) and pH 8.03, respectively. Due to

respiration and/or calcification CO2 increased up to 15 IJ.M (Fig. IB). Ambient seawater

concentrations of 02' CO2, and pH were 180 IJ.M, 10 IJ.M, and pH 8.2, respectively.
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With increasing irradiance the CO2 concentration towards the shell surface

decreased, whereas O2 increased (Fig. 2). At 166 !lillol photons m·2 sol symbiont

photosynthesis approached its saturation level as indicated by both, CO2 and O2 profiles

(Fig. 2).

Ca2
+ microprofiles measured under light and dark conditions showed a significant

concentration change between the ambient seawater and the shell surface of O. universa

(Fig. 3). Most profiles demonstrated a Ca2
+ decrease towards the shell surface and thus a

Ca2
+ uptake of the foraminifer in light (Fig. 3A).
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Fig. 3 Concentration profiles of Ca" measured in the light towards the shell surface of Orbulilla ulliversa
(A). Light and dark Ca2

• profiles measured with a second specimen (B). Dotted lines indicate the start of the

symbiont swarm.
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The Ca2• concentration at the shell surface decreased to 9.65 mM. However, in a few

specimens the Ca2• concentration increased in the light (Fig. 3B). All dark profiles showed a

concentration increase of Ca2• up to 10.8 mM at the shell surface.

In addition to the metabolic activity of the foraminifer the chemical

microenvironment was influenced by the presence of a diffusive boundary layer (DBL)

surrounding the shell of O. universa, that limited the solute exchange between the ambient

seawater and the foraminifer. The DBL reached a thickness of 250 - 800 ~m as determined

by the extrapolation of the concentration gradient at the shell-seawater interface to the

ambient seawater concentration (J0rgensen and Revsbech 1985, Ploug et al. 1997, Rink et

al. 1998) (Figs. 1, 2).

Net Oz and COz fluxes

The CO2 uptake and O2release rate was calculated from the concentration gradients

measured at the shell as a function of irradiance (Fig. 2). The light compensation point of

symbiont photosynthesis (Ec) was reached at -75 ~mol photons m'2 S,I (Fig. 4), when no net

O2or CO2exchange was observed. Above 75 ~mol photons m,2 S'I a net O2release and a net

CO2 uptake due to photosynthesis was measured. At all irradiance level, concentration

gradients showed much higher fluxes of O2 as compared to COz' At high irradiance (664

!!mol photons m'2 S'I) net O2 production was 77 nmol Oz cm'2 h'l and CO2 uptake 2 nmol O2

cm'2 h'l. Thus, a molar 0z/C02 conversion ratio of 38.5 was calculated.
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gradients at the shell surface of Orbulina universa with increasing scalar irradiance (Fig. 2). Note the different
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Dynamic shell surface conditions

We measured significant variations of the COz, 0z, pH, and Caz
+ concentration at the

shell surface of O. universa during experimental light-dark cycles (Figs. 5, 6, 7). Combined

measurements of CO" 0z, and pH demonstrated a dynamic response of the foraminiferal­

algal symbiosis with changing irradiances. Under light conditions the symbiont

photosynthesis increased the Oz and pH concentrations and decreased the COz level at the

shell surface. When light was switched off the respiration of the association increased the

COz again and Oz and pH values decreased.
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The total concentration change at the shell surface between light saturation values and dark

conditions was - 22 !AM COz, 339 !AM 0z, and a t1pH of 1.2 units. The concentration

changes depended on the irradiance and generally increased with increasing irradiance (Fig.

6). Both the Oz and pH responded immediately to changing light conditions, while the COz

response showed a time delay of 17 - 100 s, which decreased with inceasing irradiance

(Figs. 5, 6).

A light-dependend change of Caz
+ concentration was also shown (Fig. 7). Within a 3

min dark period, Ca2
+ concentration increased 60 !AM at the shell surface and decreased

again about 110 !AM in the following light period (Fig. 7A).

After DCMU treatment the Oz and Caz
+ concentration at the shell surface changed

significantly (7B). Due to the inhibition of symbiont photosynthesis Oz decreased down to

122 !AM and Caz
+ down to 6.9 !AM. Despite the DCMU treatment small concentration

changes of Oz and Ca2
+ during experimental light-dark shifts could be observed (Fig. 7B).

During the dark period Oz decreased about 27 !AM. When light was switched on again no

initial concentration change was measured until O2 increased slightly after 90 s. Caz
+

decreased within the dark period about 120 !AM and increased immediately when light

turned on again. While the concentration change of Ca2
+ in the presence of DCMU was in

the same order of magnitude the dynamics showed a reverse behaviour as compared to

measurements without inhibitor.
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DISCUSSION

Chemical microenvironment of O. universa

With the present microsensor study we could demonstrate the combined effect of

symbiont photosynthesis, community respiration, and host calcification on the CO2, 02' pH,

and Ca2
+ levels around the shell of O. universa. Our measurements clearly show the

influence of the prevailing light conditions on the chemical microenvironment (Figs. 1-3).

Beside the incident light, ambient flow conditions can affect the concentration gradients

towards the shell of planktonic foraminifera (J0rgensen et al. 1985). Exchange of 02' DIC,

and nutrients is limited due to the hydrodynamics of the seawater surrounding the organisms

in their natural habitat (Pasciak and Gavis 1974, Mann and Lazier 1991, Vogel 1994).

Microsensor studies of flow effects on benthic foraminifera demonstrated a decrease in the

diffusive boundary layer (DBL) thickness with increasing flow (Kohler-Rink and Kiihl

2000) leading to an enhanced gas exchange with the surrounding seawater. In the benthic

species Amphistegina lobifera gross photosynthesis rates of the symbiotic algae were

stimulated significantly by increasing flow velocities (Kohler-Rink and Kiihl 2000).

The photosynthetic activity of the dinoflagellate symbionts changed the seawater

chemistry in the surroundings of 0. universa significantly (Figs. 1, 2). The pH changes

towards the shell resulted from the combined effect of CO2 fixation, respiration, and

calcification of the host-symbiont association. Photosynthetic uptake of inorganic carbon

(C02, HC03") under light conditions caused a pH increase at the shell surface that results in

a CO/· concentration increase (Barnes and Chalker 1990, Stumm and Morgan 1996,

Falkowski and Raven 1997). Under dark conditions, CO2increased due to respiration and

calcification (Fig. 1B, 2A) and opposite concentration changes of the carbonate system are

to be expected. Thus, biologically induced CO2 variations influenced the carbonate

chemistry in the vicinity of the shell and probably affect the process of foraminiferal calcite

precipitation (Spero 1992).

Planktonic foraminifera are exposed to changing incident irradiances during their life

cycle due to vertical migrations in the water column (Bradshaw 1959, Boltovsky 1973).

Such migration pattern would result in a change of the local characteristics of the carbonate

system, as indicated by our results. In the surface waters with higher irradiance the chemical

microenvironment of planktonic symbiotic foraminifera is characterized by higher pH
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values due to lower CO2 and HC03' concentrations. When foraminifera reach deeper zones

less photosynthetic activity will result in a pH decrease and CO2 and HC03' concentrations

would be higher. In addition to lower irradiances, deeper dwelling organisms are further

exposed to decreasing water temperatures. Temperature changes alter the pH and the

solubility of CO2, and thus affect the interconversion of inorganic carbon species and the

degree of calcite saturation (Wollast and Vanderborght 1994, Stumm and Morgan 1996). In

O. universa .s180 values indicated an increasing wall thickening due to decreasing

temperatures during migration to deeper water (Deuser et al. 1981).

In micropaleontological studies isotope data are used to estimate the physical and

chemical conditions of the water mass, wherein the foraminifera precipitated their shell

carbonate. Based on the 180/60 and 13C/12C isotope ratios conserved in the foraminiferal

calcite shells, paleoceanographic and paleoclimatic events have been reconstructed (Epstein

1953, Berger et al. 1971, Duplessy 1978, Erez and Luz 1983, Spero and Deniro 1987). This

technique is based on the assumption that shell calcium carbonate is deposited in

equilibrium with the ambient seawater (Emiliani 1954, Valentine 1973, Anderson and

Arthur 1983). However, some authors demonstrated that this assumption is not valid for

many benthic and planktonic species (Erez 1978, Honjo and Erez 1981, Spero and Denim

1987) and it has been suggested that a nonequilibrium isotope fractionation in symbiont­

bearing foraminifera is caused by changes in the isotopic composition of CO2 available for

calcification. Foraminiferal metabolism and symbiont photosynthesis affect the isotopic

composition of the shell calcite. The symbiont photosynthesis increases the l3C content of

the ambient CO2 pool, since 12C02 is preferantially used by photosynthetic fixation. The

respiration of the foraminifer releases CO2 that is depleted in l3C relative to the ambient

seawater CO2pool. Thus, at lower light intensities a trend towards more negative shell .s 13C

values was found, and was explained by the increased influence of respired CO2on the .s 13C

value of the CO2 pool available for calcification (Goreau 1977, Spero and Deniro 1987).

Honjo and Erez (1981) investigated several species that demonstrated pronounced and well

defined deviations in .s180 values and strong deviations among .s 13C values due to metabolic

CO2effects.

The carbonate system of planktonic foraminifera was modeled with a diffusion­

reaction model by Wolf-Gladrow et al. (1999) to estimate the influence of photosynthesis,

respiration, and calcification processes on the uptake and production of the carbonate
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species in the vicinity of the foraminiferal shell. Model results predict e.g. that the carbonate

concentration decreases below 50% of the seawater value due to the foraminifer

calcification. Furthermore, Zeebe et al. (1999) presented a numerical model that calculates

the 013C values of foraminiferal shells in response to the seawater carbonate system and to

the metabolic processes of the foraminifer and its symbionts, so-called 'vital effects'. The

model, that based on the inorganic carbonate chemistry, predicts that the ol3C value of 0.

universa is, however, a result of calcite precipitation and such vital effects.

The present microelectrode study of the chemical microenvironment of O. universa

demonstrates significant variations of the pH and CO2 concentrations in the vicinity of the

foraminifer due to the changing photosynthetic activity of the symbiotic algae. Therefore,

our data give direct experimental evidence for the suggestion that symbiont photosynthesis

may influence the precipitation of the shell calcite in symbiont-bearing foraminifera.

Calcification in planktonic foraminifera

Light enhanced calcification has been described in several symbiotic calcifying

communities like hermatypic corals (Muscatine 1980, Barnes and Chalker 1990), benthic

and planktonic foraminifera (Erez 1983, Duguay 1983, Anderson and Faber 1984, Gastrich

and Bartha 1988, Lea et al. 1995). Our Ca2
+ measurements with microsensors at the shell

surface of 0. universa demonstrated a light dependend Ca2
+ microenvironment. However,

the Ca2
+ microprofiles showed intraspecific differences (Fig. 3). The measured profiles

represent the Ca2
+ environment over a short time period during the growth of the adult

spherical chamber of 0. universa. Our data suggest that Ca2
+ uptake does not occur

permanently and varies among individual specimens according to their specific status of

calcification within their growth cycle. As described in the literature, planktonic

foraminifera calcify during the daytime as well as in the night (Be 1980, Spero 1986). The

calcification of the spherical shell of O. universa occurs in two stages. The first pre­

gametogenic calcification is characterized by slow calcite addition in the majority of the

shell thickening period. This process occurs during the day as well as in the night. Several

hours prior to gametogenesis a thick calcite layer is added to the shell surface. During this

gametogenic calcification 13 - 28% of the shell mass is produced within several hours

primarily in the late afternoon (Spero 1986). Further studies should focus on Ca2
+
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measurements in specimens at a defined growth stage to get additional information about

growth specific Ca l
+ dynamics during the ontogeny of foraminifera.

From measured Ca2
+ gradients we estimated total Ca l

+ uptake rates in O. universa

and found an average uptake of 1.4 nmol Cal
+ h'l foraminifer'l. We calculated the area

integrated Cal
+ flux, Qt, using the radial gradient dC/dr, the molecular diffusion coefficient,

Do, and the surface area of the spherical shell, 4n rl (JI'Hgensen et al. 1985, Ploug et al. 1997,

Rink et al. 1998). Do for Ca2
+ ions in seawater is 0.793*10'5 cm,2 s" (Li et al. 1974). Our

calculated uptake rate is quite comparable to the calcification rates measured by Lea et al.

(1995), who found an average Ca2
+ uptake of 1.8 nmol Ca2

+ h'l in O. universa using a stable

isotope technique that allows the precise determination of 48Ca/44Ca ratios in single shells.

Lea et al. (1995) suggested that the Ca2
+ is incorporated directly from the surrounding

seawater into the shell calcite. They also showed that the calcification of the spherical shell

in individuals grown under high light conditions was 2 - 3 times higher than in individuals

grown under low light or in darkness. Anderson and Faber (1984) investigated the calcium

carbonate deposited during new chamber addition in Globigerinoides sacculifer, which

added chambers at the rate of one chamber per 24 h. The addition of a new chamber usually

occured in the early morning, at rates of 3.9 nmol Ca2
+ h'l chamber".

Our Ca l
+ profiles measured in darkness demonstrated a Ca2

+ increase towards the

shell. Furthermore, experimental light-dark cycles at the shell surface showed a

concentration decrease of Ca2
+ under light conditions and a Ca2

+ increase in the darkness

relative to the ambient seawater level. The preliminary results of our first inhibitor

experiments in O. universa demonstrated a Cal
+ concentration decrease in the dark period

after DCMU treatment and an increase immediately when the light switched on. This

observation indicates a complex interaction between the Ca2
+ microenvironment and the

photosynthetic activity of the endosymbionts.

Similar Ca2
+ and O2 concentration changes were measured with microsensors at the

tissue surface of the coral Favia sp. (de Beer et al. 2000). During experimental light-dark

cycles they also found an O2 increase and Ca2
+ decrease in the light and opposite

concentration changes in the darkness. Their DCMU inhibitor experiments also

demonstrated a Ca2
+ increase when light switched on after a dark period. Compared to the

Ca2
+ variations of about 100 fJ-M we measured in O. universa, the Ca2

+ changes in the tissue

of Favia sp. were much higher, and varied up to 600 fJ-M between light and dark maxima.

87



Chapter 3

Due to the presence of photosynthesizing algae in both systems conditions of high pH and

higher Ca2
+ concentrations as well as reduced inorganic carbon levels were measured during

light conditions within the host-algal association. The comparable results of the microsensor

studies in calcifying foraminifera and corals could therefore indicate similar mechanisms

regulating the chemical processes within the symbiotic communities.

Carbon sources for symbiont photosynthesis

Oceanic surface waters represent a large reservoir for dissolved inorganic carbon

(DlC). At seawater salinity and a pH of 8.2 about 10 !-tM of dissolved CO2 and about 2000

!-tM HC03- are available (Stumm and Morgan 1996). DlC concentrations of seawater can

saturate the photosynthesis of symbiotic algae in benthic foraminifera and hermatypic corals

(ter Kuile et al. 1989b, Gairan et al. 1996). Despite their importance as primary producers

the mechanisms of DlC supply in symbiotic algae are poorly understood (Muscatine 1980).

In coral-dinoflagellate associations it was suggested that HC03- is the main species taken up

for photosynthesis. Isolated symbiotic algae of corals can utilize both CO2 and HC03­

(Goiran et al. 1996). In benthic symbiotic foraminifera ter Kuile et al. (1989a) studied the

DlC uptake mechanisms for photosynthesis and calcification. They suggested that diffusion

is the rate limiting step for DlC uptake in the perforate species Amphistegina lobifera at

lower DlC levels. At higher DlC levels saturation occured and indicated the presence of a

rate limiting enzymatic step. Highest DlC uptake rates were found at pH 8 - 9. The authors

therefore suggested that HCOJ- is the main inorganic carbon species taken up from the

environment, which is then subsequently converted to CO2 intracellularly.

In planktonic foraminifera mechanisms of carbon fixation and DlC supply to the

symbiotic algae remain unknown. However, in the present study we demonstrate that CO2 is

not fully depleted due to symbiont photosynthesis as shown by CO2 profiles measured under

saturating light levels and by CO2 light-dark cycles (Figs. 1,2,5,6). Furthermore, combined

measured O2 and CO2 cycles indicate a fast CO2 supply fueling the immediate O2 increase

after the light was switched on (Figs. 5A, 6). Variations of CO2 concentration during

experimental light-dark cycles demonstrated a time lag after light-dark shifts before a

concentration increase/decrease occured. Under saturating irradiance (664 !-tmol photons m-2

S-I) much higher rates of O2 release than CO2 uptake were measured. The estimated molar
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0iC02 conversion ratio of - 38 demonstrated that the CO2 influx is not sufficient to support

high rates of O2 evolution. We therefore speculate that an efficient internal CO2 supply

mechanism exists (Rink et al. 1998).

Several 'C02-concentrating mechanisms' for algal photosynthesis have been

described (Badger et al. 1980, Burns and Beardall 1987). In O. universa, sufficient CO2for

the intense photosynthetic carbon fixation within the symbiont swarm could be supplied by

an extracellular enzymatic dehydration of HC03'. The enzyme carbonic anhydrase (CA)

enhances the interconversion of HC03' and CO2 (Tsuzuki and Miyachi 1989, Raven 1994,

Nimer et al. 1999). If active HC03' uptake would be the main source for CO2 assimilation

we would not measure immediate pH responses when the light was switched on (Fig. 5 B,

C), as HC03' uptake changes the total alkalinity of the surrounding seawater but does not

affect the external pH (Sikes et al. 1980). Moreover, the time scale for the uncatalysed

conversion of CO2 from HC03' is in the order of 100 s (Stumm and Morgan 1996). Within

100 s we measured a pH increase of ca. 0.65 units. This fact further supports our assumption

about an enhanced CO2supply that caused a fast pH increase at the shell surface.

Conclusions

The interaction of symbiont photosynthesis, community respiration, and host

calcification could be demonstrated by measuring the shell surface concentrations of CO2,

02' pH, and Ca2
+ during experimental light dark-cycles. The time delay of CO2changes and

the immediate pH variations during experimental light-dark cycles indicate an internal CO2

supply mechanisms sustaining the high photosynthetic activity of the symbionts.

Conversion of HC03' to CO2via external or internal CA could be a potential CO2source for

photosynthetic assimilation within planktonic foraminifera. Furthermore, the processes of

respiration and calcification could supply additional CO2,

Under saturating light conditions concentration measurements of CO2, 02' and pH

suggest a microenvironment of decreased inorganic carbon and increased alkalinity due to

the symbiont photosynthesis around the foraminiferal shell. In the darkness, the CO2 release

by respiration and calcification may influence the interconversion of the inorganic carbon

species in the surrounding seawater. Their concentration changes under light and dark

conditions, however, affect the process of CaC03 precipitation.
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With Ca2
+ microelectrodes microenvironments of small and sensitive calcifying

organisms such as planktonic foraminifera can be studied with high spatial and temporal

resolution. Experimental light-dark cycles demonstrated a dynamic Ca2
+ environment of

O. universa. Future studies should focus on inhibitor experiments to obtain further

information about the regulation of calcification in symbiont-bearing foraminifera.

Furthermore, long term Ca2
+ experiments with foraminifera at defined growth stages could

detect possible ontogenetic changes of the Ca2
+ microenvironment. Combined studies with

microsensors and e.g. Ca tracer techniques might help to understand the fast CaC03

precipitation of foraminiferal shells and their attached calcite spines.
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ABSTRACT

The physico-chemical microenvironment of larger benthic foraminifera was studied

with microsensors for 02' CO2, pH, Ca2+, and scalar irradiance. Under saturating light

conditions, the photosynthetic activity of the endosymbiotic algae increased the O2 up to

183% air saturation and pH reached up to 8.6 at the foraminiferal shell surface. The

photosynthetic CO2 fixation decreased the CO2 at the shell down to 4.7 IlM. In the dark, the

respiration of host and symbionts decreased the O2 level to 91% air saturation and CO2

reached up to 12 IlM. pH was lowered relative to the ambient seawater pH of 8.2. The

endosymbionts responded immediately to changing light conditions resulting in dynamic

changes of 0z, COz, and pH at the foraminiferal shell surface during experimentally

imposed light-dark cycles. The dynamic concentration changes demonstrated for the first

time a fast exchange of metabolic gases through the perforate hyaline shell of Arnphistegina

lobifera. A diffusive boundary layer (DBL) limited the solute exchange between the

foraminifera and the surrounding water. The DBL reached a thickness of 400 - 700 Ilm in

stagnant water and was reduced to 100 - 300 Ilm under flow conditions. Gross

photosynthesis rates were significantly higher under flow conditions (4.7 nmol O2cm-3
S-I)

as compared to stagnant water (1.6 nmol O2cm -3 S-l), whereas net photosynthesis rates were

unaffected by flow conditions. The Caz
+ microprofiles demonstrated a spatial variation in

sites of calcium uptake over the foraminiferal shells. Caz
+ gradients at the shell surface

showed total Caz
+ uptake rates of 0.6 - 4.2 nmol cm-z h- I in Amphistegina lobifera and 1.7 ­

3.6 nmol cm-z h- I in Marginopora vertebralis. The scattering and reflection of the

foraminiferal calcite shell increased the scalar irradiance at the surface up to 205% of the

incident irradiance. Transmittance measurements across the calcite shell suggest that the

symbionts are shielded from higher light levels, receiving approximately 30% of the

incident light for photosynthesis.
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INTRODUCTION

Larger symbiont-bearing foraminifera occur in shallow regions of tropical and

subtropical seas, where they contribute significantly to primary production, respiration, and

carbonate budgets of benthic communities (Lee and Bock 1976, Sournia 1976, Hansen and

Buchardt 1977, Rottger et al. 1980, ter Kuile and Erez 1984, Lee and Hallock 1987, Langer

et al. 1997). In their natural habitat larger foraminifera are exposed to different

hydrodynamic regimes ranging from almost stagnant conditions to wave action. They live

epibenthic on various substrates such as sediments, rock surfaces, coral rubble, and

macroalgae. Standing stocks of benthic foraminifera can reach up to several thousand

specimens per 10 cm2 (Murray 1991). The oligotrophic environment of tropical seas was

probably a major driving force in the development of symbiosis in foraminifera (Hallock

1981, Leutenegger 1984), which allowed for evolution of these giant protists with shell

sizes of more than 10 cm in diameter (Smith and Wiebe 1977, Koba 1978, Lee and Hallock

1987, Kruger et al. 1996/97). Microfossils of benthic foraminiferal CaC03 shells are

important biotracers for stratigraphical and paleoecological research. Therefore, studies of

the biology of recent foraminifera are important for the interpretation of fossil foraminiferal

assemblages (Murray 1976, ter Kuile and Erez 1984).

Larger foraminifera can host many different types of microalgal symbionts

belonging to Bacillariophyceae, Dinophyceae, Chlorophyceae, and Rhodophyceae. The

formation of these associations is still poorly understood because they form strongly

restrictive host-symbiont relationships (Lee et al. 1980). Endosymbiotic diatoms are e.g.

extremely rare in the foraminiferal feeding habitat (Lee et al. 1989). The imperforate soritids

Marginopora vertebralis and Amphisorus hemprichii live in symbiosis with dinoflagellates

belonging to the genus Symbiodinium and Amphidinium (Leutenegger 1977b, Lee and

Lawrence 1990, Lee et al. 1997). The perforate species Amphistegina lobifera host small

pennate diatoms like Nitzschia frustulum, Fragilaria shiloi, and N. panduriformis.

The transparancy of the wall and the compressed test, with its high surface area to

volume ratio, was suggested to provide a good morphological basis for this symbiosis

(Hallock 1979). The endosymbionts live in high numbers of hundreds to thousands in the

chamber endoplasm and in the ectoplasm that is distributed near the test openings and in the

canal system. The symbionts are concentrated immediately below the lateral shell walls,
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where they get optimal light conditions. It has been suggested that they are well supplied

with gases, ions, and nutrients from the ambient seawater (Hansen and Dalberg 1979,

Leutenegger and Hansen 1979, ter Kuile et al. 1989a). In A. lobifera the shell pores are

associated to pore cups where the symbionts are concentrated (Hansen and Buchardt 1977,

Lee and Anderson 1991).

The amphistegenids are a very abundant foraminiferal group in shallow waters of

tropical and subtropical seas (Hansen and Buchardt 1977, Hohenegger 1994, Hohenegger et

al. 1999). Amphistegina sp. were found on illuminated surfaces of algae, macrophytes, and

sediments to 40 m depth in the Gulf of Aquaba with maximum densities down to 10 m

(Hansen and Buchardt 1977). The growth and reproduction of Amphistegina sp. is

dependent on the incident light (Hallock 1981). Furthermore, light intensity and spectral

composition are suggested to influence the depth related distribution pattern of symbiont­

bearing species (Leutenegger 1977b, Hansen and Buchardt 1977, Lee et al. 1980).

Despite, their importance in subtropical and tropical benthic communities, the

metabolic activity of larger foraminifera and its regulation by environmental variables, has

not been intensively studied. Rates of carbon fixation of A. lobifera and M. vertebralis were

measured by Muller (1978) and Smith and Wiebe (1977), respectively. The primary

production and respiration of A. lobifera and A. hemprichii were investigated with a

manometer system by Lee et al. (1980). Effects of light and food on the growth of A.

lessonii, Heterostegina depressa, and Peneroplis planatus were measured by Rottger et al.

(1980) and Faber and Lee (1991). Different roles of feeding in the metabolism of A. lobifera

and A. hemprichii have been studied by ter Kuile et al. (1987) with radioisotope tracers of C

and P. Ter Kuile et al. (1989a, b) found a competition for inorganic carbon between

photosynthesis and calcification in A. lobifera and described the mechanisms for inorganic

carbon uptake in perforate and imperforate species.

Microsensors were used previously to study symbiotic systems like the planktonic

foraminifera Globigerinoides sacculifer and Orbulina universa, and the hermatypic corals

Favia sp. and Acropora sp. (J0rgensen et al. 1985, Kiihl et al. 1995, Rink et al. 1998). In

this study we characterised for the first time the physico-chemical microenvironment of

benthic foraminifera (M. vertebralis, A. lobifera, and A. hemprichii) with 02' CO2, pH, and

Ca2
+ microsensors and a scalar irradiance microprobe. We investigated the influence of
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irradiance and flow velocity on photosynthesis and respiration of the foraminiferal-algal

association.

MATERIALS AND METHODS

Sample collection Larger foraminifera (Amphistegina lobifera and Amphisorus

hemprichii) (Fig. 1) growing on small biofilm coated stones were hand collected in June

1998 from a depth of ca. 5 m in the Gulf of Aquaba, Red Sea by snorkeling. In-situ salinity

was 40%0 and water temperature was 22°C at the sampling site. Within a few days, samples

were transported op the natural substrate from the field to the laboratory in Bremen,

Germany, where they were kept in an aquarium with aerated artificial seawater (hw sea salt

professional, DIN EN 45001; 40%0, pH 8). Cultures were maintained at room temperature

(20 - 22°C) under a natural light-dark cycle with a maximal irradiance of ca. 400 Ilmol

photons m-2 S-I.

Specimens ofMarginopora vertebralis (Fig. 1) were collected in December 1998 at

low tide from macroalgae (Halimeda macroloba, Chnoospora implexa) growing in shallow
, . "

pools of a reef flat surrounding Heron Island, Great Barrier Reef, Queensland, Australia.

The water temperature was 26°C and had a salinity of 36%0. Laboratory measurements
:; .

were performed on the day of sampling at the Heron Island Research Station (University of

Queensland).
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"-
Fig. 1 The dorsal view to the foraminifera shows their yellow to brownish shells coloured by their
dinoflagellate and diatom endosymbionts. The shell sizes of the imperforate disc-shaped Marginopora
vertebra/is QUOY & GAIMARD measured between 1.7 - 3.4 mm (A). The thick shelled low-trochospiral test
of Amphistegina /obifera LARSEN had diameters between 1.5 - 3.5 mm (B). The porcelanous discoidal tests
of Amphisorus hemprichii EHRENBERG sized about 3 - 5 mm (C) (size bars = 1 mm).
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Experimental setup For the microsensor measurements, a single benthic foraminifer

was placed on the bottom of a small flow chamber, constructed of Plexiglas (Fig. 2A). The

water flow was maintained with a submersible aquarium pump (Askoll, Italy). Flow was

adjusted by a tubing system in a glass aquarium. Experimental flow velocities (n = 10) were

estimated by timing the lateral displacement of small freely suspended particles under a

dissection microscope. In the experiments with A. hemprichii (A. lobifera) high flow was

4.0 cm S-1 (1.5 cm S·l) and moderate flow was 2.2 cm s·\ (0.6 cm S·l ) (Fig. 3, Table 1). The

flow chamber was illuminated with a fiber optic halogen lamp (Schott KL-1500, Germany)

equipped with a collimating lens and a heat filter. Scalar irradiance was measured at the

bottom of the flow chamber with a quantum scalar irradiance meter (Biospherical

Instruments Inc., QSL 101, USA) equipped with a small diffusing sphere (diameter 1.3 cm).

The scalar irradiance (0 -1000 !-lmol photons m-2
S-l) in the setup was adjusted by inserting

neutral density filters (Oriel Inc., USA) into the light path. All light measurements refer to

visible light (400 - 700 nm), i.e. photosynthetically available radiation. For photosynthesis

experiments darkening was regulated by an electro-mechanical shutter (Vincent

Association, USA), installed in the light path of the halogen lamp. The microsensors were

mounted on a motorized micromanipulator (Martzhauser & LOT-ORIEL, Germany). The

shutter control, data acquisition, and the microsensor positioning were regulated by a

custom made data acquisition software programmed in LabVIEW(National Instruments,

USA). Positioning of the microsensor tip relative to the foraminiferal shell surface was

adjusted under a dissection microscope (Fig. 2B). Measurements were performed at ambient

room temperature (26°C and 20°C, Australia and Bremen, respectively) under defined

light conditions. The foraminifera were allowed to adapt to the flow chamber conditions for

0.5 - 1.0 h prior to the experiments.
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Plexiglas
chamber

/

Reservoir of aerated seawater
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Cytoplasm

6
----6_____..

~
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Symbionts

B
Fig. 2 A. Schematic drawing of the flow chamber. Seawater was pumped into the chamber and a lateral flow
was created above the foraminifer. B. Microsensor tip above the shell of Amphisregilla lobifera. Symbionts
are associated to pore cups.
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Oxygen microsensors Photosynthetic rates at the shell surface of the benthic

foraminifera and 0, profiles from the shell to the surrounding seawater were measured by

Clark-type Oz microsensors equipped with a guard cathode (Revsbech 1989) and connected

to a picoammeter and a strip chart recorder (Servogor 124, Goerz, Austria). The micro­

electrodes had an outer tip diameter of 5 - 10 !-lm, a 90% response time of < 0.6 s, and a

stirring sensitivity < 1%. A linear calibration of the electrode signal was done at

experimental temperatures in air saturated seawater and in Oz free seawater, degassed with

Nz·

pH LIX microelectrodes pH profiles and dynamics were measured with pH liquid

ion exchange (LIX) microelectrodes (Lee and de Beer 1995, de Beer et al. 1997) in

combination with a calomel reference electrode (Radiometer 401, Denmark). Both were

connected to a high impedance mV meter (Mascom, Germany). The tip diameter of the pH

electrodes was ca. 5 !-lm, their dynamic range was pH 3 - 11, and their response time was ca.

10 s. The pH microelectrodes were calibrated in pH buffer solutions (Mettler Toledo, pH

4.01,7.0, and 9.21, DIN 19266) at room temperature.

CO~ microsensors We constructed fast responding COz microsensors according to de

Beer et al. (1997). The COz microsensors were calibrated in a degased phosphate buffer (50

mM, pH 8.0) by adding aliquots of a 200 mM carbonate solution. The COz microsensors

had tip diameters of ca. 10 f.lm, a detection limit of ca. 0.5 f.lM COz, and a response time of

ca. 10 s.

Ca"+ microelectrodes Caz
+ profiles from the shell surface towards the ambient

seawater were measured with Caz+ LIX microelectrodes in combination with a calomel

reference electrode, both connected to a high impedance mV meter (Keithley 617, USA)

(Tsien and Rink 1980, Amman et al. 1987). The tip diameter was < 10 f.lm. Calibration was

done in Caz
+ buffer solutions (1, 10, and 20 mM) with added background ions, i.e. seawater

concentrations of Mg2+, Naz+, and K+.

Fiber optic microprobe Profiles of quantum scalar irradiance (400 - 700 nm) from

the shell surface to the ambient seawater were measured with a fiber optic scalar irradiance

microprobe (Lassen et al. 1992a) connected to a PAR meter (Kiihl et al. 1997). Calibration

procedures and more technical details were described by Ktihl et al. (1997).

Gross photosynthesis Oxygen microsensors with a fast response time were used for

measurements of gross photosynthesis (in nmol 0z cm-3
S·l) at the shell surface of benthic
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foraminifera. Gross photosynthesis was estimated with the light-dark shift technique

(Revsbech et al. 1981, Revsbech and J~Hgensen 1983, Glud et al. 1992, Klihl et al. 1996) by

measuring the rate of Oz depletion over the first seconds after darkening. The O2 depletion is

equal to the photosynthetic O2 production during the previous light period, assuming a

steady state O2 distribution before darkening, identical Oz consumption before and during

the dark period, and identical diffusive fluxes at the shell surface during the measurement.

Net photosynthesis and dark respiration Net photosynthesis and dark respiration

rates were calculated from measured steady-state Oz profiles in the light and dark,

respectively. Assuming a one-dimensional diffusion geometry the rates were calculated as

the diffusive Oz flux, J, in nmol Oz cm-z h- I
, by Fick's first law:

] = -D de
1I dz

(I)

with the linear concentration gradient, dC/dz, over the diffusive boundary layer (DBL)

(J¢rgensen and Revsbech 1985), and the molecular O2 diffusion coefficient in seawater, Do.

Do for 0" is 2.32 10-5 cm" S-I in seawater (36%0) at 26°C and 1.96 10-5 cmz
S-I in seawater

(40%0)al 20°C according to Broecker and Peng (1974) and Li and Gregory (1974).
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RESULTS

Physico-chemical microenvironment and diffusive boundary layers

The chemical microenvironment around the foraminiferal shells was affected by

endosymbiont photosynthesis, calcification, and the combined respiration of host and

microalgal symbionts. The exchange of photosynthetic and respiratory substrates/products

between the foraminifer and the ambient seawater occured over a diffusive boundary layer

(DBL) surrounding the foraminiferal shell. In an experiment with A. hemprichii the DBL

thickness decreased with flow velocity. Under stagnant conditions the DBL thickness

reached up to 400 - 700 flm and decreased to 100 - 175 flm under moderate and high flow

conditions, respectively (Fig. 3).
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Fig. 3 O2 concentration profiles measured under changing flow conditions towards the shell of Amphisorus
hemprichii (dashe arrow =DBL thickness under stagnnanl conditions; black arrow = DBL thickness under
flow conditions; iradiance = 166 !lmol photons m·2

S·I).
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The effective DBL thickness was measured by the extrapolation of the 02' CO2, and pH

gradients at the shell-seawater interface to the ambient seawater concentration according to

J0rgensen and Revsbech (1985) and J0rgensen and Des Marais (1990).

The net photosynthesis rates calculated from the O2 efflux out of the shell of A.

hemprichii were, however, not affected by the flow regime and reached 0.03 - 0.06 nmol O2

cm·2
S·1 (Table 1). The dark respiration rates of A. hemprichii seemed to be influenced by the

water flow. At higher flow velocity the dark respiration rate was two times higher than at

moderate flow rate. Gross photosynthesis rates measured at the shell surface of A. lobifera

were flow dependent (Table 1).
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Fig. 4 Marginopora vertebra/is. Concentration profiles of 02' pH and CO2 in dark (A) and light (8)
conditions (irradiance =359 !lmol photons m·2 5"). Profiles were measured from the shell surface towards the
well mixed surrounding seawater.
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The average gross rates under flow conditions (4.55 and 4.89 nmol 02 cm'3 S'l) were

significantly higher as compared to the gross rates measured under stagnant conditions (1.62

nmol 02 cm'3 S'l). A thick DBL thus imposes limitations on gross photosynthesis of the

endosymbionts and on dark respiration rates of the symbiotic association.

Table 1 Gross photosynthesis, net photosynthesis, and respiration rates measured under changing flow
conditions in Amphisorus hempriehii and Amphistegina lobifera

Rates Species Flow velocity (em s")

High flow Moderate flow

(1.5 ' 4 cm s") (0.14 - 2.2 em s")

No flow

Net photosynthesis A. hempriehii 0.06 ± 0.02 0.03 ± 0.01 0.06 ± 0.02
(Mean ± SO in nmol 0, em·2 s")

Dark respiration 0.05 ± 0.02 0.02 ± 0.01
(Mean ± SD in nmol 0, em" s")

Net photosynthesis A. lobifera 0.19 :!: 0.07 0.19 ± 0.08 0.22 ± 0.01
(Mean ± SO in nmol 0, em" S·l)

Gross photosynthesis 4.89 ± 0.91 4.55 ± 1.81 1.62 ± 0.88
(Mean ± SD in nmol 0, em" S·l)

Oxygen, CO2, and pH profiles were measured in short intervals above one M.

vertebra/is specimen (Fig. 4). All profiles demonstrated a limited solute exchange between

the foraminifer and the surrounding water caused by the diffusive boundary layer (DBL)

above the shell surface. In the light the ambient 02 concentration of 205 [.tM started to

increase ca. 400 [.tm above the shell of M. vertebra/is and reached a concentration of 376

[.tM (= 183% air saturation) at the shell surface (Fig. 4A). Photosynthetic CO2 fixation

lowered the CO2 concentration down to 4.6 [.tM and increased the pH up to 8.6 at the shell

surface as compared to a CO2 concentration of 10 [.tM and a pH of 8.2 in the ambient

seawater.
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Under dark conditions, the respiration of M. vertebralis and its symbionts decreased

the O2 level down to 183 I-lM (= 91% air saturation) and increased the COz up to 11.6 I-lM at

the shell surface (Fig. 4B). The pH was 8.2 at the shell surface. The three different

foraminiferal species investigated in this study established similar 0z, COz, and pH

environments in light and darkness as shown here for M. vertebralis.

The Caz
+ microenvironment around A. lobifera and M. vertebralis exhibited

significant changes of the Caz
+ concentration near the shell surfaces as compared to the

surrounding seawater (Fig. 5). The Ca2
+ profiles demonstrated a spatial heterogeneity of Caz

+

concentration above the shells. In the light, the Caz
+ concentration at the shell surface of A.

lobifera decreased down to 9.9 mM, indicating a net uptake or consumption of Caz
+ (Fig.

5A). Most Ca2
+ profiles measured in A. lobifera showed an uptake of Caz

+ ions from the

surrounding seawater at the shell surface (Fig. 5B). However, the Caz
+ dark profile showed a

concentration increase up to 10.1 mM Caz
+ at the shell surface of A. lobifera. Caz

+ profiles

measured at different irradiances (500 and 1500 I-lmol photons m-z S-I, respectively) showed

no significant effect of light (Fig. 5B). In A. lobifera average Ca2
+ uptake rates reached 0.6 ­

4.2 nmol Ca2
+ cm-2 h-I (Table 2). In M. vertebralis the Caz

+ environment changed over time

between net uptake and net release of the Caz
+ ions (Fig. 5C). Uptake rates varied between

1.7 and 3.6 nmol Caz+ cm-z h- I (Table 2)_

Profiles of quantum scalar irradiance, Eo (PAR), measured above the shell of M.

vertebralis demonstrated an increase of Eo (PAR) towards the foraminiferal shell (Fig. 6).

The profiles were influenced by the presence of endosymbionts under the shell surface. The

Eo (PAR) profile measured in the centre above the brownish area with dinoflagellates

showed a smaller increase of scalar irradiance at the shell (160% of incident irradiance) as

compared to the Eo profile in the outer shell region where no symbionts were located (205%

of incident irradiance). Measurements of light transmission through the upper calcite layer

of M. vertebralis showed an average transmittance of 0_31 ± 0.02 (n = 3). Thus the

symbionts experience ca. 30% of the light incident on top of the foraminiferal shell.
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02' CO2, and pH dynamics

Dynamic variations of 02' pH, and CO2 levels were measured at the shell surface of

A. lobifera during experimental light-dark cycles (Fig. 7). After steady-state conditions of

02' pH, and CO2 were recorded, the light was turned off. The O2 concentration decreased

rapidly from 147% (303 lAM) down to 88% air saturation (181 lAM) in less than 3 min.
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With returning light O2 increased immediately up to 100% air saturation (206 ~M) within 5

s. In the 3 min dark period, CO2 increased from 7.2 ~M up to 15.1 ~M. The pH variation

with the light-dark shifts was less significant (- 0.1 units) as compared to O2 and CO2, pH

at the shell surface decreased down to pH 8.02 in the darkness. O2 and CO2 at the shell

surface changed immediately with the change of light conditions whereas the pH signals

showed a short time delay (Fig. 7). The rapid concentration changes demonstrated for the

first time a fast metabolic gas transport through the perforate shell ofA. lobifera.
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DISCUSSION

Microenvironment of benthic foraminifera

The microenvironment around the shells of benthic symbiont-bearing foraminifera

was largely controlled by the prevailing light and flow conditions (Figs. 3, 4, 7). Conditions

of water flow caused steeper O2 gradients across the diffusive boundary layer (DBL) as

compared to stagnant water (Fig. 3). Most profiles demonstrated a DBL thickness of around

400 !lm (Figs. 3, 4). 02' CO2, pH, and Ca2
+ near the shell surface changed significantly

compared to the concentrations in the surrounding seawater.

Under saturating irradiances, the endosymbiont photosynthesis resulted in an O2 and

pH increase towards the shell surface of M. vertebralis. The CO2 concentration above the

shell of M. vertebralis and A. lobifera was not fully depleted by the photosynthetic CO2

fixation, and reached values between 4.6 and 7.3 !lM. Thus we suggest a sufficient DIC

supply for the primary production of the endosymbionts under saturating irradiances. This is

in agreement with previous DIC experiments in A. lobifera (ter Kuile et al. 1989a), which

showed that photosynthesis of the endosymbiotic diatoms, both associated with the host and

isolated in culture, was saturated at the inorganic carbon concentration of seawater. Beside

the inorganic carbon reservoir of seawater, possible internal CO2 sources available for

photosynthesis could be due to a respiratory CO2 release by the host or a conversion of

HC03' to CO2 by the enzyme carbonic anhydrase (CA). Carbonic anhydrase activity was

demonstrated in the symbiotic microalgae of corals by Al-Moghrabi et al. (1996). A further

supply of CO2could be due to the precipitation of CaC03 (McConnaughey 1989c).

The CO2 gradients in the light demonstrated a net CO2 uptake towards the shell

surface. Due to the CO2fixation by symbiont photosynthesis larger foraminifera represent a

CO2 sink during the daytime at saturating irradiances. In addition, the dark respiration rates

measured in A. lobifera were 1.5 - 6 times smaller as compared to the net O2 production

rates in the light (Kohler-Rink and Kiihl, unpublished). These observations contradict the

suggestion that larger foraminifera contribute as a CO2 source in reef communities (Langer

et al. 1997).

The fast response of the endosymbionts to the changing light conditions resulted in

dynamic changes of the chemical microenvironment at the foraminiferal shell (Fig. 7). Our

data demonstrated a rapid in/efflux of O2 and CO2 through the hyaline shell of A. lobifera.
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The ultrastructure of the perforate shell, therefore, allows a fast exchange of metabolic gases

between the foraminiferal cytoplasm and the ambient seawater (Debenay et al. 1996). The

passage of CO2 through the pores of Amphistegina across the inner organic lining was

already studied by Leutenegger and Hansen (1979). Similar changes of O2 and pH

conditions due to symbiont photosynthesis were measured in the planktonic symbiotic

foraminifera G. sacculifer and O. universa (J0rgensen et al. 1985, Rink et al. 1998). In

comparison to the benthic species the symbionts of planktonic foraminifera, living within

the cytoplasm, spread outside the shell inbetween the calcified spines during day time. In

the symbiont swarm of O. universa O2 reached up to 206% air saturation and pH was 8.8 at

saturating irradiances. Endosymbionts living inside the tissue of hermatypic corals changed

the O2 concentration and pH of the tissue and its surrounding in the same way. Microsensor

measurements in the tissue of Favia sp. and Acropora sp. detected a pH increase up to 8.5

and O2 concentrations up to 250% of air saturation (Kiihl et al. 1995).

The scalar irradiance profiles demonstrated an increase towards the shell surface of

M. vertebralis due to scattering of the incident light by the calcite cristalls of the complex

porcelaneous shell texture (Debenay et al. 1996, Debenay et al. 1999). Profiles measured in

areas filled with symbionts showed a smaller increase, indicating a reduced light reflection

due to light absorption by the yellow-brownish microalgae (Fig. 6). Locally increased scalar

irradiances were also found at the coral tissue surface of Favia sp. (Kiihl et al. 1995), near

the shell surface of the planktonic foraminifer O. universa (Rink et al. 1998), and in the

upper test of symbiont containing didemnid ascidians (M. Kiihl unpublished data).

The thin calcite test transmitted only 30% of the incident light and can thus protect

the symbionts inside the foraminifera against damaging levels of high solar radiation often

found in shallow waters e.g. of lagoons or coral reefs. Whether the high light attenuation of

the upper shell also includes some spectral filtering of light, e.g. by removal of UV light,

remains to be investigated.

Diffusive boundary layer and flow effects on photosynthesis and respiration

Larger foraminifera are surrounded by an environment of changing flow conditions

that may affect the diffusive boundary layer (DBL) around the foraminiferal shell

(J0rgensen and Des Marais 1990, J0rgensen in press). The DBL constitutes a barrier for ion
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and gas exchange between the seawater and the symbiotic association (J0rgensen et aI.

1985, Kiihl et al. 1995). Its thickness depends on the size and shape of the organism as well

as on the water flow (Pasciak and Gavis 1974, Lazier and Mann 1989, Vogel 1994). A

decrease in the DBL thickness will increase the solvent flux by increasing the concentration

gradient and decreasing the time needed to equilibrate solvent concentrations (Patterson et

aI. 1991). Increasing water flow may therefore result in a better supply of the benthic

foraminifera with 02' DIC, and nutrients like Nand P. Furthermore, foraminiferal feeding

on suspended particulate matter by use of their pseudopodial network is strongly dependend

on the rate of the ambient flow (Murray 1991, Vogel 1994).

The characteristic roughness of a surface is important for the boundary layer

thickness, which increases with increasing roughness (J0rgensen and Revsbech 1985,

Denny 1988, J0rgensen and Des Marais 1990, Vogel 1994). We speculate that the irregular

surface textures of larger foraminiferal shells changes the thickness and geometry of the

DBL (J0rgensen and Des Marais 1990). Subsequently, the concentration gradients and thus

the calculated diffusive influx/efflux of O2 and Ca2
+ measured at different shell positions

may be influenced by the DBL changes. A. lobifera for example has a biconcave shaped

shell with a smooth surface, whereas M. vertebralis and A. hemprichii have a more irregular

disc-shaped morphology. Irregular surface textures (e.g. wave-like structures or depressions

in the shell centre) are typically found in bigger shells of soritids such as M. vertebralis and

A. hemprichii.

We speculate that a decrease in thickness of the surrounding DBL may contribute to

the enhanced growth rates reported for larger benthic foraminiferal tests measured under

conditions of water motion (Hallock and Hansen 1979, ter Kuile and Erez 1984, Hallock et

aI. 1986, Wetmore 1987). The Ca2
+ influx from the ambient seawater could e.g. increase

under flow conditions and influence the direct calcium uptake for CaC03 precipitation or,

alternatively, the formation of an internal Ca2
+ pool (Hemleben et aI. 1986, ter Kuile and

Erez 1988, Erez et aI. 1994). Wetmore and Plotnick (1992) proved that the test strength of

larger benthic foraminifera (e.g. A. gibbosa) collected from a high-energy exposed reef

increased as compared to individuals from a low-energy sheltered seagrass flat. In addition,

individuals of A. lobifera increased in diameter and in mass more quickly in moving water

as compared to stagnant conditions (Hallock et aI. 1986).
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The effect of flow on physiological processes of marine organisms has been subject

of numerous studies. Flow effects on diffusion-limited processes such as photosynthesis,

respiration, and nutrient uptake have been demonstrated in marine algae (Koehl and Alberte

1988, Pahlow et al. 1997), corals (Dennison and Barnes 1988, Patterson et aI. 1991, KtiW et

aI. 1995), and sea anemones (Patterson and Sebens 1989). Changing flow conditions around

the shell of A. lobifera affected the symbiont photosynthesis (Table 1). Gross photo­

synthesis rates were significantly lower under stagnant conditions. We speculate that the

enhanced gross photosynthesis rates could be caused due to a higher CO2 release by an

increased respiration of the foraminifer under higher flow conditions. The endosymbionts,

living inside the cytoplasm, may probably benefit from the respired CO2, Haynes (1965)

suggested that the host shell acts as a natural "greenhouse" that offers a favourable habitat

for the endosymbionts. The results of our flow experiments agree with investigations of

water motion effects on corals. Increasing primary production and respiration rates with

flow were measured in the coral Montastrea annularis (Patterson et al. 1991). Dennison and

Barnes (1988) investigated water motion effects on the reef building coral Acropora

formosa and found significantly reduced net photosynthesis and respiration in unstirred

conditions. Lesser et al. (1994) detected a decrease in enzymatic activity of carbonic

anhydrase (CA) when corals were exposed to increased water velocity. Their results indicate

an effect of the surrounding flow conditions on the CO2 supply for symbiont photosynthesis.

It is of interest to note here that some species of larger benthic foraminifera are

motile and probably migrate within their habitats to positions where they find optimal

growth conditions (Travis and Bowser 1991). The photoresponse of larger foraminifera was

studied by Zmiri et al. (1974) and Lee et aI. (1980a). Lee et al. (1980a) found a stronger

phototaxic response of A. hemprichii as compared to its feeding response. In our study we

could observe that A. lobifera tends to lift its shell from the substratum such that both shell

sides are exposed to the water flow or the incident light (see also Hansen and Buchardt

1977). Furthermore, it was clinging to exposed points such as algal branches or stones. This

motile activity could indicate the importance of water motion for the feeding strategy of A.

lobifera. Future combined studies of foraminiferal behaviour, their physico-chemical

microenvironment, and ecophysiology will be able to elucidate the mechanisms that control

the different behavioural strategies of larger foraminifera in their natural environment.
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Calcium microenvironment and calcification

In order to compare our Ca2
• uptake rates with published calcification rates of

foraminifera we extrapolated the locally measured Ca2
• uptake to the total surface area of

the foraminifera by using the formulas of Lee et al. (1988) for the biconcave-shaped A.

lobifera (eg. 1) and the disc-shaped M. vertebralis (eg. 2):

(1)2 1
2Jr~ '2 D + 2Jr"2 D *height

Table 2 Calcium uptake rates in Amphistegina lobifera and Marginopora vertebralis.

(1)

(2).

Foraminifer Specimen
No.

Average calcium uptake
(nmol em" h· l )

Uptake per specimen
(nmol h· l

)

A.lobifera 1 1.43
2 1.88
3 1.78
4 4.21
5 0.6

average 1.98
:!: SD :!: 1.34

M. vertebra lis 1 1.73

2 2.84
3 3.58

average 2.72

± SD ± 0.93
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size (Imm) size (2mm)

0.103 0.156
0.135 0.205
0.128 0.194
0.303 0.458
0.043 0.07

0.14 0.22
:!: 0.09 ± 0.15

size (1.7 . 3.4 mm)

0.35
0.16
0.74

0.42
±0.29
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Thereby, we estimated Ca2
+ uptake rates of 0.22 ± 0.15 nmol Ca2

+ h·1 foraminife(1 in A.

lobifera (individuals of 2 mm diameter, n = 5) and 0.42 ± 0.29 nmol in M. vertebralis

(individuals of 1.7 - 3.4 mm in diameter, n =3) (Table 2).

Our calculated Ca2
+ uptake rates are significantly lower than calcification rates of

benthic foraminifera reported by Duguay (1983), who found Ca2
+ uptake rates of 8 nmol

Ca2
+ mg dry weighrl h·1in Archais angulatus (at 840 Ilmol photons m·2S·I) and ca. 13 nmol

Ca2
+ mg dry weighr' h·1 in Sorites marginalis (240 Ilmol photons m·2 S·I) by measuring the

uptake of 45CaCl2 as an indicator for calcification. Our uptake rates will be larger when

expressed per mg dry weight. We found a fresh weight to dry weight ratio of 1.27 for A.

lobifera. For comparison of Ca2
+ uptake rates on a dry weight basis it is, however, important

to point to the weight variations of the benthic foraminifera (Dugay and Taylor 1978, Dugay

1983). Dry weights of benthic foraminifera are changing during their ontogenetic cycle due

to an increase of cytoplasm and endosymbiont numbers, and the addition of calcium

carbonate. Furthermore, growth of benthic foraminifera is influenced by the availability of

food, temperature, and salinity (Murray 1963) as well as light intensity and nutrient supply

(R6ttger et al. 1980, Hallock 1981, Hallock et al. 1986). Variations of calcium incorporation

during the foraminiferal growth cycle and species-specific variations were reported for the

soritids A. angulatus and S. marginalis (Lee and Bock 1976, Dugay 1983). S. marginalis

showed two times higher calcium incorporation as compared to A. angulatus. Dugay (1983)

suggested that this is caused by differences in frequency and rate of chamber formation of

the two species. Size variations were determined by Lee and Bock (1976) who measured 1.8

fold higher calcification rates in small A. angulatus than in larger specimens.

Our data do not show a correlation between the calcium uptake rates and the

different magnesium contents of the foraminiferal shells. The high Mg2
+ content (> 20 mol%

MgC03) in the porcelaneous shells of M. vertebralis (Debenay et al. 1999) point to lower

Ca2
+ uptake rates in this species as compared to the low Mg2

+ content « 6 mol% MgC03) of

the hyaline shell of A. lobifera (Chave 1954). However, our microsensor measurements do

not prove the precipitation of Ca2
+ ions transported towards the shell surface. The measured

Ca2
+ gradients could also indicate a transport and subsequent immobilization of Ca2

+ e.g.

into vesicles. Erez et al. (1994) described membrane bound granules within the endoplasm

of A. lobifera, which could serve as internal pools for Ca2
+ for the calcification process.

Furthermore, the regulation of the magnesium and calcium uptake and storage prior to the
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calcite deposition is still unknown (Hemleben et al. 1986). It was reported that

environmental parameters such as water temperature, salinity, and depth affect the

magnesium content of the calcite shells (Chave 1954, Delanay et al. 1985). Due to the fact

that species with low and high Mg2+calcite shells such as A. lobifera and A. hemprichii live

in close association in the habitat of the Gulf of Aquaba we suggest that other factors

influence the Mg2+ content. Bender et al. (1975) hypothesized that the precipitation of low

Mg2+calcite in planktonic foraminifera is affected by organic complexing agents produced

by the foraminifera. Such agents could reduce the solution activity of Mg2+ by selectively

complexing Mgz+ ions. However, the mechanisms that induce low Mgz+/Caz+ ratios in the

shell calcite are still unknown and variations in precipitation rates had no significant effect

on the incorporation of Mg2+into calcites (Burton and Walter 1987).

Some authors used the 45CaCIz uptake technique to measure the precipitation of 45Ca

by a foraminiferal pool (Duguay and Taylor 1978, Dugay 1983) or by single foraminiferal

shells (Anderson and Faber 1984). Ca2+ uptake rates of single planktonic foraminifera have

been estimated from measured 48Caf4Ca ratios (Lea et al. 1995). With the Caz+microsensor

we measure Ca2+gradients at the shell surface of a single foraminifer, but we were restricted

to point measurements. The microsensor technique, therefore, determines the short term

Ca2+ situation at specific shell positions. We measured fluctuations of the Caz+

microenvironment over time, but our data give no information about the time sequence of

the chamber calcification. Lea et al. (1995) did not find a general trend of changing

calcification rates over the growth cycle of 60 hours in the planktonic O. universa. In the

same species Spero (1986) measured a slower calcite addition in the stage of pre­

gametogenic calcification and a faster addition of calcite prior to gametogenesis. Anderson

and Faber (1984) reported that chamber addition in G. sacculifer is an incremental event and

not a continuous process. The benthic species Heterostegina depressa showed a chamber

building activity every second or third day (Rattger 1972b, c). The frequency of chamber

formation was reduced at low temperatures or extended dark periods.

Different aspects of the calcification process in foraminifera were investigated, but the

basic mechanisms are still poorly understood (Erez 1978, Duguay 1983, ter Kuile and Erez

1988, Lea et al. 1995). A number of authors discussed possible calcification theories

(Hemleben et al. 1986, ter Kuile 1991, Debenay et al. 1996). One theory, the biological

induced CaC03 fixation is explained as a pH driven process, where CO2 fixation by the host
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symbionts rises the pH that, subsequently, induces the precipitation of CaC03• This was

suggested by Lea et al. (1995) for light enhanced calcification in O. universa. The

planktonic species calcified 2 - 3 times more under high light conditions (500 /Lmol photons

m·2 S·I) than individuals grown under low light (5 /Lmol photons m·2 S·I) or in the dark. A

symbiont dependent stimulation of calcium carbonate production was also pointed out in the

work of Duguay (1983). The benthic foraminifera S. marginalis, C. compressa, and A.

angulatus showed enhanced calcification under high light levels. Higher calcification rates

under high light conditions were also reported by Lee and Zucker (1969) and Erez (1978).

The Ca2
+ increase in the dark profile of A. lobifera that we measured directly after a light

period (Fig. 4A) may demonstrate an influence of the light situation on the Ca2
+ uptake.

The effect of ambient seawater pH on inorganic carbon uptake (C) was studied by ter

Kuile et al. (1989a). In their study the optimum pH for calcification ranged between 8.2 and

8.9 for A. lobifera and A. hemprichii, respectively. In A. hemprichii the C j uptake into the

shell skeleton was stimulated above pH 8.0, whereas the C j uptake in A. lobifera did not

show a significant change from pH 8.0 - 8.9. Our data demonstrate, however, that the shell

surface pH changed significantly compared to the ambient pH of seawater. We measured a

pH increase towards the foraminiferal shells of A. hemprichii (data not shown) and M.

vertebralis at high irradiance due to the symbiont photosynthesis (Fig. 4). Our data could

support the theory of biologically induced CaC03 precipitation as alkaline conditions could

favour the chemical processes for calcification.

Alkaline conditions in the foraminiferal environment can also be induced by the

surrounding substratum. Benthic foraminifera often live on or imbedded in microalgal

biofilms or attached to macroalgae. M. vertebralis for example lives on the calcarous green

alga Halimeda sp. (Borowitzka and Larkum 1976). These phototrophic communities

increase the surrounding seawater pH during light conditions (Axelsson 1988, Israel and

Beer 1992).

Further calcification theories discussed a) an organic matrix, where a primary organic

lining is controlling the calcification (Weiner and Erez 1984, Hemleben et al. 1986), or b)

an energy dependent carbonate concentration into an inorganic carbon pool coupled with an

active Ca2
+ concentrating mechanism (Anderson and Faber 1984, ter Kuile and Erez 1988,

ter Kuile et al. 1989a). The "poison removal theory" suggests that the presence of inhibiting

ions like ammonium, phosphate, or magnesium prevents the precipitation of calcite
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(Hemleben et al. 1986, ter Kuile 1991) which can, however, be induced spontaneously

subsequent to removal of these ions by the foraminifera.

Compared to A. lobifera most profiles above M. vertebralis demonstrated a release

of Cal
+. Possible explanations for the different Cal

+ profiles of the two species could be the

texture of their calcite shells or the process of CaC03 precipitation. The transport of Cal
+

ions through the porous shell of A. lobifera is probably faster than through the imperforate

shell of M. vertebralis. The Cal
+ gradient measured at the shell surface thus might

demonstrate a supply of Cal
+ into a Cal

+ pool as described by Anderson and Faber (1984).

The very heterogeneous Cal
+ dynamic on the shell surface of M. vertebralis could indicate a

different uptake mechanism through the porcelanous imperforate shell. During the

biomineralisation process of porcelaneous tests the CaC03 nucleation occurs in Golgi

vesicles where secondary needles are constructed (Hemleben et al. 1986, ter Kuile and Erez

1988). The preformed needles are transported to the site of deposition where they are

released by exocytosis (Hemleben et al. 1986). In hyaline tests, the nucleation occurs on an

organic membrane (Towe and Cifelly 1967, Hottinger 1986). This membrane provides a

solid surface where efficient nucleators can be absorbed and ions can be bound (Towe and

Cifelly 1967, Addadi and Weiner 1985, Debenay et al. 1996).

Conclusions

The application of microsensors provided the first description of the physico­

chemical microenvironment surrounding larger foraminifera. Based on these measurements

we estimated rates of respiration, photosynthesis, and calcification at high spatio-temporal

resolution and as a function of environmental variables like irradiance and water flow. The

physico-chemical microenvironment around benthic foraminifera shells was largely

controlled by the prevailing light and flow conditions. Due to the combined action of

endosymbiont photosynthesis, host calcification, and the respiration of host and microalgal

symbionts a dynamic microenvironment with respect to °1, Cal' pH, and Cal
+ was found at

the shell surfaces of larger foraminifera. The DBL thickness influenced the mass tranfer and

solute exchange between the foraminifer and the surrounding seawater. Both respiration

rates of the foraminiferal-algal association and the photosynthesis rates of the
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endosymbionts were increasing with flow. Although the symbionts live inside the host

cytoplasm they showed a dynamic response to experimental light-dark cycles. The calcite

shell provides protection of the symbionts against high levels of solar radiation.

Calcium microgradients demonstrated a net calcium uptake in the light in most

cases. However, the heterogeneous Ca2
+ microenvironment of the benthic foraminifera

needs to be studied in more detail. To investigate the interaction between symbiont

photosynthesis and the host calcification, microsensor studies of 02' CO2, pH, and Ca2
+

dynamics combined with inhibitor experiments would be nessecary.

With the techniques presented here, the regulatory mechanisms of respiration,

photosynthesis, and calcification and their interactions in benthic foraminifera and other

symbioses can be investigated. Besides detailed ecophysiological studies, further

investigations should focus on the study of benthic foraminifera in their natural

environment, i.e. microsensor measurements of the foraminiferal physico-chemical

microenvironment combined with behavioral studies of foraminifera within their natural

habitat (e.g. attached to biofilm coated stones).
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ABSTRACT

Irradiance effects on symbiont photosynthesis of larger benthic foraminifera and

their microenvironment were studied with 0z, COz, and pH microelectrodes. With

increasing irradiance and under experimental light-dark cycles, a dynamic response of the

foraminiferal-algal association was observed. Significant changes of the chemical micro­

environment near the foraminiferal shell have been measured under light and dark

conditions. In Amphisorus hemprichii and Amphistegina lobi/era we could demonstrate that

endosymbiont photosynthesis was not photoinhibited up to 2000 ~mol photons m-z S-I.

Photosynthesis versus irradiance curves showed light saturation levels (Ek) between 95 - 198

~mol photons m-z S-I indicating an adaptation of symbiont photosynthesis to high light

conditions.

In addition to point measurements of gross and net photosynthesis, we used a new

"mini-net" chamber to measure net Oz production rates (= net photosynthesis) and net Oz

uptake rates (= dark respiration) of single foraminifera. Net photosynthesis and dark

respiration of A. lobi/era ranged between 3.7 - 25.5 and 5.6 - 14.6 nmol Oz h-I,

respectively. These rates are comparable to rates found in other symbiotic associations such

as planktonic foraminifera or radiolaria. Combined measurements of Oz and COz dynamics

at the foraminiferal shell showed molar Oz/COz conversion ratios> 6, i.e. a higher Oz efflux

than COz influx under light conditions and a higher Oz influx than COz efflux in the

darkness. These results and observations of relatively slow concentration changes of COz

and pH measured during experimental light-dark cycles may indicate that COz is supplied

by enzymatic conversion of HC03-. In addition to the seawater reservoir of inorganic carbon

the respiration of the community and the foraminiferal CaC03 precipitation are potential

COz sources for symbiont photosynthesis.
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INTRODUCTION

Larger foraminifera of oligotrophic tropical reef communities live in close

relationship with specific symbiotic diatoms or dinoflagellates (Lee et al. 1980, Lee et al.

1997). It was suggested that the symbionts assimilate metabolic waste products of the

foraminifer containing nitrogen and phosphorus, e.g. ammonia, urea, and organic

phosphate, which otherwise could inhibit the host metabolism (Murray 1991). The

foraminifer additionally supplies respiratory CO2 for photosynthesis driven carbon fixation

of the symbiotic algae. The microalgae supply O2 to the host respiration and release

photosynthates like polyglucan, glucose, and lipids to the foraminiferal cytoplasm (Kremer

et al. 1980). Thereby they provide a major part of the organic carbon required for the host

metabolism (Battey 1992). Diatom symbionts in the benthic foraminifer Archais angulatus

release e.g. 60% of the nonrespired fixed carbon to its host (Lee et al. 1974). In planktonic

foraminifera the symbiotic primary production contributes 39% to the host carbon budgets

as estimated by Caron et al. (1995). The dinoflagellates of the planktonic species Orbulina

universa e.g. produced more O2 than was consumed by the host-symbiont system resulting

in a ratio of net photosynthesis to respiration (Pne/Rdark) of about 3 (Rink et al. 1998).

Consequently, a large part of the microalgal production is cycled within the symbiotic

association and an efficient carbon and nutrient recycling thus takes place (Murray 1976,

Lee et al. 1980, Smith and Douglas 1987). Furthermore, the endosymbionts contribute to

the calcification of foraminiferal shells and coral skeletons as calcium carbonate

precipitation appears to be metabolically coupled to the photosynthetic reactions in

foraminifera, corals, and calcifying algae (Goreau 1959, Hallock 1981a, Duguay 1983, Lea

et al. 1995, Falkowski and Raven 1997).

High photosynthetic rates of endosymbiotic microalgae were reported for corals

(Muscatine et al. 1981, Kiihl et al. 1995, Goiran et al. 1996), planktonic foraminifera

(J~rgensen et al. 1985, Spero and Parker 1985, Rink et al. 1998), benthic foraminifera

(Hallock 1981a, Duguay 1983, Kohler-Rink and Kiihl 2000), radiolaria (Caron et al. 1995,

Kohler-Rink et al. unpublished) and didemnid ascidians (Alberte et al. 1986, Kiihl et aI.,

unpublished). The photosynthesizing endosymbionts contribute significantly to the primary

production in reef communities. Global net photosynthetic production by symbiotic

microalgae was estimated to 4.6 * 108 metric tons of carbon y(l (Muscatine et al. 1981).
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Endosymbiont photosynthesis has been investigated with a number of methods. Net

photosynthesis was measured manometrically in the benthic foraminifera Amphistegina

lobifera and Amphisorus hemprichii from the Gulf of Aqaba (Lee et al. 1980) and in

symbiotic soft corals from the Great Barrier Reef (Fabricius and Klumpp 1995). 14C02

uptake of algal symbionts has been studied in A. hemprichii by Hansen and Dalberg (1979).

They could demonstrate a direct uptake of 14C02 through the thin lateral test walls of this

imperforate species. Primary production was measured as 14C uptake in the benthic species

A. lobifera, A. lessonii, and Marginopora vertebralis (Smith and Wiebe 1977, Muller 1978,

Hallock 1981a). Recently, measurements of the photosynthetic activity of symbiotic algae

in corals, clams, and sea anemone were performed in-situ with a new underwater pulse

amplitude modulated (PAM) fluorometer that measures the effective quantum yields of

photosystem II (Beer et al. 1998, Ralph et al. 1999). Oxygen microelectrodes have been

used to investigate net and gross photosynthesis rates of symbiotic microalgae in planktonic

foraminifera (J0rgensen et al. 1985, Rink et al. 1998), benthic larger foraminifera (Kohler­

Rink and KtihI2000), and hermatypic corals (Ktihl et al. 1995, de Beer et al. 1999).

In an earlier paper we presented a microsensor study of the physico-chemical

microenvironment of larger foraminifera and discussed the role of the diffusive boundary

layer (DBL) that surrounds the foraminifera (Kohler-Rink and Ktihl 2000). The present

study investigates the light regulation of the endosymbiont photosynthesis. 02' pH, and CO2

microsensors were used to measure gross photosynthesis, net photosynthesis, and dark

respiration of Marginopora vertebralis, Amphistegina lobifera, and Amphisorus hemprichii.

Furthermore, we present a new approach to determine net O2evolution and uptake of larger

foraminifera in a closed mini chamber to estimate the total net primary production and dark

respiration of a single specimen.
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MATERIALS AND METHODS

Sampling The perforate species Amphistegina lobifera and the imperforate

Amphisorus hemprichii were hand collected by snorkeling in the clear oligotrophic water of

the Gulf of Aqaba, Red Sea in June 1998. Samples were taken in a depth of ca. 5 m. The in­

situ salinity was 40%0 and the water temperature was 22°C. The foraminifera, attached to

small biofilm coated stones, were transported to the laboratory in Bremen, Germany within

a few days. They were maintained in an aquarium with aerated artificial seawater (Sel

marine, hw, sea salt professional, 40%0, pH 8) at room temperature (20 - 22°C) with a

natural light-dark cycle. Maximal irradiance was ca. 400 Ilmol photons m·2
S·I. A. lobifera

specimens used in this study ranged between 1.1 - 3.5 mm and A. hemprichii between 6.6 ­

7.4 mm in diameter.

Marginopora vertebralis was collected at low tide from the macro algae Halimeda

macroloba and Chnoospora implexa in warm shallow pools (26 °CI 36%0 salinity) of the

Heron Island reef flat, Great Barrier Reef, Queensland, Australia in December 1998.

Experiments with 1.7 - 3.4 mm large individuals were performed on the day of sampling at

the Heron Island Research Station (University of Queensland). Prior to experiments the

foraminifera were carefully cleaned off adhered algae with an artist brush and rinsed several

times in artifical seawater.

Experimental setup The foraminifer was placed on the bottom of a small flow

chamber (Kohler-Rink and Kuhl, 2000) that was illuminated with a fiber optic halogen lamp

(Schott KL-1500, Germany). Different light intensities (0 - 2000 Ilmol photons m·2
S·l) were

obtained with varying combinations of neutral density filters (Oriel Inc., USA) inserted in

the light path. In the setup, quantum scalar irradiance (Eo) was measured with a quantum

scalar irradiance meter (Biospherical Instruments Inc., QSL 101, USA). Experimental light­

dark shifts were performed with an electro-mechanical shutter (Vincent Association, USA),

installed in the light path of the halogen lamp. The shutter, the data acquisition, and the

microsensor positioning were controlled via a custom made data acquisition software

(LabVIEW; National Instruments, USA). The microsensors were fixed to a motor driven

micromanipulator (Miirtzhiiuser & LOT-ORIEL, Germany) and the surface positioning was

controlled with the aid of a dissection microscope. Measurements were performed at

ambient room temperature (26°C and 20°C, Australia and Bremen, respectively) under a
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defined light and flow regime. The latter was created with an underwater aquarium pump.

The foraminifera were allowed to adapt to the flow chamber conditions for 0.5 - 1.0 h prior

to the experiments.

Microsensor measurements Clark-type 02 microsensors (Revsbech 1989) were used

for measurements of gross photosynthesis rates and 02 dynamics at the foraminiferal shell

surface, and of steady state 02 microprofiles in light and darkness, respectively. CO2and pH

dynamics at the foraminiferal shell and profiles from the shell surface to the ambient

seawater were measured with a LIX-type pH microelectrode (Lee and de Beer 1995, de Beer

et al. 1997) in combination with a calomel reference electrode (Radiometer 401, Denmark)

and with a CO2microsensor according to de Beer et al. (1997). The electrode characteristics,

calibration methods, and data acquisition are described in more detail by Kohler-Rink and

Kiihl (2000).

Photosynthesis and respiration measurements Measurements of symbiont gross

photosynthesis rates were performed with the light-dark shift technique (Revsbech and

J0rgensen 1983, Glud et al. 1992). Fast responding 02 microsensors were positioned at the

shell surface, and the rate of 02 depletion within the first seconds after darkening was

measured. Detailed accounts of the light-dark shift method are published elsewhere

(Revsbech and J0rgensen 1983, Glud et al. 1992, Kiihl et al. 1996).

Net photosynthesis rates were estimated as the net 02 flux out of the foraminiferal

shell as calculated from the linear concentration gradient of 02 over the DBL by using

Fick's first law of diffusion

J = -Do de
dz

where Do is the molecular diffusion coefficient of 02 in seawater (Broecker and Peng 1974,

Li and Gregory 1974) and dC/dz the concentration gradient over the diffusive boundary

layer (DBL) (J0rgensen and Revsbech 1985). Do for 02 is 2.32 10'5 cm2
S'l in seawater

(36%0) at 26°C and 1.96 10,5 cm2S,l in seawater (40%0) at 20°C, respectively.

The dark respiration of the community was estimated from the 02 flux towards the

foraminiferal shell in darkness using eq. 1.

Photosynthesis vs. irradiance curves Gross photosynthesis rates at the shell surface

of the foraminifer were measured with increasing irradiance from 0 - 2000 Ilmol photons

m'2 S'I. The P vs. Eo curves were fitted by non-linear curve fitting (Origin 3.0, MicroCal

Software, Inc.) with the exponential function of Webb et al. (1974)
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where Pm is the maximal photosynthetic rate at light saturation and a the initial slope of the

P vs. Eo curve.

Net O2 production and consumption Total rates of oxygen production or

consumption of single specimens were measured with an O2 microelectrode in a "mini-net"

chamber (Vol. -1.6 ml) (Fig. 1A). Robust Clark-type O2 electrodes were made with a short

shaft and an outer tip diameter of -1 mm (Glud et al. 1994). The electrode was inserted

through a silicone/teflon seal of the glas chamber lid and fixed with additional silicone (Fig.

1A). For the measurements, artificial sterile filtered seawater (Sel marine, hw) was used to

exclude contamination and background O2 consumption in the chamber. The foraminifera

were cleaned carefully with an artists brush and washed several times in seawater, before

they were transferred in the chamber. Continuous mixing in the chamber was maintained

with a mini stirrer bar controlled by an underwater stirrer (Variomag, H+P Labortechnik,

Germany). The setup was installed in a thermostated water bath. Light was provided from

the side by a halogen lamp (Schott, KL1500, Germany) and was measured at the chamber

position with a quantum scalar irradiance meter (Biospherical Instruments Inc., QSL 101,

USA). Linear calibration of the O2 electrodes was done from readings in aerated and N2

flushed seawater of known temperature and salinity, respectively.

Total rates of oxygen production or consumption were calculated from the slopes of

concentration increase and decrease (d02/dt) measured over a time period of 1 - 2 hours.
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RESULTS

Net O2 production and consumption

The total net O2production (= net photosynthesis) at saturating irradiance (598 !-tmol

photons m,2 S,I) and the total net O2 consumption under dark conditions (= dark respiration)

were measured for single foraminifera during short term incubations in a "mini-net"

chamber (Fig. lA). A 1 h time course of the net O2 production and consumption of one A.

lobi/era specimen is shown in Fig. lB. The net O2 production rates of A. lobi/era ranged

between 3.7 - 25.5 nmol O2 h,l (n=5) and their dark respiration rates varied between 5.6 ­

14.6 nmol O2 h,l (Table 1). OneA. hemprichii specimen showed a net O2production rate of

13 nmol O2h,l and a dark respiration rate of 9.9 nmol O2 h-I.

-~~~;'-b~~~---- {
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r--'l--_ Nylon net
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Fig. 1 A Schematic drawing of the closed "mini-net" chamber (Vol. 1.6 ml). The Oz microelectrode was
inserted through the air tight lid into the glas chamber. B Amphistegina lobi/era, Net Oz production and
consumption measured over a time of 1 h (scalar irradiance = 598 I!mol photons m'z s"),
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Table I Amphistegina lobifera. Net photosynthesis, dark respiration, and gross photosynthesis

Foraminifer Net photosynthesis Dark respiration Gross photosynthesis

Diameter (mm) (nmol 0, h· 1 foraminifer-I)

I. 2.0 25.53 14.58 40.11

11.1.9 8.37 5.58 13.95

III. 1.8 3.72 5.58 9.30

IV. 1.8 16.08 14.29 30.88

Y.U 14.74 7.14 21.88

Mean ± SD 13.69 ± 7.41 9.43 ± 4.12 23.12 ± 11.11

Irradiance effects on the microenvironment

The foraminiferal microenvironment was investigated as a function of irradiance by

measuring 02' pH, and CO2 microprofiles from the shell surface to the ambient seawater

(Fig. 2). The profiles showed the presence of a diffusive boundary layer (DBL) of 100 - 300

~m thickness.

At the shell surface of M. vertebralis the O2 concentration and pH changed

significantly with increasing irradiance due to symbiont photosynthesis (Figs. 2A, B). The

light dependence of photosynthesis was also demonstrated by the CO2 increase at the shell

surface of A. lobifera from 7.4 ~M at light saturation up to 15.4 ~M under dark conditions

(Fig. 2C). Ambient levels of 02' pH, and CO2 in the surrounding seawater were 206 ~mol

02' pH 8.24, and 10 [tmol CO2, respectively. In the dark, the 02' pH, and CO2 profiles were

determined by the combined respiration of the host-symbiont association. Lower O2 and pH,

and higher CO2 levels at the shell surface as compared to the ambient seawater were

measured (Fig. 2). Between darkness and light saturation O2 increased about 50 ~M and the

pH changed about 0.4 units.
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The O2 and pH profiles demonstrated a compensation irradiance, Ec' of 25 I-lmol

photons m,2 s" in M. vertebralis. At this irradiance the photosynthetic O2 release balances

the respiratory O2uptake.

02' CO2, pH, and photosynthesis at the shell surface

The O2 and pH at the shell surface of M. vertebralis were measured as a function of

scalar irradiance. O2 and pH levels increased with irradiance and approached a saturation

level above 300 I-lmol photons m,2 S,I (Fig. 3A).
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Fig. 3 Marginopora vertebralis. Shell surface values of 0, (.) and pH (D) plotted against scalar irradiance
(A). Net photosynthesis rates (nmol 0, em" S·I) calculated from 0, gradients near the shell surface as a
function of irradiance (B). The compensation irradiance (E,), indicated by the dashed lines, was 25 f.LmoI
photons m" S,I.
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Highest Oz concentration of 253 11M and a surface pH value of 8.64 were found at 700 I1mol

photons m'z S,I. Net photosynthesis rates of M. vertebralis were calculated from measured

Oz microprofiles (Fig. 3B) and a maximum rate of 0.08 nmol Oz cm'z S'l was found at 680

I1mol photons m'z S·I. The gross photosynthetic rates of the endosymbionts, measured at the

shell surface as a function of scalar irradiance, are shown in Fig. 4.
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Fig. 4 P vs. Eo curves in Amphisorus hemprichii (A-C) and Amphistegina lobifera (D). Gross photosynthesis
rates with increasing scalar irradiance were measured at the shell surface. Solid curves indicate the
exponential function fitted to the data (Webb et al. 1974). Dashed lines indicate 95% confidence intervals (E,
= onset of light saturation).

Pholosynthesis versus scalar irradiance measurements (P vs. Eo) demonstrated no

photoinhibition in A. hemprichii and A. lobifera up to 2000 I1mol photons moz
S,l. The

exponential function of Webb et al. (1974) was fitted to the P vs. Eo data. Thereby, we

estimated a Pmax ranging between 4 - 17 nmol Oz cm·3
S'l and an initial slope (a) that varied
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between 0.06 - 0.10. The scalar irradiance at the onset of light saturation was determined as

Ek =Pma.la. Ek values of A. hemprichii ranged between 164 and 198 !lmol photons m'2 S·1

while the Ek ofA. lobifera was 95 !lmol photons m·2
S·I.

Dynamics of 02' CO2, and pH

Measurements of 02' CO2, and pH dynamics were performed at the shell surface of

M. vertebralis and A. hemprichii during experimental light-dark cycles (Figs. 5, 6). Due to

the symbiont photosynthesis, an O2 and pH increase and a CO2 decrease were measured

during the light period.
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In darkness, when photosynthesis was stopped, the combined host and symbiont

respiration resulted in an O2 and pH decrease and CO2 increase at the shell surface. During a

3 min dark period the O2 concentration at the shell surface of M. vertebralis decreased from

362 !!M down to 221 !!M (Fig. 5A) and increased again up to the light saturation level in the

following 3 min light period. In parallel, the CO2 concentration increased from 5.1 !!M up to

12.8 !!M in the dark and showed a time lag of ca. 20 - 30 s in the following light period

before the concentration decreased agaih (Fig. 5A). The combined pH and CO2

measurements in M. vertebra/is showed a pH change of 0.06 - 0.08 units and a CO2 change

of 4.9 - 7.6 !!M between the light and dark maxima (Fig. 5B).
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Fig. 6 Combined measurements of O2 and pH (A), and O2 and CO2 (B) dynamics at the shell surface of
Amphisorus hemprichii during experimental light-dark cycles (scalar irradiance = 332 IAmol photons m·2 S·l).

Dashed lines indicate light switches.
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The surface concentrations exhibited a time delay when the light situation changed.

In comparison, the 02' CO2, and pH concentrations at the shell of A. hemprichii

demonstrated simultaneous changes during the experimental light-dark cycles (Fig. 6).

In the first dark period O2 decreased 86 IlM and pH decreased 0.08 units. The CO2

concentration increased from 4 IlM up to 24 IlM. Between the light and dark saturation

values the 02' CO2, and pH at the shell surface of A. hemprichii varied between 73 - 112

IlM, 11 - 19 IlM, and 0.07 - 0.08 units, respectively. Whereas the CO2 variations between

dark maxima and light minima of M. vertebra/is were smaller as compared to A. hemprichii,

the concentration differences of O2 were bigger for M. vertebralis between light and

darkness (Figs. 5, 7). In addition, we found faster shell surface dynamics of 02' CO2, and pH

in A. hemprichii as compared to M. vertebralis (Figs. 5, 6, 7, 8).

In the first seconds of the experimental light-dark and dark-light shifts, measured at

the shell surface of A. hemprichii, average rates (n =2) of O2 release/uptake were compared

to average rates of CO2 uptake/release (Fig. 8A, B, Table 2). In the dark A. hemprichii

showed an O2 uptake rate of 1.03 and CO2 release of 0.53 IlM S·l (Table 2). In the light

periods we measured an CO2 uptake of 0.31 IlM s·] compared to an O2 release of 1.98 f-lM

S·I. Thus, we found much higher molar conversion rates of O2 as compared to the rates of

CO2 conversion, both in light and darkness.

Table 2 Amphisorus hemprichii. Rates of O2 and CO2 uptake and release

Light-dark shifts

O2 uptake

CO2 release

Dark-light shifts

O2 release

CO2 uptake

1.03

0.53

1.98

0.31
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DISCUSSION

In the following, we will first discuss the dynamic changes of the chemical

microenvironment observed near the shell of larger foraminifera and continue with the

effect of incident irradiance to the endosymbiont photosynthesis. Furthermore, we compare

the primary production rates of benthic foraminifera measured with microsensors to

previous studies and will discuss various inorganic carbon sources for endosymbiont

photosynthesis in larger foraminifera.

Dynamic microenvironmental changes

Symbiotic larger foraminifera live in a dynamic environment largely determined by

the prevailing light and flow conditions. Scalar irradiance affected the photosynthetic

activity of the endosymbiotic algae and thus the chemical microenvironment adjacent to the

foraminiferal shells as demonstrated by the dynamic response of the 02' CO2, and pH

profiles with increasing incident light (Fig. 2). Enhanced photosynthesis with increasing

light levels increased the O2 and pH concentrations and decreased the CO2 at the

foraminiferal shell. Thereby, the pH dependent composition of the seawater carbonate

system (Cr = HC03· : cot: CO2) will be changed (Stumm and Morgan 1996). The ratio of

the carbonate species and, subsequently, the composition of the chemical environment

around the foraminiferal shell is regulated by the photosynthetic CO2 fixation of the

endosymbionts.

The fast response of the chemical microenvironment during experimental light-dark

cycles indicated a close coupling of autotrophic and heterotrophic processes within the

foraminiferal-algal association (Figs. 5, 6). The initial rates of O2 release and uptake,

measured at the shell surface of M. vertebra/is and A. hemprichii, that were in the same

order of magnitude support this assumption (Fig. 7,8). Combined recordings of O2 and CO2

at the shell surface of A. hemprichii showed simultaneous changes of both concentrations.

The immediate CO2response could indicate a rapid reaction of the CO2 fixation process of

the endosymbionts that, subsequently, resulted in an immediate pH increase at the shell

surface (Fig. 6). The CO2response in M. vertebralis on the other hand showed a time lag up

to 30 s until a concentration change was observed (Fig. 5). This time delay following the
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light changes was also shown by the pH changes in M. vertebra/is and demonstrates a close

coupling between the pH and CO2 signals. pH changes at the shell surface, however, were

driven by the CO2 responses due to the endosymbiont photosynthesis and the respiration of

the community. Similar dynamics of the chemical environment of symbiotic organisms

have been measured within the symbiont swarm of the planktonic foraminifer O. universa

(Rink et al. 1998, Kohler-Rink and Kiihl, unpublished) and in the tissue of the coral Favia

sp. (Kiihl et al. 1995, de Beer et al. 1999). De Beer et al. (1999) found a similar time delay

in the CO2 and pH dynamics at the coral tissue surface as compared to our findings with M.

vertebra/is during experimental light-dark shifts. In both symbiotic systems, the external

CO2 concentration changes were not immediately coupled to the start and end of the

microalgal photosynthesis, i.e. the onset and eclipse of light. Within the symbiont swarm of

0. universa the same phenomenon was observed. However, as indicated by the fast O2

dynamics, symbiont photosynthesis of M. vertebralis was supplied with sufficient CO2, that

is not delivered immediately from the surrounding seawater.

The rapid concentration changes of O2 and CO2 at the shell surface also

demonstrated for the first time a fast exchange of metabolic gases through the imperforate

shells of M. vertebra lis and A. hemprichii. Thus porcelaneous shells do not limit the gaseous

transport across the calcite wall. Similar fluxes of O2 and CO2 were measured with

microsensors at the hyaline shell of A. lobifera with its perforate structure (Kohler-Rink and

Kiihl, 2000).

Irradiance effects on symbiont photosynthesis

In the marine environment endosymbiotic microalgae are exposed to a wide range of

light intensities of varying spectral composition. The relationship between photosynthesis

and irradiance is described by photosynthesis vs. irradiance (P-E) curves, which contain

important information on the functioning of various components of the photosynthetic

apparatus and their response to environmental changes (Geider and Osborne 1992).

Environmental variables such as light, nutrients, and temperature affect the light saturated

and light-limited rates of photosynthesis. Light adaptation can affect the P-E parameters, a

and Pmax' depending on the strategy of photoadaptation (Richardson et al. 1983).
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The photosynthesis vs. scalar irradiance (P-Eo) curves of the symbiotic benthic

foraminifera were similar to P-Eo curves obtained from isolated symbionts and other

symbiotic organisms including planktonic foraminifera and corals. The initial

photosynthesis rates increased proportionally to the increasing irradiance, became saturated,

and approached a maximal gross photosynthesis at highest irradiance (Fig. 4). The P-Eo

characteristics of the benthic species were comparable to those reported for high light

adapted symbiotic algae. High light adapted cells exhibit less steep initial slopes of the P-E

curves (a.), higher light saturation levels for photosynthesis (Ek), and higher compensation

irradiance levels (EO> as compared to cells adapted to low light conditions (Alberte et al.

1986, Iglesias-Prieto and Trench 1994). In addition, most studies of the photosynthesis

response curves of symbiotic dinoflagellates do not show a decreasing photosynthesis, i.e.

photoinhibition, at high irradiance (Falkowski and Dubinsky 1981, Chalker et al. 1988,

Harland and Davies 1995, Goiran et al. 1996). In comparison, investigations of

phytoplankton dinoflagellates demonstrated low Ec and Ek values and photoinhibition at low

irradiance (200 ~mol photons m,2 S,I) (Prezelin 1976, Richardson et al. 1983).

The maximum gross photosynthesis rates of the benthic foraminifera A. hemprichii

and A. lobifera, measured in nmol O2 cm,3 S,I, were in the same order of magnitude as

compared to photosynthesis rates measured in planktonic foraminifera and corals (Kiihl et

al. 1995, Rink et al. 1998). The onset of light saturation (Ek) of A. hemprichii and A. lobifera

varied between 95 and 198 ~mol photons m,2 S,I. A. hemprichii that hosts symbiotic

dinoflagellates showed higher Ek values as compared to A. lobifera that lives in symbiosis

with diatoms. Ek values reported for endosymbionts of planktonic foraminifera and

hermatypic corals ranged between 75 and 275 ~mol photons m,2 S,I (J0rgensen et al. 1985,

Kiihl et al. 1995, Rink et al. 1998)(Table 3). High light adapted endosymbionts

(Symbiodinium sp.) isolated from a jellyfish, corals, and zoanthides showed ~ values of 123

- 154 ~mol photons m,2 S,I, whereas low light adapted cells had Ek values of 67 - 109 /lmol

photons m,2 S,I (Iglesias-Prieto and Trench 1994).

Microprofiles of O2 and pH in M. vertebralis demonstrated a light compensation

point, Ec ' of 25 ~mol photons m,2 S,I (Fig. 2). At this irradiance the photosynthetic O2

production is equal to the respiratory O2uptake of the foraminiferal-algal association.
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Table 3 Photosynthesis and respiration rates and P vs. E parameters measured in symbiotic foraminifera

Gross Net Respiration Ek# Ec# Method Reference
photosynthesis photosynthesis

I. Benthic foraminifera

I. M. vertebralis 0.25' "C Smith and Wiebe 1977

II. a) A. lobifera 317' 165 "C Lee et al. 1980
b) A. hemprichii 166'

III. a) A. lobifera 3.56' "C Rouger et al. 1980
b) A. lessonii 4.64'

IVa)A. lobifera 2.4 ' "C Hallock 1981 a
b)A. lessonii 1.6'

V. A. angulalJls 2.6' "C Duguay 1983

VI. A. lobifera 4.97' "C ter Kuile et al. 1989a

VII. a) A. lobifera 23.1' 13.7' 9.4' 95 0, micro- Present study
sensors

b) A. hemprichii 24.9' 13' 9.9' 164-198 Present study

Isolated symbionts

I. Fragilaria shiloi 150+ "C ter Kuile et al. 1989a
(of A. lobifera)

II. Planktonic foraminifera

I. G. sacculifer 18' 14.9' 3.0' 160-170 26-30 0, micro- J0rgensen et al. 1985
sensors

II. G. ruber 0.48' I·C Gastrich and Bartha 1988

III. Different species 1.0 - 4.0' I·C Caron et al. 1995

IV. O. universa 8.9' 5' 3' 75 - 137 50 0, micro- Rink et al. 1998
sensors

Isolated symbionls

I. G. beii 1.72 ' 10"" 386 I·C Spero and Parker 1985
(of O. universal

, nmol 0, h· 1

"nmol C algae·1 h·1

+ !lM C mg CHI hi
# !lmol photons m" S·I
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In the natural reef habitat, the benthic species would be exposed to this light compensation

irradiance in a depth of ca. 90 m (Jerlov 1976, Kirk 1994) or in shallower shaded areas, e.g.

under large coral heads. The Ec in M. vertebralis was smaller as compared to the reported

light compensation points of 165 !-lmol photons m-2
S-I for A. hemprichii and A. lobifera (Lee

et aI. 1980) or for planktonic foraminifera with 26 - 50 !-lmol photons m-2
S-I (J0rgensen et aI.

1985, Rink et al. 1998)(Table 3). In the coral Stylophora pistillata photosynthesis saturated

above 600 !-lmol photons m-2
S-I and Ec was reached at 350 !-lmol photons m-2

S-1 (Falkowski

and Dubinsky 1981).

Species-specific variations of PoE characteristics could derive e.g. from different

methological approaches and the application of different mathematical expressions to fit the

P vs. E data (Chalker 1981). In addition, the photophysiological differences of the

endosymbiotic algae could result from measurements of varying symbiont densities or algal

adaptations to prevailing environmental parameters (light, temperature). The

photoadaptation in symbiotic algae may in turn influence the distribution of their hosts

(Hansen and Buchardt 1977, Hallock 1981a, Leutenegger 1984, Lee et aI. 1989, Hollaus and

Hottinger 1997). Leutenegger (1984) found a definite correlation between depth distribution

of benthic foraminifera, the types of symbionts, and the prevailing light conditions.

Foraminifera bearing chlorophyceans dwell in very shallow waters (0 - 15 m), those with

dinophyceans and rhodophyceans between 0 - 70 m, and diatom-bearing species between 0 ­

130 m water depth. Leutenegger (1984) concluded that light intensity, substrate type, and

topography among other parameters determined the distribution of symbiont-bearing

foraminifera. Distribution profiles measured in the Gulf of Aqaba showed highest densities

of A. lobifera down to 10 m. At depth greater 40 m the species dissapears (Hansen and

Buchardt 1977). This observation support the assumption that the diatom symbionts (e.g.

Nitzschia sp., Fragilaria sp.) of A. lobifera are adapted to higher levels of solar radiation. At

depth> 35m light intensity decreased to less than 70 !-lmol photons m-2
S-I as measured by

ter Kuile and Erez (1984). The photoacclimatory capabilities of the endosymbionts probably

limit foraminiferal live to this water depth.

Growth experiments with isolated symbionts support this findings. Isolated diatoms

of the benthic species Amphistegina lessonii (Fragilaria shiloi and Nitzschia laevis) grew

fastest at irradiances of ca. 16 !-lmol photons m-z
S-1 whereas diatoms from Heterostegina

depressa (Nitzschia valdestriata and Nitzschia panduriformis) grew best at very low light
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intensities (ca. 1 f-lmol photons m-2
S-I) (Lee et al. 1982b). Thus, the primary depth

determing factor of larger foraminifera seems to be the light dependence of their

photoautotrophic symbionts.

In the transparent nutrient poor waters of tropical seas microalgae are often exposed

to high light levels. In particular in shallow areas damaging solar radiation levels prevail

(Battey 1992). Jerlov (1950) postulated that UV must be a significant biological factor to

depth of 20 m in clear oceanic waters. Especially in the tropics, high levels of UV (290 ­

400 nm) reach the ocean surface (Baker et al. 1980). Exposure to UV radiation and/or high

levels of PAR can result in cell damage and photoinhibition of photosynthesis and a

subsequent decrease in cellular growth rate. Ekelund (1991) could demonstrate that growth

and motility of marine dinoflagellates were inhibited by UV-B. Symbiotic algae developed

adaptation mechanisms to high light exposure depending e.g. on changes of their cellular

pigment contents, differing pigment ratios and/ or enzyme activity (Falkowski and Owens

1980). Furthermore, carotenoids play an essential role in the process of photoprotection of

light-harvesting proteins (LHC) and core complexes (Iglesias-Prieto and Trench 1997,

Larkum and Howe 1997).

Recently, physiological changes in the photosynthetic unit and the Chl-protein

complexes during photo-acclimation of symbiotic dinoflagellates have been shown

(Iglesias-Prieto and Trench 1994, Iglesias-Prieto and Trench 1997). Under super-saturating

irradiances the symbiotic dinoflagellates of the jellyfish Cassiopeia xamachana e.g. showed

a species-specific enrichment of photo-protective xanthophylls. Increased xanthophyll levels

can provide an effective pathway for nonradiative dissipation of excessive excitation. These

data further support the assumption that symbiotic microalgae living in high-light

environments have developed different photo-adaptive strategies.

In our study photosynthesis in A. hemprichii and A. lobifera showed no

photoinhibition up to 2000 f-lmol photons m-2
S-I. We therefore suggest that the symbionts of

benthic foraminfera are able to adapt their pigment content to environmental light stress and

probably possess protective mechanisms against intense radiation and UV-damage.

However, the presence of such adaptations in pigment composition are yet to be

demonstrated. In hermatypic corals high levels of protective pigments, especially UV­

absorbing compounds were measured (Falkowski et al. 1990, Kinzie 1993). One family of

UV-blocking substances, the mycosporine like amino acids (MAAs), act as spectrally
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specific UV sunscreens in several symbiotic and non-symbiotic invertebrates and

microalgae e.g. in sea anemone, scleractinian corals, and dinoflagellates. By accumulating

UV-absorbing MAAs the dinoflagellate Gymnodinium sanguineum showed an increased

resistence to UV inhibition of photosynthesis (Neale et al. 1998). MAA-rich colonies of the

coral Acropora microphthalma showed no UV inhibition in freshly isolated zooxanthellae

(Shick et al. 1995). The presence of MAAs in symbiotic foraminifera has so far not been

studied. However, due to the exposure to high irradiances UV-protective compounds could

be expected. Future studies of the UV photophysiology of foraminifera would therefore be

of great interest.

Another explanation for the apparent lack of photoinhibition could be a light

shielding by the calcite shells of benthic foraminifera. In a previous study, we measured that

only 30% of the incident irradiance was transmitted through the calcite shell to the

symbionts that live in the host cytoplasm (Kohler-Rink and Kiihl, 2000). Lee et al. (1980)

measured photoinhibition in A. hemprichii and A. lobifera at very high incident irradiances

(> 3300 !lmol photons m'2 S'I). With our data on light transmission, the data of Lee et al.

(1980) would thus indicate photoinhibition at light levels> 1000 !lmol photons m,2 S'I below

the calcite shell. Light absorbance of the tissue in didemnid ascidians was 60 - 80% of the

incident light (A1berte et al. 1986). Therefore the authors concluded that the symbiont

Prochloron never experience irradiances > 1000 !lmol photons m,2 S'I. In corals, the

specialized environment of symbiotic dinoflagellates in the host tissue was suggested to act

to reduce or eliminate photoinhibition (Long et al. 1994, Hoegh-Guldberg and Jones 1999).

Primary production of benthic foraminifera

Larger benthic foraminifera are major contributors to the primary production of

tropical reef communities (Muller 1974, Hallock 1981a). They live in dense populations

attached to benthic substrates as epifauna on macroalgae, seaweeds, and corals. Duguay

(1983) reported maximum population densities of Archais angulatus of > 15.000

foraminifera m,2 collected at Largo Sound, Florida. Hansen and Buchardt (1972) found

densities of 90 individuals 30 cm,2 of living Amphistegina sp. in a depth of 20 m at Whadi

Thaba in the Gulf of Aqaba. In a field study at Oahu, Hawai Muller (1974) investigated the

life cycle of Amphistegina madagascariensis. This species showed a tenfold increase in
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density during spring and early summer. Large variations of productivity and a 6-month

period of reproductive activity between February and August were measured. The total

population varied between 1.41 - 41.8104 foraminifera m-2 with a maximum density in July.

The high gross photosynthesis rates and high net O2 production rates measured in the

present study reflect the high primary productivity of the algal-foraminiferal associations.

Our results are in the same order of magnitude as previously reported primary production

rates measured in several larger foraminifera species by 14C incorporation and respirometry

(Smith and Wiebe 1977, Muller 1978, Lee et al. 1980, R611ger et al. 1980, Hallock 1981a,

Duguay 1983, ter Kuile et al. 1989a) (Table 3). Sorites marginalis e.g. showed maximum

carbon uptake rates of 100 ng C mg dw" h- ' and Archais angulatus reached up to 50 ng C

mg dw- ' h" Duguay (1983). Assuming a dry weight of 0.6 mg A. angulatus· 1 (Duguay 1983)

and a COi02 conversion ratio of unity (Muscatine 1990, Sikes et al. 1980) this rate would

amount to ca. 2.6 nmol O2 foraminifer-I h", Hallock (1981a) reported comparable rates of

primary production in A. lobifera (2.9 *10-5 mg 14C h- ' foraminifer'1 = ca. 2.4 nmol O2

foraminifer' I h-') and in A. lessonii (1.95*10-5 mg 14C h" foraminifer" = ca. 1.6 nmol O2

foraminifer" h"). Respirometric studies by Lee et al. (1980) showed 1.9 times higher O2

evolution rates of A. hemprichii as compared to A. lobifera. A. hemprichii evolved 46 nrnol

O2 flg protein" h" and A. lobifera 34 nmol O2 flg protein" h,l (at 198 flmol photons m-2
S-I).

O2 evolution on a per organism basis would result in 317 nmol O2 foraminifer" h" in A.

lobifera (average protein content 4.9 flg foram- ', Lee et al. 1980) and 166 nmol O2

foraminifer" h- ' in A. hemprichii (average protein content 6.9 flg foraminifer"). However,

the expression of O2 evolution rates on the basis of protein content probably overestimates

the primary production rates. Ter Kuile et al. (1989a) estimated a maximum C j uptake of 0.2

flg C mg-I foraminifer" h" assuming an average weight of 298 flg and a surface area of 1.76

mm2 for a 1 mm big A. lobifera. Calculating the C uptake on a per foraminifer basis results

in ca. 4.97 nmol C foraminifer" h" which is comparable to our measurements. One

explanation for the higher production rates in A. hemprichii could be the amount of

photosynthetic pigments. Pigment analysis of A. lobifera and A. hemprichii demonstrated a

much higher content of Chl a, Chl b, and Chl c in A. hemprichii (total content = 0.89 mg

organism") as compared to A. lobifera with 0.054 mg organism-I (Lee et al. 1980).

The primary production rates measured in this study are similar to previously

reported rates of other symbiotic protozoa such as planktonic foraminifera and radiolaria.
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Net photosynthesis rates measured in planktonic foraminifera ranged between 1.0 and 15.0

nmol O2 foraminife(l h-I (Jl'lrgensen et al. 1985, Caron et al. 1985, Spero et al. 1985, Rink et

al. 1998) (Table 3). Solitary radiolaria showed higher average rates of ca. 43.0 nmol

C organism-I h- t (Caron et al. 1985).

In this study, we used O2 microsensors to measure i) net photosynthesis (nmol O2

cm-2 S-I) and gross photosynthesis (nmol O2 cm-) S-l ) rates at the shell surface of benthic

foraminifera and ii) the total net O2 production of the foraminiferal-algal association (nmol

O2 h-I). To compare this two different methods we extrapolated the shell surface rates to

total surface area rates of the biconcave shaped A. lobifera by using the formula of Lee et al.

(1988):

Assuming a diameter (D) of 3.0 mm (± 0.42, n = 5) and an average net photosynthesis rate

of 0_11 nmol O2 cm-2 S-I (± 0.079, n =26) we estimated a total net O2 production rate of 62.0

nmol O2 foraminife(1 h-I. This approximation largely overestimates the average total net

photosynthesis rate of 14 nmol O2 h-I that we measured in A. lobifera with the net chamber

technique (Table 1). In addition, the use of this new chamber allows the estimation of the

total gross photosynthesis rate of larger foraminifera (Table 1). We estimated an average

gross rate of 23 nmol O2 h-I for A. lobifera and 25 nmol O2 h-I for A. hemprichii (data not

shown) by the summation of the net photosynthesis and dark respiration rates. Total gross

photosynthesis rates in planktonic foraminifera measured with O2 microsensors are similar.

Jl'lrgensen et al. (1985) estimated 18 nmol O2 h-I in the species G_ sacculifer and Rink et al.

(1998) found a gross rate of 8_9 nmol O2 h-1 in 0. universa (Table 3)_

In a coral reef community macroalgae, seagrass, as well as symbiotic microalgae that

live in association with several metazoan hosts (e.g. corals, sea anemone, ascidiens) and

larger foraminifera largely contribute to the primary production of this ecosystem. The total

annual production on coral reefs ranges between 300 - 5500 g C m-2 yr-I in comparison to an

open ocean productivity of 21 - 183 g C m-2 y(1 (Muscatine 1990, Gattuso et al. 1996). The

gross community primary production of Younge Reef (Great Barrier Reef) ranged between

9 - 15 g C m-2 dol. Normalized to the surface area of individual colonies Falkowski and

154



Irradiance effects on photosynthesis and respiration

Dubinsky (1981) estimated a mean productivity of 2.63 g C m·2 d·l (961 g C m·2 y(l) for the

coral Stylophora pistillata. Porter (1988) reported a gross production of 510 g C m·2 y(l for

the coral Montastrea annularis living in a depth of 10 m. In a seagrass community,

epibenthic algae showed a mean net productivity of 4.2 g C m·2 d· l (Pollard and Kazuhiro

1993).

To give a rough estimation of the daily rate of net primary production due to benthic

foraminifera in their natural habitat we assumed an average net production of 14 nmol O2 h·1

foraminife(', a 12:12 light dark period, and a population density of 15.000 individuals m·2
•

According to Muscatine (1980) the photosynthetic O2 evolution was converted into carbon

units using the empirical relationship of g C = 0.375 * g O2 (Alberte et al. 1986). Thereby,

we calculated a potential daily primary productivity of 15 mg C m·2 d· l amounting to a

yearly rate of 5.5 g C m·2 y(l. This value probably overestimates the production rate due to

the carbon loss by e.g. growth, soluble carbon secretion or symbiont photorespiration. In

addition, foraminifera densities vary and the incident irradiance changes in a daily pattern

and with depth (Muller 1974, Lee and Bock 1976, Falkowski 1984, Muscatine 1990). On

the other hand, one has to note that benthic foraminifera can reach maximum densities up to

40.000 individuals m·2
• Therefore, after a reproduction period, the increased population

would amount even higher production rates. In comparison to the corals, however, the

primary production of larger benthic foraminifera seems to contribute a small part to the

total reef production on an annual basis.

The comparison with different approaches demonstrated that the microsenor

technique is very useful to estimate the primary production of larger benthic foraminifera.

Furthermore, O2 microsensors allowed short term experiments to investigate e.g. irradiance

effects in one foraminifer (P-Eo curves) or to estimate the total net O2 production or

consumption of a single organism under changing environmental conditions. Compared to

traditional techniques, we could thereby calculate the total gross primary productivity of the

foraminiferal-algal association.
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Inorganic carbon sources

To sustain high primary production rates as measured in symbiotic foraminifera

there is a need for sufficient supply of inorganic carbon (C). In larger foraminifera

inorganic carbon could be supplied from internal (e.g. respiration, calcification) and/ or

external sources (Fig. 9). The C j transport occurs from the ambient seawater through the

foraminiferal shell into the cytoplasm of the foraminifer where the symbionts are located

(Hansen and Dalberg 1979, ter Kuile et al. 1989a, Kohler-Rink and Ktihl 2000). This

diffusional C j uptake of the foraminifer is limited by a diffusive boundary layer (DBL) that

surrounds the foraminiferal shells. The thickness of the prevailing DBL is affected by the

flow conditions and the characteristic roughness of the surface (J0rgensen and Revsbech al.

1985, J0rgensen and Des Marais 1990, Vogel 1994). In our previous flow experiments with

benthic foraminifera we measured a DBL thickness of 100 - 700 Ilm and found enhanced

gross photosynthesis and respiration rates under increased flow velocities (KoWer-Rink and

Ktihl, 2000).

Measurements of the CO2 microenvironment around the shell of A. lobifera at

saturating irradiances (830 Ilmol photons m·2
S·I) (Fig. 2C) and experimental light-dark

cycles in A. hemprichii and M. vertebralis (Figs. 5, 6) demonstrated that CO2 is not totally

depleted by photosynthesis at the foraminiferal shell surface. Furthermore, pH microsensor

measurements showed a significant pH increase around the foraminiferal shells as compared

to the ambient seawater values. The observation of high pH values at the foraminiferal

shells up to 8.65 (Fig. 2B) indicate that the seawater CO2 concentration must be low (Gavis

and Furgeson 1975). Therefore we suggest that altenative CO2 sources exist, that supply

suffcient CO2 for symbiont photosynthesis.
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Seawater A) CO2 ¢3 HC03- ¢3 cot
__________~~~~ s~~__

Foraminifer D. D. Cytoplasm

I C) Calcification ~ CO2 I... I CO2 I ¢3 HC03- B)

ID) Respiration ~ CO2 I;.--:::::::::=:::::::--~

- Symbiont

I) External C; sources:
II) Internal C; sources:

A) Seawater (CO, + HCO;)
B) Conversion of HCO; (by Carbonic anhydrase ?)
C) Calcification
D) Respiration

Fig. 9 Potential external and internal sources of inorganic carbon (C;) and related processes for
photosynthetic assimilation of the symbionts in larger foraminifera (CA = enzyme carbonic anhydrase,
Rubisco = ribulose-l,5-bisphoshat carboxylase/oxygenase, C = carrier for HCO; transport)(based on Al­
Moghrabi et al. 1996, Falkowski and Raven 1997).

One possible C j source for photosynthetic CO2 assimilation is the ambient seawater

reservoir due to the large concentration of HCO)' (Fig. 9). In seawater (35%0) of pH 8.21 >

95% of the inorganic carbon is present in form of HCO)', while the CO2 concentration only

amounts to - 1% of the total inorganic carbon content (Cl -). In addition, the uncatalysed

conversion of HCO)' to CO2 is frequently slower than the rate at which CO2 can be

assimilated by marine algae. Therefore maximum rates of carbon fixation can only be

maintained if the reaction is catalyzed enzymatically (Raven 1994, Falkowski and Raven

1997).
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CO2 concentrating mechanisms (i.e. active inorganic C transport processes) have

been reported for several symbiotic cnidarian species (Weis et al. 1988, AI Moghrabi et al.

1996) and for different types of marine phytoplankton (Badger et al. 1980, Burns and

Beardall 1987). Two DIC uptake mechanisms have been described (Fig. 9): i) an enzymatic

dehydration of extracellular HCO j -, or ii) an active HCO j - transport across the plasma

membrane via a carrier protein (AI Moghrabi et al. 1996). The enzyme carbonic anhydrase

(CA), that catalyses the reversible hydration-dehydration of CO2 plays an important role in

the dissolved inorganic carbon (Die) uptake (Badger and Price 1992). CA activity was

found on the plasmalemma and as an extracellular, soluble enzyme (Falkowski and Raven

1997).

In the coral Galaxea fascicularis e. g. AI-Moghrabi et al. (1996) detected a carrier

mediated transport of HCO j - into the host cells. The pH measurements in M. vertebralis

(Fig. 5B) could indicate that CO2 and not HCO j - is entering the foraminiferal cytoplasm for

photosynthetic fixation. The pH shifts measured at the shell surface during light-dark cycles

followed the CO2 response. The external pH would not be affected if HCOj - is entering the

cells (Sikes et al. 1980). The different responses of the pH and CO2 dynamics in M.

vertebra lis and A. hemprichii to experimental light-dark cycles could therefore indicate

different CO2 supply mechanisms for symbiont photosynthesis or point to different CO2

fixation mechanisms.

Results of CO2 and O2 flux calculations at the shell surface of M. vertebralis

(Kohler-Rink and Kilhl, 2000) showed higher rates of O2 release as compared to the CO2

uptake due to symbiont photosynthesis in the light. In the darkness, respiratory O2 uptake

was - 18 x higher as compared to the CO2 release of the community (Table 4). The smaller

rates of CO2 uptake could suggest slower chemical reactions of the HCO j - dehydroxylation

in the seawater near the foraminiferal shell as compared to the fast photosynthetic CO2

fixation rates of the endosymbionts (Falkowski and Raven 1997). The higher O2 flux out of

the foraminiferal shell could further indicate an internal CO2 supply resulting from

respiratory CO2 release and/ or the conversion of HCO j - to CO2 (Fig. 9).
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Table 4 Marginopora vertebra lis. Shell surface gradients of 0, and CO, under light and dark conditions

Light:

CO, uptake 0.004

0, release 0.15

Dark:

CO, release

0, uptake

0.0013

0.023

In larger foraminifera respiratory CO2 supply of the community is probably not

sufficient for the photosynthetic CO2 fixation. Based on the ratio of total net O2 production

vs. consumption (0.69) measured in A. lobifera (Table 1), we suggest that the endo­

symbionts are probably dependent on further CO2 sources. Supplemental CO2 could also be

produced as a result of carbonate deposition of the foraminiferal shell. If HC03- is used as a

substrate for calcification the reaction: 2 HC03- + Ca2
+~ CaC03 + CO2 + H,o would result

in a net CO2 release (Stumm and Morgan 1996, Falkowski and Raven 1997). Further studies

in this direction need to be done to answer these questions of CO2 supply and CO2

translocation within the foraminiferal cytoplasm.

Carbon uptake mechanisms in benthic foraminifera and the CO2 sources for

symbiont photosynthesis are rarely investigated. The use of microsensor techniques allows

detailed studies about the symbiont photosynthesis and the CO2 and pH microenvironment.

Thus, a reconstruction of the carbonate system of the surrounding seawater in the vicinty of

the foraminiferal shell is now possible. Mechanisms for inorganic carbon uptake in A.

lobifera and A. hemprichii have been studied with the 14C method by ter Kuile et al. (1989a).

They measured photosynthesis saturation at C j levels of seawater in the cultured symbionts

of A. lobifera (Fragilaria shiloi). The photosynthetic C j uptake of the symbionts within A.

lobifera and A. hemprichii also showed no significant increase above Cj seawater

concentrations at ca. 750 f..lmol photons m-2
S-I. Therefore, the authors suggested an

enzymatic step limiting the C j uptake. They further discussed the transport from the host
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cytoplasm into the symbiont cells and suggested that in A. lobifera C j diffuses into the

foraminifer in the form of HCO)', that is converted intracellularly to CO2 and subsequently

fixed by the symbionts (Fig. 9). In A. hemprichii a parallel uptake of CO2 and HCO)' was

assumed. The increase of CO2 concentration due to the addition of CA to the medium

stimulated the symbiont photosynthesis of A. lobifera but not of A. hemprichii. We

speculate that this result could also indicate photosynthesis saturation of A. hemprichii

before the addition of CA, depending on the prevailing light situation and the

photosynthetic characteristics of the endosymbionts within the measured foraminifera.

Alternatively, CA was already present in A. hemprichii. Results of our P vs. E studies

demonstrated that photosynthesis of A. lobifera and A. hemprichii reached light saturation

between 100 - 200 Ilmol photons m-2 s·'. We also showed that individual foraminifera of one

species could have different light saturation values (Ek) (Fig. 5).

Conclusions

The photosynthetic activity of the symbiotic microalgae demonstrated a dynamic

response to changing light conditions. Combined measurements of 02' CO2, and pH

concentrations at the shell surfaces showed a close interaction of the autotrophic and

heterotrophic processes resulting in rapid microenvironmental changes under varying light

conditions.

The study of symbiont light requirements and their photophysiology support the

assumption of high-light adaptation mechanisms in larger foraminifera as indicated by the

lack of photoinhibition and high light saturation values (Ek). In addition, the

photoacclimatory capabilities of the endosymbionts could influence the distribution pattern

of larger foraminifera. Based on total O2 production and consumption measurements, and

point measurements of gross and net photosynthesis with O2 microelectrodes it is now

possible to estimate the primary production rates of benthic foraminifera much more

accurately.

Our knowledge about inorganic carbon sources, the C j pathways and translocation to

the endosymbionts is still very limited. However, microsensor studies as presented here in

combination with e.g. use of specific inhibitors have a large potential to elucidate the

mechanisms of C j uptake and CO2 supply mechanisms in symbiotic foraminifera.
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Summary

Biological studies of symbiotic foraminifera focused i) on foraminiferal life cycles,

ii) their cytology and fine structure, iii) growth and calcification under different light and

nutrient regimes, and iiii) the identification of symbiotic algae. Still very little is known

about physiological processes of foraminifera living in symbiosis with phototrophic

microalgae, e.g. the interrelations of the symbiotic partners, including the transport of

nutrients and gases within the association. In addition, it is of interest to understand the

impact of changing physico-chemical parameters including light intensity and the

hydrodynamics of the surrounding seawater on the physiology of the foraminifer-algal

symbiosis. Furthermore, the basic mechanisms involved in the calcium carbonate

precipitation of foraminiferal shells are poorly understood.

This thesis investigated the physico-chemical conditions in the vicinity of symbiont­

bearing foraminifera and their metabolic activities with high spatial and temporal resolution

by using different types of microsensors. Microsensors for 02' pH, and scalar irradiance

(PAR) have been used to study the physico-chemical microenvironment of the planktonic

species Orbulina universa (chapter 2). For microsensor measurements a single foraminifer

was placed on a nylon mesh in a small measuring chamber. Significant concentration

changes of O2 and pH as compared to the ambient seawater conditions were found in the

vicinity of the shell due to photosynthesis of the symbiotic algae and respiration of the host­

symbiont system. In addition, the presence of a diffusive boundary layer that surrounds the

foraminiferal shell limited the solute exchange between 0. universa and the ambient

seawater. Under light conditions, O2 supersaturation and a pH increase were measured. Dark

conditions were characterized by an O2 depletion and pH decrease towards the shell surface.

Radial profiles of scalar irradiance showed a slight increase near the calcite shell due to light

reflection and scattering by the shell and its attached calcite spines. Photosynthesis vs.

irradiance (P-Eo) curves demonstrated an adaptation of the symbiotic microalgae to higher

light levels as indicated by a high light saturation irradiance (Ek). In addition, no

photoinhibition was observed up to 700 !J.mol photons m02 sol. Furthermore, respiration rates

of the foraminifer-algal association were significantly higher in the light as compared to the

respiration under dark conditions. This observation could be explained by an increase in
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respiratory substrates supplied by the release of photosynthates and/ or the process of

photorespiration which is enhanced at higher O2concentrations.

The study of planktonic foraminifera was continued with the application of CO2 and

Ca2' microsensors, two important parameters with respect to photosynthesis and

calcification in symbiotic foraminifera (chapter 3). Combined studies of CO2, 02' pH, and

Ca2' concentrations in the surroundings of O. universa demonstrated dynamic concentration

changes under changing light conditions. Symbiont photosynthesis and the respiration of

both partners changed the carbonate chemistry in dependence of the incident irradiance.

Under saturating light conditions combined CO2 and pH measurements indicate an increase

in seawater alkalinity and a decrease of inorganic carbon concentration due to the symbiont

photosynthesis. The microenvironment changed completely under dark conditions when

respiration dominated. A significant CO2 increase and pH decrease were observed. 02' CO2,

and pH dynamics measured within the symbiont swarm suggest a fast CO2 supply

mechanism that delivers sufficient CO2 for the high photosynthetic rates of the

endosymbionts. The conversion of HC03- and the processes of respiration and calcification

are potential sources for CO2 supply in symbiont- bearing foraminifera.

The second part of this study (chapters 4 and 5) investigates the metabolic processes

of symbiotic benthic foraminifera and their physico-chemical microenvironment with 02'

CO2, pH, and Ca2
• microsensors. We found a dynamic microenvironment at the shell surface

of larger foraminifera due to the combined processes of symbiont photosynthesis,

respiration of the association, and host calcification (chapter 4). The symbionts that live

intracellularly in the foraminiferal shells showed a dynamic response to changing incident

irradiances and to experimental light-dark cycles. The dynamic concentration changes at the

shell surface demonstrated for the first time a fast exchange of metabolic gases through the

perforate hyaline shells and the imperforate porcelaneous shells of larger foraminifera.

Microsensors were further used to investigate the diffusive boundary layer (DBL) adjacent

to the foraminiferal shell surface. The DBL showed an increase in thickness, when the water

flow was reduced. At higher flow velocity we could measure significantly higher gross

photosynthesis and respiration rates as compared to stagnant conditions.

Calcium microprofiles measured towards the shell of larger foraminifera showed

spatial variations in the sites of calcium uptake. We found different Ca2• dynamics in the

perforate Amphistegina lobifera as compared to the imperforate Marginopora vertebralis.
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Based on Ca2
+ flux measurements close to the shell surface we were able to estimate their

rates of Ca2
+ uptake. In addition, the application of the fiber optic microprobe to measure

scalar irradiance (PAR) was important to estimate the light transmittance of the

foraminiferal shell. Transmittance measurements showed that the symbionts in the

foraminiferal cytoplasm receive approximately 30% of the incident light.

The effect of the prevailing light conditions on symbiont-bearing larger foraminifera

was studied in chapter 5. Endosymbiont photosynthesis was largely affected by the incident

irradiance. Subsequently, dynamic concentration changes of 02' CO2, and pH have been

measured near the foraminiferal shell with increasing irradiances. Symbiont light

requirements suggest an adaptation to high-light conditions as indicated by the lack of

photoinhibition and the high light saturation values (Ek). The inorganic carbon (C) supply

for photosynthetic fixation of symbiotic microalgae (e.g. diatoms and dinoflagellates) living

associated with foraminifera is poorly understood. The results of our measurements showed

that the microsensor technique gives a large potential to investigate the mechanisms of C j

supply and possible inorganic carbon sources for symbiont photosynthesis.

Furthermore, the O2 microsensors are useful to measure the primary production of

symbiont-bearing foraminifera. In short term experiments, point measurements of gross and

net photosynthesis at the shell surface of foraminifera gave important information about the

response of symbiont photosynthesis to environmental changes e.g. varying incident

irradiance and water flow conditions. The total O2 production and consumption of single

larger foraminifera was measured with a new developed setup. This "mini-net" chamber

allows the investigation of foraminiferal primary production rates under changing

temperature and light conditions.

In summary, the present thesis demonstrates the useful application of microsensors

to investigate important metabolic processes including photosynthesis, respiration, and

calcification of symbiont-bearing calcifying organisms, such as planktonic and benthic

foraminifera.
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